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ABSTRACT

In policy research, one of the most critical analytic tasks is to estimate the
causal effect of a policy-relevant shift to the distribution of a continuous expo-
sure/treatment on an outcome of interest. We call this problem shift-response
function (SRF) estimation. Existing neural network methods involving robust
causal-effect estimators lack theoretical guarantees and practical implementations
for SRF estimation. Motivated by a key policy-relevant question in public health,
we develop a neural network method and its theoretical underpinnings to estimate
SRFs with robustness and efficiency guarantees. We then apply our method to
data consisting of 68 million individuals and 27 million deaths across the U.S.
to estimate the causal effect from revising the US National Ambient Air Quality
Standards (NAAQS) for PM2.5 from 12 µg/m3 to 9 µg/m3. This change has been
recently proposed by the US Environmental Protection Agency (EPA). Our goal
is to estimate, for the first time, the reduction in deaths that would result from this
anticipated revision using causal methods for SRFs. Our proposed method, called
Targeted Regularization for Exposure Shifts with Neural Networks (TRESNET),
contributes to the neural network literature for causal inference in two ways: first,
it proposes a targeted regularization loss with theoretical properties that ensure
double robustness and achieves asymptotic efficiency specific for SRF estimation;
second, it enables loss functions from the exponential family of distributions to
accommodate non-continuous outcome distributions (such as hospitalization or
mortality counts). We complement our application with benchmark experiments
that demonstrate TRESNET’s broad applicability and competitiveness.

1 INTRODUCTION

The field of causal inference has seen immense progress in the past couple of decades with the de-
velopment of targeted doubly-robust methods yielding desirable theoretical efficiency guarantees
on estimates of various causal effects (Van der Laan et al., 2011; Kennedy, 2016). These advance-
ments have been recently incorporated into the neural network (NN) literature for causal inference
via targeted regularization (TR) (Shi et al., 2019; Nie et al., 2021). TR methods produce favorable
properties for causal estimation by incorporating a regularization term into a supervised neural net-
work model. However, it remains an open task to develop a NN method that specifically targets the
causal effect of a shift in the distribution for a continuous exposure/treatment variable (Muñoz &
Van Der Laan, 2012). We call this problem shift-response function (SRF) estimation. Many scien-
tific questions can be formulated as an SRF estimation task (Muñoz & Van Der Laan, 2012). Some
notable examples include estimating the health effects of shifts in the distribution of environmental,
socioeconomic, and behavioral variables (e.g., air pollution, income, exercise habits) (Muñoz & Van
Der Laan, 2012; Dı́az & Hejazi, 2020; Smith et al., 2023).

Our objective is to develop a neural network technique that addresses a timely and highly prominent
regulatory question. More specifically, the EPA is currently considering whether or not to revise
the National Ambient Air Quality Standards (NAAQS), potentially lowering the permitted annual-
average PM2.5 concentration from 12 to 11, 10 or 9 µg/m3. We anticipate that the revision of the
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NAAQS will ultimately result in a shift to the distribution of PM2.5 concentrations. Our goal is to
estimate, for the first time, the reduction in deaths that would result from this anticipated shift using
causal methods for SRFs.
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Figure 1: Estimated mortality reduction
under a cutoff exposure shift lowering
the annual PM2.5 in all regions below
a given threshold. Uncertainty bands
represent the interquartile range from an
ensemble of networks. Data source: US
Medicare claims from 2000–2016.

Contributions We contribute to the public debate in-
forming the US Environmental Protection Agency (EPA)
on the effects of modifying air quality standards. A pre-
view of the results (fully developed in Section 6) is pre-
sented in Figure 1. The figure presents the estimated re-
duction in deaths (%) resulting from various shifts to the
distribution of PM2.5 across every ZIP-code in the con-
tiguous US between 2000 and 2016. These shifts limit
the maximum concentration of PM2.5 to the cutoff value
for every ZIP-code that exceeds the cutoff. We vary the
cutoff in this SRF between 6 µg/m3 and 16 µg/m3 (x-
axis). The y-axis represents the % reduction in deaths
that corresponds with each cutoff threshold. Notably, a
NAAQS threshold of 9 µg/m3, would have had the ef-
fect of decreasing elder mortality by 4%. These findings
present a data-driven perspective on the potential health
benefits of the EPA’s proposal.

In our implementation of this analysis, we present a novel
method, called Targeted Regularization for Exposure
Shifts with Neural Networks (TRESNET), which introduces two necessary and generalizable method-
ological innovations to the TR literature. First, we use a TR loss that specifically targets SRFs,
ensuring that our estimates retain the properties we have come to expect from TR methods such
as asymptotic efficiency and double robustness (Kennedy, 2016). Given standard regularity condi-
tions, these guarantees imply that the SRF is consistently estimated when either the outcome model
or the density-ratio model for the exposure shift is correctly specified, and achieves the best pos-
sible efficiency rate when both models are correctly specified. Second, TRESNET accommodates
non-continuous outcomes belonging to the exponential family of distributions (such as mortality
counts) that frequently arise in real-world scenarios, including our motivating application. In ad-
dition to its suitability for our application, we assess the performance of TRESNET in a simulation
study tailored for SRF estimation, demonstrating improvements over neural network methods not
specifically designed for SRFs.

Related work Recent papers have most often estimated causal effects relating air pollution to elder
mortality using exposure-response functions (ERFs); see for example Wu et al. (2020); Bahadori
et al. (2022); Josey et al. (2023). However, none of the methods implemented in these studies target
an SRF estimand. We elaborate on the distinction between ERFs and SRFs in Section 2, emphasizing
the latter’s importance for our motivating application and informing policy.

Neural network-specific methods for causal inference are divided between works that aim to esti-
mate individualized effects (e.g., Bica et al. (2020); Yoon et al. (2018)) and those targeting marginal
effects from a population with efficiency guarantees derived from a specific causal estimand. Several
methods in the latter category—including this work—are based on deriving estimating equations us-
ing a functional quantity unique to the target estimand known as the efficient influence function (EIF).
EIFs have been widely studied for deriving asymptotically efficient estimators with doubly robust
properties (Kennedy, 2016; Bang & Robins, 2005; Robins, 2000; Bickel et al., 1993). EIFs are also
referred to as Neyman orthogonal scores in the double machine learning literature (Kennedy, 2022).
Targeted regularization (TR) (Shi et al., 2019) links EIF estimation methods to neural network ar-
chitectures and optimization. Recent uses of TR include the DRAGONNET (Shi et al., 2019), which
introduced TR for targeting the average treatment effect of a binary treatment, and the VCNET (Nie
et al., 2021), for targeting the exposure-response function (ERF) of a continuous exposure.

Outside of the the neural network literature, SRFs have been studied in the stochastic intervention
and modified treatment policy frameworks for causal inference (Muñoz & Van Der Laan, 2012; Dı́az
et al., 2021). Insights gained from the advancements in this space have guided the formulation of
our applied research question and our implementation of a neural network architecture.
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(a) Cutoff shift (b) Percent reduction shift (c) ERF

Figure 2: Two examples of exposure shifts with their implied counterfactuals and, for comparison,
the implied counterfactuals of an exposure-response function at a given exposure value.

2 PROBLEM STATEMENT: THE CAUSAL EFFECT OF AN EXPOSURE SHIFT

The notation we use follows standard language and concepts of the potential outcomes framework
(Imbens & Rubin, 2015). Let (A, Y,X) denote a unit from the target population P, where A ∈ A is
a continuous exposure/treatment variable, Y ∈ Y is the outcome of interest, andX ∈ X are covari-
ates. Suppose we obtain a sample of n iid observations {Xi, Ai, Yi}ni=1. The potential outcomes
notation Y a represents the outcome corresponding to the exposure/treatment level a. The potential
outcomes for unobserved exposure values are called counterfactuals and factuals otherwise. The
consistency condition requires that the factual outcomes satisfy Y A = Y for the observed treatment
A. The no interference condition requires that the exposure of one unit does not cause the potential
outcomes of another unit 1.

The conditional expectation of the potential outcomes is defined as µ(x, a) = E[Y a|X = x]. All
expectations are with respect to P unless stated otherwise. For conciseness, we also use a generic
notation p to denote the density function of the random variables composing the data distribution.
For example, X ∼ p(X), A|X ∼ p(A|X), and so on. The latter quantity p(A|X) is known as the
generalized propensity score.

Estimand of interest: effects of exposure shifts An exposure shift represents a counterfactual
scenario in which an intervention modifies a unit’s exposure, usually in reference to its observed
value. It considers the case when the exposure data consists of pairs (A, Ã) in which A is the
exposure observed in the data and Ã indicates the exposure that would be observed after the shift.
As simple examples, illustrated in Figure 2, one can define a cutoff shift Ã = min{A, c} where the
exposure is truncated to a maximum value of c; another example is Ã = cA, in which the exposure
is multiplied by a factor c. For instance, c = 0.9 would represent a 10% reduction to all units with
respect to its observed value. We will denote the shifted generalized propensity score as p̃(Ã|X).

The shift-response function (SRF) estimand, denoted ψ = ψ(P), is the expected potential outcome
induced by the exposure shift:

ψ = EX∼p(X)

[
EÃ∼p̃(Ã|X)

[
µ(X, Ã) |X

]]
= E[Y Ã]. (1)

This estimand cannot be expressed in terms of traditional causal effects such as the average treatment
effect (ATE) or an exposure-response function (ERF) (Muñoz & Van Der Laan, 2012).

There is no restriction on how Ã is defined as long as pairs (A, Ã) are available. The shift can be
a stochastic or deterministic function Ã = f(A,X) (Dı́az et al., 2021). Importantly, we do not
require p̃ to be known, nor do we need a deterministic formula expressing Ã in terms of A.

Causal identification The target estimand ψ can be expressed as a functional of the observable
data distribution under standard assumptions, which are:

1Consistency and no interference encompass the the stable unit treatment value assignment (SUTVA) as-
sumption, which is a standard structural assumption used to formalize causal estimation problems in the poten-
tial outcomes framework (Imbens & Rubin, 2015).
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Assumption 2.1 (Unconfoundedness). A ⊥⊥ Y a |X for all a ∈ A.

Assumption 2.2 (Positivity). Let w(x, a) = p̃(a|x)/p(a|x). Then, there exist a constant M > 0
such that w(x, a) < M for all (a,x) such that p(a|x) > 0.

The first assumption ensures that µ(x, a) = E[Y |X = x, A = a]. The right-hand side of this
equality can be directly estimated via regression whereas the left-hand side cannot. The sec-
ond assumption implies that the density ratio w(x, a) is well-defined and behaved. Notice that
ψ = E[µ(X, A)w(X, A)] by the importance sampling formula. Therefore, estimators of µ and w
will suffice to estimate ψ. Intuitively, Assumption 2.2 prohibits extreme cases when the shifted expo-
sures take value outside the practical domain of the observed exposure, in which case counterfactual
estimation is impossible (Muñoz & Van Der Laan, 2012).

Mutiple shifts We can estimate the effect of multiple exposure shifts simultaneously. Let p̃ ∈ P̃
denote the set of finite exposure shifts of interest. We can index the density ratio and estimand by p̃,
and denote w = (wp̃)p̃∈P̃ , ψ = (ψp̃)p̃∈P̃ and Ã = (Ãp̃)p̃∈P̃ .

Comparison with ERFs Exposure-response functions are common estimands in the causal infer-
ence literature for continuous treatments. Mathematically, the ERF ξ can be written as the mapping
ξ(a) = E[µ(X, A)|A = a]. One can consider ERFs as a limiting case of SRFs when p̃ is a point
mass distribution centered at a fixed treatment value assigned equally to all units. A visual example
is shown in Figure 2c. The fundamental reason why SRFs are more suitable for our motivating
application is that ERFs do not allow us to consider scenarios like the cutoff shift, illustrated in
Figure 1. In this setting the PM2.5 levels are reduced only for locations that did not comply with the
proposed air quality standard. An ERF describes the average outcome when all units are given the
same PM2.5 value. Thus, theoretical guarantees for ERF estimation do not apply to SRFs. Moreover,
our experiments suggest that the TR estimators designed for ERFs hampers estimation of SRFs.

3 TRESNET: TARGETED REGULARIZATION FOR ESTIMATING THE CAUSAL
EFFECTS OF EXPOSURE SHIFTS WITH NEURAL NETWORKS

As we have suggested earlier, an estimator of ψ can be derived from estimators of the outcome
and density ratio functions. Using TR, we will obtain an estimator ψ̂tr with the guarantees that
∥ψ̂tr−ψ∥2 converges in probability at an “efficient” rate according to the prevailing semiparametric
efficiency theory surrounding robust causal effect estimation (Kennedy, 2022).

The efficient influence function (EIF) The EIF of ψ, denoted φ(O;ψ, µ,w), is a fundamental
function in the theory of semiparametric models (Kennedy, 2022). More concisely, the EIF is the
gradient ofψ with respect to small perturbations in the data distribution. Results from semiparamet-
ric theory show that the best possible variance among the family of regular, asymptotically linear
estimators of ψ is bounded below by P[φ(ψ, µ,w)φ(ψ, µ,w)⊤]. Moreover, the asymptotic vari-
ance of any statistically consistent estimator (ψ̂, µ̂, ŵ) satisfying the empirical estimating equation
(EEE) Pn(φ(ψ̂, µ̂, ŵ)) = 0 eventually achieves this lower bound. For the SRF, the EIF is given by

φ(O;ψ, µ,w) = w(X, A) (Y − µ(X, A)) + µ(X, Ã)−ψ. (2)

We provide a proof and additional background about the derivation of the EIF in the appendix. The
reader can refer to Tsiatis (2006) and Kennedy (2022) for a more comprehensive introduction to the
EIF and semiparametric efficiency theory. Observe that if (ψ̂, µ̂, ŵ) satisfies the EEE, then ψ̂ can
be decomposed in terms of a debiasing component of the residual error and a plugin estimator for
the marginalized average of the mean response:

ψ̂ = 1
n

∑n
i=1 ŵ(Xi, Ai)(Yi − µ̂(Xi, Ai))︸ ︷︷ ︸

debiasing term

+ 1
n

∑n
i=1 µ̂(Xi, Ãi)︸ ︷︷ ︸

plugin estimator

(3)

TR for SRFs An immediate approach to obtain a doubly-robust estimator satisfying the EEE
would be to use the right-hand side of Equation (3) as specifying an estimator from a finite sample
and nuisance function estimators µ̂ and ŵ. Such an estimator, denoted ψ̂aipw, is sometimes called
the augmented inverse-probability weighting (AIPW) estimator for exposure shifts (also referred to
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as modified treatment policies and stochastic interventions) (Muñoz & Van Der Laan, 2012; Dı́az
et al., 2021). This estimator must be distinguished from the standard AIPW estimator for traditional
average causal effects (ATE and ERF) (Robins, 2000; Robins et al., 2000).

TR is an alternative approach based on the observation that the debiasing term in Equation (3) has
been empirically observed to affect performance in finite samples due to its sensitivity to ŵ. Instead,
TR learns a perturbed outcomes model using a special regularization loss, ensuring that the resulting
plugin estimator (the second component of Equation (3)) satisfies the EEE without requiring the
debiasing term. We introduce the perturbation model and regularization loss in the next section.

Generalized TR for outcomes in the exponential family We present a general formulation ap-
plicable to the SRF estimand for any outcome supported by a generalized domain. First, we say
that the outcome follows a conditional distribution from the exponential family if p(Y |X, A) ∝
exp(Y η(X, A) − Λ(η(X, A)) for some function η : X × A → R. The family’s canonical link
function g is defined by the identity g(E[Y | X, A]) = η(X, A). For all distributions in the ex-
ponential family, g is invertible (McCullagh, 2019). Exponential families allow us to consider the
usual mean-squared error and logistic regression as special cases. They also enable modeling of
death counts as in our application analyzing the health effects of PM2.5. In this setting, we set
Λ(η) = eη and g(µ) = log(µ); a Poisson regression environment.

The following theorem forms the basis for the TR estimator.
Theorem 1. Let ϵ denote a perturbation parameter and define

Ltr(µNN,wNN, ϵ)(O) = Λ(g(µNN(X, A)) + ϵ)− (g(µNN(X, A)) + ϵ)Y.

Rtr(µNN,wNN, ϵ) = 1
n

∑n
i=1 Ltr(µNN,wNN, ϵ)(Oi).

(4)

Then (∂R
tr

∂ϵ )(µNN,wNN, ϵ) = 0 iff 1
n

∑n
i=1w

NN(Xi, Ai)(Yi − g−1(g(µNN(Xi, Ai)) + ϵ))) = 0.

The condition ∂Rtr/∂ϵ = 0 in the theorem holds upon minimization of Rtr. Consequently, the TR
estimator ψ̂tr is defined as the solution of an optimization problem

(µ̂, ŵ, ϵ̂) = argmin
µNN,wNN,ϵ

Rµ(µ
NN) + αRw(wNN) + βnRtr(µNN,wNN, ϵ)

ψ̂tr := 1
n

∑n
i=1 g

−1(g(µ̂(X, A)) + ϵ̂))

(5)

where Rµ and Rw are the empirical risk functions of µ and w, α > 0 is a hyperparameter, and
βn is a regularization weight satisfying βn → 0. The latter condition is needed to ensure statistical
consistency, as first discussed by Nie et al. (2021) for ERF estimation. Section 4 provides additional
details about the architecture and risk function specification. The full loss in Equation (5) preserves
the fact that ∂Rtr

∂ϵ = 0 since ϵ only appears in the regularization term.

Double robustness and efficiency Before introducing the main result of the TR estimator for the
SRF, we require the following additional notation. For any f : U → R, ∥f∥∞ = supu∈U |f(u)|
and ∥F∥∞ = supf∈F∥f∥∞. We define the sample Rademacher complexity as Radn(F) =

supf∈F | 1n
∑n

i=1 σif(Ui)| where σi are iid Rademacher random variables satisfying p(σi = 1) =
p(σi = −1) = 1/2. It is easiest to think of the Rademacher complexity as a natural measure for
the degrees of freedom of an estimating class of functions. We use Op and op to denote stochastic
boundedness and convergence in probability, respectively.
Theorem 2. Let M and W be classes of functions such that µ̂, µ ∈ M and ŵ,w ∈ W . Suppose
assumptions 2.1 and 2.2 hold, and that the following regularity conditions hold: (i) ∥M∥∞ < ∞,
∥W∥∞ < ∞, ∥1/W∥∞ < ∞; (ii) either µ̂ = µ, ŵ = w, or Radn(M) = O(n−1/2) and
Radn(W) = O(n−1/2); (iii) the loss function in Equation (4) is Lipschitz; (iv) Λ and g are twice
continuously differentiable. Then, the following statements are true:

1. The outcome and density ratio estimators of TR are consistent. That is, µ̂
p−→µ and ŵ

p−→w.
2. The estimator ψ̂tr satisfies ∥ψ̂tr − ψ∥∞ = Op(n

−1/2 + r1(n)r2(n)) whenever ∥µ̂ − µ∥∞ =
Op(r1(n)) and ∥ŵ −w∥∞ = Op(r2(n)).

Theorem 2 shows that the TR regularized learner of the SRF achieves “optimal” root-n convergence
when r1(n) = r2(n) = n−1/4 or when either r1 or r2 vanishes. Using standard arguments involving
concentration inequalities, the Lipschitz assumption on the loss function can be relaxed by assuming
that the loss function has a vanishing Rademacher complexity (Wainwright, 2019).
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4 ARCHITECTURE FOR ESTIMATING µ AND w WITH NEURAL NETWORKS

Figure 3: TRESNET architecture using a head
for the density ratio model and a head for the
outcome model.

We describe a simple yet effective architecture for
estimating µ and w. To keep the notation sim-
ple, we will write fθ to denote generic output from
a neural network indexed by weights θ. The ar-
chitecture has three components, illustrated in Fig-
ure 3. The first component maps the confounders
X to a latent representation Z = fθZ (X) ∈ Rd.
This component will typically be a multi-layer per-
ception (MLP). The second and third components
are the outcome and density-ratio heads, which are
functions ofZ and the treatment, respectively. We
describe all three components in detail below.

Neural network architectures for nuisance function
estimation have been widely investigated in causal
inference; see Farrell et al. (2021) for a review. We use the architectures proposed in the TR liter-
ature as a building block, particularly for continuous treatments (Nie et al., 2021). Nonetheless, It
must be remarked that previous work in TR has not yet investigated architectures required for SRF
estimation. In particular, we need a new architecture to estimate the density ratiow. Previous works
have only focused on architectures for estimating propensity scores as required by traditional causal
effect estimation (ATEs and ERFs).

Outcome model Recall that we assume the outcome Y follows a conditional distribution from the
exponential family. That is, p(Y |X, A) ∝ exp(Y η(X, A) − Λ(η(X, A)) with an invertible link
function g satisfying µ(X, A) = g−1(η(X, A)). We can identify the canonical parameter η with
the output of the neural network and learn µ̂ by minimizing the empirical risk

Rµ(µ
NN) =

1

n

n∑
i=1

{
Λ(g−1(µNN(Z, A))− Y g−1(µNN(Z, A))

}
. (6)

Next, we need to select a functional form for the neural network. An MLP parameterization with
the concatenated inputs of (Z, A)–the naı̈ve choice–would likely result in the effect of A being
lost in intermediate computations. Instead, we adopt the varying coefficient approach by setting
µNN(X, A) = g−1(fθµ(A)(Z)) (Nie et al., 2021; Chiang et al., 2001). With this choice, the weights
of each layer are dynamically computed as a function of A obtained from a linear combination of
basis functions spanning the set of admissible functions onA. The weights of the linear combination
are themselves a learnable linear combination of the hidden outputs from the previous layer. We
refer the reader to Nie et al. (2021) for additional background on varying-coefficient layers. Our
experiments suggest TR is beneficial for different choices of basis functions.

Estimation of w via classification The density ratio head wNN is trained using an auxiliary clas-
sification task. The goal is to estimate the density ratio wj for each j = 1, . . . , |P̃ |. For this purpose,
we use an auxiliary classification task where the positive labels are assigned to the samples from Ãj

and the negative labels to the samples with A such that

Rw(w
NN) =

n∑
i=1

∑
p̃∈P̃

1

2n|P̃ |

{
BCE(logwNN

p̃ (X, Ãip̃),1) + BCE(logwNN
p̃ (Xi, Ai),0)

}
(7)

where BCE stands for the binary cross-entropy classification loss. Equation (7) is a multi-head
neural network version of the loss proposed in Dı́az et al. (2021) to estimate the effects of modified
treatment policies. To capture the role ofAmore accurately, we propose to parameterize the network
using the varying-coefficient structure discussed in the previous section with logwNN

p̃ (X, A) =

fθp̃
w(A)(Z). To our knowledge, we are the first to consider a varying-coefficient architecture for

density ratio estimation.

5 SIMULATION STUDY

We conducted simulation experiments to validate the design choices of TRESNET.
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SPLINE-BASED VARYING COEFFICIENTS PIECEWISE LINEAR VARYING COEFFICIENTS

DATASET AIPWVC OUTCOMEVC TRESNETVC VCNET AIPWPL DRNET TRESNETPL DRNET+TRERF

IHDP 3.15 (0.37) 2.19 (0.06) 0.61 (0.03) 0.63 (0.03) 1.18 (0.14) 2.36 (0.06) 0.15 (0.02) 0.19 (0.02)
NEWS 1.5 (0.19) 3.65 (0.04) 0.18 (0.02) 0.28 (0.03) 0.99 (0.12) 0.99 (0.1) 0.17 (0.01) 0.26 (0.03)
SIM-B 4.1 (0.57) 0.5 (0.05) 0.26 (0.03) 0.29 (0.04) 1.46 (0.2) 1.6 (0.2) 0.14 (0.02) 0.16 (0.02)
SIM-N 5.69 (0.64) 0.52 (0.05) 0.32 (0.02) 0.32 (0.03) 1.81 (0.25) 0.95 (0.06) 0.14 (0.01) 0.15 (0.01)
TCGA-1 1.13 (0.08) 0.63 (0.02) 0.8 (0.01) 0.87 (0.03) 0.76 (0.05) 0.62 (0.02) 0.61 (0.02) 0.69 (0.03)
TCGA-2 0.76 (0.09) 0.24 (0.02) 0.18 (0.01) 0.24 (0.02) 0.36 (0.05) 0.17 (0.01) 0.12 (0.0) 0.16 (0.01)
TCGA-3 0.83 (0.11) 0.38 (0.03) 0.1 (0.01) 0.15 (0.02) 0.59 (0.06) 0.59 (0.04) 0.08 (0.01) 0.15 (0.02)

(a) Performance of TRESNET for two baseline architectures, including comparisons with VCNET and DRNET.
experiment OUTCOMEVC W/POISSON LOSS OUTCOMEVC W/MSE LOSS TRESNETVC W/POISSON LOSS TRESNETVC W/MSE LOSS

IHDP 18.82 (3.18) 3726.92 (357.31) 2.04 (0.08) 10986.43 (211.99)
NEWS 3.41 (0.25) 372.24 (52.02) 0.33 (0.05) 1187.94 (100.8)
SIM-B 1222.61 (1269.53) 8433.98 (1327.22) 1113.58 (1270.49) 16902.41 (1233.54)
SIM-N 50.72 (4.45) 2491.63 (310.36) 4.6 (0.22) 18062.85 (243.2)
TCGA-1 184.89 (6.67) 6682.91 (474.32) 40.56 (19.2) 16307.15 (232.64)
TCGA-2 48.3 (1.44) 5854.08 (483.41) 398.82 (143.96) 16112.02 (186.99)
TCGA-3 18.27 (2.73) 14381.06 (516.25) 12.92 (2.3) 8565.17 (447.13)

(b) Performance of Poisson-based regularization when the true data is Poisson count data

Table 1: Experiment results. The table shows the
√

MISE across 100 random seeds with 95% confi-
dence intervals computed with the asymptotic normal formula.

Synthetic and semi-synthetic benchmark datasets The so-called fundamental problem of causal
inference is that the counterfactuals are never observed in real data. Thus, we need to rely on widely
used semi-synthetic datasets to evaluate the validity of our proposed estimators. First, we consider
two datasets introduced by Nie et al. (2021), which are continuous-treatment adaptions to the pop-
ular datasets IHDP (Hill, 2011) and NEWS (Newman, 2008). We also use Nie et al. (2021)’s fully
simulated data, SIM-N. In addition, we consider the fully simulated dataset described in Bahadori
et al. (2022), which features a continuous treatment and has been previously used for calibrating
models in air pollution studies. Finally, we consider three variants of the TCGA dataset presented in
Bica et al. (2020). The three variants consist of three different dosage specifications as the treatment
assignment and the corresponding dose-response as the outcome. The datasets described here have
been employed without substantial modifications from the original source studies to facilitate fair
comparison. Note that for each of these synthetic and semi-synthetic datasets, we have access to the
true counterfactuals, which allows us to compute SRFs exactly. We will consider the estimation task
of 20 equally-spaced percent reduction shifts between 0-50% from the current observed exposures.
More specifically, Ã = (1− c)A for values of c in 0− 50%.

Evaluation metric and task Given a semi-synthetic dataset D, consider an algorithm that pro-
duces an estimator ψ̂(s)

p̃,D of ψ(s)
p̃,D given an exposure shift p̃ and random seed s. To evaluate the qual-

ity of the estimator, we use the mean integrated squared error MISED = 1
nseeds|P̃|

∑
s

∑
p̃|ψ̂

(s)
p̃,D −

ψ
(s)
p̃,D|2. This metric is a natural adaption of an analogous metric commonly used in dose-response

curve estimation (Bica et al., 2020).

Experiment 1: Does targeting SRFs help? We evaluate two variants of TRESNET against al-
ternative SRF estimators, including VCNET (Nie et al., 2021) and DRNET (Schwab et al., 2020),
two prominent methods used in causal TR estimation. The first variant of TRESNET uses varying-
coefficient layers based on splines—see the discussion in Section 4 for background. We compare
this variant, named TRESNETVC, with the following baselines: (a) VCNET, which uses a similar ar-
chitecture and plugin estimator as TRESNETVC, but with a TR designed for ERFs; (b) AIPWVC which
is the doubly robust, augmented inverse probability weighting (AIPW) estimator for SRFs (Muñoz
& Van Der Laan, 2012) wherein we fit separate outcome and density ratio models that are then
substituted into Equation (3); and (c) OUTCOMEVC, which is the same as TRESNETVC but without
the TR and density ratio heads. The second variant of TRESNET uses varying coefficients based on
piecewise linear functions instead of splines. This variant, TRESNETPL, is compared against anal-
ogous baselines: (a) AIPWPL for the AIPW estimator; (b) DRNET, which is similar to OUTCOMEVC

with piecewise linear basis functions; and (c) DRNET + TRERF, which uses the same regularization
loss for ERFs as VCNET.

7
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Table 1b shows the results of this experiment. For both architectures, the TRESNET variants achieve
the best performance. TRESNETVC is somewhat better than VCNET, which have comparable archi-
tectures although TRESNET uses a different TR implementation specific for SRF estimation rather
than ERF estimation. Likewise, TRESNETPL outperforms DRNET + TRERF. These moderate but con-
sistent performance gains suggest the importance of SRF-specific forms of TR. We also see strong
advantages against outcome-based predictions and AIPW estimators, suggesting that the TR loss
and the shared learning architecture is a boon to performance. These results are compatible with
observations from previous work in the TR literature (Nie et al., 2021; Shi et al., 2019).

Experiment 2: Does TR for count data improve estimation when count-valued outcomes are
observed? We evaluate whether TRESNET with the Poisson-specific TR, explained in Section 3,
performs better than the mean-squared error (MSE) loss variant when the true data follows a Poisson
distribution. This evaluation is important since our application consists of count data and the Poisson
model is widely used to investigate the effects of PM2.5 on health (Wu et al., 2020; Josey et al., 2022).
We construct similar semi-synthetic datasets as in Experiment 1, but in this experiment the outcome-
generating mechanisms samples from a Poisson distribution rather than a Gaussian distribution. The
results of this experiment are clear–using the correct exponential family for the outcome model is
crucial, regardless of whether TR is implemented. For these experiments, we used the spline-based
variant of TRESNET.

6 APPLICATION: THE EFFECTS OF STRICTER AIR QUALITY STANDARDS

We implemented TRESNET for count data to estimate the health benefits caused by shifts to the
distribution of PM2.5 that would result from lowering the NAAQS—the regulatory threshold for the
annual-average concentration of PM2.5 enforced by the EPA.

Figure 4: Fraction (%) of observed units
remaining above PM2.5 limit as a func-
tion of reduction (%) considering differ-
ent NAAQS (current NAAQS is set at
12 µg/m3).

Data The dataset is comprised of Medicare data2 from
2000–2016, involving 68 million individuals. The data
includes measurements on participant race/ethnicity, sex,
age, Medicaid eligibility, and date of death, which are
subsequently aggregated to the annual ZIP-code level.
The PM2.5 exposure measurements are extracted from an
ensemble prediction model (Di et al., 2019). The con-
founders include measurements on meteorological infor-
mation, demographics, and the socioeconomic status of
each ZIP-code. Calendar year and census region indica-
tors are also included to account for temporal and spatial
trends. To compile our dataset, we replicated the steps
and variables outlined by Wu et al. (2020).

Exposure shifts We consider two types of PM2.5

shifts, cutoff shits and percent reduction shift: each pro-
viding different perspectives and insights. The counter-
factuals implied from these scenarios are illustrated in
figures 2a and 2b, respectively. First, a cutoff shift, pa-
rameterized by a threshold d, encapsulates scenarios in
which every ZIP-code year that exceeded some threshold are truncated to that maximum threshold.
Mathematically, the shift is defined by the transformation Ã = min(A, c). To be more succinct, the
exposure shift defines a counterfactual scenario. For this application, the threshold c is evaluated
at equally spaced points starting with 15 µg/m3 moving down to 6 µg/m3. We expect that at 15
µg/m3 there will be little to no reduction in deaths since > 99% of observations fall below that
range. We can contemplate the proposed NAAQS levels through d assuming that full compliance to
the new regulation holds for incompliant ZIP-codes. The exposure shift should otherwise not affect
already compliant ZIP-codes. Second, we onsider percent reduction shifts. This scenario assumes
that all ZIP-code years reduce their pollution levels proportionally from their observed value. More
precisely, the shift is defined as Ã = A(1 − c). We considered a range of percent reduction shifts

2Access to Medicare data is restricted without authorization by the Centers for Medicare & Medicaid Ser-
vices since it contains sensitive health information. The authors have completed the required IRB and ethical
training to handle these datasets.
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between c ∈ (0, 50)%. We can interpret these shifts in terms of the NAAQS by mapping each per-
cent reduction to a compliance percentile. For instance, Figure 4 shows that, under a 30% overall
reduction in historical values, approximately 82% would comply with a NAAQS of 9 µg/m3.

Implementation We implement TRESNET using varying-coefficient splines as in Section 5. We
select a NN architecture using the out-of-sample prediction error from a 20/80% test-train split to
choose the number of hidden layers (1-3 layers) and hidden dimensions (16, 64, 256). We found
no evidence of overfitting in the selected models. To account for uncertainty in our estimations,
we train the model on 100 bootstrap samples, each with random initializations, thereby obtaining
an approximate posterior distribution. Deep learning ensembles have been previously shown to
approximate estimation uncertainty well in deep learning tasks (Izmailov et al., 2021).
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Figure 5: Estimated SRF of the total
deaths (%) for different cutoffs.

Results Figure 1 in the introduction presents the effects
of shifting the PM2.5 distribution at various cutoffs on
the expected reduction to deaths. The slope is steeper at
stricter/lower cutoffs, likely because lower cutoffs affect
a larger fraction of the observed population and reduce
the overall PM2.5. For instance, figure Figure 1 shows
that had no ZIP-code years exceeded 12 µg/m3, the ob-
served death counts would have decreased by around 1%.
If the cutoff is lowered to 9 µg/m3, then deaths could
have fallen by around 4%. The slope becomes increas-
ingly steeper as the PM2.5 threshold is reduced, suggest-
ing the increasing benefits of lowering the standard con-
centration level. Another way to interpret this result is to
say that there is a greater gain to reducing mortality caused by PM2.5 from lowering the concentra-
tion level from 10 to 8 µg/m3 than there is from lowering it from 12 to 10 µg/m3.

The results of the percent-reduction shift are presented in Figure 5. The decrease in deaths is approx-
imately linear with respect to the percent decrease in PM2.5. As such, the SRF shows an approximate
0.5% decrease in deaths resulting from a 10% decrease in PM2.5. This result is consistent with pre-
vious causal estimates of the marginal effect of PM2.5 exposure on elder mortality (Wu et al., 2020).
Percent reduction offers a complementary view to the cutoff shift response function.

7 DISCUSSION AND LIMITATIONS

We have made a significant stride in addressing the pressing public health question regarding the
potential health benefits of lowering the NAAQS in the United States. In response to this question,
we introduce the first causal inference method to utilize neural networks for estimating SRFs. Fur-
thermore, we have extended this method to handle count data, which is crucial for our application in
addition to other public health and epidemiology contexts. We acknowledge some limitations to our
methodology. First, our uncertainty assessment of the SRF relies on the bootstrap and ensembling
of multiple random seeds. While these methods are used often in practice, future research could
explore the integration of TRESNET with Bayesian methods to enhance uncertainty quantification.
Second, our application of the methodology focuses on exposure shifts representing complementary
viewpoints to the possible effects of the proposed EPA rules on the NAAQS. However, it does not
determine the most probable exposure shift resulting from the new rule’s implementation, based
on historical responses to changes in the NAAQS. Subsequent investigations should more carefully
consider this aspect of the analysis. The assessment of annual average PM2.5 levels at the ZIP-code
level is based on predictions rather than on actual observable values, introducing potential attenua-
tion bias stemming from measurement error. Nonetheless, previous studies on measurement error
involving clustered air pollution exposures have demonstrated that such attenuation tends to pull
the causal effect towards a null result (Josey et al., 2022; Wei et al., 2022). It is essential to recog-
nize that the SRF framework places additional considerations on the analyst designing the exposure
shift. This newfound responsibility can be seen as both a disadvantage and an advantage. However,
it highlights the need for an explicit and meticulous statement of the assumptions underlying the
considered exposure shifts in order to mitigate the potential misuse of SRF estimation techniques.
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A BACKGROUND ON THE EIF

When we fit a statistical model to a dataset, each data point contributes to the estimated parameters
of the model. The efficient influence function (EIF) effectively measures how sensitive an estimate
is to the inclusion or exclusion of the individual data points. In other words, it tells us how much
a single data point can influence the estimate of a causal effect. The term “efficient” refers to the
property that, over the aggregate, the efficient influence function evaluated over the observed data
provides the uniformly best statistically-efficient estimator of the associated causal effect under the
nonparametric identifying assumptions that were made explicit in the main body of the manuscript
(Kennedy, 2016). This property holds even when using machine learning methods (like neural
networks) to estimate the nuisance parameters – in our case these nuisance parameters refer to the
outcome regression model and the generalized propensity score model (Muñoz & Van Der Laan,
2012). An important distinction to make in this definition is that efficiency is an asymptotic property,
meaning that it only holds as the sample size goes to infinity.

Another way to describe the efficient influence function is as the canonical gradient (Van der Laan
et al., 2011) of the targeted parameter. Specifically, let {Pt : t ∈ R} be a smooth parametric
submodel such that P0 = P and denote its score function as sh(o) = d

dt

∣∣
t=h

log p̃t(o) where we
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use p̃t(o) = pt(y|x, a)p̃t(a|x)pt(x) and pt(o) = pt(y|x, a)pt(a|x)pt(x) to denote the probability
density function of Pt. We also define wt(x, a) = p̃t(a|x)/pt(a|x). The SRF estimand at each
member of the submodel is defined as

ψ(Pt) =

∫ ∫ ∫
yp̃t(o) do.

For (9) to be the efficient influence function in a non-parametric model, one must show that it is
pathwise differentiable, that is,

d

dt

∣∣∣
t=0

ψ(Pt) =

∫
φ(o;ψ, µ,w)s0(o)p̃(o) do. (8)

This proof appears in the next section.

B TECHNICAL PROOFS

Before proving the main theorems in the paper, we show the following result regarding the identifi-
cation of the ψ.
Proposition 1. Suppose Assumption 2.1 holds. Then µ(X, A) = E[Y |X, A]. The right-hand side
does not involve potential outcomes. As a corollary, ψ = E[µ(X, Ã)] can be identified.

Proof. Since the treatment and potential outcomes are independent conditional onX (unconfound-
edness). By properties of the conditional expectation, we have

µ(x, a) = E[Y a |X = x]

=(a) E[Y a |X = x, A = a]

= E[Y A |X = x, A = a] =(b) E[Y |X = x, A = a].

The identity (a) uses unconfoundedness (Assumption 2.1); (b) uses that Y A = Y (consistency).

We now prove the three main theorems. The proof strategy follows the same pattern as Nie et al.
(2021), with modifications to accommodate the SRF estimand and is mindful of the exponential
family loss, which complicates the analytical form of the fluctuation term.

Suppose Assumptions 2.1 and 2.2 hold. Then the EIF of ψ is given by

φ(O;ψ, µ,w) = w(X, A) (Y − µ(X, A)) + µ(X, Ã)−ψ. (9)

Furthermore, let µ̂ = µ̂(Pn) and ŵ = ŵ(Pn) be estimators such that ∥µ̂ − µ∥∞ = Op(r1(n)) and
∥ŵ −w∥∞ = Op(r2(n)). Then ∥Pφ(ψ, µ̂, ŵ)∥ = Op(r1(n)r2(n)). One of the conditions µ̂ = µ
or ŵ = w suffice for Pφ(ψ, µ̂, ŵ) = 0 to hold.

Step 1: showing that φ is the EIF

Proof. Recall the notation from Appendix A. To show that φ(o;ψ, µ,w) in Equation (9) is the EIF,
we must show that

d

dt

∣∣∣
t=0

ψ(Pt) =

∫
φ(o;ψ, µ,w)s0(o)p̃(o) do (10)

Due to the logarithmic transformation defining the score equation, we can factorize st(o) into three
parts with st(o) = s1,t(y|a,x) + s2,t(a|x) + s3,t(x).

Starting on the left hand side of (10), under standard regularity conditions we have:∫
yst(o)p̃t(o) do =

∫
y
dp̃t(o)/ dt

p̃t(o)
pt(o) do

=

∫
y
d

dt
p̃t(o) do

=
d

dt

∫
yp̃t(o) do,

(11)
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which allows us to partition the pathwise derivative (i.e. the left-hand side of (10)) into:

d

dt
ψ(Pt) =

∫
yst(o)p̃t(o) do

=

∫
y(s1,t(y|a,x) + s2,t(a|x) + s3,t(x))p̃t(o) do

=

∫
ys1,t(y|a,x)p̃t(o) do+

∫
ys2,t(a|x)p̃t(o) do+

∫
ys3,t(x)p̃t(o) do.

(12)

For the next step of the proof, we will recursively use the two following identities. For any arbitrary
function g(·), and for any two subsets of measurements o1 and o2 (e.g. o1 = (a,x) and o2 = y),
we have

∫
g(o1)

{
o2 −

∫
o2p̃t(o2|o1) do2

}
p̃t(o) do =(a) 0∫

g(o1)st(o2|o1)p̃t(o) do =(b) 0

(13)

Defining p̃0(·) = p̃(·) and p0(·) = p(·), we can then find the first term in (12) is equal to

∫
ys1,t(y|a,x) dp̃t(o) do

∣∣∣
t=0

=

∫
ys1,0(y|a,x)p̃(o) do

=(b)

∫
{y − µ(x, a)} s1,0(y|a,x)p(y|a,x)p̃(a|x)p(x) do

=

∫
wt(x, a) {y − µ(x, a)} s1,0(y|a,x)p(y|a,x)p(a|x)p(x) do

=(a)

∫
wt(x, a) {y − µ(x, a)} {s1,0(y|a,x) + s2,0(a|x)} p(o) do

=(a)

∫
wt(x, a) {y − µ(x, a)} {s1,0(y|a,x) + s2,0(a|x) + s3,0(x)} p(o) do

=

∫
wt(x, a) {y − µ(x, a)} s0(o)p(o) do.

For the second term, we have

∫
ys2,t(a|x) dp̃t(o) do

∣∣∣
t=0

=

∫ ∫ ∫
ys2,0(a|x)p(y|a,x)p̃(a|x)p(x) dy da dx

=

∫ ∫
µ(x, a)s2,0(a|x)p̃(a|x)p(x) da dx

=(b)

∫ ∫ {
µ(x, a)−

∫
µ(x, a)p̃(a|x) da

}
s2,0(a|x)p̃(a|x)p(x) dadx

=(b)

∫ {
µ(x, a)−

∫
µ(x, a)p̃(a|x) da

}
{s1,0(y|a,x) + s2,0(a|x)} p̃(o) do

=(a)

∫ {
µ(x, a)−

∫
µ(x, a)p̃(a|x) da

}
{s1,0(y|a,x) + s2,0(a|x) + s3,0(x)} p̃(o) do

=

∫ {
µ(x, a)−

∫
µ(x, a)p̃(a|x) da

}
s0(o)p̃(o) do
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where we again center the integrand and apply the identities of (13). Finally, for the third term in
(12) we have∫
ys3,t(x) dp̃t(o) do

∣∣∣
t=0

=

∫ ∫ ∫
ys3,0(x)p(y|a,x)p̃(a|x)p(x) dy dadx

=

∫ {∫
µ(x, a)p̃(a|x) da

}
s3,0(x)p(x) dx

=(b)

∫ {∫
µ(x, a)p̃(a|x) da− ψ

}
s3,0(x)p(x) dx

=(b)

∫ {∫
µ(x, a)p̃(a|x) da− ψ

}
{s1,0(y|a,x) + s2,0(a|x) + s3,0(x)} p̃(o) do

=

∫ {∫
µ(x, a)p̃(a|x) da− ψ

}
s0(o)p̃(o) do

Combining these three terms above proves the condition in (10) holds, thus completing the proof.

Step 2: showing the estimating equation and double robustness

Proof. We can break down Pφ in two terms,
Pφ(ψ, µ̂, ŵ) = E[ŵ(X, A)(Y − µ̂(X, A))] + E[µ̂(X, Ã)−ψ]

We can rewrite the first term as
E[ŵ(X, A)(Y − µ̂(X, A))] = E[ŵ(X, A)(µ(X, A)− µ̂(X, A))]

For the second term, we can write
E[µ̂(X, Ã)−ψ] = E[µ̂− µ(X, Ã)]

= E[w(X, A)(µ̂(X, Ã)− µ(X, Ã))]
(14)

Combining them, we have that
Pφ(ψ, µ̂, ŵ) = E[(ŵ(X, A)−w(X, A))(µ(X, A)− µ̂(X, A))].

From this expression, the conclusion of the theorem is evident. Pφ(ψ, µ̂, ŵ) = 0 if either µ̂ = µ or
ŵ = w. Further,
∥E[(ŵ(X, A)−w(X, A))(µ(X, A)− µ̂(X, A))]∥ ≤ ∥ŵ −w∥∞∥µ̂− µ∥∞ = Op(r1(n)r2(n)),

completing the proof.

We can now prove the first theorem. In what follows we will adopt the notation Pn to denote the
empirical distribution. For any function f(O), we have that Pnf = 1

nf(Oi) and Pf = E[f(O)].
Theorem 1. Let ϵ denote a perturbation parameter and define

Ltr(µNN,wNN, ϵ)(O) = Λ(g(µNN(X, A)) + ϵ)− (g(µNN(X, A)) + ϵ)Y.

Rtr(µNN,wNN, ϵ) = 1
n

∑n
i=1 Ltr(µNN,wNN, ϵ)(Oi).

(4)

Then (∂R
tr

∂ϵ )(µNN,wNN, ϵ) = 0 iff 1
n

∑n
i=1w

NN(Xi, Ai)(Yi − g−1(g(µNN(Xi, Ai)) + ϵ))) = 0.

Proof. A key property of the exponential family of distributions and the associated link function
g that we will use are Λ′(η) = d

dηΛ(η) = g−1(E[Y |η]) (McCullagh, 2019). Also note that
d
dϵg(µ̃

NN(X, A)) = wNN(X, A) for all µNN,wNNϵ. These two observations and the chain rule
give us

0 =
d

dϵ
Rtr(µ̂, ŵ, ϵ̂)

=
1

n

n∑
i=1

d

dϵ

∣∣∣
ϵ=ϵ̂

{Λ(g(µ̃(X, A)))− Y g(µ̃(X, A))}

=
1

n

n∑
i=1

{
g−1(g(µ̃(X, A)))ŵ(X, A)− Y ŵ(X, A)

}
=

1

n

n∑
i=1

ŵ(X, A)(µ̃(X, A)− Y ).

(15)
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The fact that ψ̂tr = 1
n

∑n
i=1 µ̃(Xi, Ãi) satisfies the empirical estimating equation follows trivially

from the fact that Pnφ(ψ̂
tr, µ̃, ŵ) = 1

n

∑n
i=1 ŵ(X, A)(Y − µ̃(X, A)) + 1

n

∑n
i=1 µ̃(Xi, Ãi)− ψ̂tr.

The first term is zero because of the above results while the last two terms cancel each other by
definition.

Theorem 2. Let M and W be classes of functions such that µ̂, µ ∈ M and ŵ,w ∈ W . Suppose
assumptions 2.1 and 2.2 hold, and that the following regularity conditions hold: (i) ∥M∥∞ < ∞,
∥W∥∞ < ∞, ∥1/W∥∞ < ∞; (ii) either µ̂ = µ, ŵ = w, or Radn(M) = O(n−1/2) and
Radn(W) = O(n−1/2); (iii) the loss function in Equation (4) is Lipschitz; (iv) Λ and g are twice
continuously differentiable. Then, the following statements are true:

1. The outcome and density ratio estimators of TR are consistent. That is, µ̂
p−→µ and ŵ

p−→w.
2. The estimator ψ̂tr satisfies ∥ψ̂tr − ψ∥∞ = Op(n

−1/2 + r1(n)r2(n)) whenever ∥µ̂ − µ∥∞ =
Op(r1(n)) and ∥ŵ −w∥∞ = Op(r2(n)).

Step 1: showing consistency of the outcome and density ratio models This proof closely adapts
Nie et al. (2021) for the ERF case. We will use the notation RP(µ

NN,wNN) = PL(µNN,wNN) for the
population risk, where LNN is the loss function. Denote µ∗,w∗ as the population risk minimizers.
We assume µ∗ ∈ M,w∗ ∈ W . The proof strategy is fairly standard and requires that the loss func-
tion be Lipschitz to ensure that the Rademacher complexity and boundedness assumptions extend
the loss terms. The Lipschitz condition can often be relaxed with direct assumptions on the terms
L(µNN,wNN) to have vanishing Rademacher complexity and boundedness (Wainwright, 2019).

Proof. We first show that the risk of the regularized parameters is not too different from the mini-
mum population risk. Specifically, we show that

RNN
P (µ̂, ŵ)−RNN

P (µ∗,w∗) = o(1) +Op(n
−1/2). (16)

To prove this fact, we first note that

0 ≤ RNN
P (µ̂, ŵ)−RNN

P (µ∗,w∗)

≤ R(µ̂, ŵ)−RNN(µ∗,w∗)) + (P− Pn)LNN(µ̂, ŵ) + (Pn − P)LNN(µ∗,w∗).
(17)

The second and third terms are empirical processes. We now use the regularity assumptions on
the Rademacher complexity. The order of the Rademacher complexity is preserved under Lips-
chitz transforms. Hence, under the assumption that the loss is Lipschitz, it follows that the class
{LNN(µNN,wNN) : µNN ∈ M,wNN ∈ W} has a Rademacher complexity of order O(n−1/2).
Uniform boundedness is also preserved under Lispschitz transformations. Together, the vanishing
Rademacher complexity and uniform boundedness imply the uniform law of large numbers, which
in turn implies the convergence of the empirical process (Wainwright, 2019). Hence the last two
terms are Op(n

−1/2). We now bound the first term.

RNN(µ̂, ŵ)−RNN(µ∗,w∗)

= (RNN + βnRtr)(µ̂, ŵ, ϵ̂)− (RNN + βnRtr)(µ∗,w∗,0) + βn(Rtr(µ∗,w∗,0)−Rtr(µ̂, ŵ, ϵ̂))

≤(a) βn(Rtr(µ∗,w∗,0)−Rtr(µ̂, ŵ, ϵ̂))

=(b) βn(PnLµ(µ
∗) +O(1)).

= βn((Pn − P)Lµ(µ
∗) + PLµ(µ

∗) +O(1))

=(c) βn(Op(n
−1/2)) +O(1)) = op(1)

(18)
Inequality (a) is due to (µ̂, ŵ, ϵ̂) being a minimizer for the regularized risk. Inequality (b) is the
result of Rtr(µ̂, ŵ, ϵ̂) being bounded since the exponential family of distributions is log-concave and
Rtr(µ∗,w∗,0) = PnLµ(g(µ

∗)). (c) uses the uniform law of large numbers from the Rademacher
complexity and the uniform boundedness, and the fact that L is Lipschitz. Combining Equation (17)
and Equation (18), we get RNN

P (µ̂, ŵ)−RNN
P (µ∗,w∗) = op(1).

The result now follows from observing that the population risk has a unique minimizer up to the
reparameterization of the network weights. Hence, by regularity conditions, ∥µ̂ − µ∥ = op(1) and
∥ŵ −w∥ = op(1).
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Step 2: Proving convergence and efficiency of ψ̂tr

Proof. Direct computation gives

∥ψ̂tr −ψ∥ = ∥ 1
n

∑n
i=1 µ̃(Xi, Ãi)−ψ∥

=(a) ∥ 1
n

∑n
i=1{µ̃(Xi, Ãi) + ŵ(Xi, Ai)(Yi − µ̃(Xi, Ai))} −ψ∥

=(b) ∥E[ŵ(X, A)(Y − µ̃(X, A)) + µ̃(X, Ã)]−ψ∥+Op(n
−1/2),

=(c) ∥E[ŵ(X, A)(µ(X, A)− µ̃(X, A)) + µ̃(X, Ã)]−ψ∥+Op(n
−1/2),

=(d) ∥E[(ŵ(X, A)−w(X, A))(µ(X, A)− µ̃(X, A))]∥+Op(n
−1/2),

(19)

where (a) is by the property of the targeted regularization, namely, 1
n

∑n
i=1 ŵ(Xi, Ai)(Yi −

µ̃(Xi, Ai)) = 0; (b) is because of the uniform concentration of the empirical process, again us-
ing the vanishing Rademacher complexity and uniform boundedness; (c) integrates over y; (d) uses
the definition of ψ and the importance sampling formula withw. Since the link function g is contin-
uously differentiable, invertible and strictly monotone, then by the mean value theorem there exists
ϵ′ ∈ (0, ϵ̂) such that

µ̃(X, A) = g−1(g(µ̂(X, A)) + ϵ̂) = µ̂(X, A) + (g−1)′(g(µ̂(X, A)) + ϵ′)ϵ̂.

From the uniform boundedness and smoothness of the link function, we have that ĉ =
(g−1)′(g(µ̂(X, A) + ϵ′) < C for some constant C > 0. Then, using the above result in the
last term of Equation (19), we obtain

∥E[(ŵ(X, A)−w(X, A))(µ(X, A)− µ̃(X, A))]∥
≤ E[(ŵ(X, A)−w(X, A))(µ(X, A)− µ̂(X, A))] + C∥(ŵ(X, A)−w(X, A))ϵ̂∥
≤ Op(r1(n)r2(n)) +Op(r2(n))∥ϵ̂∥

(20)

To complete the proof, we will show that ∥ϵ̂∥ = Op(r1(n)) + Op(n
−1/2). Letting ĉi be as in the

Taylor expansion above, we can re-arrange the targeted regularization condition such that

0 =
d

dϵ
Rtr(µ̂, ŵ, ϵ̂) =

1

n

n∑
i=1

ŵ(X, A)(µ̂(X, A)− Y ) +
1

n

n∑
i=1

ŵ(Xi, Ai)ĉiϵ̂.

Hence, we can write ϵ̂ with the closed-form expression

ϵ̂ = argmin
ϵ

Rtr(µ̂, ŵ, ϵ) =
n−1

∑n
i=1 ŵ(Xi, Ai)(Yi − µ̂(Xi, Ai))

n−1
∑n

i=1 ĉiŵ(Xi, Ai)2
.

Since the denominator is uniformly bounded in a neighborhood of the solution as in ∥1/W∥∞ <
∞, and g is strictly monotone and continuously differentiable, implies that ĉi is uniformly lower
bounded. Hence, there is C ′ > 0 such that

∥ϵ̂∥ ≤ C ′∥n−1
∑n

i=1 ŵ(Xi, Ai)(Yi − µ̂(Xi, Ai))∥
≤(a) C ′∥E[ŵ(X, A)(Y − µ̂(X, A))∥+Op(n

−1/2)

≤(b) Op(r1(n)) +Op(n
−1/2),

(21)

where (a) uses the uniform concentration of the empirical process and (b) again uses the uniform
boundedness of ŵ. The proof now follows from combining equations (19), (20), and (21).

C ANOTHER EXAMPLE OF SRF VS ERF

The following examples show a simple case where the SRF and ERF estimands are different,
thereby demonstrating why the ERF is not a useful estimate of the effect of an exposure shift.
Consider a setting in which µ(X, A) = AX with X ∼ N(0, 1), A ∼ N(X, 1). Now con-
sider the exposure shift induced by Ã = cA for some c ∈ R. Using the SRF formulation, we
find that ψ = E[µ(X, Ã)] = E[E[X(cA)|X]] = cE[X2] = c. On the other hand, the ERF is
ξ(a) = E[µ(X, A)|A = a] = aE[X] = 0 for all a ∈ R. Therefore, estimators of the two estimands
return two different estimates. Moreover, the ERF is identically zero for every treatment value.
Thus, it cannot be used to approximate the value of the effect of the exposure shift, even when ψ is
correctly specified.
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D HARDWARE/SOFTWARE/DATA ACCESS

We ran all of our experiments both in the simulation study and the application section using Pytorch
(?) on a high-performance computing cluster equipped with Intel 8268 ”Cascade Lake” processors.
Due to the relatively small size of the datasets, hardware limitations, and the large number of sim-
ulations required, we did not require the use of GPUs. Instead we found that using only CPUs run
in parallel sufficed. Reproducing the full set of experiments takes approximately 12 hours with 100
parallel processes, each with 4 CPU cores and 8GB of RAM. Each process runs a different random
seed for the experiment configuration.

The code for reproducibility is provided on the submission repository along with the data sources
for the simulation experiments. The datasets for these experiments were obtained from the public
domain and were adapted from the GitHub repositories shared by Nie et al. (2021) and Bica et al.
(2020) as explained in the experiment details section. The data for the application was purchased
from https://resdac.org/. Due to a data usage agreement and privacy concerns, manipula-
tion of these data requires IRB approval under which the authors have completed the training and
for which reason the data cannot be shared with the public.
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