
Resource-efficient Inference with Foundation Model Programs

Lunyiu Nie 1 Zhimin Ding 2 Kevin Yu 2 Marco Cheung 1 Christopher Jermaine 2 Swarat Chaudhuri 1

Abstract
The inference-time resource costs of large lan-
guage and vision models present a growing chal-
lenge in production deployments. We propose the
use of foundation model programs, i.e., programs
that can invoke foundation models with varying
resource costs and performance, as an approach
to this problem. Specifically, we present a method
that translates a task into a program, then learns a
policy for resource allocation that, on each input,
selects foundation model “backends” for each pro-
gram module. The policy uses smaller, cheaper
backends to handle simpler subtasks, while al-
lowing more complex subtasks to leverage larger,
more capable models. We evaluate the method on
two new “streaming” visual question-answering
tasks in which a system answers a question on a se-
quence of inputs, receiving ground-truth feedback
after each answer. Compared to monolithic multi-
modal models, our implementation achieves up
to 98% resource savings with minimal accuracy
loss, demonstrating its potential for scalable and
resource-efficient multi-modal inference 1.

1. Introduction
Foundation models (FMs) have reshaped the landscape of
machine learning over the past few years, demonstrating un-
precedented capabilities in language understanding (Achiam
et al., 2023; Dubey et al., 2024), complex reasoning (Lu
et al., 2024; Gupta et al., 2024), and multi-modal tasks (Li
et al., 2022a; Liu et al., 2024). While much of the com-
munity’s attention has focused on their training costs, the
inference-time resource use of FMs is increasingly becom-
ing a practical bottleneck. For commercial applications
that require real-time responses — for instance, continu-
ous streams of user queries to a multi-modal large language

1The University of Texas at Austin 2Rice University. Correspon-
dence to: Lunyiu Nie <lynie@utexas.edu>, Swarat Chaudhuri
<swarat@cs.utexas.edu>. Presented at the ES-FoMo III: 3rd
Workshop on Efficient Systems for Foundation Models at ICML
2025, Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by
the author(s).

1Source code and benchmarks are available at https://gi
thub.com/Flitternie/FMProgramming.

model (MLLM) — computational overhead and high latency
can severely degrade user experience and inflate operational
expenses (Xu et al., 2024).

In this paper, we propose the use of foundation model pro-
grams (FMPs) — code in Python-like languages that can call
into a variety of specialized vision and language models as
subroutines — to address this problem. Such programs have
been previously motivated on the basis of the interpretability
and flexibility they bring to multi-step tasks (Surı́s et al.,
2023; Gupta & Kembhavi, 2023; Subramanian et al., 2023).
Our insight is that they can also enable fine-grained deci-
sions about resource allocation: simpler subtasks can rely on
smaller, cheaper backends while more complex components
can leverage larger, more capable models.

Concretely, we propose a framework of resource-efficient
foundation model programming in which a task is automati-
cally translated into an FMP that captures subtask dependen-
cies and conditional control flow. Each submodule of the
program is then assigned to one of several backend models,
differing in resource cost and capability. For example, in
Figure 1, a visual question answering (VQA) system re-
ceives the query “Is there a cat sitting or laying on a laptop
keyboard?” Here, our method generates a program that
uses a small, inexpensive object detection model to check
whether both a cat and a laptop are present. Only if that con-
dition is met does it invoke a more powerful vision-language
model (VLM) for finer-grained reasoning.

We specifically focus on “streaming” tasks in which the
system repeatedly solves a task — for example, answering
a question — on a sequence of inputs. Each answer is pro-
vided without prior knowledge of the ground truth, and the
system receives ground-truth feedback after each answer. In
such settings, the cost of using a monolithic model is propor-
tional to the number of inputs processed. By contrast, our
approach uses the feedback from the early answers to learn
a policy that dynamically selects which backend model to
invoke for each subtask, conditioned on the program input.
Specifically, we use a combination of a structured REIN-
FORCE estimator and gradient-based Thompson Sampling
to learn this policy.

While existing routing or cascading strategies (Chen et al.,
2023; Shnitzer et al., 2023; Lu et al., 2023; Nie et al., 2024)
attempt to reduce large language model (LLM) inference

1

mailto:lynie@utexas.edu
mailto:swarat@cs.utexas.edu
https://github.com/Flitternie/FMProgramming
https://github.com/Flitternie/FMProgramming

Resource-efficient Inference with Foundation Model Programs

Is there a cat
si+ng or laying

on laptop keyboard?

🙋 User Query

Input Streams

Single MLLM

def execute_command(image):
image_patch = ImagePatch(image)
cats = image_patch.find("cat")
if len(cats) >= 1:
laptops = image_patch.find("laptop")
if len(laptops) >= 1:
if any(cats.overlaps_with(laptops)):

return image_patch.vqa("Is there a cat
sitting or laying on laptop keyboard?")

return False

FM Programming

Yes / No

💰

⚡

Inference

Mul)-Modal Founda)on Models

3B 7B 70B13B

FM Backends

Powerful,
But Slow & Expensive!

Object Detec)on Founda)on Models

172M 233M

Large Language Models

1B 3B 70B

Policy

Dynamic
Backend
Selec1on

Yes / No

Exec.

Figure 1: Illustration of a foundation model program synthesizing a VQA task by decomposing the task into sub-components.
At runtime, the resource-efficient FM programming framework dynamically selects FM backends based on the task and
input complexity to optimize accuracy and resource efficiency in real-time processing.

overheads by switching between model sizes, they do not
exploit the rich structural dependencies that arise in com-
plex, compositional workflows. By contrast, our programs
make these dependencies explicit, opening up opportunities
for more flexible resource optimization.

Given the lack of standard benchmarks for resource-efficient
sequential decision-making, we evaluate our approach on
two newly introduced benchmarks: (1) a streaming binary
VQA benchmark, where the questions require yes/no an-
swers, spanning 33 compositional reasoning tasks with over
2,000 annotated images per task; and (2) a streaming open-
form VQA benchmark, involving diverse questions with
a broader answer space, covering 50 tasks with 500 anno-
tated images per task. Experimental results show that our
FMP-based system consistently reduces inference costs by
50% to 98% compared to one-size-fits-all baselines, without
compromising task accuracy.

In summary, our contributions are as follows:

• We propose the use of foundation model programs as a
flexible approach to cost-efficient inference for complex,
multi-modal workflows.

• We give a specific method for learning such programs in
a sequential decision-making setting. The highlight of
the method is an online resource allocation method that
systematically trades off the resource consumption and
performance of models in an input-dependent way.

• We release two streaming benchmarks for binary and
open-form VQA, reflecting real-world tasks where inputs
arrive sequentially at scale and resource-efficiency is key.

• We show empirical results on these benchmarks, which
demonstrate that our program-based approach can
achieve up to 98% cost savings with minimal accuracy
degradation.

2. Problem Formulation
We consider foundation model programs (FMPs), which
are neurosymbolic programs that interleave symbolic con-
trol flow with calls to a fixed set of generic neural func-
tions F = {f1, f2, . . . , fK}. For instance, the program
in Figure 1 uses functions ImagePatch.find() and
ImagePatch.vqa(). Each fk has multiple backend
models Mk = {mk,1,mk,2, . . . ,mk,nk

} with varying accu-
racy and computational costs.

For a program with N calls to these functions, denoted by
⟨fk1 , fk2 , . . . , fkN

⟩, we define a program configuration vec-
tor v⃗ = ⟨mk1,j1 , . . . ,mkN ,jN ⟩ that specifies which backend
to use for each call.

Given a sequence of input-output pairs {xt, yt}Tt=1, our
objective is to learn a policy π that maps each input xt to a
program configuration vector v⃗t = π(xt) to maximize the
cumulative reward

∑T
t=1 R(v⃗t, xt, yt), where

R
(
v⃗t, xt, yt

)
= −L

(
p(xt|v⃗t), yt

)
− λC

(
v⃗t
)
.

Here, L measures prediction error between the program
execution p(xt|v⃗t) and reference yt, C denotes the computa-
tional cost of invoked backends from v⃗t, and λ > 0 balances
accuracy-cost trade-offs. This optimization is performed on-
line, with decisions made sequentially by policy π without
prior knowledge of yt. More details of the formulation are
in Appendix A.1.

3. Foundation Model Programming
Our approach to addressing this problem consists of two key
phases: offline code generation and online resource alloca-
tion. In the offline phase, we use a large language model
(LLM) to synthesize a foundation model program (FMP)
based on user specifications. This FMP comprises a se-

2

Resource-efficient Inference with Foundation Model Programs

quence of generic neural function calls ⟨fk1
, fk2

, . . . , fkN
⟩,

where each fki can be executed by various backend models
in Mki differing in accuracy and computational cost.

During the online phase, we dynamically assign a program
configuration vector v⃗t to each input xt, selecting a specific
backend for each function call. Given the combinatorial
explosion of possible configurations with N functions, we
decompose the decision-making into N sub-policies πki

,
each handling one function call. To facilitate this, we define
a sub-reward function for each function call fki

:

rki,ji = −λC(mki,ji)−
1

N
L(p(xt|v⃗t), yt),

for all mki,ji ∈ v⃗t. This sub-reward decomposes the global
reward R(v⃗t, xt, yt) into structured contributions, including
the local computational cost and a portion of the predictive
loss. This decomposition reduces the optimization space
and enables efficient backend selection.

Each sub-policy πki
predicts rewards for its associated back-

ends, balancing exploration and exploitation via gradient-
based Thompson Sampling (Zhang et al., 2020). For every
backend mki,ji , the sub-policy samples a reward from a
distribution reflecting both predicted reward and uncertainty,
choosing the backend with the highest sampled value. This
process constructs v⃗t incrementally across all function calls.

Due to the non-differentiable program structure, the sub-
policies are trained using a structured REINFORCE algo-
rithm (Williams, 1992) to estimate the policy gradient:

∇θki
J (πki) ≈

T∑
t=1

S∑
s=1

∇θki
log πki(m

(s)
ki,j∗i
|x(s)

t ; θki)·r
(s)
ki,j∗i

.

This gradient updates the sub-policy parameters based on
S sampled trajectories, leveraging the decomposed sub-
rewards r(s)ki,j∗i

observable after program execution.

A detailed description and pseudocode of the full framework
is deferred to Appendix A.2. This methodology provides a
tractable solution to the online resource allocation challenge,
with theoretical no-regret guarantees in Appendix B. By
separating offline synthesis from online optimization and
employing a decomposed policy structure, we achieve both
flexibility and efficiency in program execution.

4. Benchmark
Motivated by the need for structured, sequential evaluation
beyond the single-image-per-query setups typical of existing
visual question answering (VQA) datasets (Goyal et al.,
2017), we introduce two novel streaming VQA benchmarks.

Our first Streaming Binary VQA benchmark focuses on
yes/no question answering, a task commonly studied in pre-
vious works (Antol et al., 2015; Zhang et al., 2016; Hudson

& Manning, 2019). In this benchmark, systems are chal-
lenged to determine whether a sequence of images satisfies
complex, compositional queries. These queries incorporate
diverse reasoning types—spatial (e.g., “Is there a person rid-
ing a bicycle next to a bus on the street?”), logical (e.g., “Are
there people riding bikes, scooters, or motorcycles while
holding or using umbrellas?”), and numerical (e.g., “Are
there at least four horses on a beach?”)—to better reflect
real-world reasoning demands. The final benchmark in-
cludes 33 queries with more than 2000 annotated images for
each query, featuring a realistic class imbalance setup. Fur-
ther details on the benchmark construction and evaluation
are provided in Appendix D.1.

Our second benchmark, Streaming Open-form VQA, eval-
uates a system’s ability to answer open-form questions for
a sequence of input images. This benchmark spans five
reasoning categories: spatial (e.g., “What is in the jar to the
left of the juice?”), logical (e.g., “What is the black object
on the desk that is not electronic?”), numerical (e.g., “How
many extra bottles of beer do we need to make it a half
dozen?”), comparative (e.g., “Which bottle is taller, the left
one or the right one?”), and external knowledge reasoning
(e.g., “How many states are there in the country whose flag
is shown?”). Images are generated using a diffusion model
with a dedicated pipeline to ensure diversity and quality
control. To evaluate model robustness, we also introduce
unanswerable images that are visually similar to the query
but semantically invalid for answering. The final bench-
mark includes 50 queries with 500 annotated images per
query. Complete details of the image generation pipeline,
neurosymbolic program synthesis, and evaluation metrics
(exact match accuracy) are described in Appendix D.2.

5. Experiments
5.1. Baselines

We compare our system against several baselines to estab-
lish its effectiveness: (a) Single MLLMs. We evaluate
our system against the state-of-the-art multi-modal LLMs
(MLLMs) that integrate both vision and language reasoning
capabilities (Bai et al., 2025); (b) MLLM Routing. As
an alternative adaptive strategy, a multi-armed bandit dy-
namically routes user queries to multiple MLLMs of vary-
ing sizes with different cost-accuracy trade-offs based on
estimated rewards, balancing exploration and exploitation
(Nguyen et al., 2024; Li, 2025). However, it does not ac-
count for the task structures in user queries; (c) Static FM
Program Configurations. A common approach to re-
source management is to use a fixed, pre-determined config-
uration of foundation models for the FM programs without
dynamic backend selection. Given the combinatorial space
of configurations, we implement two variants: one using
the cheapest FM configurations and another using the most

3

Resource-efficient Inference with Foundation Model Programs

(a) Streaming Binary VQA (b) Streaming Open-form VQA

Figure 2: Experimental results on the (a) Streaming Binary VQA benchmark, and (b) Streaming Open-form VQA benchmark.
Costs are normalized based on the inference costs of the most expensive MLLM, i.e., Qwen2.5-VL 72B.

expensive configurations; (d) Pareto-Random Routing.
Following the prior works (Hu et al., 2024; Jitkrittum et al.,
2025), we employ a straightforward yet effective Pareto-
random routing strategy through linear interpolation. We
implement this approach separately for two scenarios: multi-
modal LLMs and static FM program configurations.

5.2. Implementation Details and Experimental Setups

In the experiments reported in the main paper, we consis-
tently use Qwen2.5-VL (3B and 72B) for both the Single
MLLM and MLLM Routing baselines. The FM program
backends consist of Grounding-DINO Tiny (172M) and
Base (224M) for object detection, along with Qwen2.5-VL
3B and 72B for vision-language understanding. We imple-
ment the structured policy using ResNet-18 with ∼11M
parameters (He et al., 2016), ensuring the policy training
and inference overheads do not exceed the resource savings.
We implement an instrumentation system that analyzes the
programs to determine function calls, modifies the abstract
syntax tree to inject program configurations, and executes
the modified program while collecting performance metrics
including the execution traces and the computational costs.

5.3. Results

Streaming Binary VQA Results. As shown in Figure
2, the Pareto frontier of FM Programming (green line) sig-
nificantly surpasses both the Pareto Random baseline (red
dashed line) and the MLLM routing baseline (blue line).
The FM Programming approach can achieve an accuracy
comparable to the largest MLLM while reducing computa-
tional costs by over 98%. This striking efficiency gain stems
from its ability to exploit task structure, where lightweight
object detection modules filter out most negative samples,

minimizing expensive MLLM inference. While its maxi-
mum F1 score is lower than MLLM-based methods due to
conservative object detection thresholds prioritizing preci-
sion over recall to minimize costly false positives (Figure
5), this trade-off can be tuned via the reward function.

To evaluate robustness, we conduct additional experiments
using an alternative set of FM backends with reduced capa-
bilities. As shown in Figure 6, FM Programming maintains
Pareto dominance, highlighting its robustness and adaptabil-
ity across varied configurations.

Streaming Open-form VQA Results. As Figure 2 (b)
shows, in the more challenging Streaming Open-form VQA
benchmark, FM Programming also outperforms the Pareto
Random and the MLLM routing baselines. Its dynamic
backend allocation proves especially effective in low-cost
regimes, where small cost increases lead to substantial accu-
racy gains. Compared to the largest MLLM, FM Program-
ming achieves up to 50% cost savings without sacrificing
performance—and in some cases, it even exceeds the accu-
racy while cutting costs by 30%. These results underscore
FM Programming’s ability to exploit task and input structure
for optimal cost-efficiency, demonstrating its scalability and
potential for real-world, resource-constrained applications.

6. Conclusion
We introduced the first framework using foundation model
programs (FMPs) to dynamically optimize performance-
resource trade-offs in multimodal reasoning tasks. Our
experiments show substantial computational savings with
minimal performance loss. Future work includes extending
FMPs to broader agentic scenarios and advancing methods
for joint learning of program structures and configurations.

4

Resource-efficient Inference with Foundation Model Programs

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.
On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. Journal of Machine
Learning Research, 22(98):1–76, 2021.

AgentLego, C. Agentlego: Open-source tool api library to
extend and enhance llm agents, december 2023. URL
https://github. com/InternLM/agentlego, 2023.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D.,
Zitnick, C. L., and Parikh, D. Vqa: Visual question
answering. In Proceedings of the IEEE international
conference on computer vision, pp. 2425–2433, 2015.

Bai, S., Chen, K., Liu, X., Wang, J., Ge, W., Song, S., Dang,
K., Wang, P., Wang, S., Tang, J., et al. Qwen2. 5-vl
technical report. arXiv preprint arXiv:2502.13923, 2025.

Ban, Y., He, J., and Cook, C. B. Multi-facet contextual
bandits: A neural network perspective. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 35–45, 2021.

Black Forest Labs. Flux. https://github.com/bla
ck-forest-labs/flux, 2023.

Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun,
S., Feng, W., Liu, Z., Xu, J., et al. Mmdetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019.

Chen, L., Zaharia, M., and Zou, J. Frugalgpt: How to use
large language models while reducing cost and improving
performance. arXiv preprint arXiv:2305.05176, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and
Parikh, D. Making the v in vqa matter: Elevating the
role of image understanding in visual question answer-
ing. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 6904–6913, 2017.

Gupta, N., Narasimhan, H., Jitkrittum, W., Rawat, A. S.,
Menon, A. K., and Kumar, S. Language model cascades:
Token-level uncertainty and beyond. arXiv preprint
arXiv:2404.10136, 2024.

Gupta, T. and Kembhavi, A. Visual programming: Compo-
sitional visual reasoning without training. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14953–14962, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hu, Q. J., Bieker, J., Li, X., Jiang, N., Keigwin, B., Ran-
ganath, G., Keutzer, K., and Upadhyay, S. K. Router-
bench: A benchmark for multi-llm routing system. arXiv
preprint arXiv:2403.12031, 2024.

Hudson, D. A. and Manning, C. D. Gqa: A new dataset for
real-world visual reasoning and compositional question
answering. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 6700–
6709, 2019.

Hurst, A., Lerer, A., Goucher, A. P., Perelman, A., Ramesh,
A., Clark, A., Ostrow, A., Welihinda, A., Hayes, A.,
Radford, A., et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Jain, A., Kothyari, M., Kumar, V., Jyothi, P., Ramakrish-
nan, G., and Chakrabarti, S. Select, substitute, search: A
new benchmark for knowledge-augmented visual ques-
tion answering. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 2491–2498, 2021.

Jitkrittum, W., Narasimhan, H., Rawat, A. S., Juneja, J.,
Wang, Z., Lee, C.-Y., Shenoy, P., Panigrahy, R., Menon,
A. K., and Kumar, S. Universal model routing for efficient
llm inference. arXiv preprint arXiv:2502.08773, 2025.

Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei,
L., Lawrence Zitnick, C., and Girshick, R. Clevr: A
diagnostic dataset for compositional language and ele-
mentary visual reasoning. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 2901–2910, 2017.

Kreikemeyer, J. N. and Andelfinger, P. Smoothing methods
for automatic differentiation across conditional branches.
IEEE Access, 2023.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Li, J., Li, D., Xiong, C., and Hoi, S. Blip: Bootstrapping
language-image pre-training for unified vision-language

5

https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux

Resource-efficient Inference with Foundation Model Programs

understanding and generation. In International confer-
ence on machine learning, pp. 12888–12900. PMLR,
2022a.

Li, J., Li, D., Savarese, S., and Hoi, S. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders
and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Li, L. H., Zhang, P., Zhang, H., Yang, J., Li, C., Zhong,
Y., Wang, L., Yuan, L., Zhang, L., Hwang, J.-N., et al.
Grounded language-image pre-training. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10965–10975, 2022b.

Li, Y. Llm bandit: Cost-efficient llm generation via
preference-conditioned dynamic routing. arXiv preprint
arXiv:2502.02743, 2025.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V 13, pp. 740–
755. Springer, 2014.

Liu, H., Li, C., Li, Y., and Lee, Y. J. Improved baselines
with visual instruction tuning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 26296–26306, 2024.

Lu, K., Yuan, H., Lin, R., Lin, J., Yuan, Z., Zhou, C.,
and Zhou, J. Routing to the expert: Efficient reward-
guided ensemble of large language models. arXiv preprint
arXiv:2311.08692, 2023.

Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W.,
Wu, Y. N., Zhu, S.-C., and Gao, J. Chameleon: Plug-and-
play compositional reasoning with large language models.
Advances in Neural Information Processing Systems, 36,
2024.

Nguyen, Q. H., Hoang, D. C., Decugis, J., Manchanda,
S., Chawla, N. V., and Doan, K. D. Metallm: A high-
performant and cost-efficient dynamic framework for
wrapping llms. arXiv preprint arXiv:2407.10834, 2024.

Nie, L., Ding, Z., Hu, E., Jermaine, C., and Chaudhuri,
S. Online cascade learning for efficient inference over
streams. In Forty-first International Conference on Ma-
chine Learning, 2024.

OpenAI. Gpt-4o mini: Advancing cost-efficient intelligence.
https://openai.com/index/gpt-4o-min
i-advancing-cost-efficient-intellige
nce, 2024.

Schwenk, D., Khandelwal, A., Clark, C., Marino, K., and
Mottaghi, R. A-okvqa: A benchmark for visual ques-
tion answering using world knowledge. In European
conference on computer vision, pp. 146–162. Springer,
2022.

Shnitzer, T., Ou, A., Silva, M., Soule, K., Sun, Y., Solomon,
J., Thompson, N., and Yurochkin, M. Large language
model routing with benchmark datasets. arXiv preprint
arXiv:2309.15789, 2023.

Subramanian, S., Narasimhan, M., Khangaonkar, K., Yang,
K., Nagrani, A., Schmid, C., Zeng, A., Darrell, T., and
Klein, D. Modular visual question answering via code
generation. arXiv preprint arXiv:2306.05392, 2023.

Surı́s, D., Menon, S., and Vondrick, C. Vipergpt: Visual
inference via python execution for reasoning. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 11888–11898, 2023.

Wang, P., Yang, A., Men, R., Lin, J., Bai, S., Li, Z., Ma, J.,
Zhou, C., Zhou, J., and Yang, H. Ofa: Unifying architec-
tures, tasks, and modalities through a simple sequence-
to-sequence learning framework. In International con-
ference on machine learning, pp. 23318–23340. PMLR,
2022.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8:229–256, 1992.

Xu, M., Yin, W., Cai, D., Yi, R., Xu, D., Wang, Q., Wu, B.,
Zhao, Y., Yang, C., Wang, S., et al. A survey of resource-
efficient llm and multimodal foundation models. arXiv
preprint arXiv:2401.08092, 2024.

Zhang, P., Goyal, Y., Summers-Stay, D., Batra, D., and
Parikh, D. Yin and yang: Balancing and answering binary
visual questions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 5014–
5022, 2016.

Zhang, W., Zhou, D., Li, L., and Gu, Q. Neural thompson
sampling. arXiv preprint arXiv:2010.00827, 2020.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the 20th
international conference on machine learning (icml-03),
pp. 928–936, 2003.

A. Supplementary Information
A.1. Problem Formulation

Foundation Model Programs. We consider programs
written in a language such as Python, potentially synthesized

6

https://openai. com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai. com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai. com/index/gpt-4o-mini-advancing-cost-efficient-intelligence

Resource-efficient Inference with Foundation Model Programs

by an LLM. The programs are neurosymbolic because they
interleave symbolic control flow with calls to a fixed set of
generic neural functions F = {f1, f2, . . . , fK}, where each
fk denotes a high-level functionality (e.g., object detection,
visual question answering, natural language understand-
ing). For example, the program in Figure 1 makes calls to
two generic neural functions ImagePatch.find() and
ImagePatch.vqa(). In practice, we are interested in
the case where the neural functions are implemented via
foundation models. Hence, we use the term foundation
model program (FMP) to refer to such programs.

Each generic function fk in an FMP has an associated set of
nk backend models that can be used to implement it, namely
Mk = {mk,1,mk,2, . . . ,mk,nk

}, where each backend mk,j

has different trade-offs between accuracy and computational
cost. These backends may span a spectrum of models, from
lightweight task-specific models to large, general-purpose
language or multimodal models. Without loss of generality,
we assume that the cost of invoking a backend is fixed and
independent of the specific input it processes.

Now, assume that we analyze the program and produce an
arbitrary ordering for the total of N calls to generic neu-
ral functions, such that ki is the identity of the generic
neural function associated with the i-th call in the pro-
gram. Note that a program can call the same neural func-
tion multiple times with different inputs or arguments.
The list of neural functions called by the program is then
⟨fk1

, fk2
, . . . , fkN

⟩. In our example program, the list is
⟨ImagePatch.find(),ImagePatch.find(),
ImagePatch.vqa()⟩.

Further, assume the host programming language has a run-
time in which we are able to dynamically assign each of the
N calls to generic neural functions to a particular backend.
Let ji denote which of the backends is selected for the i-th
generic neural function call, where ji ∈ {1, ..., nki}. That
is, we select the j-th available neural backend mki,ji for the
i-th generic neural function call.

Thus, we can customize the behavior of an FMP to op-
timize for accuracy and runtime cost on a specific pro-
gram input, by choosing a specific list of backends v⃗ =
⟨mk1,j1 , ...,mkN ,jN ⟩. We call v⃗ a program configuration
vector. On input x, we use p(x|v⃗) to denote the output of
the program, given that program configuration vector v⃗ was
chosen.

Task Objective. The idea of using FMPs for resource
use optimization can be instantiated in a wide range of
problems. In this paper, we focus on settings in which the
goal is to solve a task—for example, answer a question—on
a sequence of input-output pairs {xt, yt}Tt=1. We assume
that the structure of the programs we use only depends on
the overall task and not the specific inputs. Therefore, on

the input xt for time step t, we only need to decide on a
suitable program configuration vector v⃗t.

We want v⃗t to be such that the program execution output
p(xt | v⃗t) approximates the ground truth yt, while minimiz-
ing execution cost. To capture this trade-off, we define the
following reward function:

R(v⃗t, xt, yt) = −L(p(xt|v⃗t), yt)− λC(v⃗t),

where L quantifies the output discrepancy between p(xt |
v⃗t) and the ground truth yt, C represents the actual compu-
tational cost incurred when running the program with con-
figuration v⃗t on input xt, and λ > 0 is a trade-off weighting
factor. Importantly, due to control flow in the program, not
all neural backends specified in v⃗t may be invoked on a
given input; C accounts only for the cost of the operations
actually executed.

Over T time steps, the objective is to learn a policy π that
maps each input xt to a program configuration vector v⃗t.
Let Π be the space of such policies. We seek to solve the
problem

max
π∈Π

T∑
t=1

R(v⃗t, xt, yt) subject to v⃗t = π(xt). (1)

Importantly, we require this optimization problem to be
solved online. That is, we assume that our inputs arrive
sequentially and require decisions to be made without prior
knowledge of the ground truth. Only after the selected con-
figuration is executed and the output p(xt | v⃗t) is produced
is the ground truth yt revealed and the reward R(v⃗t, xt, yt)
computed.

A.2. Methodology

Offline Code Generation. We begin by synthesizing a
foundation model program p from the user specification us-
ing an LLM. This process produces a task-specific program
sketch, including a sequence of generic neural function calls
⟨fk1 , fk2 , . . . , fkN

⟩, which defines the high-level structure
of the computation, while the backend selection for these
neural functions is determined online.

Online Resource Allocation. After offline synthesis, the
main challenge is to select a program configuration vector
v⃗t for each input xt, dynamically assigning a neural back-
end mki,ji ∈ Mki

to each function call fki
. The space of

possible configurations grows combinatorially with N , mak-
ing exhaustive search intractable. Therefore, we propose a
structured policy that decomposes this decision process into
N manageable sub-policies, one per function call.

Specifically, for each function call fki , we define a sub-
reward function:

rki,ji = −λC(mki,ji)−
1

N
L(p(xt|v⃗t), yt),

7

Resource-efficient Inference with Foundation Model Programs

Algorithm 1 Structured REINFORCE Framework

Initialize: Policy parameters θki
, uncertainty estimates

Uki , learning rate η, exploration factor ν
for each input xt do

for each function call fki
in program p do

Predict reward r′ki,ji
= πki

(mki,ji |xt; θki
) for each

FM backend mki,ji

Compute uncertainty σki,ji =

√∑
l

g2
ki,ji,l

Uki,l

Sample adjusted reward for exploration:
r̂ki,ji ∼ N

(
r′ki,ji

, (ν · σki,ji)
2
)

Select FM backend mki,j∗i
with highest sampled

reward r̂ki,ji

Update parameter uncertainties Uki,l

end for
Execute program p with selected configuration

v⃗t = (mk1,j∗1
, ...,mkN ,j∗N

)
Observe final reward R(v⃗t, xt, yt)
for each function call fki

do
Compute policy gradient ∇θki

J (πki
) based on ob-

served reward
Update policy parameters:

θki ← θki − η∇θki
J (πki)

end for
end for

for all mki,ji ∈ v⃗t. This sub-reward decomposes the
global reward R(v⃗t, xt, yt) into local contributions. It in-
tegrates the local computational cost C(mki,ji) associated
with backend mki,ji , and a portion of the predictive loss
L(p(xt|v⃗t), yt), that is determined once the entire configu-
ration v⃗t is set.

To model these rewards, we define a subpolicy πki
with

learnable parameters θki
. Given the input xt, subpolicy πki

outputs a reward prediction

r′ki,ji = πki
(mki,ji |xt; θki

) for each mki,ji ∈Mki
.

This structured design simplifies the decision space: rather
than jointly optimizing over all nk1

× · · · × nkN
backend

combinations, we train N separate subpolicies. Each sub-
policy is specialized to one of the N function calls, thereby
simplifying the optimization process, enabling parallel learn-
ing, and reducing unwanted interference across calls.

Gradient-based Thompson Sampling. To balance ex-
ploration and exploitation in the online setting, decisions
are made using Thompson Sampling (Zhang et al., 2020)
instead of greedily selecting the FM backend with the high-
est predicted reward. For each backend mki,ji ∈Mki

, the
subpolicy samples a reward from a normal distribution:

r̂ki,ji ∼ N
(
r′ki,ji , (ν · σki,ji)

2
)
,

where σki,ji =

√∑
l

g2
ki,ji,l

Uki,l
quantifies uncertainty in the

reward prediction. Here, l indexes each individual parameter
of the subpolicy, gki,ji,l is the gradient of the reward predic-
tion with respect to parameter l, Uki

tracks the accumulated
gradient-based parameter uncertainties, and ν scales the ex-
ploration. We select the backend with the highest sampled
reward:

j∗i = argmax
ji∈{1,...,nki

}
r̂ki,ji .

After selection, the uncertainty parameter Uki is updated to
refine future exploration:

Uki,l ← Uki,l + g2ki,j∗i ,l
,

where gki,j∗i ,l
is the gradient of the selected backend mki,j∗i

with respect to parameter l.

We repeat the above process for each i = 1, . . . , N , allow-
ing each subpolicy to choose one backend per function call,
thereby yielding the program configuration vector at time
step t:

v⃗t =
(
mk1,j∗1

,mk2,j∗2
, . . . ,mkN ,j∗N

)
.

Structured REINFORCE Algorithm. We now describe
the online learning of the subpolicies using only the global
reward R(v⃗t, xt, yt) observed after execution. The learning
objective for the overall policy π = {πk1

, . . . , πkN
} is to

maximize cumulative reward over T episodes:

J (π) =
T∑

t=1

R
(
v⃗t, xt, yt

)
,

where v⃗t =
(
mk1,j∗1

,mk2,j∗2
, . . . ,mkN ,j∗N

)
.

Since the reward R(v⃗t, xt, yt) is equivalent to the aggrega-
tion of all sub-rewards:

R(v⃗t, xt, yt) = −L
(
p(xt|v⃗t), yt

)
− λ C

(
v⃗t
)

=

N∑
i=1

[
− 1

N
L(p(xt|v⃗t), yt)− λC(mki,ji)

]
=

N∑
i=1

rki,j∗i
,

we convert the learning objective into optimizing each sub-
policy πki independently:

J
(
πki

)
=

T∑
t=1

Ej∗i ∼πki
(·|xt)

[
rki,j∗i

]
.

Because the program execution is non-differentiable due to
control flow structures like conditional branches and loops
(Kreikemeyer & Andelfinger, 2023), we employ the RE-
INFORCE algorithm (Williams, 1992) to estimate policy
gradients:

∇θki
J
(
πki

)
=

T∑
t=1

Ej∗i ∼πki
(·|xt)

[
∇θki

log πki

(
mki,j∗i

| xt; θki

)
· rki,j∗i

]
.

8

Resource-efficient Inference with Foundation Model Programs

Note that each rki,j∗i
depends on the full program execution

but reflects a partial credit assignment for subpolicy πki .

In practice, we approximate the expectation using S sam-
pled trajectories:

∇θki
J
(
πki

)
≈

T∑
t=1

S∑
s=1

∇θki
log πki

(
m

(s)
ki, j∗i

| x(s)
t ; θki

)
· r(s)ki, j∗i

.

The sub-policies are periodically trained to stabilize learn-
ing:

θki
← θki

− η∇θki
J (πki

),

where η is the learning rate. The overall framework is
detailed in Algorithm 1.

B. No-Regret Guarantee for Structured
REINFORCE

We establish that our proposed structured REINFORCE al-
gorithm achieves a no-regret guarantee in an online learning
setting. Before presenting the main theorem, we outline the
key assumptions that underpin our analysis:

Assumption 1 (Bounded Rewards). For all time steps t, con-
figurations v⃗t ∈ V , and inputs xt ∈ D, the reward satisfies
R(v⃗t, xt, yt) ∈ [Rmin, Rmax], where Rmax −Rmin <∞.

Assumption 2 (Policy Expressiveness). For each input xt,
there exists an optimal configuration v⃗∗xt

∈ V that maxi-
mizes R(v⃗, xt, yt). Moreover, the policy class is sufficiently
expressive such that there exist parameters {θ∗ki

}Ni=1 for
which πki

(m∗
ki,ji

| xt; θ
∗
ki
) ≈ 1, where m∗

ki,ji
is the opti-

mal backend for fki in v⃗∗xt
.

Assumption 3 (Sufficient Exploration). The algorithm em-
ploys Thompson Sampling with an exploration parameter
ν > 0, ensuring that every backend mki,ji ∈ Mki has a
non-zero probability of being sampled at each time step t.

Assumption 4 (Convergence of Policy Gradient). The learn-
ing rate ηt is set to 1/

√
t, and the policy parameterization

(e.g., softmax over Mki) guarantees that gradient updates
converge to a near-optimal policy (Agarwal et al., 2021).

Assumption 5 (Stationary Input Distribution). Inputs xt

are drawn independently and identically distributed (i.i.d.)
from a fixed distribution D, ensuring a consistent optimal
policy over time.

With these assumptions in place, we can formally state the
main result:

Theorem 1. Under Assumptions 1–5, the structured REIN-
FORCE algorithm is no-regret, meaning that the average
regret satisfies:

γT
T
→ 0 as T →∞,

both in expectation and with high probability, where the
regret γT is defined as:

γT = max
v⃗∈V

T∑
t=1

R(v⃗, xt, yt)−
T∑

t=1

R(v⃗t, xt, yt).

We now prove this theorem, showing that the algorithm’s
regret diminishes over time. The proof proceeds by defining
the regret, analyzing the algorithm’s behavior under the
assumptions, and bounding the regret both in expectation
and with high probability.

Proof of Theorem 1

We start with giving the formal definition of regret γT ,
which measures the cumulative difference between the max-
imum achievable reward and the algorithm’s actual reward
over T steps:

γT = max
v⃗∈V

T∑
t=1

R(v⃗, xt, yt)−
T∑

t=1

R(v⃗t, xt, yt).

Our goal is to show that the average regret, γT

T , approaches
zero as T → ∞. To simplify the analysis, we use a
stronger benchmark: the optimal context-dependent config-
uration v⃗∗xt

that maximizes R(v⃗, xt, yt) for each xt. Since
maxv⃗∈V R(v⃗, xt, yt) ≤ R(v⃗∗xt

, xt, yt), we have:

γT ≤
T∑

t=1

R(v⃗∗xt
, xt, yt)−

T∑
t=1

R(v⃗t, xt, yt).

This upper bound focuses the proof on the gap between the
optimal and achieved rewards per step.

The structured REINFORCE algorithm updates sub-policy
parameters θki

using policy gradients. The expected cumu-
lative reward is:

J (π) = Eπ

[
T∑

t=1

R(v⃗t, xt, yt)

]
,

with the gradient for each sub-policy:

∇θki
J (πki

)

=

T∑
t=1

Ej∗i ∼πki
(·|xt)

[
∇θki

log πki
(mki,j∗i

| xt; θki
) · rki,j∗i

]
.

The algorithm approximates this gradient with a single sam-
ple, updating parameters as:

θki,t+1 = θki,t+ ηt∇θki
log πki

(mki,j∗i
| xt; θki,t) · rki,j∗i

,

where ηt = 1/
√
t (Assumption 4), and the sub-reward is

defined as:

rki,j∗i
= −λC(mki,j∗i

)− 1

N
L(p(xt | v⃗t), yt).

9

Resource-efficient Inference with Foundation Model Programs

Assumptions 2 (expressive policy class) and 3 (sufficient
exploration via Thompson Sampling) ensure that each sub-
policy πki converges to the optimal sub-policy π∗

ki
, where

π∗
ki
(m∗

ki,ji
| xt) ≈ 1 for the optimal backend m∗

ki,ji
in

v⃗∗xt
. Thus, the overall policy πt converges to the optimal

policy π∗, leading to Eπt
[R(v⃗t, xt, yt)]→ R(v⃗∗xt

, xt, yt) as
t→∞.

Define the per-step regret as:

ρt = R(v⃗∗xt
, xt, yt)−R(v⃗t, xt, yt),

with expected value:

E[ρt] = Ext∼D
[
R(v⃗∗xt

, xt, yt)− Ev⃗t∼πt
[R(v⃗t, xt, yt)]

]
.

Since πt → π∗, we have E[ρt] → 0. The total expected
regret is:

E[γT] ≤
T∑

t=1

E[ρt].

Given ηt = 1/
√
t and standard policy gradient convergence

(Assumption 4), we bound:

E[γT] ≤ C
√
T ,

for some constant C based on the reward bounds and policy
parameters (Zinkevich, 2003; Ban et al., 2021). Thus, the
average expected regret satisfies:

E[γT]
T
≤ C√

T
→ 0 as T →∞,

establishing no-regret in expectation.

Now, we extend this to show that the actual regret γT con-
verges similarly with high probability. By Assumption 1,
rewards are bounded, so ρt ∈ [−(Rmax − Rmin), Rmax −
Rmin], and let B = Rmax − Rmin. Since xt are i.i.d. (As-
sumption 5) and v⃗t are sampled independently given xt and
πt, the ρt are independent. Applying Hoeffding’s inequality
to γT =

∑T
t=1 ρt:

P (|γT − E[γT]| ≥ ϵ) ≤ 2 exp

(
− 2ϵ2

TB2

)
.

Set ϵ = δT , so:

P (|γT − E[γT]| ≥ δT) ≤ 2 exp

(
−2δ2T

B2

)
.

This probability approaches 0 exponentially as T → ∞.
Thus, with probability at least 1− 2 exp

(
− 2δ2T

B2

)
, which

approaches 1 as T grows, we have:

γT < E[γT] + δT ≤ C
√
T + δT.

Dividing by T , we find:

γT
T

<
C√
T

+ δ.

For any ϵ > 0, choose δ = ϵ
2 and T >

(
2C
ϵ

)2
, so C√

T
< ϵ

2 ,
yielding:

γT
T

< ϵ,

with probability approaching 1. Hence, γT

T → 0 with high
probability, completing the no-regret proof.

C. Detailed Experimental Setups
All experiments are conducted on a single machine equipped
with 8 NVIDIA A40 GPUs (48GB memory each), running
CUDA 12.4.

The current FM backend is set up with VLLM (Kwon et al.,
2023), Huggingface Hub, MMDetection (Chen et al., 2019),
and AgentLego (AgentLego, 2023). Our framework sup-
ports a flexible backend construction with any open-source
or closed-source API-based models. However, due to the un-
availability of computational costs of closed-source models,
such as GPT and Gemini series models, we do not include
them in our FM backend during experiments.

Detailed package versions are listed in the environment file
available at https://github.com/Flitternie/
FMProgramming/environment.yml. Hyperparame-
ter settings are specified in the experimental configuration
files for binary VQA and open-form VQA.

For open-form VQA experiments, we consistently use the
same system prompt for MLLMs:

System Prompt 1

Keep your answer short. Try to
answer within 3 words. For numerical
answers, use number digits (e.g., 5
instead of five), and returns the
number only. If there are multiple
answers, separate them with a comma
(e.g., cat, dog). If you find the
question unanswerable based on the
image content, output "N/A". For
example, if the image content is
irrelevant to the question, or the
content in the image does not fully
and clearly match all the entities,
humans, attributes, spatial, logical,
and numerical constraints in the
question, output "N/A".

10

https://github.com/Flitternie/FMProgramming/environment.yml
https://github.com/Flitternie/FMProgramming/environment.yml
https://github.com/Flitternie/FMProgramming/config/binary_vqa.yaml
https://github.com/Flitternie/FMProgramming/config/open_form_vqa.yaml

Resource-efficient Inference with Foundation Model Programs

Selected Images with Captions

High Similarity Images Manual
Validation

COCO

Vector
Database …

Lower Similarity Images

Positive
Images

Negative
Images

✅

❌

a man and dog riding
on a black motorcycle.

Images & Captions

A man riding a
motorcycle with a dog.

Modified Query

Figure 3: Benchmark construction pipeline for the Streaming Binary VQA dataset.

Exisiting
Benchmarks

Selected Queries

Image
GenerationHow many states does the

nation whose flag is displayed have?

Answer Generation

United States: 50,
Germany: 16,
Mexico: 32,
Australia: 6,
……

classroom,
town square,
stadium,
government building,
……

Image Scene Generation

mexico flag,
street lamp,
bus stop,
fountain,
……

Object Generation

Question-Answer Pair

MLLM
Verfication

Manual
Verfication

Image Description
Generation

In the town square, a
prominent Mexico flag is
displayed. Surrounding
the flag are unrelated
items such as a street
lamp, a bus stop, and a
fountain, which do not
interfere with the focus
on the flag.

Figure 4: Benchmark construction pipeline for the Streaming Open-form VQA dataset.

D. Detailed Benchmark Construction and
Evaluation

D.1. Streaming Binary VQA

Benchmark Construction. Our dataset is constructed
from COCO (Lin et al., 2014), selecting captions that require
multi-object compositional reasoning with spatial, logical,
or numerical constraints. For each query, we prepare a set
of more than 2,000 images, sampled based on the similarity
of their captions to the query. The system must output a
binary decision (yes/no) for each image indicating whether
it satisfies the compositional query. To enforce structured
reasoning, we leverage an LLM2 to generate FM programs
in a predefined DSL. These programs decompose the query
into discrete reasoning steps, guiding the selection of foun-
dation models for subtask execution. A detailed pipeline for
benchmark construction is illustrated in Figure 3.

Annotation and Verification. Eleven human annota-
tors validate the correctness of the neurosymbolic programs

2We use GPT-4o (Hurst et al., 2024) as the LLM throughout
this section unless otherwise specified.

and the image labels, ensuring that each program aligns
with the intended reasoning process and each image is cor-
rectly labeled against the compositional constraints. The
final dataset consists of 33 queries covering three primary
reasoning types (note that a query may fall into multiple
types):

• Spatial Reasoning (20 queries): These queries require
understanding and interpreting the spatial relationships
between objects or people in an image. They often de-
scribe where things are located relative to each other, e.g.,
“Is there a person riding a bicycle next to a bus on the
street”.

• Logical Reasoning (15 queries): These queries involve
conditions, attributes, or combinations that require de-
ductive thinking. The model needs to process logical
relationships, such as inclusion, exclusion, or conjunc-
tion, e.g., “Are there people riding bikes, scooters, or
motorcycles while holding or using umbrellas?”.

• Numerical Reasoning (9 queries): These queries test the
ability to understand and count quantities or numbers in
a scene. They often specify exact counts or comparisons,

11

Resource-efficient Inference with Foundation Model Programs

VQA v2.0 GQA CLEVR A-OKVQA Streaming VQA
Binary Open-form

Query

Multiple Objects ✗ ✓ ✓ ✓ ✓ ✓
Spatial Reasoning ✓ ✓ ✓ ✓ ✓ ✓
Logical Reasoning ✓ ✓ ✓ ✓ ✓ ✓
Numerical Reasoning ✓ ✓ ✓ ✓ ✓ ✓
Comparative Reasoning ✓ ✓ ✓ ✓ ✗ ✓
External Knowledge ✗ ✗ ✗ ✓ ✗ ✓

Image Source COCO COCO & Flickr Synthetic COCO COCO Generation
Unanswerable Images ✗ ✗ ✗ ✗ ✗ ✓

Scale
Queries 1.1M 22M 999,968 24,903 33 50
Images 200K 113K 100,000 23,692 66,279 25,000
Image(s) per query 2 1 1 1 >2000 500

Table 1: Comparing to the existing VQA benchmarks (Goyal et al., 2017; Hudson & Manning, 2019; Johnson et al., 2017;
Schwenk et al., 2022), Streaming VQA is the first that provides a sequence of images for each query.

e.g., “Are there at least four horses on a beach”.

Evaluation. Since the benchmark is highly imbalanced,
with a positive-to-negative ratio of around 1:100, task per-
formance is measured using accuracy, recall, precision, and
F1-score.

D.2. Streaming Open-form VQA

Benchmark Construction. To enable evaluation on more
complex open-form questions, we construct a dataset com-
prising 50 queries and 25,000 images, spanning five distinct
reasoning categories. To ensure the validity and diversity
of these queries, we randomly sample them from estab-
lished benchmark datasets. Specifically, spatial queries are
drawn from the GQA dataset (Hudson & Manning, 2019),
focusing on queries labeled as relS and categoryRelS.
Logical queries are also sampled from GQA, targeting
the detailed types twoCommon, twoSameMaterialC,
twoDifferentC, and twoDifferent. Numerical
queries are selected from the A-OKVQA dataset (Schwenk
et al., 2022), while comparative and external knowledge
queries are sourced from OKVQAS3 (Jain et al., 2021). To
enhance clarity and naturalness, some of the queries are
manually rewritten.

Each query is associated with 500 generated images. The
image generation pipeline begins with an LLM generating
a set of 10 possible answers for each query, proposing po-
tential scene setups along with 3 additional objects, and
constructing detailed image descriptions. These descrip-
tions are then used to prompt a diffusion model3 for image
generation.

3We use FLUX.1-dev (Black Forest Labs, 2023) as the diffu-
sion model for image generation.

To assess model robustness and reasoning precision, we
incorporate unanswerable images that are visually coherent
but semantically invalid with respect to the query. These
include both unrelated (random) images and images that
are intentionally crafted to closely resemble answerable
cases, making them more difficult to distinguish. This setup
challenges models not only to infer the correct answer when
possible but also to recognize when a question cannot be
answered from the image.

Additionally, for each query, we also synthesize the corre-
sponding FM program in the predefined DSL, providing a
structured decomposition of the reasoning process.

Annotation and Validation. A two-step validation process
is employed. First, a multi-modal LLM, GPT-4o-mini
(OpenAI, 2024), verifies each image by generating an an-
swer and comparing it to the expected answer. Only images
where the MLLM’s response matches the assigned answer
are retained. Then, human evaluators verify a random image
subset, achieving approximately 93% accuracy. The final
benchmark encompasses five reasoning types:

• Spatial Reasoning (13 queries): These questions require
understanding the spatial relationships between objects
within a scene, e.g., “What is in the jar to the left of the
juice?”.

• Logical Reasoning (9 queries): This category involves
applying conditions, rules, or filters to identify specific
objects or answer complex queries, e.g., “What is the
black object on the desk that is not electronic?”, “How
many people are wearing both glasses and a hat?”.

• Numerical Reasoning (11 queries): This category re-
quires counting, comparing numbers, or calculating quan-
tities based on visual information, e.g., “How many extra

12

Resource-efficient Inference with Foundation Model Programs

0.02 0.04 0.06 0.08
Normalized Cost

0.72

0.74

0.76

0.78

O
ve

ra
ll

Re
ca

ll

FM Programs, Highest Cost
FM Programs, Lowest Cost
Pareto Random, FM Programs
Pareto Front, FM Programming

0.02 0.04 0.06 0.08
Normalized Cost

0.60

0.62

0.64

0.66

0.68

O
ve

ra
ll

Pr
ec

is
io

n

FM Programs, Highest Cost
FM Programs, Lowest Cost
Pareto Random, FM Programs
Pareto Front, FM Programming

Figure 5: Pareto front of precision and recall scores on the Streaming Binary VQA benchmark. The policy prioritizes
precision over recall as the cost budget increases.

0.015 0.020 0.025 0.030 0.035 0.040 0.045
Normalized Cost

0.84

0.86

0.88

0.90

0.92

0.94

0.96

O
ve

ra
ll

Ac
cu

ra
cy

0.015 0.020 0.025 0.030 0.035 0.040 0.045
Normalized Cost

0.12

0.14

0.16

0.18

0.20

0.22

O
ve

ra
ll

F1
-S

co
re

FM Programs, Highest Cost
FM Programs, Lowest Cost
Pareto Random, FM Programs
Pareto Front, FM Programming

Figure 6: Additional results on the Streaming Binary VQA benchmark with different FM backends. Costs are normalized
based on the inference costs of Qwen2.5-VL 72B. The backends include GLIP tiny (231M) and base (430M) models (Li
et al., 2022b) for object detection, OFA base (182M) (Wang et al., 2022) and BLIP-2 OPT-2.7B (3.745B) (Li et al., 2023)
for language-vision understanding. FM programming outperforms the baseline with better cost-performance trade-offs,
demonstrating its adaptability across backend setups.

bottles of beer do we need to make it a half dozen?”.

• Comparative Reasoning (11 queries): These questions
involve evaluating two or more objects in terms of their
attributes, such as size, height, quantity, or quality, e.g.,
“Which bottle is taller, the left one or the right one?”.

• External Knowledge Reasoning (6 queries): These
questions rely on information that extends beyond what
is immediately visible in the image, often drawing on
common sense or factual knowledge, e.g., “The fruit in
the picture is a good source of what vitamin?”, “How
many states are there in the country whose flag is being
displayed?”.

Evaluation. Performance for the streaming VQA task
is evaluated using exact match accuracy, measuring the
proportion of questions answered correctly without partial
credit.

13

