
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNCERTAINTY-GUIDED OPTIMIZATION ON
LARGE LANGUAGE MODEL SEARCH TREES

Anonymous authors
Paper under double-blind review

ABSTRACT

Tree search algorithms such as greedy and beam search are the standard when
it comes to finding sequences of maximum likelihood in the decoding processes
of large language models (LLMs). However, they are myopic since they do not
take the complete root-to-leaf path into account. Moreover, they are agnostic to
prior knowledge available about the process: For example, it does not consider that
the objective being maximized is a probability and thereby has specific properties
like being bound in the unit interval. Taking a probabilistic approach, we define
prior beliefs over LLMs’ transition probabilities and obtain posterior beliefs over
the most promising paths in each iteration. These beliefs are useful for defining a
sample-based, non-myopic acquisition function that allows for a more data-efficient
exploration scheme than standard search algorithms on LLMs. Crucially, unlike
expensive simulation-based non-myopic methods like the Monte Carlo tree search,
our method only requires samples from the beliefs. We discuss how to select the
prior and the acquisition function, and demonstrate in experiments with various
LLMs that our method achieves higher efficiency than recent baselines: Our method
achieves the same or a higher likelihood while expanding fewer nodes.

1 INTRODUCTION

The decoding process of an autoregressive large language model (LLM) can be seen as finding
an optimal path in a search tree. The number of such paths is exponential, often exceeding the
computational budget required to examine them all. This inevitably leads to computational uncertainty
(Hennig et al., 2022): an uncertainty that could be fully resolved if enough compute was available
to examine all paths, but in practice is present due to the limited resources. Standard algorithms for
LLM decoding, such as beam search (Koehn et al., 2003), completely ignore this uncertainty.

We posit that quantifying this uncertainty can be beneficial to ensure better explorations on LLMs’
search trees. To this end, we incorporate computational uncertainty into the search process to guide
it in a non-myopic fashion (i.e., accounting for our belief about the values of future nodes) and
importantly, in a more data-efficient manner, akin to Bayesian optimization methods (BO, Garnett,
2023; Kushner, 1964; Močkus, 1975). BO methods are recognized for their data efficiency, not merely
because they quantify uncertainty, but because they exploit the structural characteristics within that
uncertainty. E.g., in continuous optimization problems, prior knowledge, such as the smoothness of a
function, is often available through Gaussian processes (Rasmussen & Williams, 2005) or (Bayesian)
neural networks (Hernández-Lobato et al., 2017; Kristiadi et al., 2023; 2024).

Unlike standard BO, however, LLM decoding is a structured, discrete optimization problem—its
search space is the set of all root-leaf paths in a tree. Moreover, commonly, the values or rewards
associated with each node are probabilities, bounded between 0 and 1. Hence, uncertainty quantifica-
tion here is not as well-studied as in BO. We will, therefore, assume that rewards at a node of the
search tree are components of a discrete distribution. The characteristic property we aim to exploit
is the concentration strength: whether the Categorical distributions are all highly concentrated at a
few realistic options, or if some of them are nearly uniform, making any individual option drastically
less likely to be the optimal one. Intuitively, one would expect this to have a strong influence on
the number of paths that need to be considered. For instance, when the distribution is concentrated,
it is less likely under our belief that other paths will overtake later on and one can be more greedy.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Context x0x0x0: What is ICLR? It

is (c = 0.25)

is

. . .

a (c = 0.3)
cx0→xi = 0.25× 0.3
max cx0→xi→xn =??

conference

EOS
cx0→xn =??

. . .

. . .

. . .

. . .

. . .

the (c = 0.01)

. . .

. . .

. . .

. . .

. . .

EOS

Figure 1: The intuition of our method—faded color represents unexplored subtrees. We sequentially
expand a node of the LLM search tree based on the posterior belief. The latter is obtained by
conditioning the unknown (the optimal total likelihood max cx0→xi→xn

from the root xxx0 to a leaf xn

when continuing down a particular node xi) on the current observations (the total likelihood cxxx0→xi

up until that node). This belief is induced by a simple prior belief on the LLM softmax probabilities
ccc. The samples of the posterior belief are used to decide which child node should be expanded next.

Meanwhile, when the distribution has high entropy, the uncertainty of our belief about “which next
token is best” is higher and thereby requires more exploration and computational budget.

In this work, we propose a probabilistic framework that captures this aspect of the search space,
which can help to decide which paths should be pursued and which can be ignored based on the
posterior belief (Fig. 1). We do so by using a non-myopic acquisition function based on the samples
of such a belief, which can be seen as a generalization of Thompson sampling (Thompson, 1933).
Crucially, these samples are cheap, unlike other sample-based tree-search methods like Monte Carlo
tree search. Moreover, we show that our acquisition function can easily be extended, e.g., to prefer
sequences with higher diversity and less text degeneration (Holtzman et al., 2019).

Experiments on real-world text-generation benchmarks with various LLMs suggest that our method,
called Uncertainty-guided Likelihood-Tree Search (ULTS), finds sentences with higher rewards
than recent baselines with significantly fewer expensive node expansions. Moreover, ULTS only adds
a small runtime overhead relative to the forward passes of the LLM. In summary:

(i) We propose ULTS: a probabilistic decision-making framework on LLM search trees, where a
prior belief is put on LLM softmax outputs. We show how to easily sample from the implied
posterior over optimal values, and how to use these samples to make decisions when searching
the tree.

(ii) We demonstrate the efficiency and extensibility of ULTS in decoding recent LLMs.
(iii) We open-source an implementation compatible with transformers (Wolf et al., 2020)

2 BACKGROUND

2.1 DECODING LARGE LANGUAGE MODELS

Let A = {a1, . . . , ab} be a vocabulary—a set of natural-language tokens. A large language model
(LLM) is a neural network that utilizes the attention mechanism (Vaswani et al., 2017), taking a
context, an ordered sequence of tokens xxx0 = (x01, . . . , x0k)—each component takes values in the set
A—and outputs a distribution over A, i.e. ccc = (c1, . . . , cb) where each ci ≥ 0 and

∑b
i=1ci = 1.

The de facto way of generating a sequence of tokens given a context via an LLM f is by generating
each xi+1 autoregressively given the previous sequence (xxx0, x1, . . . , xi). That is, for each i =
1, . . . , d, we pick an xi+1 ∈ A according to the Categorical distribution ccci(i+1) := f(xxx0, x1, . . . , xi)
over the next token predicted by the LLM f given the input (xxx0, x1, . . . , xi). We call this sequence-
generating process a decoding process.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

LLM decoding can be seen as a tree-search problem (Fig. 1). The context xxx0 is the root of the tree
and at each step i = 1, . . . , d, we are given a choice of b many tokens to pick. This process is done
recursively until termination; either when a specified depth d has been reached or when a special
token like “<EOS>” is selected. This means, the LLM search tree is an exponentially large tree (w.r.t.
the number of tokens b in the vocabulary) with depth d—the number of paths xxx0 → xd from the root
to leaves is bd. Considering the fact that b ranges from around 32k to 256k (Chowdhery et al., 2023;
Radford et al., 2019), generating a sequence of tokens requires search over an intractably large space.

To address this problem, one can use a cheaper but heuristic way to explore this tree. The simplest
way to do so is by sampling a token from the distribution ccc at each level of the tree (Holtzman et al.,
2019). In some domains like machine translation and summarization, however, one often wants
to find the sequence that maximizes the total/joint likelihood 1 cxxx0→xd

:=
∏d

i=1c(i−1)i associated
with each possible sequence (xxx0, x1, . . . , xd) (Wiher et al., 2022). This is an optimization-on-tree
problem—heuristic optimization algorithms like greedy and beam search along with their variants
(Freitag & Al-Onaizan, 2017; Meister et al., 2021; Vijayakumar et al., 2018, etc.) are the standard.

One can also view the decoding process as follows. On each of the tree’s node xi, we can define an
optimal value vxi associated with it: If xd is a leaf node, then vxd

corresponds to the total likelihood
cxxx0→xd

from the root until that leaf node. Meanwhile, for inner nodes xi it is defined recursively
in a bottom-up fashion as the maximum of the children’s optimal values maxxc∈children(xi) vxc .
Intuitiveley, vxi

tells us “what is the total likelihood we would get if we continue descending the tree
through the node xi in an optimal manner”. The optimization-on-tree problem can then be recast as
finding a path xxx0 → xd that corresponds to the optimal value v∗ of the root. While for all xi, the
quantity vxi

cannot be feasibly computed, they are useful for our probabilistic treatment of LLM
decoding in Section 3.

2.2 PROBABILISTIC DECISION-MAKING ON TREES

Decision-making under uncertainty requires a belief about the unknown given the current observation.
This belief is then used to make decision, by computing an acquisition function which scores possible
candidates. The candidate that has the highest acquisition value is then selected and the process is
repeated until termination.

In the context of tree-structured problem, the approach to perform probabilistic decision-making
is to perform probabilistic modeling over the unknown values vxi

’s and use the posterior beliefs
to make decision about which path should be followed next. In (Hennig et al., 2010), this kind of
optimization has been done for game (e.g., Go) trees. They assume that the optimal value vxi

is
decomposed into a latent score for the utility of the node if all remaining steps are taken randomly
and additional increment to quantify how much better this score can get when all remaining steps are
taken optimally instead of randomly. Their work relies on Gaussian process with a the Brownian
motion kernel as their prior belief and has been extendes to more general directed-acyclic graphs in
(Grosse et al., 2021).

3 ULTS: UNCERTAINTY-GUIDED LIKELIHOOD-TREE SEARCH

Here, we discuss Uncertainty-guided Likelihood-Tree Search (ULTS) which places a prior belief
over any pre-trained LLM’s softmax outputs and computes the implied posterior beliefs over the
optimal likelihood values. We introduce and discuss the modeling assumptions in Section 3.1 and
show how to derive approximate beliefs over the optimal values in the search tree in Section 3.2. The
samples of the posterior beliefs are then used to make decisions about which subtree to expand next
and when to stop the search (Section 3.4). Figure 3 gives an overview of our probabilistic model.
Section 3 shows examples for the first two iterations of ULTS, including the observations, posterior
beliefs and the acquisition functions.

1Implementation wise, this is usually done in the logarithmic space.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

x0

x1 x2 x3

First iteration

−4 −2

0

1

p
(l

o
g
v x
i
) Beliefs over optimal values

x1 x2 x3

0.0

0.5

a
0
(x

)

Acquisition function

−4 −2

0

2

p
(l

o
g
v x
i
) Beliefs over optimal values

x1 x2 x3

0.0

0.5

a
0
(x

)

Acquisition function

−4 −3 −2

log vxi

0

1

p
(l

o
g
v x
i
)

x21 x22 x23

x

0.0

0.5

a
2
(x

)

x0

x1 x2 x3

x21 x22 x23

Second iteration

Figure 2: Two Example iterations with ULTS. The upper row show the observed categorical
distirbution (left), the implied posterior over the optimal values in log space (center) and the resulting
acquisition function over the children in the first level of the tree (right). The lower two rows show
the corresponding quantities for the first and second level of the tree after the second iteration.

3.1 PRIOR BELIEFS OVER LLMS SOFTMAX OUTPUTS

For a node xi in an LLM search tree, let ccci = (ci1, ..., cib) be the vector containing the transition
probabilities on the edges between xi and its b children. Note that ccci defines a Categorical/discrete
distribution, and we aim to exploit its structures by defining a prior belief over it.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Prior on LLM’s softmax probs.: ccci ∼ p(ccci)

Prior on remaining total likelihood when
continuing down xixixi: p(∆i)

Prior on max. total likelihood from the root
until the leaf, passing through xixixi:
p(cx0→xi ,∆i)

Posterior over value at xixixi: p(vxi | cx0→xi)

Observed total likelihood at xixixi: cx0→xi

Figure 3: The beliefs we consider.

A straightforward belief one can consider is the
Dirichlet distribution. For tractability, we assume
that the LLM’s softmax probabilities are iid. draws
from a symmetric Dirichlet distribution with parame-
ter α > 0, i.e., p(ccci) = Dir(α). Thus, α controls how
concentrated the sampled probability vectors are. In
the context of LLMs, for small α, the LLM would typ-
ically strongly favor a few tokens, whereas for large
α the discrete distribution would closely resemble a
uniform distribution over the tokens. The symmetry
of the prior implies in our context that we do not have
a preference for particular tokens a priori.

Another belief that we can consider is an empirical
prior over ccci. Let {xxxn}Nn=1 be samples of contexts,
e.g. a subset of the training/validation data. Given an
LLM f , we can then obtain the set {(xxxi, xi1, . . . , xid)} of d-step completions of xxxi’s through the
LLM (e.g. through a greedy decoding). We can then collect samples of the Categorical distributions
from this generation process: C =

∐N
n=1{cccn1, . . . , cccnd}. Then, instead of sampling from Dir(α),

we can sample from p(ccci) = Unif(C). This prior is more flexible than the Dirichlet prior since no
symmetric nor unimodality assumptions are made at the cost of more compute and memory overhead.
Note, however, that all these priors are precomputed and can be reused across subsequent decoding
runs, so they incur a fixed O(1) cost.

3.2 PRIOR BELIEFS OVER OPTIMAL VALUES

Having picked a prior over the LLM’s softmax outputs, we can derive the implied priors over the
optimal values vxi

for each node xi in the tree (Hennig et al., 2010). From the definition of an optimal
value (Section 2), it factorizes as the product cxxx0→xi of the transition probabilities from the root node

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

x0 to xi and a remaining term which we refer to as ∆i, i.e., we have vxi
= cxxx0→xi

·∆i. Intuitively,
the term ∆i, quantifies the likelihood that we get in the remaining steps from xi to a leaf node when
we take all remaining decisions optimally. It can be defined by the following recurrence relation:

∆i =

{
1 if xi is a leaf,

max
xj∈children(xi)

{cij ·∆j} otherwise.

Due to the iid. assumption above (Section 3.1), we have the joint distribution p(cxxx0→xi
,∆i) =

p(cxxx0→xi) p(∆i). Note that all these quantities are not analytically available. Thankfully, sampling
from the posterior belief p(vxi | cxxx0→xi) is easy if we are able to sample from p(∆i) (Section 3.3).

Let us, therefore, derive an approximate sampling scheme for p(∆i) (Alg. 1). It follows Grosse
et al. (2021); Hennig et al. (2010) who used Gaussian priors. We recursively approximate the prior
distribution of the ∆i’s at level l with Beta distributions Bl(∆i). In a bottom-up approach, we generate
samples {maxj cnj | cn ∼ p(ccc)}Nn=1 for a ∆i at level l = d−1. Using these samples, we empirically
fit the parameters of the Beta distribution Bd−1(∆i) via maximum likelihood (AbouRizk et al., 1994).
The distributions of the ∆i are the same for all nodes on the same level due to the iid. assumption,
so this has to be done only once. Note that we need this approximation since the distribution of the
maximum maxj cij has no known analytic solution. We then continue by recursively sampling sets
of the form (one per level) {maxj cnj ·∆j | cn ∼ p(ccc),∆j ∼ Bl+1(∆)}Nn=1 for a ∆i of the level l
and using it to fit the parameters of Bl(∆i). The time complexity is O(d · b ·N) for computing the
approximations, i.e., it is linear in the depth and width of the tree. We emphasize that they can be
pre-computed before the search and reused across different decoding runs. Alg. 1 in Appendix D
contains pseudoscode for this sampling scheme.

3.3 POSTERIOR BELIEFS OVER OPTIMAL VALUES OF FRONTIER NODES

Notice that whenever a new node xi is added to the search tree, the likelihood associated with the
path from the root to that node cxxx0→xi

is fully observed—its distribution is simply a Dirac delta.
This means, the joint distribution becomes p(cxxx0→xi

,∆i) = δ(cxxx0→xi
) p(∆i). Therefore, to sample

vxi
given that we have observed cxxx0→xi

—i.e., sampling from the posterior p(vxi
| cxxx0→xi

)—it is
sufficient to sample from p(∆i) and then simply scale all samples by cxxx0→xi

. During the search,
these samples are backed up the tree and leveraged to make decisions in exploring the tree. Notice
that these samples are cheap to get, unlike empirical samples based on simulations/rollouts.

3.4 DECISION MAKING

At each iteration, we use the posterior samples by following the steps of Monte Carlo tree search, but
without the expensive rollout step. Alg. 2 in Appendix D contains the pseudocode for the decoding
portion of ULTS.

1. Selection Starting from the root node xxx0, we recursively pick a child based on an acquisition
function until an unexpanded node is selected. From a decision-theoretic perspective, this is done by
choosing a utility function that encodes our preferences about the outcome (e.g. high likelihood) and
then integrating out the unknown variables influencing this outcome. Let vi contain the (unknown)
optimal values of the descendants of xi and let u(xc,vi) be a utility function. The idea is to select
the child node xc that maximizes the expected utility:

∫
u(xc,vi) p(vi | cvxxx0→xi

) dvi, (1)

For ULTS, we use an utility function that encodes our preference for finding a descendant with
high optimal value: u(xc,vi) := I[vx̂c

= maxxj∈children(xi) vx̂j
]. Different realizations of x̂c and

x̂j can be used: The most straightforward is to use the children’s optimal values themselves. This
corresponds to simply setting x̂j = xj and x̂c = xc. Another strategy is to use the optimal values of
each child’s best descendant—intuitively, it performs a “lookahead”. In this case, x̂j is defined as
(similarly for x̂c):

x̂j =

xj if xj is a leaf,
argmax

xc∈children(xj)

aj(xc) otherwise. (2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Note that they have the same costs since beliefs over the optimal values for both strategies are readily
available due to the backup step below, i.e., we do not actually perform the recursion (2) in this step.
The acquisition function is then derived as a sample-based approximation to the expectation in Eq. 1:

ai(xc) =
1
N

N∑
n=1

I
[
(vx̂c

)n = max
xj∈children(xi)

(vx̂j
)n
]
. (3)

We can replace the above utility function with any other utility function and then use the posterior
samples to derive the acquisition function (Wilson et al., 2018). For example, we can use a utility
function that encodes our preference of picking sequences with minimal repetition, which is desirable
to avoid text degeneration (Holtzman et al., 2019). Concretely, we can employ a new utility function
that contains a repetition-penalty term:

ũ(xc,vi) = I[(log vx̂c + λ b(x̂c)) = max
xj∈children(xi)

(log vx̂j + λ b(x̂j))], (4)

where b(x̂c) is a log-diversity term (Su et al., 2022).

2. Expansion Given an unexpanded node xi, we query the LLM to obtain the top-k most likely
children and their corresponding likelihoods. These likelihoods are new observations and we combine
them with the prior samples to obtain n posterior samples (vxc

)n of each child xc. This step is the
most expensive part of any tree-search algorithm since querying the LLM is costly. Akin to BO,
ULTS strives to reduce the number of node expansions and thus minimize the number of LLM calls.

3. Backup We recursively propagate the newly obtained posterior samples {(vxc)n}c back up the
tree until the root via the path selected in the previous steps. This is done to update the posterior
samples contained in each node of the path. They will then influence the selection process in the
next iteration, updating the exploration-exploitation tradeoff. Different update strategies can be used
depending on the choice of the acquisition function (3). When posterior samples of the children node
xc are used to compute ai(xc), then we propagate up the posterior samples of the newly expanded
nodes as in when computing the prior by recursively taking their maximum, i.e. the i-th sample for
the optimal value of parent node xp is given by the maximum over the i-th sample of the children’s
optimal values:

(vxp
)i = max

xc∈children(xp)
(vxc

)i. (5)

When the posterior samples of the best descendant of xc are used in ai(xc), we simply propagate
up the posterior samples of the best child among the newly expanded nodes, without taking further
maximums along the path:

(vxp
)i = (vxc∗)i, where x∗

c = argmax
xc∈children(xp)

ap(xc). (6)

Termination criterion Finally, the posterior samples over the optimal values can not only be used
for the selection of new nodes but also to monitor the progress of the optimization. For instance, one
can compute the following empirical probability P̂(c∗ < vxxx0

) = 1
N

∑N
n=1 I [c∗ ≤ (vxxx0

)n], which
corresponds to the probability of the current best likelihood c∗ among all leaves ULTS has visited
so far is lower than the best value vxxx0 at the root, according to our posterior belief. Note that the
computation of such a probability is done as in the acquisition function a(x), i.e., using the posterior
samples of the root node xxx0 or the posterior samples of the best descendant. Then, one can decide to
stop the search once this probability is below some confidence level ε > 0.

3.5 REMARKS

Practical considerations In order to put a tractable upper bound on the runtime of ULTS, we
introduce a hyperparameter kmax on the maximum number of nodes that can be expanded per level,
similar to beam search or top-k sampling. Moreover, we stop the search as soon as a set of kmax

leaves is attained or the termination probability exceeds below 1− ε. We shall see in Section 5 that
even under these further constraints, we still obtain good results while being efficient.

Limitations There are strong reasons to assume that the iid. assumption might not fully hold.
Indeed, our modeling assumptions are chosen with practicality in mind. This is akin to how priors

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

in Bayesian neural networks (Wilson & Izmailov, 2020) are chosen, which are usually simply just
isotropic Gaussians. Even in standard BO, a generic Gaussian-process prior/kernel is often assumed
by default (Balandat et al., 2020). For a further discussion of the prior assumptions, see Appendix A.
Moreover, our work does not take the miscalibration of LLM softmax outputs into account. Indeed,
it has been shown that higher likelihood is not always correlated with human preferences (Eikema
& Aziz, 2020; Holtzman et al., 2019; Stahlberg & Byrne, 2019; Wiher et al., 2022; Zhang et al.,
2020). However, LLM calibration is orthogonal to the focus of the present paper—we leave this
for future work. Recent work from (Yoshida et al., 2023), for example, proposes to use a likelihood
conditioned on certain attributes of the sequence and to which ULTS based decoding would directly
be applicable. Nevertheless, ULTS is extensible: One can construct a different prior or use a different
utility function to address this; see Appendix C.8 for example.

4 RELATED WORK

Commonly employed stochastic decoding strategies are nucleus sampling (Holtzman et al., 2019)
and best-of-k sampling (Stiennon et al., 2020). Their purpose is to make the decoding processes
more robust towards potential degeneration in the likelihood learned by the LLM (also see Section
3.5). I.e, these strategies address uncertainty about the objective function, whereas we focus on
epistemic uncertainty due to limited compute resources. Another decoding method similar to ULTS is
Minimum Bayes Risk (MBR) decoding (Eikema & Aziz, 2021; Kumar & Byrne, 2004). This strategy
also relies on expected maximization of a utility function (typically not one that results in likelihood
maximization, even though possible), but it does not employ a probabilistic model to estimate the
unknown, but rather samples a set of hypothesis sequences from the LLM directly, which is more
expensive. We point out that ULTS can be combined with MBR by using ULTS to generate a set of
hypothesis sequences for MBR.

Probabilistic/Bayesian optimization on trees has been proposed for game trees. Hennig et al. (2010)
developed a roll-out based probabilistic tree search algorithm for game trees, e.g. for playing Tic-
Tac-Toe and Go. Crucially, the structure of the game tree is different than the LLM search tree.
Moreover, they assumed a Gaussian process prior with the Brownian motion kernel in conjunction
with the expectation propagation algorithm (Minka, 2001) to model their beliefs. Grosse et al. (2021)
extended their approach for a more general directed acyclic graph structure. In contrast, we focus on
the tree implied by the sequential generation process in LLMs with a Dirichlet or empirical prior.

Our method can be seen as utilizing a best-first search strategy, of which the A* algorithm (Hart
et al., 1968) is the most famous. Moreover, an A*-like beam search algorithm, under the name of
best-first beam search, has also been proposed for decoding LLMs (Meister et al., 2020). Unlike the
non-probabilistic A∗ and best-first beam search, we approach optimization-on-tree problems via the
lens of decision-making under uncertainty—putting a prior belief about the unknown, updating it
based on the observations, and making decision based on the posterior belief. Furthermore, best-first
beam search (Meister et al., 2020) has different goals to ours: it is designed to output the same set of
leaves (and thus the optimal likelihood value) as the standard beam search. ULTS, meanwhile, focuses
on both performance (i.e., attaining higher likelihood than beam search) and efficiency (reducing the
number of costly LLM forward passes).

Finally, Monte Carlo tree search, which also utilizes samples to make decisions, has also been
proposed for decoding LLMs (DeLorenzo et al., 2024; Feng et al., 2023; Hao et al., 2023; Leblond
et al., 2021; Liu et al., 2023; Zhang et al., 2023; Zhou et al., 2024). Different from our goal, they
focused on incorporating external rewards that are only observable at the leaf nodes. For instance,
Zhang et al. (2023) defined the reward to be the unit-test results for code-generating LLMs. Moreover,
Monte-Carlo tree search does not define a probabilistic model (i.e. a prior and posterior beliefs) over
quantities in the search tree—its decision making is based on the statistics obtained by exploring the
search tree on the fly. In contrast, ULTS does not require costly gathering of those statistics during
the decoding process; instead, it makes decisions based on precomputed samples from its beliefs.

5 EXPERIMENTS

Setup In this section, we evaluate ULTS in both close-ended and open-ended text generation
problems. We set ULTS’ kmax ∈ {2, 3, 4, 5, 10, 20} and set ϵ to a default value of 0.1. The

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

200 400 600

Average expanded nodes ↓

−12

−10

−8

A
vg

.l
og

-l
ik
↑ ULTS-Dirichlet

Beam search
Multinomial BS
Speculative
MBR
Contrastive

200 400 600

Average expanded nodes ↓

0.30

0.32

0.34

B
L

E
U

sc
or

e
↑

Figure 4: Left: Machine translation results with the WMT-19 English-to-German dataset in term of
log-likelihood. Right: The corresponding BLEU scores. For MBR, the average number of expanded
nodes is only an estimate based on the number of generated hypothesis (token sequences) times the
length of the final selected hypotheses.

error bars indicate ±1 standard error of the mean based on all test sentences. We compare ULTS
against beam search (the de-facto decoding method for machine translation), as well as the recent
baselines multinomial beam search (Multinomial BS; Kool et al., 2019), contrastive search (Su
et al., 2022) nucleus sampling (Holtzman et al., 2019), best-of-k sampling (Stiennon et al., 2020),
speculative decoding (Leviathan et al., 2023), and DoLA (Chuang et al., 2024). For beam search,
multinomial beam search, and best-of-k baselines, we evaluate beam sizes and numbers of samples
k ∈ {1, 2, 3, 4, 5, 10, 20}, respectively. We set any other hyperparameters of all baselines as suggested
by the original papers or by Huggingface. We use Huggingface’s implementation of the baselines
and provide our implementation of ULTS in the supplements.

Choice of the prior We sampled a set C of Categorical distributions from the LLM on training
sequences for each of the datasets and both of the LLMs. We used 1000 samples from the training
set for each of the datasets and LLMs we considered. They are used for the empirical prior, as
well as training data for fitting the concentration parameter α of the Dirichlet prior. Figure 8 in
Appendix C.3 shows samples for the maximum of Categorical distributions returned by the LLM,
as well as the distribution of the maximum of the Categorical distribution from a Dirichlet prior
for α = 10−1, 10−4, 5 × 10−6. For the experiments below, we picked a value for α based on the
histograms in Figure 8. For a comparison between different values of the concentration parameter,
please refer to Fig. 9 (Appendix C.3). Note that this way of choosing the hyperparameter α is very
convenient compared to performing costly cross-validation.

5.1 CLOSE-ENDED GENERATION

We compare ULTS with the baselines in a machine translation task with 1000 randomly sampled
sequences from the WMT-19 English to German dataset in Section 5 in terms of likelihood and
BLEU score. For the LLM, we use T5-large (Raffel et al., 2020); for ULTS, we use a Dirichlet prior
with α = 5× 106. Unless specified otherwise, we use the strategy in (2) for the selection and backup
steps. See Appendix C for results with the other strategy and further dataset/setting. All experiments
are done on a single NVIDIA GeForce RTX 2080 Ti and NVIDIA A40 48GB GPUs for GPT-2 and
Llama-2-7b, respectively. We stop the exploration of a path in the tree if the <EOS> token is found
or when the maximum depth of 60 is exceeded. The results are in Figure 3. ULTS is both more
efficient (fewer node expansion) and more performant (higher average log-likelihood) at all values of
k/kmax. For all methods, small to medium beam sizes of k = 3 seem to work best in terms of BLEU
scores—these scores decrease for a larger (maximum) beam with, in contrast to the log-likelihood in
Section 5 . See Appendix C.2, for qualitative examples of the translated sentences.

In addition, we test ULTS for code completion using the LLM CodeLlama-7b-Python-hf (Lu et al.,
2024) and all 164 sequences from the OpenAI HumanEval dataset (Chen et al., 2021). The maximum
tree depth is set to 500 tokens. We use a Dirichlet Prior with α = 5e − 6. In order to allow for a
task-specific qualitative comparison, we evaluated the generated token sequences w.r.t. the Pass@1
metric (i.e. percentage of test cases passed), see Table 1. ULTS achieves similar performance in
terms of Pass@1 while and expanding fewer nodes and being faster in wall-clock time.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method Pass@1 (%) ↑ Log-likelihood ↑ Node expansions ↓ runtime (s) ↓
Greedy 14.02 -28 399.369 13.557± 0.493
Nucleus sampling 14.63 -28.5 377.671 10.568± 0.429
Beamsearch-Mult (k = 2) 27.44 -24.375 496.963 7.235± 0.420

ULTS (kmax = 2) 25.00 -16.625 134.835 4.447± 0.421
ULTS (kmax = 3) 34.76 -15.5 146.866 4.936± 0.454
ULTS (kmax = 4) 32.32 -15.688 161.634 5.180± 0.398
ULTS (kmax = 5) 32.93 -14.938 179.39 5.596± 0.358
ULTS (kmax = 10) 31.71 -12.375 219.994 6.988± 0.464
ULTS (kmax = 20) 23.78 -12.062 180.36 6.041± 0.369

Table 1: Results for the code completion task on the HumanEval dataset.

500 1000

−50

−40

−30

A
vg

.l
og

-l
ik
↑

CNN Daily Mail (Llama-2-7b)

200 400

−15

−10

Wikipedia (Llama-2-7b)

250 500 750

−30

−20

TL;DR (Llama-2-7b)

500 1000

Average expanded nodes ↓

−40

−20

A
vg

.l
og

-l
ik
↑

CNN Daily Mail (GPT-2)

200 400

Average expanded nodes ↓

−25

−20

−15

Wikipedia (GPT-2)

250 500 750

Average expanded nodes ↓

−30

−20

−10

TL;DR (GPT-2)

ULTS-Dirichlet
ULTS-empirical

Beam search
Multinomial BS

Contrastive
DoLa

Speculative
Best-of-k

Figure 5: Decoding experiments with Llama-2-7b and GPT-2 for text generation on CNN Daily Mail
and Wikipedia articles and text summarization for the TL;DR dataset. The methods are evaluated for
different computational budgets, i.e. different values of k and kmax. In our comparison, ULTS lies at
the Pareto frontier of all methods we benchmark.

5.2 OPEN-ENDED GENERATION

We use GPT-2 (Radford et al., 2019) and Llama-2-7b (Touvron et al., 2023) for text generation on
articles from the Wikipedia (See et al., 2017), CNN Daily Mail (Hermann et al., 2015), and Reddit
TL;DR (Völske et al., 2017) datasets. Since many of the text samples in the Wikipedia dataset end
with e.g., references instead of full sentences, we filter for text samples with at least 500 tokens,
resulting in a test set with 332 token sequences (out of a random subset of originally 1000 sequences).
We use 200 tokens as input and predict 20 tokens. We do the same for the CNN Daily Mail dataset,
where we end up with 790 token sequences. We use a context length of 300 and generate 60 tokens.
We also include a summarization task, where the goal is to generate a 40 token long summary of the
input sequence. For this, we use 1000 random samples from the TL;DR dataset with variable-length
contexts. Here, we decode sequences of fixed length instead of stopping at the <EOS> token. We run
ULTS with both the Dirichlet prior with α = 10−4 and the empirical prior.

Figure 5 shows the results. Baselines underperforming in our setting are shown in Figure 12 in the
Appendix. No matter the choice of kmax (and k), ULTS yields sequences with the same or a higher
log-likelihood while expanding fewer nodes. For example in the summarization task with GPT-2,
ULTS with the empirical prior and kmax = 20 achieves an average log-likelihood of −18.31 while
expanding only 137.90 nodes. In contrast, beam search with k = 5 returns sequences of average
log-likelihood −21.33 even though expanding more nodes (196 nodes). This is the case for both

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Wikipedia
(GPT-2)

CNN Daily Mail
(GPT-2)

TL;DR
(GPT-2)

Wikipedia
(Llama-2-7b)

CNN Daily Mail
(Llama-2-7b)

TL;DR
(Llama-2-7b)

0.0

0.1

Ti
m

e
in

s

Forward pass
Sampling & acquistion

Figure 6: Average wall-clock time per iteration.

choices of priors, with the empirical prior encouraging exploration a bit more. The histogram in
Fig. 7 (Appendix C.3) suggests that the distribution maxi cji is bimodal and not fully captured by the
Dirichlet prior. In particular, our choice of Dirichlet prior is slightly too pessimistic. As a result, the
search may stop too early and the available budget may not be fully utilized. However, the budget
that is used, is used efficiently. Our recommendation is thus as follows. When efficiency is the main
goal, a Dirichlet prior with low concentration is preferable—it performs similarly to beam search
with smaller beam widths, while being more efficient. If the search performance is important and an
additional tree exploration can be afforded (still more efficient than beam search), then the empirical
prior is the best choice—it is also hyperparameter-free.

Additional results under the ROUGE metric can be found for the summarization task in Appendix
Section C.9.We also tested ULTS with the utility function ũ with an additional diversity penalty
introduced in Eq. (4). Details and results can be found in Table 4 in Appendix C.8. ULTS can
achieve good perplexity and diversity at the same time, showing the flexibility of our probabilistic
decision-theoretic perspective.

5.3 RUNTIME

We analyze the runtime overhead on top of the LLM’s forward pass due to ULTS. Figure 6 shows the
wall-clock time per iteration, averaged over all sentences and all iterations, broken down into the time
spent on the LLM’s forward pass and the time spent on sampling the optimal values and optimizing
the acquisition function. The error bars indicate the 95%- confidence intervals. Results are shown for
the experiments with kmax = 20 and the Dirichlet prior—the empirical prior performs similarly since
ULTS does not differentiate between them in Alg. 2. We note that the runtime overhead of ULTS
is small compared to the time spent to do an LLM forward pass. However, note that our current
implementation only expands one node of the search tree in each iteration and thereby only evaluate
one token sequence per forward-pass. ULTS can be extended similar like BO can be extended into
batch BO. This is outside of the present work’s scope but is a promising direction for future work.

6 CONCLUSION

We have discussed our method, ULTS, a probabilistic decision-making algorithm for the decoding
process of large-language-model (LLM) search trees. Our method quantifies and leverages com-
putational uncertainty over the maximum value of the optimization process. ULTS exploits the
structure of the optimization problem—in particular, the concentration strength of the LLM softmax
outputs—by putting a prior over the LLM’s softmax outputs and using the implied posterior samples
to guide exploration-exploitation in a non-myopic manner. Our work thus opens up opportunities for
interesting future work in probabilistic inference for LLMs.

Future work One can study the effect of using more sophisticated priors, e.g. where iid. is not
assumed. One can also consider batched acquisition strategies, similar to batch Bayesian optimization
techniques (González et al., 2016; Wu & Frazier, 2016). Moreover, it is also interesting to incorporate
the uncertainty over the LLM’s outputs (e.g. in the context of Bayesian LLMs) in order to account
for possible miscalibration of the likelihood. Another research direction is to extend the approach
to reasoning tasks beyond language tasks, e.g. by including beliefs over external rewards (Zhang
et al., 2023), such as ones coming from an RLHF-trained reward model, in addition to the current
likelihood rewards. Finally, our work in connecting probabilistic inference with LLMs paves the way
to perform probabilistic reasoning with the tree of thoughts framework (Yao et al., 2023).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Simaan M AbouRizk, Daniel W Halpin, and James R Wilson. Fitting Beta distributions based on
sample data. Journal of Construction Engineering and Management, 120(2), 1994.

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wilson,
and Eytan Bakshy. BoTorch: A framework for efficient Monte-Carlo Bayesian optimization. In
NeurIPS, 2020.

Amanda Bertsch, Alex Xie, Graham Neubig, and Matthew R Gormley. It’s mbr all the way
down: Modern generation techniques through the lens of minimum bayes risk. arXiv preprint
arXiv:2310.01387, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaLM:
Scaling language modeling with pathways. JMLR, 24(240), 2023.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. DoLa:
Decoding by contrasting layers improves factuality in large language models. In ICLR, 2024.

Matthew DeLorenzo, Animesh Basak Chowdhury, Vasudev Gohil, Shailja Thakur, Ramesh Karri,
Siddharth Garg, and Jeyavijayan Rajendran. Make every move count: LLM-based high-quality
RTL code generation using MCTS. arXiv preprint arXiv:2402.03289, 2024.

Bryan Eikema and Wilker Aziz. Is map decoding all you need? the inadequacy of the mode in neural
machine translation. arXiv preprint arXiv:2005.10283, 2020.

Bryan Eikema and Wilker Aziz. Sampling-based approximations to minimum bayes risk decoding
for neural machine translation. arXiv preprint arXiv:2108.04718, 2021.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-like tree-
search can guide large language model decoding and training. arXiv preprint arXiv:2309.17179,
2023.

Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation. In
ACL Workshop on Neural Machine Translation, 2017.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

Javier González, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. Batch Bayesian optimization via
local penalization. In AISTATS, 2016.

Julia Grosse, Cheng Zhang, and Philipp Hennig. Probabilistic DAG search. In UAI, 2021.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. In EMNLP, 2023.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2), 1968.

Philipp Hennig, David Stern, and Thore Graepel. Coherent inference on optimal play in game trees.
In AISTATS, 2010.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Philipp Hennig, Michael A Osborne, and Hans P Kersting. Probabilistic Numerics: Computation as
Machine Learning. Cambridge University Press, 2022.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In NIPS, 2015.

José Miguel Hernández-Lobato, James Requeima, Edward O Pyzer-Knapp, and Alán Aspuru-Guzik.
Parallel and distributed Thompson sampling for large-scale accelerated exploration of chemical
space. In ICML, 2017.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In ICLR, 2019.

George Kingsley Zipf. Selected Studies of the Principle of Relative Frequency in Language. Harvard
University Press, 1932.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In HLT-
NAACL, 2003.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The
Gumbel-top-k trick for sampling sequences without replacement. In ICML, 2019.

Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, and Vincent Fortuin. Promises and
pitfalls of the linearized Laplace in Bayesian optimization. In AABI, 2023.

Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alán Aspuru-Guzik, and
Geoff Pleiss. A sober look at LLMs for material discovery: Are they actually good for Bayesian
optimization over molecules? In ICML, 2024.

Shankar Kumar and Bill Byrne. Minimum bayes-risk decoding for statistical machine translation. In
Proceedings of the Human Language Technology Conference of the North American Chapter of
the Association for Computational Linguistics: HLT-NAACL 2004, pp. 169–176, 2004.

Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. J. Basic Eng, 1964.

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre, Miruna Pislar, Jean-Baptiste Lespiau, Ioannis
Antonoglou, Karen Simonyan, and Oriol Vinyals. Machine translation decoding beyond beam
search. arXiv preprint arXiv:2104.05336, 2021.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In ICML, 2023.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Don’t throw away your value model! making PPO even better via value-guided
Monte-Carlo Tree Search decoding. arXiv e-prints, 2023.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent, 2024. URL https://arxiv.org/abs/2408.00203.

Clara Meister, Tim Vieira, and Ryan Cotterell. Best-first beam search. TACL, 8, 2020.

Clara Meister, Martina Forster, and Ryan Cotterell. Determinantal beam search. In ACL-IJCNLP,
2021.

Thomas Peter Minka. A family of algorithms for approximate Bayesian inference. PhD thesis,
Massachusetts Institute of Technology, 2001.

Jonas Močkus. On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP
Technical Conference, 1975.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI Blog, 2019.

12

https://arxiv.org/abs/2408.00203

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 21(140), 2020.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes in Machine Learning.
The MIT Press, 2005.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In ACL, 2017.

Felix Stahlberg and Bill Byrne. On nmt search errors and model errors: Cat got your tongue? arXiv
preprint arXiv:1908.10090, 2019.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. In NeurIPS,
2020.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A contrastive
framework for neural text generation. In NeurIPS, 2022.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 1933.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jannis Vamvas and Rico Sennrich. Linear-time minimum bayes risk decoding with reference
aggregation, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse solutions from neural sequence
models. In AAAI, 2018.

Michael Völske, Martin Potthast, Shahbaz Syed, and Benno Stein. TL;DR: Mining Reddit to learn
automatic summarization. In Workshop on New Frontiers in Summarization, 2017.

Gian Wiher, Clara Meister, and Ryan Cotterell. On decoding strategies for neural text generators.
TACL, 10, 2022.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. In NeurIPS, 2020.

James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition functions for Bayesian
optimization. In NIPS, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In EMNLP, 2020.

Jian Wu and Peter Frazier. The parallel knowledge gradient method for batch Bayesian optimization.
In NIPS, 2016.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In NeurIPS,
2023.

Davis Yoshida, Kartik Goyal, and Kevin Gimpel. Map’s not dead yet: Uncovering true language
model modes by conditioning away degeneracy. arXiv preprint arXiv:2311.08817, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hugh Zhang, Daniel Duckworth, Daphne Ippolito, and Arvind Neelakantan. Trading off diversity
and quality in natural language generation. arXiv preprint arXiv:2004.10450, 2020.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum, and Chuang Gan.
Planning with large language models for code generation. In ICLR, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. In ICML, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX A FURTHER DISCUSSIONS

A.1 PRIOR ASSUMPTIONS

The symmetry assumption for the Dirichlet prior on the LLM’s softmax outputs likely does not
entirely hold—some words occur more often in natural language than others (Kingsley Zipf, 1932).
However, ULTS only requires access to the distribution over the maximum of the unexplored part of
the search space and not over the arg max. The former is not affected by permutations of the entries
in the categorical distributions, which is why we suspect that a symmetric Dirichlet distribution with
sufficiently small concentration parameter is a good proxy. Moreover, the empirical prior can also be
used to address this limitation, without incurring large overhead.

We assume the same prior for all sentences in a dataset. It could be, though, that some input prompts
are easier to complete than others, and the corresponding LLM’s outputs are therefore generally
have less entropy than on other those of other prompts. This could be counteracted by choosing a
personalized hyper-parameter α. This would require deriving the prior for multiple possible values of
α, which scales linearly with the number of possible values for α. However, this can be precomputed
(as in Alg. 1) such that it would not affect the costs during inference.

APPENDIX B ADDITIONAL EXPERIMENTAL DETAILS

URLs to the models and datasets used are provided below:

• Models:
– https://huggingface.co/meta-llama/Llama-2-7b-hf
– https://huggingface.co/openai-community/gpt2
– https://huggingface.co/google-t5/t5-large
– https://huggingface.co/codellama/CodeLlama-7b-Python-hf

• Datasets:
– https://huggingface.co/datasets/wikipedia
– https://huggingface.co/datasets/cnn_dailymail
– https://huggingface.co/datasets/CarperAI/openai_
summarize_tldr

– https://huggingface.co/facebook/wmt19-de-en
– https://huggingface.co/datasets/openai/openai_humaneval

B.1 HYPERPARAMETERS

For beam search, multinomial beam search there are no hyperparameters beyond the beam
size k. Speculative Search uses greedy search with n-gram based assisted decoding with
prompt_lookup_num_tokens = 10. Best-of-k Sampling, we use top-p=0.95. For Nucleus Sampling,
we use a temperature parameter of 0.2 and top-p=0.95. For contrastive search, we use penalty param-
eter α = 0.6 and top-k=50. For DoLA, we set the number of DoLA layers to "high". We use version
4.38.2. of the transformers package. For MBR decoding, we use the implementation available
at https://github.com/ZurichNLP/mbr (Bertsch et al., 2023; Vamvas & Sennrich, 2024)
with the default utility "fastChrF", temperature parameter 0.5 and number of sampled hypothesis is
{1, 2, 3, 4, 5, 10, 20}.

APPENDIX C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ON-MODEL EXPERIMENTS

We compare ULTS to beam search on artificially generated search problems from Dirichlet priors.
The trees have branching factor b = 8 and depth d = 5. Since these trees are so small we optimized

15

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/openai-community/gpt2
https://huggingface.co/google-t5/t5-large
https://huggingface.co/codellama/CodeLlama-7b-Python-hf
https://huggingface.co/datasets/wikipedia
https://huggingface.co/datasets/cnn_dailymail
https://huggingface.co/datasets/CarperAI/openai_summarize_tldr
https://huggingface.co/datasets/CarperAI/openai_summarize_tldr
https://huggingface.co/facebook/wmt19-de-en
https://huggingface.co/datasets/openai/openai_humaneval

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

the acquisition function in eq. (3) over the the full boundary, i.e. non-recursively. The transition
probabilities at each node are sampled from a Dirichlet prior with fixed α ∈ {0.1, 0.2, 0.5, 0.8}.
The comparison is on-model, i.e., ULTS is run with the ground truth parameter of α. We repeat
the experiment with different values for the confidence parameter ε of ULTS from {0.05, 0.1, 0.3}.
Since the toy problems are so small, the exploration of too many nodes is not an issue and we use
kmax = ∞. Beam search is run with beam sizes ranging from 1 to 7. The results in Fig. 7 show that
ULTS dominates across the entire range of hyper-parameters. This suggests that knowledge about
concentration strength helps reduce the number of search steps.

0 5 10 15 20 25 30

average number of explored nodes

0.185

0.190

0.195

0.200

0.205

A
vg

.l
ik

el
ih

oo
d
↑

α = 0.1

0 5 10 15 20 25 30

average number of explored nodes

0.070

0.075

0.080

α = 0.2

0 5 10 15 20 25 30

Average number of explored nodes ↓

0.016

0.018

A
vg

.l
ik

el
ih

oo
d
↑

α = 0.5

0 5 10 15 20 25 30

Average number of explored nodes ↓

0.007

0.008

0.009

A
ve

ra
ge

ac
cu

ra
cy

α = 0.8

ground truth
beam search
ULTS

Figure 7: Comparison on trees, where the transition probabilities are sampled from a Dirichlet prior
for different values of the concentration parameter.

C.2 MACHINE TRANSLATION

We show some example sequences found with ULTS and beam search. For these examples, we
picked sentences where ULTS achieves better BLEU scores. Other examples have mainly the same
outputs as beam search while ULTS is more efficient.

Example 1

input prompt: It is annoying when geographical maps are not up-to-date.
ground truth: Es nervt, wenn Landkarten nicht aktuell sind.

ULTS translation: Es ist ärgerlich, wenn geographische Karten nicht aktuell sind.
ULTS BLEU/log-likelihood: 0.189/-3.914

Beam search translation: Es ist ärgerlich, wenn die geographischen Karten nicht auf dem
neuesten Stand sind.
Beam search BLEU/log-likelihood: 0.0/-4.230

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Example 2

input prompt: The historical maps of the digital BayernAtlas, an offering from the State
Government’s Geoportal Bayern, are anything but up-to-date – and yet it is precisely for this
reason that they are so informative.
ground truth: Die historischen Landkarten des digitalen Bayern-Atlases, ein Angebot des
Geoportals Bayern der Staatsregierung, sind alles andere als aktuell - doch gerade deshalb
sehr aufschlussreich.

ULTS translation: Die historischen Karten des digitalen BayernAtlas, ein Angebot des
Landesgeoportals Bayern, sind alles andere als aktuell – und gerade deshalb so informativ.
ULTS BLEU/log-likelihood: 0.292/-9.247

Beam search translation: Die historischen Karten des digitalen BayernAtlas, ein Angebot
des Landesgeoportals Bayern, sind alles andere als aktuell – und gerade deshalb sind sie so
informativ.
Beam search BLEU/log-likelihood: 0.272/-9.59

Example 3

input prompt: Even if the French troops finally retreated with the Treaty of Lunéville from
9th February 1801: it was the current neighbours who had the idea to create a comprehensive
map of Bavaria.
ground truth: Auch wenn die französischen Truppen mit dem Frieden von Lunéville vom
9. Februar 1801 schließlich abzogen: Es waren die heutigen Nachbarn, die die Idee einer
flächendeckenden Bayern-Karte kreierten.

ULTS translation: Auch wenn sich die französischen Truppen mit dem Vertrag von Lunéville
vom 9. Februar 1801 schließlich zurückzogen: Es waren die heutigen Nachbarn, die die Idee
hatten, eine umfassende Karte von Bayern zu erstellen.
ULTS BLEU/log-likelihood: 0.458/-13.111

Beam search translation: Auch wenn sich die französischen Truppen schließlich mit dem
Vertrag von Lunéville vom 9. Februar 1801 zurückzogen: Es waren die heutigen Nachbarn,
die die Idee hatten, eine umfassende Karte von Bayern zu erstellen.
Beam search BLEU/log-likelihood: 0.400/-12.754

C.3 DIFFERENT CHOICE OF HYPERPARAMETER α FOR THE DIRICHLET PRIOR

For the Dirichlet prior, indeed α has a meaningful impact on the performance of ULTS: It can be seen
as a hyperparameter that trades exploitation for exploitation (smaller value means more exploration).

−5 0

log maxi cji

0

2

4

6
Wikipedia (GPT-2)

−5 0

log maxi cji

0

2

4

6
CNN Daily Mail (GPT-2)

−5 0

log maxi cji

0

2

4

6
TL;DR (GPT-2)

−5 0

log maxi cji

0

2

4

6
TL;DR (Llama-2-7b)

LLM samples
α = 0.0001

α = 0.1

α = 0.000005

Figure 8: Distribution of the maximum of categorical distributions sampled from an LLM, as well as
from Dirichlet priors with different concentration parameters.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

250 500 750

Average expanded nodes ↓

−35

−30

−25

−20

−15

A
vg

.l
og

-l
ik
↑

TL;DR (GPT-2)

ULTS-Dirichlet (0.0001)
ULTS-empirical
ULTS-Dirichlet (5e-6)
Beam search

Figure 9: Comparison of two different values α = 0.0001 and α = 5e − 6 of the Dirichlet prior
concentration parameter in ULTS

So, the choice of α should be based on how much budget one has since more exploration means more
node expansions. Figure 9 shows a comparison of two different values α = 0.0001 and α = 5e− 6.

C.4 NUMBER OF SAMPLES IN ULTS

N Avg. log-lik node expansions Time in s

1 -9.454 86.64 3.488± 0.187
10 -9.066 90.75 3.631± 0.208
100 -9.097 92.28 3.690± 0.211
1000 -9.074 92.41 3.718± 0.213

Table 2: Results for different choice of number of samples N .

Table 2 shows results for an abla-
tion for hyperparameter N on 100
sentences from the machine transla-
tion task with maximum beam size
kmax = 4. Only for N = 1 the
performance is slightly worse, in-
dicating that a small number like
N = 10 might already be sufficient.

C.5 ADDITIONAL RUNTIME RESULTS
Method k or kmax Time in s

Beam search 5 2.158± 0.029
ULTS Dirichlet 3 4.622± 0.114
ULTS Dirichlet 5 5.177± 0.164

Table 3: Total runtime for decoding one of the
TL;DR input prompts with Llama-2-7b.

In Table 3 we show runtime results for beam
search with beam size k = 5 and ULTS with
maximal beam size kmax = 3 and kmax = 5.
Despite expanding fewer nodes than beam
search, ULTS is currently slower in settings
where different nodes expansion in beam search
can be batched. However, note that batching is
not always possible, e.g. in memory-constrained settings (the memory resources depend on the
model size, sequence length, as well as batch size).

As a reference regarding the computation of the prior: Building the Dirichlet Prior for a tree of depth
250 an branching size 32256 with 1000 samples on a desktop machine (MacBook M1) with CPU
only takes 10:50 min (2.6 secs per level of the tree).

C.6 ALTERNATIVE ACQUISITION FUNCTION

As discussed in Section 3.4, different selection (and hence backup) strategies can be utilized. Recall
that all of our results so far are obtained using the “posterior descendant” strategy defined in (2).
Here, we show the corresponding results where the other strategy (“posterior”) is used instead.

First, Fig. 10 shows results under the same setting as in the main text, but both ULTS-Dirichlet and
ULTS-Emp use the “posterior” strategy instead. We noticed that this strategy also performs well—it
is more efficient than beam search. Moreover, it also achieves better or similar likelihood than beam
search in Llama-2-7b.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

500 1000

−50

−40

−30
A

vg
.l

og
-l

ik
↑

CNN Daily Mail (Llama-2-7b)

ULTS-Dirichlet
ULTS-empirical
beam search

100 200 300

−16

−14

−12

Wikipedia (Llama-2-7b)

250 500 750

−35

−30

−25

−20

TL;DR (Llama-2-7b)

500 1000

Average expanded nodes ↓

−50

−40

−30

A
vg

.l
og

-l
ik
↑

CNN Daily Mail (GPT-2)

100 200 300

Average expanded nodes ↓

−25

−20

Wikipedia (GPT-2)

250 500 750

Average expanded nodes ↓

−30

−20

TL;DR (GPT-2)

Figure 10: Decoding experiments with Llama-2-7b and GPT-2 with the “posterior” strategy.

200 400

−35

−30

−25

A
vg

.l
og

-l
ik
↑

CNN Daily Mail (Llama-2-7b)

post.
post. desc.

50 100

−12

−11

−10

Wikipedia (Llama-2-7b)

50 100 150 200

−22.5

−20.0

−17.5

TL;DR (Llama-2-7b)

100 200 300

Average expanded nodes ↓

−45

−40

−35

−30

A
vg

.l
og

-l
ik
↑

CNN Daily Mail (GPT-2)

50 100 150

Average expanded nodes ↓

−22

−20

−18

Wikipedia (GPT-2)

50 75 100 125

Average expanded nodes ↓

−25

−20

TL;DR (GPT-2)

Figure 11: “Posterior” vs. “posterior descendant” acquisition function.

We further compare the “posterior” strategy compared to the “posterior descendant” strategy in
Fig. 11. We notice that the “posterior” strategy tends to underexplore compared to the “posterior
descendant” strategy. Hence, we use and recommend the “posterior descendant” strategy by default.

C.7 FULL RESULTS FOR DECODING EXPERIMENTS WITH LLAMA-2-7B AND GPT-2

Figure 12 shows the full results from the decoding experiments with LLama-2-7b and GPT-2 from
section 5 in the main text.

C.8 DETAILS FOR EXPERIMENT WITH REPETITION PENALTY

In this task, we complete 100 sentences from the Wikipedia dataset with GPT-2. We predict 100
tokens. We define the diversity term b(x) of a node x based on the proportion of duplicated n-grams
in the token sequence (a1, ..., ai) corresponding to the node. For a token sequence (a1, ..., ai), let

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

500 1000

−60

−40
A

vg
.l

og
-l

ik
↑

CNN Daily Mail (Llama-2-7b)

200 400

−15

−10

Wikipedia (Llama-2-7b)

250 500 750

−30

−20

TL;DR (Llama-2-7b)

500 1000

Average expanded nodes ↓

−200

−100

A
vg

.l
og

-l
ik
↑

CNN Daily Mail (GPT-2)

200 400

Average expanded nodes ↓

−60

−40

−20

Wikipedia (GPT-2)

250 500 750

Average expanded nodes ↓

−100

−50

TL;DR (GPT-2)

ULTS-Dirichlet
ULTS-empirical
Beam search

multinomial
contrastive

dola
speculative

MBR
Best-of-k

Figure 12: Full results for decoding experiments with LLama-2-7b and GPT-2

Method Perplexity ↓ Diversity ↑
Beam search 1.16±0.01 0.33±0.01
Nucleus sampling 3.69±0.07 0.82±0.01
Contrastive search 1.27±0.01 0.4±0.01
ULTS 1.16±0.01 0.33±0.01
ULTS with λ = 0.2 1.3±0.01 0.55±0.01
ULTS with λ = 0.4 1.45±0.01 0.74±0.01
ULTS with λ = 0.6 1.5±0.01 0.79±0.01
ULTS with λ = 0.8 1.53±0.01 0.82±0.01
ULTS with λ = 1.0 1.55±0.01 0.83±0.01

Table 4: Effects of a penalty term in ULTS’ acquisition function.

rep-n((a1, ..., ai)) =
(
1− |unique n-grams((a1,...,ai))|

|total n-grams((a1,...,ai))|
)
. Following Su et al. (2022), we measure diversity

by taking repetitions at different n-gram levels into account:

diversity((a1, ..., ai)) =
4∏

n=2

(1− rep-n((a1, ..., ai))).

Since we ULTS optimizes the total likelihood of a sequence and not the average likelihood
of a sequence, we additionally scale the term with the tree depth, leading to b(x) = d ·
log diversity((a1, ..., ai)) in log-space. For ULTS we use a Dirichlet prior with concentration param-
eter α = 5× 10−6, ϵ = 0.1, kmax = 5. and penalty parameter λ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. The
parameters for contrastive search are top-k = 5 and penalty parameter α = 0.6. For beam search,
we use k = 5. The main paper reports results for ULTS with λ = 0.0, i.w. without penalty, and
λ = 0.2. The full results are given in Table 3. One can see that with increasing penalty the diversity
of the decoded sequences increases, i.e. extending the acquisition function with a repetition term is
effective.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

250 500 750

0.26

0.27

0.28
R

O
U

G
E

sc
or

e
↑

Llama-2-7b / ROUGE 1

250 500 750

0.08

0.09

0.10

Llama-2-7b / ROUGE 2

250 500 750

0.200

0.205

0.210

0.215

0.220

Llama-2-7b / ROUGE L

250 500 750

Average expanded nodes ↓

0.14

0.16

0.18

0.20

R
O

U
G

E
sc

or
e
↑

GPT-2 / ROUGE 1

250 500 750

Average expanded nodes ↓

0.02

0.03

0.04

0.05

GPT-2 / ROUGE 2

250 500 750

Average expanded nodes ↓

0.10

0.12

0.14

GPT-2 / ROUGE L

ULTS-Dirichlet α =5e-05
ULTS-Empirical

beam search
multinomial

DoLA
speculative

MBR
contrastive

Figure 13: ROUGE scores for the summarization task.

200 400 600

Average expanded nodes ↓

−0.60

−0.55

−0.50

−0.45

−0.40

B
L

E
U

R
T

sc
or

e
↑

ULTS-Dirichlet α =5e-05
beam search
multinomial
speculative
MBR
contrastive

Figure 14: BLEURT scores for the machine translation task.

C.9 ADDITIONAL METRICS

Figure 13 shows an evaluation in terms of ROUGE metrics for the summarization task on the TL;DR
dataset described in Section 5. ROUGE 1 quantifies the overlap of unigrams between the produced
sentence and ground truth reference, ROUGE 2 refers to bigrams, and ROUGE L refers to the
longest commen subsequence. Though there is no perfect correlation between the ROUGE metric
and the log-likelihood, ULTS still tends to achieve a good trade-off between performance and node
expansions overall. Figure 14 and 15 show additional results in terms of the BLEURT and COMET
metrics. Here, ULTS performs well for small kmax but shows a decrease in performance for larger
kmax.

C.10 ULTS WITH LARGER BUDGET

Fig. 17 shows additional results for ULTS with the empirical prior and GPT-2 on the Wikipedia
dataset, as well as ULTS with the Dirichlet prior and t5 on the machine translation task.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

200 400 600

Average expanded nodes ↓

0.65

0.70

0.75

C
O

M
E

T
sc

or
e
↑

ULTS-Dirichlet α =5e-05
beam search
multinomial
speculative
MBR
contrastive

Figure 15: COMET scores for the machine translation task.

APPENDIX D PSEUDOCODE

Algorithm 1: Prior belief over ∆.
Input: Depth of the tree d, branching size of tree b, prior p(ccc) over LLM softmax outputs,

number of samples used for the approximation N
Output: Table of parameters paramsl for Beta distributions Bl for each level l of the tree
for l← d− 1 to 1 do

for n← 1 to N do
cn ∼ p(ccc)
for j ← 1 to b do

if l = d− 1 then
∆nj ← 1

else
∆nj ∼ Bl+1(∆ | paramsl+1)

end
end
∆n ← maxj=1,...,b(cnj ·∆nj)

end
paramsl ← beta-MLE({∆n}Nn=1)

end

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500 600

Average expanded nodes ↓

−26

−24

−22

−20

−18

−16

−14
A

vg
.l

og
-l

ik
↑

Wikipedia (GPT-2)

ULTS-Dirichlet
ULTS-empirical
Beam search

multinomial
contrastive

dola
speculative

MBR
Best-of-k

Figure 16: Comparison of ULTS with the baselines on the Wikipedia dataset as described in Section
5 with additional data points for kmax ∈ {50, 100, 200}.

100 200 300 400 500 600

Average expanded nodes ↓

−12

−11

−10

−9

−8

−7

−6

A
vg

.l
og

-l
ik
↑

ULTS-Dirichlet
Beam search

Multinomial BS
Speculative

MBR Contrastive

Figure 17: Comparison of ULTS in the machine translation task as described in Section 5 with
additional data points for kmax ∈ {50, 100}.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 2: ULTS.
Input: Num. of tokens to generate d, number of samples N , approximate priors {Bl}dl=1,

confidence parameter ε, maximum number of expandable nodes per level kmax

Output: A leaf x∗ and its likelihood c∗

// Initialization
L ← {xxx0}
for n ∈ 1, ..., N do

(vxxx0)n ∼ B1(∆)
end
c∗, x∗ ← −∞,None

while P̂(c∗ < vxxx0) > ε do
// Selection always starts from root
xi ← select(xxx0, kmax)
// Expand
L ← (L \ {xi}) ∪ children(xi)
for xc ∈ children(xi) do

// Generate posterior samples
for n ∈ 1, ..., N do

(∆xc)n ∼ Blevel(xc)(∆)
(vxc)n ← cxxx0→xc · (∆xc)n

end
// Update best complete path so far
if level(xc) = d and cxxx0→xc > c∗ then

c∗ ← cxxx0→xc ; x∗ ← xc

end
end
backup({(vxc)n}c,xxx0 → xc)
// termination probability
P̂(c∗ < vxxx0)← 1

N

∑N
n=1 I [c

∗ ≤ (vxxx0)n]

end

24

	Introduction
	Background
	Decoding large language models
	Probabilistic decision-making on trees

	ULTS: Uncertainty-guided Likelihood-Tree Search
	Prior beliefs over LLMs softmax outputs
	Prior beliefs over optimal values
	Posterior beliefs over optimal values of frontier nodes
	Decision making
	Remarks

	Related Work
	Experiments
	Close-ended generation
	Open-ended generation
	Runtime

	Conclusion
	Further Discussions
	Prior assumptions

	Additional Experimental Details
	hyperparameters

	Additional Experimental Results
	On-model experiments
	Machine translation
	Different choice of hyperparameter for the Dirichlet prior
	Number of samples in ULTS
	Additional runtime results
	Alternative acquisition function
	Full results for decoding experiments with LLama-2-7b and GPT-2
	Details for experiment with repetition penalty
	Additional metrics
	ULTS with larger budget

	Pseudocode

