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ABSTRACT

The performance of modern neural language models relies heavily on the diver-
sity of the vocabularies. Unfortunately, the language models tend to cover more
vocabularies, the embedding parameters in the language models such as multilin-
gual models used to occupy more than a half of their entire learning parameters.
To solve this problem, we aim to devise a novel embedding structure to lighten
the network without considerably performance degradation. To reconstruct N
embedding vectors, we initialize k bundles of M(� N) k-sub-embeddings to
apply Cartesian product. Furthermore, we assign k-sub-embedding using the con-
textual relationship between tokens from pretrained language models. We adjust
our k-sub-embedding structure to masked language models to evaluate proposed
structure on downstream tasks. Our experimental results show that over 99.9%+
compressed sub-embeddings for the language models performed comparably with
the original embedding structure on GLUE and XNLI benchmarks.

1 INTRODUCTION

Embedding is useful for mapping high-dimensional vector to a low-dimensional space for various
neural network models such as language models and graph neural networks. Especially in modern
language models, a contextual embedding is represented respectively for each contextual unit. For
instance, some language models like word2vec (Mikolov et al., 2013) which deal with a whole word
as one embedding vector, suffer from the Out-of-Vocabulary(OOV) problem due to the variety of
words. Later language models (Bojanowski et al., 2017) subdivide words into multiple segmented
words. To deal with the subdividing, various tokenizers (Sennrich et al., 2016; Kudo & Richardson,
2018) are proposed to construct common tokens based on word corpuses. However, each token
contains a different context, and a good criterion for dividing the token is not clear.
There are some cases that the atomic-level tokens share notable common properties. For example,
two tokens 〈A〉 and 〈a〉 are assigned to different embeddings, but they both are vowels and the same
alphabet. In the case of combined characters(i.e., Hangul of Korean character) or ideograms(i.e.,
Chinese and Japanese characters), some tokens might include more common meanings than other
languages. The tokens of similar meanings tend to locate closely in embedding space when the
language model is trained with those tokens.
In this paper, we propose a novel embedding structure which replaces a word embedding with
several sub-embeddings. If a token consists of several contextual elements, a sub-embedding can
be assigned to each element to constitute the original embedding. An embedding vector shares its
learning parameters with other embedding vectors because of the nested allocated sub-embeddings.
Various scattered sub-embedding structures can be generated depending on structural topology of
the sub-embeddings. Firstly, we sequentially allocate sub-embeddings through module operation,
and conduct Cartesian product with sub-embeddings to build embedding vectors(Figure 1). This
could robustly map the sub-embeddings, but each sub-embedding does not reflect the context of
each token. To address this problem, we modify the scattering algorithm by clustering the to-
kens in the embedding space using a pretrained network. Notable factors of this paper are as follows:

1. The number of learning parameters in embedding part is dramatically reduced by Cartesian
product.

2. The language models are free from OOV problem through sub-embedding.
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Figure 1: Assuming the language model has 8 vocabularies(embedding vectors), and an embedding
vector is ready for separation into three sub-embedding vectors. The sub-embedding blocks denoted
in the same letter share learning parameters across the embeddings. As a result, 8 embedding vectors
can be reconstructed with only 6 sub-embedding vectors. We suggest two allocating sub-embedding
methods, 1) sequentially allocate sub-embeddings(Algorithm 1); 2) rearrange the sub-embeddings
using their contextual information from a pretrained network(Algorithm 2).

3. The proposed embedding structure can be applied to most existing language models easily
by replacing only the input embedding part.

We evaluate our sub-embedding structure on English and multilingual downstream tasks. We borrow
RoBERTa (Liu et al., 2019) structure for the standard English downstream tasks. In addition, XLM-
R (Conneau et al., 2020) is used to test the performance of sub-embedding in multilingual tasks.
We show that the network replaced by the k-sub-embedding compresses the embedding over 99.9%
while the accuracy on multilingual benchmark drops only 1.4%p. Finally, we demonstrate how the
sub-embedding is trained by visualizing the distribution of k-sub-embeddings.

2 RELATED WORK

Distributed Representations of Word Embedding. Word embedding is commonly used in the
language models to represent the word in the latent space. Distributed representation is mainly used
instead of a one-hot vector for the efficiency. Despite the difficulty of learning distributed represen-
tation, word2vec (Mikolov et al., 2013) is able to map words to embedding space successfully and
shows context analogies of each word embedding. In the case of word2vec, the vocabulary is com-
posed with the words in the input corpus, it is easily suffered from OOV problem. To deal with this
problem, some language models (Pennington et al., 2014; Bojanowski et al., 2017) split the words
into subtokens and learn the co-occurrence of words. Furthermore, ELMo (Peters et al., 2018) gath-
ers hidden states and the embeddings of the bidirectional language models to represent contextual
embeddings. Around the same time, language models (Devlin et al., 2019; Liu et al., 2019; Lan
et al., 2020) based on transformer (Vaswani et al., 2017) are proposed to learn the context of entire
input sequence with the attention mechanism. In this paper, we split the contextual embeddings into
sub-embeddings that contain common context of the embeddings.

Relationship Between Tokenizers and Language Models. Language Models usually split a se-
quence into tokens through tokenizers. Classical tokenizers are designed to divide a sequence into
contextual units such as words, characters, or morphs. Those tokenizers are intuitive to implement,
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but they are easily suffered from OOV problem and need special knowledge to split into morphs.
To alleviate the problem mentioned above, some works propose that the tokenizers learn the input
corpus to construct concrete vocabularies. Byte-Pair Encoding (Sennrich et al., 2016) iteratively
merge tokens to a larger token, byte-level tokens are used to cover all input cases (Radford et al.,
2019). On the other hand, Kudo (2018); Kudo & Richardson (2018) iteratively reduce meaningless
tokens from a large token set. We can build up the vocabulary robustly using these tokenizers, but
the contextual unit can be different to each token.
Typical embedding scheme maps the token to each embedding vector, CharformerTay et al. (2021)
pinpoints this inflexible problem. They propose the gradient-based method to figure out latent sub-
word representation. In contrasts to other static tokenizers, the embedding of token is changed by
subword block. In addition, Clark et al. (2021) alleviates the tokenization framework, the tokenizer
is changed to character-level without human knowledge. Xue et al. (2021) proposes token-free
models which encode input sequence with contextual unit, not tokens. In this paper, we propose the
embedding structure regardless of tokenizers. Unlike token-free models (Xue et al., 2021), the our
k-sub-embedding structure needs a tokenizer, but the networks do not suffered anymore from the
number of tokens.
Since the embeddings act a prominent role in the language models, a series of studies come up with
simplifying the embeddings. One of the lightening methods is to compress the embedding weight
with matrix factorization. Lan et al. (2020) conducts matrix factorization to the embedding part,
and the high-dimensional embedding vector could be compressed suceessfully to 128-dimensional
vector. Our proposed structure also reconstruct the embedding through lookup operation without
additional computations.

3 PROPOSED METHODS

We investigate the requirements of each sub-embedding, and suggest (1) randomly scattered k-sub-
embedding with naive approach; (2) clustered k-sub-embedding using contextual knowledge.

3.1 PRELIMINARIES

Modern language models suffer from massive parameters of embeddings because the number of
embeddings is associated directly with the diversity of output tokens. Some studies tried to compress
the embedding part; Lan et al. (2020) lightened the embedding weight via matrix factorization. We
horizontally split embedding vectors into sub-embedding vectors which are shared with some other
embedding vectors. In the proposed embedding structure, sub-embeddings tend to highly correlate.
We suggest the following requirements to verify the modified embeddings perform like the original
embedding.

1. (Uniqueness of divided embeddings) Let ei, ej be embedding vectors, and {eki }Kk=1,
{ekj }Kk=1 are their sub-embeddings, ∀i, j ∈ {1, . . . , N} ∃k∗ ∈ {1 . . .K} s.t. ek∗

i 6= ek
∗

j
and i 6= j.

2. (Contextual mapped sub-embedding) If a pair of tokens have similar contextual meanings,
their sub-embeddings share more parts than an arbitrary pair.

We try to find the function to map the origin embedding vectors into sub-embedding vectors. In
this work, we suggest the bijective function F : N → M×· · · × M for converting the embed-
ding to each sub-embedding where N = {1, . . . , N} ⊂ N is a set of the embedding index and
M = {1, . . . ,M} ⊂ N is a set of each sub-embedding index. To expand the function to allocate
sub-embedding in several ways, we generalize the mapping function using Cartesian product of
functions:

F(n) = (f1 × f2 ×· · · × fk)(n, . . . , n︸ ︷︷ ︸
k

), (1)

where the function fk : N → M denotes k-th sub-embedding index. Since the cardinality of
k-ary Cartesian product is Mk, the embeddings can be covered only N

1
k sub-embeddings. This

makes the number of embedding parameters dramatically reduce with log scale. We suppose that
the dimension of the embedding d is distributed equally to sub-embedding M = d/k. Then, the
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number of the embedding parameters N × d is scaled down to k ×M × (d/k) = M × d. Finally,
the representation of the embedding would be replaced by

en =

K⊕
k=1

efk(n),

where
⊕

is a concatenate operator, and en, efk are the corresponding embedding vector of the
embedding index. We suggest Algorithm 1, 2 by modifying fk that satisfies the requirements.

3.2 RANDOMLY SCATTERED k-SUB-EMBEDDING

We construct naively fk to combine sub-embeddings through a Cartesian product which can gen-
erate up to Mk embeddings. To ensure generated embeddings to be distinct, the number of
each sub-embedding M should be larger than N1/k. Randomly allocated sub-embedding algo-
rithm(Algorithm 1) shows that whole embeddings are generated by repeatedly applying the modulo
operation. We set M = dN 1

K e to extract the most compressed sub-embeddings. The modulo oper-
ation is derived with the perspective of M -base number. Converting to M -base number is bijective,
and we can easily set the index of each sub-embedding as each digit of the radix.

Algorithm 1 Randomly allocated Sub-Embedding
1: Input: Number of the embeddings N , embedding dimension d, sub-embedding sets K
2: M ← dN 1

K e . number of each sub-embedding
3: Initialize k-th M sub-embedding vectors {ekm ∈ R d

k }Mm=1 for all k ∈ {1, . . . ,K}
4: for n = 1, 2, . . . , N do
5: for k = 1, 2, . . . ,K do
6: fk(n) ≡ (n/Mk−1) mod Mk, . k-th digit of the M -base number
7: end for

8: en =

K⊕
k=1

ekfk(n)

9: end for
10: Output: The combined embedding vectors {en}Nn=1.

3.3 CLUSTERED k-SUB-EMBEDDING

The language models based on transformer learn the whole context of the input sequence, and each
embedding vector of a token is mapped to the embedding space reflecting its context. Mikolov et al.
(2013) recognizes that arbitrary two closely mapped word vectors tend to have similar context. If
the context of each token is given, we can enhance the allocation heuristic using the contexts. In
the case of tokens that have a similar meaning, we assume that the two tokens can be classified with
smaller differences. In this case, we can allocate more sub-embeddings to be shared. To estimate the
similarity of each pair of the tokens, a pretrained network is used to get each L2 distance between
each embedding vector. Assuming that all sub-embeddings are independently initialized randomly,
the tokens that share more sub-embedding are expected to have less L2 distance.
The method of allocating sub-embedding to similar tokens is based on k-means (Arthur & Vassil-
vitskii, 2007) algorithm. Each embedding vector is treated as an instance of the k-means algorithm,
thus the algorithm is adjusted recursively to each sub-embedding space. The recursive clustering
algorithm aims to separate the instances which are allocated in some identical sub-embeddings. Ac-
cording to Algorithm 2, the mapped sub-embeddings can satisfy the second requirement due to the
k-means algorithm based on L2 space.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

There are a few variant language modelings such as translation language modeling(TLM), casual
language modeling(CLM), and MLM, that depends on the purpose of each modeling. We replace the
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Algorithm 2 Allocating Clustered Sub-Embedding
1: Input: Number of embeddings N , number of sub-embeddings M , embedding dimension d,

number of sub-embedding sets K, embeddings of pretrained network P = {ρn}Nn=1

2: Initialize k-th M sub-embedding vectors {ekm ∈ Rd/K}Mm=1 for all k ∈ {1, . . . ,K}
3: fk(n)← 0, ∀k = 1, . . . ,K, n = 1, . . . , N . Initialize the labels to zero
4: for k = 1, 2, . . . ,K do
5: extract unique tuples from {F(n)}Nn=1 . Equation 1
6: for unique F(n∗) in {F(n)}Nn=1 do
7: if k 6= K then
8: PF(n∗) ← {ρn : F(n) = F(n∗)}Nn=1
9: Adjust k-means algorithm to PF(n∗)

10: Labeling the results to fk(n) where F(n) = F(n∗)
11: else
12: fk(n)← random number among M candidates where F(n) = F(n∗).
13: end if
14: end for
15: end for

16: Gather en =

K⊕
k=1

ekfk(n) ∀n ∈ N

17: Output: The combined embedding vectors {en}Nn=1.

word embeddings of MLM with the sub-embedding to inspect the effect of our proposed embedding
structure.

4.1.1 DATASETS

Common MLM is trained from a large plain text dataset and then fine-tuned in downstream tasks.
The language models are trained primarily in monolingual dataset. Additionally, the multilingual
dataset is trained to verify the k-sub-embedding also works within large vocabularies. BooksCor-
pus (Zhu et al., 2015) and English WIKIPEDIA corpuses are used for the monolingual set as follow-
ing BERT (Devlin et al., 2019). In the case of the multilingual experiments, we extract COMMON-
CRAWL (Wenzek et al., 2020) corpuses written in 15 languages which defined in XNLI(Conneau
et al., 2018). More details of the dataset are summarized in the appendix.

4.1.2 CONFIGURATIONS OF THE LANGUAGE MODELS

We modify RoBERTa (Liu et al., 2019), XLM-R (Conneau et al., 2020) implementations in Hug-
gingFace (Wolf et al., 2020) framework. RoBERTa is followed BERT approach except for NSP
prediction, and optimize hyperparameters such as momentum value and learning rate. We borrow
the hyperparameters of RoBERTa, also we adapt MLM prediction which has a 0.15 probability of
masking token. In order to simplify the network scheme, we set the base network to be composed of
8 transformer encoder layers and 512-d embeddings in contrast to BERTBASE. In similar fashion for
the multilingual case, XLM-R is modified to 8 layers like predefined RoBERTa. The networks that
we modified are denoted as RoBERTaMEDIUM, and XLM-RMEDIUM as shown in Table 1. We present
randomly allocated case of k-sub-embeddings in the table. The number of embedding parameters
in the modified networks is reduced remarkably from RoBERTaMEDIUM, and XLM-RMEDIUM. Other
training settings(e.g., tokenizers) are followed as (Liu et al., 2019; Conneau et al., 2020).

4.1.3 OTHER EMBEDDINGS IN THE LANGUAGE MODELS

The language models (Devlin et al., 2019; Liu et al., 2019; Yang et al., 2019; Lan et al., 2020) are
built on common transformer backbones, but their criterions are slightly different. In this study,
we construct the network as MLM structure not using NSP. Token prediction models such as MLM
needs a decoder from language models to predict token representation. Many language models tie
the last output weights to input embedding weights for robustness, Chung et al. (2021) shows that
not sharing between the embeddings and the decoder also can be performed better by regulating
the number of features in the decoder. Empirically, the result of decoupling the embedding and
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|V | |θ| E |θemb| #layers d

RoBERTaMEDIUM 50k 51M 50k 25.7M 8 512
+2-sub-embedding 50k 26M 225 115k 8 512
+3-sub-embedding 50k 26M 37 18.9k 8 512
+8-sub-embedding 50k 26M 4 2k 8 512

XLM-RMEDIUM 250k 154M 250k 128M 8 512
+3-sub-embedding 250k 26M 63 32k 8 512

Table 1: Overview of the neural language networks. The configurations of each networks where
E is the number of the embeddings, d is embedding vector size, and |θ|, |θemb| are the number of
parameters. We assume that the k-sub-embedding is allocated randomly by Algorithm 1.

the decoder is not different from coupling weights, we trained the language models with coupling
decoders. We replace the embedding part with the previous network into sub-embedding structure.
There are additional embeddings to capture external information such as positional embeddings and
token type embeddings, but we do not replace those embeddings to the sub-embedding.

4.1.4 EVALUATION BENCHMARKS

The modified neural language models are evaluated by GLUE (Wang et al., 2019) benchmarks which
are consisted of single-sentence tasks, similarity and paraphrase tasks, and inference tasks.1 We also
test multilingual language models with XNLI(Conneau et al., 2018) benchmark. XNLI is constituted
with 15 monolingual corpuses for Natural Language Interface(NLI). Following Huang et al. (2019),
we fine-tune the pretrained XLM-R in two ways, cross-lingual task and multi-language task.

4.2 COMPARING THE RANDOMLY ALLOCATED SUB-EMBEDDINGS

We construct the base network as in (Liu et al., 2019), and we replace the input embedding part
to randomly scattered k-sub-embedding structure(Algorithm 1). Table 2 shows that the results on
GLUE benchmarks of base network and k-sub-embedding. As the number of sub-embedding is
defined by M = N

1
k , it needs only 4 sub-embeddings when k is 8 for the given N is 50627. The re-

sults on GLUE among k-sub-embedding networks are similar between each other. However, the re-
sults underperform compared to RoBERTaMEDIUM, it seems that randomly allocated sub-embeddings
could not overcome the extremely entangled embedding part. The performance might decrease be-
cause we do not consider some special tokens(e.g. separate token, and padding token) when the
sub-embeddings are allocated. To alleviate this problem, we introduce clustered allocating proce-
dure based on the pretrained knowledge.

Model k E SST-2 MNLI QNLI QQP RTE MRPC CoLA STS-B
RoBERTaMEDIUM(ours) 1 50k 89.9 79.6 88.2 86.6 72.9 88.4 38.1 88.1
+2-Sub-Embedding 2 225 88.6 74.3 84.0 84.0 66.8 88.1 35.7 79.3
+3-Sub-Embedding 3 37 88.0 73.2 83.5 83.0 67.9 85.6 18.4 77.4
+4-Sub-Embedding 4 15 88.1 72.7 84.2 83.4 70.0 87.5 23.3 78.5
+6-Sub-Embedding 6 7 87.4 73.6 84.2 82.6 67.5 85.3 25.6 79.6
+8-Sub-Embedding 8 4 88.1 73.1 83.1 83.1 67.9 86.4 20.1 76.5

Table 2: Results of randomly allocating sub-embedding on GLUE. We compare the performance
of RoBERTaMEDIUM and randomly allocated k-sub-embeddings on GLUE benchmark.

1single-sentence tasks contain CoLA (Warstadt et al., 2018), SST-2 Socher et al. (2013), similarity and para-
phrase tasks contain MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017), QQP (Shankar et al., 2017),
and inference tasks contain MNLI (Williams et al., 2018), QNLI (Rajpurkar et al., 2016), and RTE (Dagan
et al., 2005)
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4.3 ALLOCATING SUB-EMBEDDING FROM PRETRAINED KNOWLEDGE

Randomly scattered k-sub-embeddings compress successfully the original embeddings, but in some
cases, the performance is struggled due to highly entangled sub-embeddings. Despite the tokens
locate closely in the embedding space, randomly allocating algorithm cannot reflect the context
between them. To solve this context mismatching problem, we extract pretrained RoBERTa (Liu
et al., 2019) network from HuggingFace2. The 768-d embedding vectors of the pretrained network
are clustered with Algorithm 2. We set the number of sub-embedding M to 50, 100, and 200
to allocate 3-sub-embeddings. Table 3 shows that advanced results on GLUE benchmarks. The
original k-means algorithm deals with the instances regardless of cluster size, i.e. the cluster size
can be different across k clusters. We perform both naive k-means and equally assigned k-means
due to Algorithm 2. The results show that sub-embeddings with equal cluster size outperforms on
small embedding set. Surprisingly, even clustered 3-sub-embedding has fewer parameters than 2-
sub-embedding network, it outperforms every GLUE benchmark. The proposed method performs
comparably with the original embedding structure, and outperforms on SST-2 benchmark.

k |θemb|(↓ %) SST-2 MNLI QNLI QQP RTE MRPC CoLA STS-B
RoBERTaMEDIUM(ours) 1 25.7M(-) 89.9 79.6 88.2 86.6 72.9 88.4 38.1 88.1

randomly allocated sub-embedding

2-sub-embedding 2 115k(99.5) 88.6 74.3 84.0 84.0 66.8 88.1 35.7 79.3
3-sub-embedding 3 18.9k(99.93) 88.0 73.2 83.5 83.0 67.9 85.6 18.4 77.4

clustered sub-embeddings with k-means algorithm

3-sub-embedding, M = 100 3 104k(99.6) 88.2 75.9 85.1 84.7 67.1 87.3 37.5 81.6
3-sub-embedding, M = 200 3 154k(99.4) 90.0 77.6 85.5 85.6 69.7 88.7 34.9 84.5

clustered sub-embeddings with equal cluster size

3-sub-embedding, M = 50 3 25.6k(99.9) 89.3 75.8 83.5 84.6 67.9 87.7 33.6 80.2
3-sub-embedding, M = 100 3 51.2k(99.8) 89.3 77.2 85.8 84.8 70.8 87.4 36.8 84.9

Table 3: Clustered k-sub-embedding Results on GLUE. The networks of 3-sub-embedding are
enhanced using the pretrained network where M is the number of each sub-embedding.

4.4 TOKENS IN SUB-EMBEDDING SPACE

We also perform PCA to visualize k-sub-embeddings on the embedding space and derive the vari-
ance of the embeddings. The embedding weight E ∈ RN×d would be transfered to Ep ∈ RN×p

where p < N is the number of main components according to PCA procedure. The explained
variance ratio can be defined with rp = Σp

i=1σi/Σ
d
i=1σi where σi is i-th largest eigenvalue of E’s

covariance matrix. It is used to measure the variance of factorized embedding space. We visualize
3-d mapped k-sub-embedding vectors and corresponding explained variance ratio in Figure 2. The
sub-embedding vectors are easily factorized due to sharing parameters, so the instances are located
in each isolated subspace.

4.5 COMPARING INSIDE OF THE EMBEDDING AND THE SUB-EMBEDDING

We found that k-sub-embedding is able to be performed comparably on some benchmarks, but it
is still ambiguous that how the combined sub-embedding works like the embeddings. Inspired by
(Mimno & Thompson, 2017; Ethayarajh, 2019; Cai et al., 2021), we calculate the inter-similarity
and intra-similarity among the embedding vectors. Cai et al. (2021) captures all hidden states be-
tween each layer of the neural language model to address inter-type and intra-type cosine similar-
ities. Likewise for early studies, we define the inter-similarity Sinter(l) = Ei 6=jcos(hl

i,h
l
j) and

intra-similarity Sintra(l) = EiEj1 6=j2cos(hl
j1
,hl

j2
) where hl

∗ is one of the l-th hidden states. The
cosine similarity indicates the isotropy of the embedding space. We report inter-similarity and intra-
similarity of each layer in Figure 3.
The inter-similarities of each k-sub-embedding network are reported almost 1.0 at the end of the
layer. This indicates that each hidden state of token is located in narrow cone in the latent space
because the embeddings share their sub-embeddings.

2https://huggingface.co/roberta-base
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(a) RoBERTaMEDIUM (b) 2-Sub-Embedding (c) 3-Sub-Embedding

(d) 4-Sub-Embedding (e) 6-Sub-Embedding (f) 8-Sub-Embedding

Figure 2: 3-d scatter plots of each k-sub-embedding. The embedding vectors are pointed in
different colors depending on the last sub-embedding vector.

(a) Sinter (b) Sintra

Figure 3: Inter-similarity and intra-similarity of each hidden state. Sinter and Sintra of each
k-sub-embedding goes almost 1.0 according to highly correlated embeddings.

Figure 4 shows more details of hidden states in each layer. We extract some commonly used to-
kens(e.g., 〈the〉, 〈to〉, 〈and〉, 〈of〉, and 〈a〉) to figure out where they locate in the hidden spaces.
The embedding vectors tend to be clustered each other due to the shared sub-embedding as shown
in Figure 2. Figure 4(a), 4(b) show that the networks try to distinguish the tokens by spreading out
the tokens into the hidden spaces. The last hidden states congregate the tokens for the decoder of
the language models.

4.6 EXPERIMENTS ON MULTILINGUAL DATASET

Training multilingual language models treats as much harder than monolingual case. Some multi-
lingual language models (Lample et al., 2018; Lample & Conneau, 2019) focus on cross-linguity to
train the pairs of translation dataset. XLM-R (Conneau et al., 2020) modifies RoBERTa to deal with
multilingual embeddings, that leverages on extremely large dataset. We adapt the XLM-R network
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(a) Layer 0 (b) Layer 2 (c) Layer 7

Figure 4: 3-d scatter plot of each layer in 3-sub-embedding network. The hidden states of each
token are applied PCA to draw in 3-d space. The tokens gather around to narrow cone at the last
layer.

to XLM-RMEDIUM which is described in Table 1.
Following (Huang et al., 2019), We evaluate the multilingual networks in two ways; cross-lingual
transfer and multilingual transfer(translate-train-all). Table 4 shows the accuracy on each of the 15
XNLI languages. The cross-lingual transfer results of Arabic and Urdu are underperformed due
to lack of pretraining corpora. While randomly allocated sub-embedding cut down the number of
embedding over 99.97%, the performance of each language is also diminished. We allocate sub-
embeddings twice as much than the previous case to adjust clustering algorithm using the pretrained
network3. The results on XNLI are improved 2%p on multilingual transfer task, while the embed-
dings are still compressed over 99.95%.

Model E en fr es de el bg ru tr ar vi th zh hi sw ur Avg
Fine-tune multilingual model on English training set (Cross-lingual Transfer)

XLM-RMEDIUM(ours) 250k 74.0 56.6 60.5 55.1 49.4 53.5 52.0 45.0 35.1 54.5 41.5 52.4 42.0 45.1 43.3 50.7
3-Sub-Embedding 63 72.6 55.4 54.7 48.4 45.0 51.0 49.8 43.4 35.1 50.8 36.4 44.2 40.2 45.9 43.2 47.7
+clustered 128 72.9 55.4 54.1 51.9 49.8 51.9 51.1 45.5 35.0 49.7 44.3 45.0 42.5 44.3 40.6 48.9

Fine-tune multilingual model on all training sets (TRANSLATE-TRAIN-ALL)

XLM-RMEDIUM(ours) 250k 77.0 72.4 74.3 73.0 71.7 70.9 69.0 69.0 58.7 72.3 61.2 63.8 61.0 63.5 62.8 68.0
3-Sub-Embedding 63 72.7 69.6 68.6 68.1 67.0 65.1 65.6 63.2 59.7 69.6 60.0 58.3 61.7 61.9 58.2 64.6
+clustered 128 74.7 69.9 71.5 69.6 68.3 67.6 67.6 66.8 60.8 71.7 62.1 62.0 63.3 62.4 60.4 66.6

Table 4: Results on cross-lingual classification. We evaluate base network and k-sub-embedding
that is fixed to k = 3. E denotes the number of embeddings in each network.

5 CONCLUSIONS AND FUTURE WORK

In this work, we introduce the k-sub-embedding to replace the original embedding. We suggest two
ways to allocate shared sub-embedding to the embedding vector; one is to assign sequentially by
modulo operation(Algorithm 1), and the other is allocating scattered sub-embedding using contex-
tual information from pretrained network(Algorithm 2). The number of parameters of the scattered
sub-embedding is reduced over 99%, because the combined embedding can be generated exponen-
tially as a result of Cartesian product. Although the embeddings are highly compressed, the results
on GLUE, XNLI show that k-sub-embedding structure also performs similar with the base result.
We conducted the experiments to replace the embeddings to k-sub-embedding through MLMs.
Other language modelings such as TLM and CLM can be also trained with the replaced embeddings.
Although TLM has additional decoder to translate the source language, we expect that the contex-
tual embedding replaced to k-sub-embedding would be outperformed according to cross-lingual test
results. We can further investigate about the relationship between the embedding dimension d and
the number of sub-embedding space k. This will help to theoretically understand how the k-sub-
embedding works.

3https://huggingface.co/xlm-roberta-base
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REPRODUCIBILITY

The embedding part of the language model is usually defined in Embedding layer. We design our
k-sub-embedding layer to be easily replaced with the predefiend embedding layer. The implemen-
tations of k-sub-embedding are written in PyTorch framework, and it is also compatible with Hug-
gingFace framework. Source code is accessible to the supplementary material.
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A APPENDIX

A.1 PRETRAINING MONOLINGUAL LANGUAGE MODELS

We adapt RoBERTa case for training standard English corpora. The structure of RoBERTaBASE

is based on BERTBASE which has 12 layers of transformer encoder. We cut down some layers to
build 8 layers, the details of other hyperparameters are described in Table 5. The k-sub-embedding
networks are also trained with the same environment of RoBERTaMEDIUM, and we accelerate training
speed through half-precision floating point.
The fine-tuning tasks are trained with the hyperparameters that are used in pretraining. Some values
are modified to fit in GLUE benchmark as Table 6. We conduct the fine-tuning tasks and report the
best accuracy among the candidates of hyperparameters. We also fine-tune RTE, STS-B, and MRPC
tasks from the network checkpoint of MNLI downstream task.

A.2 PRETRAINING MULTILINGUAL LANGUAGE MODELS

As we deal with the multilingual corpus with XLM-R framework, the pretraining procedure of mul-
tilingual case is not different from the monolingual case. To cover the tokens of multiple languages,
XLM-R expands the vocabularies to 250k. We also adapt these tokenization method and other hy-
perparameters as described in Table 5. The hidden size and layers are reduced to 512 and 8 likewise
for RoBERTaMEDIUM. We extract corpus of 15 languages from CommomCrawl. The details of each
monolingual corpus are described in Table 7. Unlike the MNLI benchmark, we fine-tune XNLI task
on fixed learning rate and batch size(Table 6).

A.3 LAYERWISE ANALYSIS

In this section we analyze each hidden state of k-sub-embedding. The embeddings that are com-
posed with the sub-embeddings tend to be highly correlated. The language models learn to distin-
guish the entangled embeddings. Figure 5, 6, 7, 8, 9, and 10 show that the tokens are spread out
through the hidden space. The tokens in the last layer are located closely each other.
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Hyperparameters RoBERTaMEDIUM XLM-RMEDIUM

Number of layers 8 8
Hidden size 512 512
Intermediate hidden size 2048 2048
Attention heads 8 8
Dropout 0.1 0.1
Attention Dropout 0.1 0.1
Warmup Steps 24k 24k
Peak learning rate 2e-4 2e-4
Batch Size 128 256
Weight Decay 0.01 0.01
Max Steps 250k 250k
Learning Rate Decay Linear Linear
Adam ε 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.98 0.98
Gradient Clipping 0.0 0.0
Vocabularies 50267 250002
Max Sequence Length 512 512

Table 5: Hyperparameters of RoBERTaMEDIUM and XLM-RMEDIUM. The details of pretraining
models. Most of the hyperparameters adapt from RoBERTa.

Hyperparameters GLUE XNLI
Learning rate 1e-5, 2e-5, 3e-5 2e-5
Batch Size 16, 32 32
Max Sequence Length 128 128
Learning Rate Decay Linear Linear
Warmup Ratio 0.06 0.06
Max Epochs 10 5, 10

Table 6: Hyperparameters to evaluate on GLUE and XNLI. The details of fine-tuning hyperpa-
rameters.

ISO code Language Tokens(M) Size(GiB)
ar Arabic 181 1.0
bg Bulgarian 193 1.2
de German 338 1.4
el Greek 170 1.0
en English 802 3.1
es Spanish 273 1.1
fr French 315 1.2
hi Hindi 91 0.7
ru Russian 426 2.8
sw Swahili 232 0.8
th Thai 125 1.1
tr Turkish 178 0.7
ur Urdu 101 0.6
vi Vietnamese 323 1.4
zh Chinese 237 1.0

Table 7: Statistics of each monolingual corpus. We extract 15 languages from CommonCrawl.
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(a) Layer 0 (b) Layer 1 (c) Layer 2 (d) Layer 3

(e) Layer 4 (f) Layer 5 (g) Layer 6 (h) Layer 7

Figure 5: 3-d scatter plot of each layer in RoBERTaMEDIUM(ours).

(a) Layer 0 (b) Layer 1 (c) Layer 2 (d) Layer 3

(e) Layer 4 (f) Layer 5 (g) Layer 6 (h) Layer 7

Figure 6: 3-d scatter plot of each layer in 2-sub-embedding network.
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(a) Layer 0 (b) Layer 1 (c) Layer 2 (d) Layer 3

(e) Layer 4 (f) Layer 5 (g) Layer 6 (h) Layer 7

Figure 7: 3-d scatter plot of each layer in 3-sub-embedding network.

(a) Layer 0 (b) Layer 1 (c) Layer 2 (d) Layer 3

(e) Layer 4 (f) Layer 5 (g) Layer 6 (h) Layer 7

Figure 8: 3-d scatter plot of each layer in 4-sub-embedding network.
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(a) Layer 0 (b) Layer 1 (c) Layer 2 (d) Layer 3

(e) Layer 4 (f) Layer 5 (g) Layer 6 (h) Layer 7

Figure 9: 3-d scatter plot of each layer in 6-sub-embedding network.

(a) Layer 0 (b) Layer 1 (c) Layer 2 (d) Layer 3

(e) Layer 4 (f) Layer 5 (g) Layer 6 (h) Layer 7

Figure 10: 3-d scatter plot of each layer in 8-sub-embedding network.
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