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Abstract

This paper introduces Guided Positive Sampling Self-Supervised Learning (GPS-SSL), a
method aimed at incorporating prior knowledge into Self-Supervised Learning (SSL) pos-
itive sample selection. Unlike current SSL methods relying solely on Data-Augmentations
(DA) to generate positive samples, GPS-SSL creates a metric space aligning distances with
semantic relationships and enabling informed positive sample selection through nearest
neighbor sampling. A direct byproduct of GPS-SSL –and its core motivation– is the reduced
importance of devising optimal DA recipes to learn performant representations. Since the
proposed method solely alters the positive pair sampling, it can be coupled off-the-shelf
with many SSL methods. Evaluation against baseline SSL methods on diverse datasets
demonstrates the effectiveness of GPS-SSL, especially in scenarios with minimal DA; thus
offering potential for further research on advancing SSL beyond careful DA design.

1 Introduction

Self-supervised learning (SSL) has recently shown to be one of the most effective learning paradigms across
many data domains (Radford et al., 2021; Girdhar et al., 2023; Assran et al., 2023; Chen et al., 2020; Grill
et al., 2020; Bardes et al., 2021; Balestriero et al., 2023). SSL belongs to the broad category of annotation-
free representation learning approaches, which have enabled machine learning models to use abundant and
easy-to-collect unlabeled data, facilitating the training of ever-growing deep neural network architectures.

Despite the SSL promise, current approaches require handcrafted a priori knowledge to learn useful repre-
sentations. This a priori knowledge is often injected through the positive sample – i.e., semantically related
samples – generation strategies employed by SSL methods (Chen et al., 2020). In fact, SSL representations
are learned so that such positive samples get as similar as possible in embedding space, all while preventing a
collapse of the representation to simply predicting a constant for all inputs. The different strategies to achieve
that goal lead to different flavors of SSL methods (Chen et al., 2020; Grill et al., 2020; Bardes et al., 2021;
Zbontar et al., 2021; Chen & He, 2021). In computer vision, positive sample generation mostly involves sam-
pling an image from the dataset, and applying multiple handcrafted and heavily tuned data augmentations
(DAs) to it, such as rotations and random crops, which preserve the main content of the image.

The impact of designing DAs which are effective for the dataset at hand is enormous –as measured by
its effect on performance (Garrido et al., 2023; Dangovski et al., 2021; Xiao et al., 2020; Tamkin et al.,
2020; Kirichenko et al., 2023)–, to the point of producing a near random representation, in the worst case
scenario (Balestriero et al., 2023). As such, tremendous time and resources have been devoted to designing
optimal DA recipes, most notably for ubiquitous datasets such as ImageNet (Deng et al., 2009). From a
practitioner’s standpoint, positive sample generation could thus be considered solved if one were to deploy
SSL methods only on such popular datasets. Unfortunately – and as we will thoroughly demonstrate
throughout this paper –, common DA recipes used in those settings fail to transfer to other datasets. We
hypothesize that as the dataset domains get semantically further from ImageNet, on which the current set of
optimal DAs are designed, the effectiveness of DAs reduces. For example, since ImageNet consists of object-
centric natural images focusing on ∼ 1000 different object categories, we observe and report a reduction of
performance on datasets consisting of more specialized images, such as hotel room images (Stylianou et al.,
2019; Kamath et al., 2021), images of different types of airplanes (Maji et al., 2013), or medical images (Yang
et al., 2023). Since searching for the optimal DAs is computationally intense (Tamkin et al., 2020), there
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remains an important bottleneck when it comes to deploying SSL to new or under-studied domains. This
becomes particularly noticeable when applying SSL methods on data gathered for real-world applications.

In this paper, we introduce a strategy to obtain positive samples, which generalizes the well established
NNCLR SSL method (Dwibedi et al., 2021). While NNCLR proposes to obtain positive samples by
leveraging known DAs and nearest neighbors in the embedding space of the network being trained, we
propose to perform nearest neighbour search in the embedding space of a pre-defined mapping of each
image to its possible positive samples. The mapping may generated by a clone of the network being trained
– therefore recovering NNCLR – but perhaps most interestingly may also be generated by any available
pre-trained network or be hand-crafted. This flexibility allows to (i) enable simple injection of prior
knowledge into positive sampling –without relying on tuning the DA– and most importantly (ii) makes the
underlying SSL method much more robust to under-tuned DAs parameters. By construction, the proposed
method – coined GPS-SSL for Guided Positive Sampling Self-Supervised Learning–, can be coupled
off-the-shelf with any SSL method used to learn representations, e.g., BarlowTwins (Zbontar et al., 2021),
SimCLR (Chen et al., 2020), BYOL (Grill et al., 2020), and VICReg (Bardes et al., 2021). We validate
the proposed GPS-SSL approach on a benchmark suite of under-studied datasets, namely FGVCAircraft,
PathMNIST, TissueMNIST, and show remarkable improvements over baseline SSL methods. We further
evaluate our model on a real-world dataset, Revised-Hotel-ID (R-HID) (Feizi et al., 2022) and show clear
improvements of our method compared the baseline SSL methods. Finally, we validate the approach on
commonly used image datasets, i.e., Cifar10 and TinyImageNet, with known effective DAs recipes, and
show that GPS remains competitive. Through comprehensive ablations, we show that GPS-SSL takes a
step towards shifting the focus of designing well-crafted DAs to having a better prior knowledge embedding
space in which choosing the nearest neighbour becomes an attractive positive sampling strategy.

The contributions of this paper can be summarized as:
• We propose a positive sampling strategy, GPS-SSL, that enables SSL models to use prior knowledge

about the target-dataset to help with the learning process and reduce the reliance on carefully
hand-crafted data augmentation recipes. The prior knowledge is a mapping between images and a
few of their closest nearest neighbors that could be computed with a pre-trained network or even
be hand-crafted.

• We evaluate GPS-SSL by coupling it with different SSL methods on a benchmark suite of understud-
ied datasets. We show that GPS-augmented approaches significantly outperform the baseline meth-
ods when using minimal augmentations, highlighting the potential of GPS to learn representations
from under-studied or real-world data. Moreover, when compared to SSL baselines leveraging strong
augmentations or on well-studied datasets, the GPS-augmented approaches remain competitive.

• We further evaluate our model on datasets with under-studied applications of hotel retrieval which
is of great importance to fight human trafficking. Similar to benchmark datasets, we see on this
less studied dataset that GPS-SSL outperforms the baseline SSL methods by a significant margin.

We provide the code for GPS-SSL to reproduce our results on the (anonymized) GitHub: https:
//anonymous.4open.science/r/gps-ssl-1E68, for the research community.

2 Related Work

Self Supervised Learning (SSL) is a particular form of unsupervised learning methods in which a given Deep
Neural Network (DNN) learns meaningful representations of their inputs without labels.

The variants of SSL are numerous. At the broader scale, SSL defines a pretext task on the input data and train
themselves by solving the defined task. In SSL for computer vision, the pretext tasks generally involve creat-
ing different views of images and encoding both so that their embeddings are close to each other. However,
that criteria alone would not be sufficient to learning meaningful representations as a degenerate solution is
for the DNN to simply collapse all samples to a single embedding vector. As such, one needs to introduce an
“anti-collapse” term. Different types of solutions have been proposed for this issue, splitting SSL methods into
multiple groups, three of which are: 1) Contrastive(Chen et al., 2020; Dwibedi et al., 2021; Kalantidis et al.,
2020): this group of SSL methods prevent collapsing by considering all other images in a mini-batch as nega-
tive samples for the positive image pair and generally use the InfoNCE (Oord et al., 2018) loss function to push
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Figure 1: Our strategy, GPS-SSL, for positive sampling based on prior knowledge DA-based methods.

the negative embeddings away from the positive embeddings. 2) Distillation(Grill et al., 2020; He et al., 2020;
Chen & He, 2021): these methods often have an asymmetric pair of encoders, one for each positive view, where
one encoder (teacher) is the exponential moving average of the other encoder (student) and the loss only back-
propagates through the student encoder. In general, this group prevents collapsing by creating asymmetry in
the encoders and defines the pre-text task that the student encoder must predict the teach encoder’s output
embedding. 3) Feature Decorrelation(Bardes et al., 2021; Zbontar et al., 2021): These methods focus on the
statistics of the embedding features generated by the encoders and defines a loss function to encourage the
embeddings to have certain statistical features. By doing so, they explicitly force the generated embeddings
not to collapse. For example, Bardes et al. (2021) encourages the features in the embeddings to have high
variance, while being invariant to the augmentations and also having a low covariance among different fea-
tures in the embeddings. Besides these groups, there are multiple other techniques for preventing collapsing,
such as clustering methods (Caron et al., 2020; Xie et al., 2016), gradient analysis methods (Tao et al., 2022).

Although the techniques used for preventing collapse may differ among these groups of methods, they
generally require the data augmentations to be chosen and tuned carefully in order to achieve high predictive
performance (Chen et al., 2020). Although choosing the optimal data augmentations and hyper-parameters
may be considered a solved problem for popular datasets such as Cifar10 (Krizhevsky et al., 2009) or
ImageNet (Deng et al., 2009), the SSL dependency on DA remains their main limitation to be applied
to large real-world datasets that are not akin natural images. Due to the importance of DA upon the
DNN’s representation quality, a few studies have attempted mitigation strategies. For example, Cabannes
et al. (2023b) ties the impact of DA with the implicit prior of the DNN’s architecture, suggesting that
informed architecture may reduce the need for well designed DA although no practical answer was provided.
Cabannes et al. (2023a) proposed to remove the need for DA at the cost of requiring an oracle to sample
the positive samples from the original training set. Although not practical, this study brings a path to
train SSL without DA. Also Van Gansbeke et al. (2020) proposes a two-stage learning process where first a
clustering method with a pretext task is applied to the dataset and soft labels are acquired for performing an
unsupervised learning on top of it. Additionally, a key limitation with DA lies in the need to be implemented
and fast to produce. In fact, the strong DA strategies required by SSL are one of the main computational
time bottleneck of current training pipelines (Bordes et al., 2023). Lastly, the over-reliance on DA may have
serious fairness implications since, albeit in a supervised setting, DA was shown to impact the DNN’s learned
representation in favor of specific classes in the dataset (Balestriero et al., 2022; Kirichenko et al., 2023).

All in all, SSL would greatly benefit from a principled strategy to embed a priori knowledge into generating
positive pairs that does not rely on DA. We propose a first step towards such Guided Positive Sampling
(GPS) below.
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Figure 2: An example (a) StrongAug and (b) RHFlipAug applied to an image from the FGVCAircraft
dataset. Furthermore, (c) and (d) depict examples of the 4 nearest neighors calculated by CLIP and VAE
embeddings, respectively.

3 Guided Positive Sampling for SSL

We propose a novel strategy, Guided Positive Sampling Self-Supervised Learning (GPS-SSL), that takes
advantage of prior knowledge for positive sampling to make up for the sub-optimality of generating positive
pairs solely from DA in SSL.

3.1 Nearest Neighbor Positive Sampling in Any Desired Embedded Space

As theoretically shown in several studies (HaoChen et al., 2021; Balestriero & LeCun, 2022; Kiani et al.,
2022), the principal factors that impact the quality of the learned representation resides in how the positive
pairs are defined. In fact, we recall that in all generality, SSL losses, i.e., LSSL, that are minimized can
mostly be expressed as

LSSL =
∑

(x,x′)∈PositivePairs

Distance(fθ(x), fθ(x′)) − Diversity({fθ(x), x ∈ X}), (1)

for the SSL network fθ and current training or mini-batch X, with a distance measure such as the ℓ2 norm or
the cosine similarity, and a diversity measure such that the rank of the embeddings or proxies of their entropy.
All in all, defining the right set of PositivePairs is what determines the ability of the final representation to
solve downstream tasks. The common solution is to repeatedly apply DA onto a single datum to generate
such positive pairs:

PositivePairs ≜ {(DA(x), DA(x)), ∀x ∈ X}, (2)

where the DA operator includes the random realisation of the DA such as the amount of rotation or zoom
being applied onto its input image. However, this strategy often reaches its limits since such DAs need to be
easily implemented for the specific data being used, and needs to be known a priori. When considering an
image dataset, the challenge of designing DA for less common datasets, e.g., FGVCAircraft, led practitioners
to instead train the model on a dataset such as ImageNet, where strong DAs have already been discovered,
and then transfer the model to other datasets. This however has its limits when considering images from
completely different domains –e.g. medical images.

We propose GPS-SSL, an alternative strategy to sample positive pairs, which can be used off-the-shelf
with any baseline SSL method –e.g., SimCLR, VICReg. GPS-SSL defines positive pairs through nearest
neighbour sampling in an a priori known embedding space denoted as gγ .

First, we define the collection of samples that are less than τ > 0 away from a query sample x ∈ X in the
chosen embedding space as

B(x) ≜ {x′ ∈ X : ∥gγ(x) − gγ(x′)∥2
2 < τ}. (3)

Note that τ could either be a constant or a function of x. In this study we employ the latter, where τ is
defined based on the k-nearest neighbor distance of x. From Eq. (3), GPS-SSL obtains positive pairs by
randomly selecting a point in B(x) as in
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PositivePairsGPS ≜ {(DA(x), DA(x′)), ∀(x, x′) ∈ X2 : x′ ∈ B(x)}. (4)

In short, we replace the set of positive pairs generated from applying a given DA to a same input, by
applying a given DA onto two different inputs found so that one is the nearest neighbor of the other in some
embedding space provided by gγ . From this, we obtain a first direct result below making GPS-SSL recover
a powerful existing method known as NNCLR (Dwibedi et al., 2021).
Proposition 1. For any employed DA, GPS-SSL which replaces Eq. (2) by Eq. (4) in any SSL loss (Eq. (1))
recovers (i) input space nearest neighbor positive sampling when gγ is the identity and τ ≫ 0, (ii) standard
SSL when gγ is the identity but τ → 0, and (iii) NNCLR when gγ = fθ and τ → 0.

The above result provides a first strong argument demonstrating how GPS-SSL does not reduce the capacity
of SSL; in fact, it introduces a novel axis of freedom–namely the design of (gγ , τ)–to extend current SSL
beyond what is amenable solely by tweaking the baseline SSL network fθ, or the used DA. The core motivation
of the presented method is that the ability to design gγ reduces the laborious task of designing effective DA
recipes. In fact, if we consider the case where the original DA is part of the original dataset

∀x ∈ X, ∃ρ : DA(x; ρ) ∈ X, (5)

i.e., for any sample in the training set X, at least on DA configuration ρ exists that produces another
training set sample, with ρ specifying the applied transformation; GPS-SSL can recover standard SSL albeit
without employing any DA.
Theorem 1. Performing standard SSL (employing Eq. (2) into Eq. (1)) with a given DA and a training set
for which Eq. (5) holds, is equivalent to performing GPS-SSL (employing Eq. (4) into Eq. (1)) without any
DA and by setting gγ to be invariant to that DA, i.e. gγ(DA(x)) = gγ(x).

By construction from Eq. (5) and assuming that one has the ability to design such an invariant gγ , it is clear
that the nearest neighbour within the training set for any x ∈ X will be the corresponding samples DA(x)
therefore proving Theorem 1. That result is quite impractical but nevertheless provides a great motivation
to GPS-SSL. Note that gγ not only has the ability to mitigate the DA design, but can also be used jointly
with DA, hence allowing one to embed as much a priori knowledge as possible through both gγ and said
DA simultaneously.

The design of gγ. The proposed strategy (Eq. (4)) is based on finding the nearest neighbors of different
candidate inputs in a given embedding space. There are multiple ways for acquiring an informative embed-
ding space, i.e., a prescribed mapping gγ . Throughout our study, we will focus on the most direct solution
of employing a previously pre-trained mapping. The pre-training may or may not have occurred on the
same dataset being considered for SSL. Naturally, the alignment between both datasets affects the quality
and reliability of the embeddings. If one does not have access to such pre-trained models, an alternative
solution is to first learn abstracted representation of the data, e.g., using an MAE He et al. (2022) or VAE
(Kingma & Welling, 2013), and then use the said representations for gγ . In this setting, the motivation lies
in the final SSL representation being superior to the encoder (gγ) alone for solving downstream tasks.

We provide some examples of the resulting positive pairs with our strategy in Figure 1. In this figure, we use
a pretrained model to calculate the set of k nearest neighbors for each image x in the target dataset. Then
for each image x, the model randomly chooses the positive image from the nearest neighbors in embedding
space (recall Eq. (4)). Finally, both the original image and the produced positive sample are augmented using
the chosen DA and passed as a positive pair of images through the encoders. Note that as per Proposition 1,
GPS-SSL may choose the image itself as its own positive sample, but the probability of it happening reduces
as τ increases. As we will demonstrate in the later sections, the proposed positive sampling strategy often
outperforms the baseline DA-based positive pair sampling strategy on multiple datasets.
Relation to NNCLR. The commonality of NNCLR and GPS-SSL has been brought forward in
Proposition 1. In short, they both choose the nearest neighbor of input images as the positive sample.
However, the embedding space in which the nearest neighbor is chosen is different. In NNCLR, the model
being trained creates the embedding space which is thus updated at every training step, i.e., gγ = fθ.
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Figure 3: Architectures of SimCLR, NNCLR, and GPS-SimCLR. This figure demonstrates where the data
augmentaiton (DA) happens in each method and also how the nearest neighbor (NN) search is different
between NNCLR and GPS-SimCLR.

However, GPS-SSL generalizes that in the sense that the nearest neighbors can stem from any prescribed
mapping, without the constraint that it is trained as part of the SSL training, or even that it takes the form
of a DNN. The fact that NNCLR only considers the model being trained to obtain its positive samples also
makes it heavily dependent on complex and strong augmentations to produce non degenerate results. Yet,
our ability to prescribe other mappings for the nearest neighbor search makes GPS-SSL much less tied to
the employed DA. We summarize and contrast with alternative SSL methods in Figure 3.

4 Empirical Validation on Benchmarked Datasets

In our experiments, we train the baseline SSL methods and the proposed GPS-SSL with two general sets
of augmentations: StrongAug, which are augmentations that have been tuned on either Cifar10 (Krizhevsky
et al., 2009) or on ImageNet in the case of TinyImageNet (Le & Yang, 2015), and the under-studied datasets
(i.e., FGVCAircraft (Maji et al., 2013), PathMNIST (Yang et al., 2023), TissueMNIST (Yang et al., 2023),
and R-HID). RHFlipAug, representing the scenario where we do not know the correct augmentations and
use minimal ones. The set of StrongAug consists of random-resized cropping, random-horizontal flipping,
color jittering, gray-scaling, Gaussian blurring, and solarizing, while RHFlipAug only uses random-horizontal
flipping.

Table 1: Classification accuracy of a ResNet18 in different ablation settings.

(a) Comparing GPS-SimCLR when different pre-
trained backbones (GPS-BB) are used to obtain em-
beddings for nearest-neighbor calculation, i.e., prior
knowledge.

GPS-BB FGVCAircraft
RHFlipAug StrongAug

ViT-BMAE 10.53 29.55
ViT-LMAE 14.70 35.28
RN50SUP 18.15 41.47
RN50VAE 11.04 32.06
RN50CLIP 19.38 50.08
ViT-BCLIP 19.90 64.42

(b) Best performance in StrongAug setting of Sim-
CLR and GPS-SimCLR given different learning rates
(LR).

LR FGVCAircraft
SimCLR GPS-SimCLR

0.003 21.39 35.7
0.01 30.18 43.68
0.03 39.27 49.57
0.1 39.81 50.08
0.3 39.87 48.10

In order to thoroughly validate GPS-SSL as an all-purpose strategy for SSL, we consider SimCLR, BYOL,
NNCLR, and VICReg as baseline SSL models, and for each of them, we consider the standard SSL positive
pair generation (Eq. (2)) and the proposed one (Eq. (4)) by setting τ as a function of x that is chosen

6



Under review as submission to TMLR

Table 2: Classification accuracy of baseline SSL methods with and without GPS-SSL on four datasets
on ResNet50 using pretrained RN50CLIP embeddings for positive sampling. We consider both StrongAug
(Strong Augmentation) and RHFlipAug (Weak Augmentation) settings. The set of DA used for StrongAug
are random-resized-crop, random-horizontal-flip, color-jitter, gray-scale, gaussian-blur, and
solarization. For the RHFlipAug setting, the only DA used is random horizontal flip. We mark the
first, second, and third best performing models accordingly. We can see that in the minimal augmentation
setting, GPS-SSL improves the results significantly and boosts the performances to a comparable level to
the strong augmentation setting for three of the datasets.

Aug. Method
Datasets

Cifar10 FGVCAircraft PathMNIST TissueMNIST
(10 classes) (100 classes) (9 classes) (8 classes)

R
H

F
lip

A
ug

SimCLR 47.01 5.61 63.42 50.35
BYOL 41.79 6.63 67.08 48.00

NNCLR 28.46 6.33 56.70 37.98
Barlow Twins 41.73 5.34 53.27 43.57

VICReg 37.51 6.18 46.46 39.79
GPS-SimCLR (ours) 85.08 18.18 87.79 53.14
GPS-BYOL (ours) 84.07 13.50 87.67 53.05
GPS-Barlow (ours) 84.45 17.34 88.77 56.63
GPS-VICReg (ours) 85.58 18.81 88.91 56.44

St
ro

ng
A

ug

SimCLR 90.24 47.11 93.64 58.53
BYOL 90.50 34.23 93.29 56.63

NNCLR 90.03 34.80 92.87 52.57
Barlow Twins 88.34 18.12 92.03 61.69

VICReg 91.21 38.74 93.22 60.18
GPS-SimCLR (ours) 91.17 55.60 92.30 55.59
GPS-BYOL (ours) 91.15 44.28 92.40 55.03
GPS-Barlow (ours) 88.52 20.23 91.98 57.04
GPS-VICReg (ours) 89.71 47.29 92.55 55.79

from x’s k-nearest neighobr distances. We opted for a randomly-initialized ResNets backbone (He et al.,
2016) as encoder. We also bring forward the fact that most SSL methods are generally trained on a large
dataset for which strong DAs are known and well-tuned, such as ImageNet, and the learned representation
is then transferred to solve tasks on smaller and domain-specific datasets. In many cases, training those SSL
models directly on those less known datasets lead to catastrophic failures, as the optimal DAs have not yet
been discovered. Lastly, we consider six different embeddings for gγ : one obtained using supervised learning
on ImageNet, two CLIP vision-language model (Radford et al., 2021) trained on LAION-400M Schuhmann
et al. (2021), one with VAEs (Kingma & Welling, 2013) trained on Object365, and two with MAEs (He
et al., 2022) trained on ImageNet as well. We also show that our method is more robust to hyper-parameter
changes (see Tables 1a and 1b). Since the embedding models are trained on ImageNet or LAION-400M,
the results reported throughout this study remain practical since the labels of the target datasets, on which
SSL models are trained and evaluated, are never observed for the training of neither gγ nor fθ.

Strong Augmentation Experiments. The DAs in the StrongAug configuration consist of strong augmen-
tations that usually distort the size, resolution, and color characteristics of the original image. First, we
note that in this setting, GPS-SSL generally does not harm the performance of the baseline SSL model on
common datasets, i.e. Cifar10 (Table 2). In fact, GPS-SSL performs comparable to the best-performing
baseline SSL model on Cifar10, i.e., VICReg. We believe that the main reason lies in the fact that the
employed DA has been specifically designed for those datasets (and ImageNet). However, we observe that
GPS-SSL outperforms (on FGVCAircraft and Cifar10) or is comparable to (on PathMNIST) the baseline
SSL methods for the under-studied and real-word datasets (Table 2). The reason for this is that, the optimal
set and configuration of DA for one dataset is not necessarily the optimal set and configuration for another,
and while SSL solely relies on DA for its positive samples, GPS-SSL is able to alleviate that dependency
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BYOL vs. GPS-BYOLSimCLR vs. GPS-SimCLR

Figure 4: The impact of GPS-SSL on the runtime of SSL algorithms. We report the runtime of BYOL vs.
GPS-BYOL and SimCLR vs. GPS-SimCLR on FGVCAircraft and Cifar10 for exactly 400 epoch. We see
that the runtime of GPS-SSL remains very similar to the original baseline SSL method, whereas GPS-SSL
improves the performance for the FGVCAircraft.

through gγ and uses positive samples that can be more useful than default DAs, as seen in Figure 2. Note
that our method’s runtime is similar to the baseline SSL method on the dataset it is learning and does not
hinder the training process (Figure 4).

Weak-Augmentation Experiments. We perform all experiments under the RHFlipAug setting as well,
showing GPS-SSL also produces high quality representations in this setting, validating Theorem 1. As
shown in Table 2, GPS-SSL significantly outperforms all baseline SSL methods across both well-studied and
under-studied datasets. These results show that our GPS-SSL strategy, though conceptually simple, coupled
with the RHFlipAug setting, approximates strong augmentations used in the StrongAug configuration. This
creates a significant advantage for GPS-SSL to be applied to real-world datasets where strong augmentations
are not readily available, but where the invariances learned by gγ generalizes to them.

Ablation Study In this section we explore multiple ablation experiments in order to show GPS-SSL
improves SSL and is indeed a future direction for improving SSL methods. First, we compare SSL and GPS
training on Cifar10 and FGVCAircraft starting from a randomly initialized backbone (realistic setting),
supervised ImageNet pre-trained weights, or CLIP pre-trained weights to explore whether the improvement
of GPS-SSL are due to better positive sampling or simply because of using a strong prior knowledge. We
show in Table 5 that GPS-SSL performs better than the baseline SSL methods, even when they both have
access to the pre-trained network weights. This proves that the improvement in performance of GPS-SSL
compared to baseline SSL methods is indeed due to better positive sampling.

Next, in Table 1a, we compare GPS-SimCLR with six different embeddings for gγ . We observe that as the pre-
trained embeddings become higher quality, the performance of our method increases in both the RHFlipAug
and StrongAug setting. However, note that even given the weakest embeddings, i.e., the ViT-BMAE
embeddings, GPS-SimCLR still outperforms the baseline SimCLR in the RHFlipAug setting, highlighting
that the nearest neighbors add value to the learning process when DA recipes are not readily available.

We further explore if the improvement of GPS-SSL holds when methods are trained longer. To that end,
we train a ResNet18 for 1000 epochs with SimCLR and VICReg with StrongAug, along with their GPS
versions, on Cifar10 and FGVCAircraft and compare the results with the performance from 400 epochs. As
seen in Table 3, the improvement of GPS-SSL compared to the baseline SSL method holds on FGVCAircraft
dataset and remains comparable on Cifar10, showcasing the robustness of GPS-SSL.

Moreover, we compare GPS-SSL and baseline SSL methods on a larger scale dataset. We train and evaluate
SimCLR and VICReg and their GPS versions with different gγ on TinyImageNet for 200 epochs with a
ResNet50 under StrongAug and RHFlipAug settings. As seen in Table 4, GPS-SSL with the pre-trained
backbone outperforms the SSL methods in both RHFlipAug and StrongAug settings. We can also see that
even without a pre-trained backbone, GPS-SSL significantly outperforms SSL methods in RHFlipAug settings
whereas the performance is comparable in the StrongAug setting.

Finally, we aim to measure the sensitivity of the performance of a baseline SSL method to a hyper-parameter,
i.e., learning rate, with and without GPS-SSL. In this experiment, we report the best performance of
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Table 3: Longer training: Test accuracy comparison of GPS-SSL after 1K epochs versus 400 training epochs.
We observe the improvements of GPS-SimCLR are still significant when training for longer on FGVCAircraft
and remain comparable on Cifar10.

Method Cifar10 FGVCAircraft
400 eps 1000 eps 400 eps 1000 eps

SimCLR 88.26 91.25 39.87 45.55
GPS-SimCLR 89.57 91.10 50.08 51.64

VICReg 89.34 90.61 33.21 41.19
GPS-VICReg 89.68 89.84 45.48 49.29

Table 4: Scalability: Test accuracy comparison of GPS-SSL and baseline SSL on a large scale dataset:
TinyImageNet (TinyIN). Results are reported after 200 training epochs with ResNet50. We also compare
the setting when we train the backbone from scratch (ViT-LMAE on TinyImageNet dataset) and when a
pretrained model is used for the GPS backbone (RN50CLIP pretrained on LAION-400M).

Method GPS TinyIN
RHFlipAug StrongAug

SimCLR —– 3.17 42.25
VICReg 2.81 44.02

GPS-SimCLR scratch 28.32 41.69
GPS-VICReg 27.67 42.71
GPS-SimCLR pre-trained 40.73 48.09
GPS-VICReg 40.26 48.47

SimCLR and GPS-SimCLR given different learning rates in the StrongAug setting. We observe that
GPS-SSL when applied to a baseline SSL method is as robust, if not more robust, to hyper-parameter
changes. The results are reported in Table 1b. We perform further ablations, e.g., comparing GPS-SSL
with the linear probing performance and trying additional GPS-BBs, in Appendix 7.5.

Table 5: Fine-tuning with GPS-SSL: Comparing SimCLR on ResNet50 with and without GPS-SimCLR
from different model initializations with minimal (RHFlipAug) and strong (StrongAug) augmentations.
RN50RAND, RN50SUP, and RN50CLIP represents a ResNet50 with random weights (the standard setup),
ImageNet supervised weights, and CLIP pretrained weights, respectively. We can see that GPS-SSL is also
effective when fine-tuning the models.

Method Weight Cifar10 FGVCAircraft
Init. RHFlipAug StrongAug RHFlipAug StrongAug

SimCLR RN50RAND
46.69 87.39 5.67 27.36

GPS-SimCLR 85.2 90.48 17.91 43.56
SimCLR RN50SUP

43.99 94.02 17.91 59.92
GPS-SimCLR 91.3 95.53 39.45 66.88

SimCLR RN50CLIP
45.57 90.26 6.21 41.04

GPS-SimCLR 89.44 91.23 24.15 49.63
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5 Case Study on the Hotels Image Dataset

In this section, we study how GPS-SSL compares to baseline SSL methods on an under-studied real-world
dataset. We opt the R-HID (Feizi et al., 2022) dataset for our evaluation which gathers hotel images for the
purpose of countering human-trafficking. R-HID provides a single train set alongside 4 evaluation sets, each
with a different level of difficulty, ranging from known (seen) hotel chains and branches to unknown chains
and branches.

Table 6: R@1 on different splits on R-HID Dataset for SSL methods. The splits are DSS : {branch: seen,
chain: seen}, DSU : {branch: unseen, chain: seen}, DUU : {branch: unseen, chain: unseen}, and D??:
{branch: unknown, chain: unknown}. We mark the best-performing score in bold.

Method DSS DSU DUU D??

SimCLR 3.28 16.76 20.30 16.00
BYOL 3.69 19.27 23.02 18.47

Barlow Twins 3.04 15.54 18.96 15.06
VICReg 3.41 17.52 20.45 16.53

GPS-SimCLR 4.84 23.67 26.30 22.28
GPS-BYOL 3.89 19.64 23.18 19.38
GPS-Barlow 4.49 21.98 25.23 20.82
GPS-VICReg 5.33 25.71 28.29 23.78

We evaluate the baseline SSL models with and without GPS-SSL with the R-HID dataset and report the
Recall@1 (R@1) for the different splits introduced. Based on the findings from 2, we adapt the StrongAug
setting along with the prior knowledge generated by a CLIP-pretrained ResNet50.

As seen in Table 6, SSL baselines always get an improvement when used with GPS-SSL. The reason
the baseline SSL methods underperform compared to their GPS-SSL version is that the positive samples
generated only using DA lack enough diversity since the images from R-HID dataset have various features
and DA recipes limit the information the network learns; however, paired with GPS-SSL, we see a clear
boost in performance across all different splits due to the information extracted from the nearest neighbors.

6 Conclusions
In this paper, we proposed GPS-SSL, a strategy to obtain positive samples for Self-Supervised Learning. In
particular, GPS-SSL moves away from the usual DA-based positive sampling by instead producing positive
samples from the nearest neighbors of the data as measured in a given embedding space. That is, GPS-SSL
introduces an new axis of research to advance SSL methods that is complementary to the design of DA
recipes and losses. Through this strategy, we were able to train SSL methods on relatively under-explored
datasets such as medical images–without having to search and tune for the right DA. Those results open
new avenues to employ SSL on datasets for which effective DA recipes are not available. In fact, we observe
that while GPS-SSL meets or surpasses SSL performances across our experiments, the performance gap is
more significant when the optimal DAs are not known, e.g., in PathMNIST and TissueMNIST. Besides
practical applications, GPS-SSL finally provides a novel strategy to embed prior knowledge into SSL and
the more reliable the prior knowledge is with respect to the target dataset, the stronger GPS-SSL performs
without merely depending on DAs.

Limitations. The main limitation of our method is akin to the one of SSL, it requires the knowledge of the
embedding space in which positive samples are produced using the nearest neighbors. This limitation is on
par with standard SSL’s reliance on DA, but its formulation is somewhat dual (recall Theorem 1) in that one
may know how to design such an embedding without knowing the appropriate DA for the dataset, and vice-
versa. Furthermore, if the knowledge acquired is not compatible with the target dataset, GPS-SSL tends to
underperform compared to SSL; this was seen in Table 2 for PathMNIST and TissueMNIST in the StrongAug
setting. Alternative techniques like training separate and simple deep networks to provide such embeddings
prior to the SSL learning could be considered for future research. More on the future work in Appendix 7.3.
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7 Appendix

7.1 R-HID Splitting method

R-HID (Feizi et al., 2022) is created carefully to make sure no data leakage occurs. They mention how the
total data is divided into the train and the multiple test splits. More specifically, first a set of chains (along
with all their branches) are reserved for the DUU to make sure the chains (super-classes) and branches
(classes) are not seen during training. Next, out of the remaining chains, a set of the branches are chosen
to add all of their images to the DSU test split (since the training set will have other images from other
branches from the same chain, but not the same branch images). Finally, out of the remaining branches, the
images in each are split between DSS and train, creating the final test split that has a subset of the branches
seen during training. With this procedure, they make sure of the table of overlapping below. More details
regarding the splits is provided in the original paper.

7.2 Computational and Memory Cost of GPS-SSL

The computational cost of GPS-SSL and standard SSL are not significantly different; the main distinction
lies in the positive sampling and acquiring the positive samples. In our approach, we investigate acquiring the
positive samples from a pre-trained network, which entails an additional cost of computing the embeddings
of the target dataset and computing the k-nearest neighbors of each data point. However, it’s important to
note that the computation of the k-nearest neighbors needs to be performed only once during the training
procedure and can be cached for any SSL method on the same dataset and GPS-BB, rendering the additional
computation negligible.

Regarding additional memory usage, GPS-SSL requires storing the indexes of the k-nearest neighbors of
each data point in the training set. Thus, the order of magnitude of the memory usage is O(N) (k ≪ N)
for a dataset of size N . However, it’s noteworthy that this array does not need to be loaded onto the GPU
during training.

7.3 Hyper-Parameter Search

In all main experiments (Table 2), we train for both 400 nd 1000 epochs with a batch size of 256 using one RTX
8000 GPU for all methods. To ensure we are choosing the correct hyper-parameters for a fair comparison,
we search over a vast range of hyper-parameter combinations (lr ∈ {1e−3, 3e−3, 3e−2, 1e−2, 3e−1, 1e−1, 1},
classifier_lr ∈ {3e−2, 1e−2, 3e−1, 1e−1, 1, 3}, weight_decay ∈ {1e−4, 1e−3}) and for GPS-SSL with all
SSL baselines we also search over k ∈ {1, 4, 9, 49}). For experiments using RHFlipAug and StrongAug,
we use nearest neighbors calculated based on embeddings created from a ResNet50 that have been CLIP
pre-trained as the prior knowledge. Finally, for each method, we report the best classification accuracy for
Cifar10, FGVCAircraft, PathMNIST, and TissueMNIST, and Recall@1 (R@1) for R-HID in Tables 2, 6, and
11. To calculate both metrics, we first train the encoder on the target dataset using the SSL method, with
or without GPS-SSL. Then, for classification accuracy, we train a linear classifier on top of it, and for R@1,
we encode all the images from the test set and calculate the percentage of images which their first nearest
neighbor is from the same class.

7.4 Future Work

Given the broad applicability and efficiency of GPS-SSL in enhancing performance by integrating prior
knowledge with data augmentations, we plan to extend this framework to other single-modal data domains
as well as multi-modal domains. We anticipate that employing GPS-SSL on data modalities lacking well-
defined data augmentations, such as language, could provide significant benefits. Additionally, incorporating
such prior knowledge in training multi-modal networks represents a promising direction for future research.
Furthermore, since all observations in this study were empirical, it would be valuable to pursue formal proofs
for the propositions and theorems discussed and moreover the drawbacks of our method for different target
datasets, thereby strengthening the theoretical foundation of our approach.
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Table 7: Classification accuracy of baseline SSL methods with and without GPS-SSL on four datasets on
ResNet18 using pretrained RN50CLIP embeddings for positive sampling. We consider both StrongAug
(Strong Augmentation) and RHFlipAug (Weak Augmentation) settings. The set of DA used for StrongAug
are random-resized-crop, random-horizontal-flip, color-jitter, gray-scale, gaussian-blur, and
solarization. For the RHFlipAug setting, the only DA used is random horizontal flip. We mark the
first, second, and third best performing models accordingly.

Aug. Method
Datasets

Cifar10 FGVCAircraft PathMNIST TissueMNIST
(10 classes) (100 classes) (9 classes) (8 classes)

R
H

F
lip

A
ug

SimCLR 47.62 7.70 62.99 52.30
BYOL 49.72 8.99 77.77 51.00

NNCLR 71.74 8.10 56.92 42.59
Barlow Twins 42.00 7.53 64.82 49.43

VICReg 36.04 4.95 56.92 50.26
GPS-SimCLR (ours) 85.83 18.48 88.62 55.98
GPS-BYOL (ours) 84.56 14.79 81.66 56.21
GPS-Barlow (ours) 84.83 18.12 87.79 55.86
GPS-VICReg (ours) 85.38 20.16 87.83 55.26

St
ro

ng
A

ug

SimCLR 88.26 39.87 91.56 61.51
BYOL 86.90 27.33 91.24 60.73

NNCLR 87.95 39.12 91.14 52.42
Barlow Twins 88.89 25.71 92.23 60.06

VICReg 89.34 33.21 92.27 59.41
GPS-SimCLR (ours) 89.57 50.08 92.19 62.76
GPS-BYOL (ours) 88.46 32.07 91.05 54.05
GPS-Barlow (ours) 88.39 25.35 91.55 62.93
GPS-VICReg (ours) 89.68 45.48 91.88 62.46

7.5 Ablation Study

7.5.1 Different Backbone

First, we provide the same experiments as in Table 2, but trained with a ResNet18 instead of a ResNet50
and provide the results in Table 7. We see the same results for ResNet50 (discussed for Table 2) also hold
when ran on a smaller architecture, i.e., ResNet18. This shows the improvements of GPS-SSL over baseline
SSL methods is more reliable and robust.

7.5.2 Additional Datasets

To further evaluate our method, we train and evaluate GPS-SSL on a large-scale dataset, i.e., ImageNet100, a
fine-grained image classification dataset, i.e., Food101, and finally an additional image classification dataset,
i.e., Cifar100. For ImageNet100, we train a ResNet50 for 1000 epochs and for the other two additional
datasets, we train a ResNet18 for 400 epochs. As seen in Tables 8 and 9 GPS-SSL helps improve the
performance of the original SSL methods in both RHFlipAug and StrongAug settings.

7.5.3 Ablating Different ks

We additionally ablate different values for k, i.e., the number of nearest neighbors for each datapoint to
consider for the positive sampling selection while training a ResNet18 and ResNet50 on FGVCAircraft.
Note that when k = 0, GPS-SimCLR reduces to the original SimCLR method. As seen in Figure 5, there
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Table 8: Results of ResNet50 with SimCLR and GPS-SimCLR on a largescale dataset, e.g., ImageNet100,
after training for more epochs.

Method GPS-BB
ImageNet100

100 epochs 1000 epochs
RHFlipAug StrongAug RHFlipAug StrongAug

SimCLR —– 17.6 77.18 5.42 84.78
GPS-SimCLR RN50CLIP 77.54 82.68 77.38 85.78
GPS-SimCLR ViT-LMAE 70.02 77.84 71.50 83.18

Table 9: Results of ResNet18 with SimCLR and GPS-SimCLR on more largesclae datasets (Food101 and
Cifar100).

Method GPS-BB Food101 Cifar100
RHFlipAug StrongAug RHFlipAug StrongAug

SimCLR —– 16.88 73.35 26.1 64.78
GPS-SimCLR RN50CLIP 70.25 78.94 61.34 66.45

Table 10: Results of ResNet18 with MoCo v3 and GPS-MoCo v3 on Cifar10 and FGVCAircraft.

Method GPS-BB Cifar10 FGVCAircraft
RHFlipAug StrongAug RHFlipAug StrongAug

MoCo v3 —– 49.7 87.9 8.37 32.7
GPS-MoCo v3 RN50CLIP 83.27 90.39 15.60 45.87

is an optimal number of nearest neighbors to use and using more results in lower performance, yet still
outperforming the original SimCLR.

7.5.4 MoCo v3

We also explore MoCo v3 (He et al., 2020; Chen et al., 2021), another SSL backbone based on momentum
encoders, on FGVCAircraft and to do so, we train a ResNet18 for 400 epochs with and without GPS on
MoCo v3. As seen in Table 10, GPS improves the performance of this method as well.

7.5.5 Finetuning for R-HID

We further try a trivial way of transferring knowledge from a pretrained network to other SSL baseline models
and compare it to GPS-SimCLR; we initialize the base encoder in any SSL method, i.e., the ResNet18, to the
pretrained network’s weights, as opposed to random initialization, and train it i.e., finetuning. Ultimately,
we compare the results on R-HID in Table 11.

Although this might perform better if the pretrained network was trained on a visually similar dataset to
the target dataset, Table 11 shows that it may harm the generalization on datasets that are different, e.g.,
ImageNet and R-HID, compared to being trained from scratch. However, GPS-SSL proves to be a stable
method for transferring knowledge even if the pretrained and target dataset are visually different (Table 6).

7.5.6 Comparing to Linear Probing

Finally, we compare the linear probing performance of the embeddings generated from different architectures,
i.e. GPS backbones (GPS-BB), pretrained on different datasets, i.e., GPS Datasets (GPS-DS), with the
performance of GPS-SSL using them. More specifically, in Tables 13 and 12, we compare the linear probe
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Figure 5: Ablation over different values of k with GPS-SimCLR on FGVCAircraft.

Table 11: Comparing the R@1 performance of SSL methods on R-HID when trained from scratch against
being finetuned, i.e., being initialized to a supervised ImageNet pretrained network, on a ResNet50. We
highlight the difference in R@1 of the pretrained against the scratch version with green when it improves
and red when it worsens.

Method Weight Init. DSS DSU DUU D??

SimCLR RN50RAND 3.23 16.10 19.62 15.12
RN50SUP -0.10 -0.21 -0.40 +0.27

BYOL RN50RAND 3.27 16.25 20.20 15.91
RN50SUP -0.57 -1.75 -2.23 -1.50

NNCLR RN50RAND 2.84 13.91 17.15 13.96
RN50SUP -0.54 -2.44 -3.18 -2.67

VICReg RN50RAND 3.24 16.67 19.97 15.86
RN50SUP -0.43 -1.54 -2.45 -1.92

performance of the CLIP pretrained ResNet50 on LAION-400M (Schuhmann et al., 2021) along with vision
transformers (ViTs) pretrained on ImageNet using Masked Auto Encoders (MAE) (He et al., 2022), a popular
self-supervised method that also does not rely on strong augmentations. We see our method outperforms
the linear probe accuracy of CLIP embeddings for both Cifar10 and FGVCAircraft and matches that of
ViT-Base and ViT-Large for Cifar10 and ViT-Large for FGVCAircraft.

However, we further see that if we train the ViT-Large on the FGVCAircraft, using MAE with minimal
augmentations, we can use that as the positive sampler for GPS-SSL and beat the baseline SSL method
on FGVCAircraft. This shows that GPS-SSL does not entirely rely on huge pretrained models and that
there is potential possibilities for training a positive sampler prior to applying GPS-SSL to further boost the
performance of baseline SSL methods.
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Table 12: Comparison of linear probing (LP) and GPS-VICReg’s (with ResNet50) classification accuracy on
FGVCAircraft with different GPS backbones (GPS-BB) pretrained with CLIP and masked auto encoders (MAE)
on different datasets without supervision (GPS-DS). The performance of the vanilla VICReg is also depicted for
comparison. RN50 and ViT-L refer to ResNet50 and ViT-Large, respectively.

GPS-BB GPS-DS LP GPS-VICReg VICReg

RN50CLIP LAION-400M 44.55 46.44
39.99ViT-LMAE ImageNet 37.32 38.44

ViT-LMAE FGVCAircraft 17.01 42.87

Table 13: Classification accuracy comparison of linear probing (LP) using embeddings with different GPS backbones
(GPS-BB) pretrained with CLIP and masked autoencoders (MAE) on different upstream datasets, i.e., GPS-DS, and
a trained ResNet50 with GPS-SimCLR on FGVCAircraft and Cifar10 using the same GPS backbones and datasets.
RN50, ViT-L, and Vit-B refer to ResNet50, ViT-Large, and ViT-Base, respectively.

GPS-BB GPS-DS Cifar10 FGVCAircraft
LP GPS-SimCLR LP GPS-SimCLR

RN50CLIP LAION-400M 87.85 91.17 44.55 53.81
ViT-BMAE ImageNet 85.78 87.35 27.96 29.55
ViT-LMAE ImageNet 91.45 90.11 37.29 35.28
ViT-LMAE FGVCAircraft —– —– 17.01 46.93

7.5.7 Additional GPS-BB

As an additional and stronger GPS-BB compared to RN50CLIP, we further explore using ViT-BCLIP as the
GPS-BB when training a ResNet50 using VICReg and Barlow Twins. We present our results in Table 14.
This shows that GPS-SSL depends on the GPS-BB and as the stronger the GPS-BB is, the stronger the
performance of GPS-SSL will be on downstream tasks.

Table 14: Comparing test accuracy of GPS-SSL versus SSL after 400 epochs of training, when a ViT-BCLIP
is used as the GPS-BB. We mark the best-performing score in bold.

Method GPS-BB FGVCAircraft PathMNIST TissueMNIST

VICReg — 38.74 93.22 60.18
GPS-VICReg ViT-BCLIP 70.03 93.48 58.60
Barlow Twins — 18.12 92.03 61.69
GPS-Barlow ViT-BCLIP 32.37 92.35 52.54
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