
CoMPM: Context Modeling with Speaker’s Pre-trained Memory
Tracking for Emotion Recognition in Conversation

Anonymous ACL submission

Abstract

As the use of interactive machines grow, the001
task of Emotion Recognition in Conversation002
(ERC) became more important. If the machine003
generated sentences reflect emotion, more004
human-like sympathetic conversations are pos-005
sible. Since emotion recognition in conversa-006
tion is inaccurate if the previous utterances are007
not taken into account, many studies reflect the008
dialogue context to improve the performances.009
We introduce CoMPM, a context embedding010
module (CoM) combined with a pre-trained011
memory module (PM) that tracks memory of012
the speaker’s previous utterances within the013
context, and show that the pre-trained mem-014
ory significantly improves the final accuracy015
of emotion recognition. We achieve compet-016
itive performance with previous methods on017
English datasets (MELD, EmoryNLP, IEMO-018
CAP, DailyDailog), and achieve good perfor-019
mance with small data sets. In addition, our020
method shows that it can be extended to other021
languages because structured knowledge is not022
required unlike existing methods.023

1 Introduction024

As the number of applications such as interactive025

chatbots or social media that are used by many026

users has recently increased dramatically, Emotion027

Recognition in Conversation (ERC) plays a more028

important role in natural language processing, and029

as a proof, a lot of research (Poria et al., 2019;030

Zhang et al., 2019; Ghosal et al., 2020; Jiao et al.,031

2020) has been conducted on the task.032

The ERC module increases the quality of em-033

pathetic conversations with the users and can be034

utilized when sending tailored push messages to the035

users (Shin et al., 2019; Zandie and Mahoor, 2020;036

Lin et al., 2020). In addition, emotion recognition037

can be effectively used for opinion mining, rec-038

ommender systems and healthcare systems where039

it can improve the service qualities by providing040

personalized results. As these interactive machines041

Figure 1: An example of MELD dataset

increase, the ERC module plays an increasingly 042

important role. 043

Figure 1 is an example of a conversation in which 044

two speakers are angry at each other. The emotion 045

of speaker B’s utterance ("How’d you get to that?") 046

is angry. If the system does not take into account 047

previous utterances, it is difficult to properly recog- 048

nize emotions. Like the previous studies (Ghosal 049

et al., 2020), we show that the utterance-level emo- 050

tion recognition, which do not consider the pre- 051

vious utterance, have limitations and experiments 052

result in poor performances. 053

Therefore, recent studies are attempting to 054

recognize emotions while taking into account 055

the previous utterances. Representatively, Dia- 056

logueRNN (Majumder et al., 2019) recognizes 057

the present emotion by tracking context from the 058

previous utterances and the speaker’s emotion. 059

AGHMN (Jiao et al., 2020) considers the previ- 060

ous utterances through memory summarizing using 061

GRU with attention. 062

COSMIC (Ghosal et al., 2020) and KET (Zhong 063

et al., 2019) use external knowledge to improve 064

the ERC performance. COSMIC improves the 065

performance of emotion recognition by extract- 066

ing commonsense knowledge of the previous ut- 067

terances. Commonsense knowledge feature is ex- 068

tracted and leveraged with COMET (Bosselut et al., 069

2019) trained with ATOMIC (The Atlas of Ma- 070

chine Commonsense) (Sap et al., 2019). ATOMIC 071
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has 9 sentence relation types with inferential if-072

then commonsense knowledge expressed in text.073

KET is used as external knowledge based on Con-074

ceptNet (Speer et al., 2017) and emotion lexi-075

con NRC_VAD (Mohammad, 2018) as the com-076

monsense knowledge. ConceptNet is a knowledge077

graph that connects words and phrases in natural078

language using labeled edges. NRC_VAD Lexicon079

has human ratings of valence, arousal, and domi-080

nance for more than 20,000 English words. How-081

ever, this external knowledge is often only available082

in English. In order to utilize the previous methods083

in languages of other countries, it is expensive and084

difficult to utilize because external knowledge data085

must be newly constructed. In recent NLP studies,086

due to the effectiveness of the pre-trained language087

model, it has already been developed in many coun-088

tries. Additionally, Petroni et al. (2019) introduces089

that the language models can be used as knowledge090

bases and have many advantages over the struc-091

tured knowledge bases. Based on these studies, we092

introduce an approach using pre-trained memory093

tracking of previous utterances that can be used094

regardless of the speaker’s language.095

CoMPM, introduced in this paper, is composed096

of two modules that take into account previous097

utterances in dialogue. (1) The first is a context098

embedding module (CoM) that reflects all previous099

utterances as context. CoM is an auto-regressive100

model that predicts the current emotion through101

attention between the previous utterances of the102

conversation and the current utterance. (2) The sec-103

ond is a pre-trained memory module (PM) that ex-104

tracts memory from utterances. We use the output105

of the pre-trained language model as the memory106

embedding where the utterances are passed into the107

language model. We use the PM to help predict the108

emotion of the speaker by taking into account the109

speaker’s linguistic preferences and characteristics.110

We experiment on 4 different English ERC111

datasets. Multi-party datasets are MELD (Poria112

et al., 2019) and EmoryNLP (Zahiri and Choi,113

2018), and dyadic datasets are IEMOCAP (Busso114

et al., 2008) and DailyDialog (Li et al., 2017).115

CoMPM achieves the first or second performance116

according to the evaluation metric compared to all117

previous systems. We performed an ablation study118

on each module to show that the proposed approach119

is effective. Further experiments also show that our120

approach can be used in other languages or small121

data similar to the limited service environment.122

2 Related Work 123

Ekman (Ekman, 1992) constructs taxonomy of six 124

common emotion (Joy, Sadness, Fear, Anger, Sur- 125

prise, and Disgust) from human facial expressions. 126

In addition, Ekman explains that multi-modal view 127

is important for multiple emotions recognition. 128

The multi-modal data such as MELD and IEMO- 129

CAP are some of the available standard datasets 130

for emotion recognition and they are composed 131

of text, speech and vision-based data. Datcu and 132

Rothkrantz (2014) uses speech and visual informa- 133

tion to recognize emotions, and (Alm et al., 2005) 134

attempts to recognize emotions based on text infor- 135

mation. MELD and ICON (Hazarika et al., 2018a) 136

show that the more multi-modal information is 137

used, the better the performance and the text infor- 138

mation plays the most important role. Multi-modal 139

information is not always given in most social me- 140

dia, especially in chatbot systems where they are 141

mainly composed of text-based systems. In this 142

work, we design and introduce a text-based emo- 143

tion recognition system using neural networks. 144

In the previous studies, such as Hazarika et al. 145

(2018b); Zadeh et al. (2017); Majumder et al. 146

(2019), most works focused on dyadic-party con- 147

versation. However, as the multi-party conversa- 148

tion datasets including MELD and EmoryNLP 149

have become available, a lot of recent research 150

are being conducted on multi-party dialogues such 151

as Zhang et al. (2019); Jiao et al. (2020); Ghosal 152

et al. (2020). In general, the multi-party conver- 153

sations have higher speaker dependency than the 154

dyadic-party dialogues, therefore have more condi- 155

tions to consider and result in poor performance. 156

Zhou et al. (2018); Zhang et al. (2018a) shows 157

that commonsense knowledge is important for un- 158

derstanding conversations and generating appropri- 159

ate responses. Liu et al. (2020) reports that the lack 160

of external knowledge makes it difficult to classify 161

implicit emotions from the conversation history. 162

EDA (Bothe et al., 2020) expands the multi-modal 163

emotion datasets by extracting dialog acts from 164

MELD and IEMOCAP and finds out that there is 165

a correlation between dialogue acts and emotion 166

labels. 167

3 Approach 168

3.1 Problem Statement 169

In a conversation, M sequential utterances are 170

given as [(u1, pu1), (u2, pu2), ..., (uM , puM )]. ui is 171
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the utterance which the speaker pui uttered, where172

pui is one of the conversation participants. While173

pui and puj (i 6= j) can be the same speaker,174

the minimum number of the unique conversation175

participants should be 2 or more. The ERC is a176

task of predicting the emotion et of ut, the utter-177

ance of the t-th turn, given the previous utterances178

ht = {u1, ..., ut−1}. Emotions are labeled as one179

of the predefined classes depending on the dataset,180

and the emotions we experimented with are either181

6 or 7. We also experimented with a sentiment clas-182

sification dataset which provides sentiment labels183

consisting of positive, negative and neutral.184

3.2 Model Overview185

Figure 2 shows an overview of our model. Our186

ERC neural network model is composed of two187

modules. The first is CoM which catches the un-188

derlying effect of all previous utterances on the189

current speaker’s emotions. Therefore, we propose190

a context model to handle the relationship between191

the current and the previous utterances. The second192

one is PM that leverages only the speaker’s previ-193

ous utterances, through which we want to reflect194

the speaker specific preferences and characteristics.195

3.3 CoM: Context Embedding Module196

The context embedding module predicts et by con-197

sidering all of the utterances before the t-th turn198

as the dialogue context. The example in Figure 2199

shows how the model predicts the emotion of u6200

uttered by sA, given a conversation of three par-201

ticipants (sA, sB , sC). The previous utterances are202

h6 = {u1, · · ·u5} and e6 is predicted while consid-203

ering the relationship between u6 and h6.204

We consider multi-party conversations where 2205

or more speakers are involved. A special token206

<sP> is introduced to distinguish participants in207

the conversation and to handle the speaker’s depen-208

dency where P is the set of participants. In other209

words, the same special token appears before the210

utterances of the same speaker.211

The context model operates auto-regressively212

and follows the causal decoder architecture where213

only the left context is used to predict the next214

word. Therefore, when the model predicts et, there215

is no effect of the future utterances. In many natu-216

ral language processing tasks, the effectiveness of217

the pre-trained language model has been proven,218

and we also set the initial state of the model to219

GPT2 (Radford et al., 2018). GPT2 is an unsu-220

pervised pre-trained model with large-scale open- 221

domain corpora of unlabeled text. 222

We use the embedding of the special token 223

<cls> to predict emotion. The <cls> token is con- 224

catenated at the end of the input and the output of 225

the context model is as follows: 226

ct = Context-Model(P:t−1, ht, ut, < cls >) (1) 227

where P:t−1 is the set of speakers in the previ- 228

ous turns. ct ∈ R1×hc and hc is the dimension 229

of Context-Model. 230

3.4 PM: Pre-trained Memory Module 231

External knowledge is known to play an important 232

role in understanding conversation. Pre-trained lan- 233

guage models can be trained on numerous corpora 234

and be used as an external knowledge base. We 235

utilize the pre-trained embedding of the speaker’s 236

previous utterances to compute and predict the emo- 237

tion of the current utterance ut. If the speaker has 238

never appeared before the current turn, the result of 239

the pre-trained memory is considered a zero vector. 240

To extract utterance-level embeddings, a pre- 241

trained language model with a bidirectional en- 242

coder structure is used. We use the distilled ver- 243

sion of the RoBERTa (Liu et al., 2019) model, dis- 244

tilRoBERTa. DistilRoBERTa is trained with the 245

same training procedure as distilBERT (Sanh et al., 246

2019), and the number of parameters is 65.6% of 247

RoBERTa. We used distilRoBERTa-base since no 248

significant difference in performance was found 249

using other pre-trained language models. 250

Since <cls> is mostly used for the task of clas- 251

sifying sentences, we use the embedding output 252

of the <cls> token as a vector representing the 253

utterance as follows: 254

ki = Memory-Encoder(< cls >, ui) (2) 255

where pui = pS , S is the speaker of the current 256

utterance. ki ∈ R1×hk and hk is the dimension of 257

Memory-Encoder. 258

3.5 CoMPM: Combination of CoM and PM 259

We combine CoM and PM to predict the speaker’s 260

emotion. In many dialogue systems (Zhang et al., 261

2018b; Ma et al., 2019), it is known that utterances 262

close to the current turn are important for response. 263

Therefore, we assume that utterances close to the 264

current utterance will be important in emotional 265
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Figure 2: Our model consists of two modules: a context embedding module and a pre-trained memory module.
The figure shows an example of predicting emotion of u6, from a 6-turn dialogue context. A, B, and C refer to the
participants in the conversation, where sA = pu1

= pu3
= pu6

, sB = pu2
= pu5

, sC = pu3
. M is a linear matrix

recognition. To confirm this assumption, two meth-266

ods are presented in this section for combining ct267

and ki as a result of Equation 1, 2.268

3.5.1 Tracking Method269

The first is a ki tracking method using GRU. The270

tracking method assumes that the importance of all271

previous speaker utterances to the current emotion272

is not equal and varies with the distance of the273

current utterance. In other words, since the flow274

of conversation changes as it progresses, the effect275

on emotion may differ depending on the distance276

from the current utterance. We track and capture277

the sequential position information of ki using a278

unidirectional GRU:279

ktt = GRU(ki1 ,ki2 , ...,kin) (3)280

where t is the turn index of the current utterance,281

n is the number of previous utterances of the282

speaker, and is (s = 1, 2, ..., n) is each turn ut-283

tered. ktt ∈ R1×hc is the output of kin and as a284

result, the knowledge of distant utterance is diluted285

and the effect on the current utterance is reduced.286

GRU is composed of 2-layers, the dimension of287

the output vector is hc, and the dropout is set to288

0.3 during training. Finally, the output vector ot is289

obtained by adding ktt and ct in Equation 4.290

ot = ct + ktt (4)291

3.5.2 Attention Method292

The attention method determines the importance293

of the previous utterances with an attention score294

instead of a distance based dilution. The attention 295

value is obtained through the similarity between 296

the context-reflected vector ct and the pre-trained 297

memory vector kis . Considering that the two vec- 298

tors are not of the same dimension, we calculate 299

the attention score using a projection matrix W as 300

follows: 301

ais = kisWct (5) 302

303

wi1:n = softmax(ai1:n) (6) 304

305

ot = ct +
n∑

s=1

wiskis (7) 306

where W ∈ Rhk×hc is a matrix for calculating the 307

association between kis and ct, and the weights 308

wi1:n are obtained from Equation 5, 6. Unlike the 309

tracking method, ot is calculated as Equation 7 310

by weighted sum of all pre-trained memory and 311

adding ct. 312

3.5.3 Emotion Prediction 313

Softmax is applied to the vector multiplied by ot 314

and the linear matrix M ∈ Rhe×hc to obtain the 315

probability distribution of emotion classes, where 316

he is the number of emotion classes. et is the pre- 317

dicted emotion class that corresponds to the index 318

of the largest probability from the emotion class 319

distribution. 320

et = argmax
e

softmax(M(ot)) (8) 321
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The objective is to minimize the cross entropy loss322

so that et is the same as the ground truth emotional323

label.324

4 Experiments325

4.1 Dataset326

We experiment on four benchmark datasets.327

MELD (Poria et al., 2019) and EmoryNLP (Za-328

hiri and Choi, 2018) are multi-party datasets, while329

IEMOCAP (Busso et al., 2008) and DailyDia-330

log (Li et al., 2017) are dyadic-party datasets. The331

statistics of the dataset are shown in Table 1.332

IEMOCAP is a dataset involving 10 speakers,333

and each conversation involves 2 speakers and the334

emotion-inventory is given as "happy, sad, angry,335

excited, frustrated and neutral". The train and de-336

velopment dataset is a conversation involving the337

previous eight speakers, and the train and develop-338

ment are divided into random splits at a ratio of339

9:1. The test dataset is a conversation involving two340

later speakers.341

DailyDialog is a dataset of daily conversations342

between two speakers and the emotion-inventory is343

given as "anger, disgust, fear, joy, surprise, sadness344

and neutral". Since more than 82% of the data are345

tagged as neutral, neutral emotions are excluded346

when evaluating systems with Micro-F1 as did in347

the previous studies.348

MELD is a dataset based on Friends TV show349

and provides two taxonomy: emotion and sen-350

timent. MELD’s emotion-inventory is given as351

"anger, disgust, sadness, joy, surprise, fear and352

neutrality" following Ekman (Ekman, 1992) and353

sentiment-inventory is given as "positive, negative354

and neutral".355

EmoryNLP, like MELD, is also a dataset based356

on Friends TV show, but the emotion-inventory is357

given as "joyful, peaceful, powerful, scared, mad,358

sad and neutral". Sentiment labels are not provided,359

but sentiment classes can be grouped as follows:360

positive: {joyful, peaceful, powerful}, negative:361

{scared, mad, sad}, neutral: {neutral}362

4.2 Training Setup363

In CoMPM, CoM uses a pre-trained GPT2-medium364

as the initial state and PM uses a pre-trained distil-365

RoBERTa as the initial state. We use the pre-trained366

model from the huggingface library 1. The opti-367

mizer is AdamW and the learning rate is 1e-5 as an368

initial value. The learning rate scheduler used for369

1https://github.com/huggingface/transformers

training is get_linear_schedule_with_warmup, and 370

the maximum value of 10 is used for the gradient 371

clipping. We select the model with the best perfor- 372

mance on the validation set. All experiments are 373

conducted on one V100 GPU with 32GB memory. 374

4.3 Previous Method 375

We show that the proposed approach is effective by 376

comparing it with various baselines and the state- 377

of-the-art methods. 378

CNN (Kim, 2014) is a convolutional neural net- 379

work model using pre-trained GloVe embeddings. 380

ICON (Hazarika et al., 2018a) is composed of 381

GRUs as a model that predicts emotions by hier- 382

archically integrating self- and inter-speaker emo- 383

tional influences into the global memories. 384

KET (Zhong et al., 2019) is a Knowledge En- 385

riched Transformer that reflects contextual utter- 386

ances with a hierarchical self-attention and lever- 387

ages external commonsense knowledge by using 388

a context-aware affective graph attention mecha- 389

nism. 390

ConGCN (Zhang et al., 2019) is a conversa- 391

tional graph-based convolutional neural network 392

that considers each utterance and speaker as nodes. 393

This model recognizes emotions by expressing 394

context- and speaker-sensitive dependency using 395

the nodes and the edges of the graph. 396

DialogueRNN (Majumder et al., 2019) uses a 397

GRU network to keep track of the individual party 398

states in the conversation to predict emotions. This 399

model assumes that there are three factors in emo- 400

tion prediction: the speaker, the context from the 401

preceding utterances and the emotion of the preced- 402

ing utterances. Also, Ghosal et al. (2020) shows the 403

performance of RoBERTa+DialogueRNN when 404

the vectors of the tokens are extracted with a pre- 405

trained RoBERTa. 406

BERT DCR-Net (Qin et al., 2020) proposes 407

Deep Co-Interactive Relation Network (DCR-Net) 408

and integrates mutual knowledge by modeling the 409

relation and the interaction between two tasks as a 410

co-interactive relation layer in a multi-task. 411

AGHMN (Jiao et al., 2020) (Attention Gated 412

Hierarchical Memory Network) is composed of (1) 413

a hierarchical memory network through BiGRU 414

and (2) an attention GRU (AGRU) using attention 415

weights to predict emotion. 416

RGAT+P (Ishiwatari et al., 2020) (relational 417

graph attention networks) proposes relational posi- 418

tion encodings with sequential information reflect- 419
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Dataset
dialogues utterance

classes Evaluation Metrics
train dev test train dev test

IEMOCAP 108 12 31 5163 647 1623 6 weighted avg F1
DailyDialog 11118 1000 1000 87170 8069 7740 7(6) Macro F1 & Micro F1

MELD 1038 114 280 9989 1109 2610 3, 7 weighted avg F1
EmoryNLP 713 99 85 9934 1344 1328 3, 7 weighted avg F1

Table 1: Statistics and descriptions for the four datasets. DailyDialog uses 7 classes for training, but we measure
Macro-F1 for only 6 classes excluding neutral. MELD and EmoryNLP are used to measure weighted avg F1 for
both emotion (7) and sentiment (3) classes.

ing the relational graph structure, which shows that420

both the speaker dependency and the sequential421

information can be captured.422

COSMIC (Ghosal et al., 2020) incorporates dif-423

ferent elements of commonsense such as mental424

states, events and causal relations, and learns the425

relations between participants in the conversation.426

This model uses pre-trained RoBERTa as a fea-427

ture extractor and leverages COMET trained with428

ATOMIC as the commonsense knowledge.429

4.4 Result and Analysis430

Table 2 shows the performance of the previous431

methods and our models. CoM used alone does432

not leverage PM and predicts emotions by only433

considering the dialogue context. PM, if used alone,434

does not consider the context and predicts emotions435

only with the utterance of the current turn. CoMPM436

is a model that combines CoM and PM with the437

tracking method (3.5.1), and CoMPM-A is a model438

that combines the two modules with the attention439

method (3.5.2). CoMPM(s) is a model in which440

PM is trained from scratch.441

Compared to other models using external442

knowledge, CoMPM achieves effective perfor-443

mance without the need for new training and444

other data. In other words, we can infer that445

the pre-trained language model is more effec-446

tive as external knowledge than ATOMIC (Sap447

et al., 2019), ConceptNet (Speer et al., 2017)448

or NRC_VAD (Mohammad, 2018). In addition,449

CoM, RoBERTa+DialogueRNN, BERT DCR-Net,450

and RGAT+P use pre-trained models as an initial451

state or feature extractor, but their performance is452

worse than CoMPM. Experimental results show453

that CoMPM is more effective than simply using a454

pre-trained language model as a backbone or fea-455

ture extractor.456

When comparing the differences in performance457

between CoMPM and CoM, the effect of PM can be458

validated, and when compared with PM, the effect459

of CoM can be confirmed. CoM and PM each show 460

inferior performance compared to the baselines, but 461

we achieved higher performance by integrating the 462

two and confirmed that each module is an impor- 463

tant factor. In addition, PM does not consider the 464

context, so the performance is worse than CoM and 465

the performance gap is even greater in IEMOCAP 466

datasets with longer average conversation turns. 467

The difference in performance between CoMPM 468

and CoMPM-A comes from the difference in the 469

method of combining the pre-trained memory. We 470

find that the tracking method is more effective than 471

the attention method in predicting emotions. Since 472

the tracking method uses unidirectional GRU, the 473

knowledge extracted from distant speaker utter- 474

ances is diluted. On the other hand, the attention 475

method determines the weight through attention be- 476

tween all of the speaker’s utterances and the current 477

utterance. Therefore, information about sequential 478

and position is not reflected. We experimentally 479

find that the sequential and position information 480

can be an important factor, and that the proximal 481

utterances of the speaker have a higher influence 482

on the emotion classification, which is more promi- 483

nent on the IEMOCAP data with a longer average 484

turns of conversation. 485

We confirm the effect of PM structure in the 486

model through the performance of CoMPM(s). If 487

PM is randomly initialized and trained, the perfor- 488

mance deteriorates because PM does not play the 489

role of a pre-trained memory. CoMPM(s) slightly 490

shows better performance than CoM, but slightly 491

inferior to CoMPM. That is, PM used in CoMPM(s) 492

cannot be considered as a pre-trained memory, but 493

it is used to extract and utilize features from pre- 494

vious utterances of the speaker. Feature vectors 495

extracted with PM are trained to help predict emo- 496

tions by reflecting the speaker specific personality 497

and characteristics. 498
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Models
IEMOCAP DailyDialog MELD EmoryNLP
W-Avg F1 Macro F1 Micro F1 W-Avg F1 (3-cls) W-Avg F1 (7-cls) W-Avg F1 (3-cls) W-Avg F1 (7-cls)

CNN 52.04 36.87 50.32 64.25 55.02 38.05 32.59
ICON 58.54 - - - - - -
KET 59.56 - 53.37 - 58.18 - 34.39

DialogueRNN 62.57 41.8 55.95 66.1 57.03 48.93 31.7
RoBERTa DialougeRNN 64.76 49.65 57.32 72.14 63.61 55.36 37.44

BERT DCR-Net - 48.9 - - - - -
ConGCN - - - - 59.4 - -
AGHMN - - - - 59.03 - -
RGAT+P 65.22 - 54.31 - 60.91 - 34.42
COSMIC 65.28 51.05 58.48 73.2 65.21 56.51 38.11
CoMPM 65.79 53.14 59.63 73.6 64.62 58.35 37.44

CoM 62.44 49.76 54.17 70.95 63.65 57.67 36.34
PM 50.37 46.73 50.48 70.36 61.5 54.74 35.5

CoMPM(s) 63.29 51.36 56.73 72.04 63.61 57.69 36.46
CoMPM-A 62.7 51.11 56.01 71.69 63.49 57.86 35.76

Table 2: Comparison of our models with various previous models and the results on 4 datasets. Our models are
trained 3 times for each experiment and the average of the scores is evaluated (same in other tables). Test perfor-
mance is measured by the model with the best score in the validation dataset. CoMPM, in bold text, is our final
results.

Conversation speaker utterance pred label
A Eh..., I don’t, I don’t know. neutral sadness
B What? surprise neutral
...

...
...

...
C Good one. Actually, ah, Terry wants you to take the training again, whenever. neutral neutral
B Eh, do you believe that? surprise surprise

#1

A Yeah? neutral neutral

Table 3: Case studies from MELD test dataset on CoMPM. Red refers to the utterances of the mispredicted emo-
tions. Blue indicates an utterance that has different emotions for the same utterance in different conversation
sessions.

Figure 3: Performance of CoMPM according to the size
of training data

4.5 Case Study499

Table 3 illustrates the case study of the MELD. In500

Conv#1, CoMPM predicts the emotion of A’s first501

utterance, "Eh..., I don’t, I don’t know.", as neutral,502

but the actual emotion is sadness. In this case, it503

is difficult to understand the context of the con-504

versation because there are no previous utterances.505

So we can consider it probable the emotion is pre-506

dicted as neutral instead of sadness. However, since507

the MELD dataset is built based on multi-modal,508

Models
IEMOCAP EmoryNLP
W-Avg F1 W-Avg F1 (3-cls) W-Avg F1 (7-cls)

CoM(sm)PM
61.19
(-4.6)

54.83
(-3.52)

32.69
(-4.75)

CoM(la)PM -
57.68
(-0.67)

35.91
(-1.53)

Table 4: CoM(sm)PM and CoM(la)PM are the back-
bones of CoM as GPT2-small and GPT2-large, re-
spectively. We were not able to experiment with
CoM(la)PM in IEMOCAP due to the lack of GPU
memory. The value in parentheses is the difference in
performance from the original CoMPM.

it is labeled by considering not only the text but 509

also the visual information as well. In other words, 510

studies focusing on text-level emotion recognition 511

may suffer from such limitations, and we think that 512

these cases can be improved in emotion recognition 513

considering multi-modal information. 514

4.6 Training with Less Data 515

Recent studies improve performance by leverag- 516

ing external structured knowledge, but these exter- 517

nal sources have limitations that are mostly pro- 518

vided only in English. CoMPM is an approach that 519

7



Transfer dataset
IEMOCAP EmoryNLP
W-Avg F1 W-Avg F1 (3-cls) W-Avg F1 (7-cls)

All ERC dataset
67.47

(+1.68)
58.76

(+0.41)
38.02

(+0.58)

Table 5: CoMPM is first pre-trained on all datasets and
then fine-tuned in IEMOCAP and EmoryNLP.

eliminates dependence on external sources and is520

easily extensible to any language. However, the521

insufficient number of emotional data available522

in other countries remains a problem. Therefore,523

we confirm that CoMPM is effective even when524

the number of data is small. Figure 3 shows the525

performance of the model according to the num-526

ber of training data and shows good performance527

even when only 50% of training data is used in528

the dataset except for IEMOCAP. IEMOCAP has a529

sensitive result to the ratio of training data because530

the total number of training data is too small.531

4.7 Change of Backbone in CoM532

We experimented by changing CoM’s backbone to533

another pre-trained language model. Table 4 shows534

a comparison of GPT2-(small, medium, large) in535

the EmoryNLP and IEMOCAP datasets where the536

number of dialogues is relatively small.537

We infer that GPT2-small has a lower ability538

to extract generalized representations than GPT2-539

medium, so emotional recognition performance is540

degraded. GPT2-large has more parameters than541

GPT2-medium, so its ability to extract representa-542

tion is generally good, but CoM(la)CK has poorer543

performance than CoMPM. We infer this reason544

as having too many parameters for the amount of545

training data. In fact, there is no significant dif-546

ference in sentiment classification performance in547

EmoryNLP, which has more training data per class.548

Recently, NLP researchers have been increasingly549

interested in pre-trained language models and have550

done a lot of research. We can also expect a higher551

performance by using a more appropriate language552

model for ERC datasets.553

4.8 Transfer Learning554

This section introduces a transfer learning experi-555

ment on the IEMOCAP and EmoryNLP datasets556

with a small number of learnable dialogues as in557

Section 4.7. Table 2 shows that performance is558

improved when external knowledge is leveraged559

through ATOMIC, NRC_VAD, and pre-trained lan-560

guage models. Therefore, we try to improve perfor-561

mance in a scenario where data is limited by using562

other emotion recognition data as external data. We 563

first pre-train CoMPM with randomly shuffled data 564

by summing all ERC data. Then, CoMPM is fine- 565

tuned for each data and Table 5 shows improved 566

performance. 567

The number of classes between IEMOCAP 568

and other ERC datasets (MELD, DailyDialog, 569

EmoryNLP) is different, and taxonomies are dif- 570

ferent even though the number of classes is the 571

same. Therefore, only the matrix M of Equation 8 572

is newly initialized and the remaining parts are 573

trained by transfer learning. Training is done in 574

the same experimental environment as the original 575

CoMPM, and the model converges quickly. As a 576

result, the performance of CoMPM is improved 577

by +1.68 and (+0.41, +0.58) in IEMOCAP and 578

EmoryNLP, respectively. 579

4.9 ERC in other languages 580

Previous studies mostly utilize external knowledge 581

to improve performance, but these approaches re- 582

quire additional publicly available data, which are 583

mainly available for English. Indeed, structured 584

knowledge and ERC data are lacking in other lan- 585

guages. Our approach can be extended to other lan- 586

guages without building additional external knowl- 587

edge, and achieves better performance than simply 588

using a pre-trained model. Details are in the Ap- 589

pendix A. 590

5 Conclusion 591

We propose CoMPM that leverages pre-trained 592

memory using a pre-trained language model. 593

CoMPM consists of a context embedding mod- 594

ule (CoM) and a pre-trained memory module (PM), 595

and the experimental results show that each module 596

is effective in improving the model performance. 597

CoMPM outperforms baselines and achieves com- 598

petitive performance in all dyadic- and multi-party 599

datasets. We compare the two methods of combin- 600

ing CoM and PM, and find out that close utter- 601

ances of speakers in dialogues are more important 602

for emotion recognition. In addition, we confirm 603

that the possibility of performance improvement 604

remains through experiments of other CoM’s back- 605

bone and transfer learning. 606

In addition, our approach is an effective method 607

that can be used not only in English, but also in 608

various languages. Our approach shows competi- 609

tive performance even without insufficient data or 610

structured knowledge for actual service. 611
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A ERC in Korean Dataset847

A.1 Dataset848

We constructed data composed of two speakers in849

Korean, and emotion-inventory is given as "sur-850

prise, fear, ambiguous, sad, disgust, joy, bored, em-851

barrassed, neutral". The total number of sessions852

is 1000, and the average number of utterance turns853

is 13.4. We use the data randomly divided into854

train:dev:test in a ratio of 8:1:1. This dataset is for855

actual service and is not released to the public.856

A.2 Results857

Models
Korean

W-Avg F1
PM 31.86

CoM 57.46
CoMPM 60.66

Table 6: Results of our approaches in Korean.

In Korean, our results are shown in Table. 6.858

The backbone of PM and the backbone of CoM859

are korean-BERT and korean-GPT owned by the860

company, respectively. In the Korean dataset, like861

the English dataset, the performance is good in the862

order of CoMPM, CoM, and PM. PM and CoM863

are not much different from fine-tuned pre-trained864

model. CoMPM treats the PM as a memory and865

predicts the final emotion by tracking the speaker’s866

emotional state. Our approach can significantly im-867

prove baselines, and works well in other languages868

as well as English data.869
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