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Abstract

Feature circuits aim to shed light on LLM behavior by identifying the features1

that are causally responsible for a given LLM output, and connecting them into2

a directed graph, or circuit, that explains how both each feature and each output3

arose. However, performing circuit analysis is challenging: the tools for finding,4

visualizing, and verifying feature circuits are complex and spread across libraries.5

To facilitate feature-circuit finding, we introduce circuit-tracer, an open-source6

library for efficient identification of feature circuits. circuit-tracer provides an7

integrated pipeline for finding, visualizing, annotating, and performing interven-8

tions on such circuits, tested with various model sizes, up to 14B parameters. We9

make circuit-tracer available to both developers and end users, via integration10

with tools such as Neuronpedia, which provides a user-friendly interface.11

1 Introduction12

Feature circuits are a paradigm in mechanistic interpretability that aims to provide low-level, causal13

interpretations of LLM behavior in an unsupervised setting. A feature circuit for a given model, input,14

and output aims to explain both which human-interpretable features caused the production of that15

output, and what caused each feature to activate.16

In practice, feature circuits take the form of a directed graph from a model’s inputs, through a set of17

features, to the model’s outputs; see Figure 1 for an example. These features are causally-relevant18

neurons of auxiliary models such as sparse autoencoders (SAEs) or transcoders, which decompose19

model activations into a sparse set of features, or directions in activation space.20

Feature circuits have successfully been used to study phenomena ranging from subject-verb agreement21

and gender bias [21], parenthesis matching [15], and syntactic structure [13]. This is possible because22

feature circuits are highly general: given a model, a behavior it exhibits (expressible as a single23

next-token prediction), and a set of auxiliary models, one can find the feature circuit for that behavior.24

Unfortunately, the adoption of feature circuits has been hampered by the technical complexity of25

finding them. To find feature circuits, one must (1) decompose model activations into features26

using auxiliary models; (2) determine which features are causally relevant to the model’s output;27

(3) visualize and annotate the circuit and its features; and (4) perform causal interventions to verify28

one’s interpretation of the circuit. While many libraries exist for training said auxiliary models29

[20, 3], fewer exist for finding and visualizing circuits [21]; moreover, existing resources are not all30

easily interoperable. As a result, while work using the auxiliary models from (1) abounds, work that31

assembles these features into circuits and analyzes them as in (2)-(4) is scarce.32

In this paper, we introduce circuit-tracer1, a library that supports computing, visualizing, and33

intervening on circuits. circuit-tracer uses Ameisen et al.’s [1] transcoder circuits, rather than34

1https://anonymous.4open.science/r/circuit-tracer-anonymized-2C5F/README.md
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Figure 1: Left: A feature circuit explaining the Gemma-2 (2B)’s prediction on the input The keys on
the cabinet. . . ; features are grouped into annotated supernodes. Right: Visualizing an SAE feature.
The top and bottom token predictions indicate which tokens are most up/downweighted by the feature,
while the highlighted text indicates where the feature fired most strongly. This feature appears to fire
on the ends of plural noun subjects.

SAE feature circuits, providing more accurate edges; our implementation enables the use of models35

up to 14B parameters in size. For circuit visualization, we integrate Ameisen et al.’s [1] recently-36

released circuit-annotation frontend, allowing users to annotate their newly-found transcoder circuits.37

Finally, circuit-tracer supports steering on transcoder features, both in the single- and efficient38

multi-token generation cases.39

Ease of use and accessibility are core goals for circuit-tracer: we aim to make circuit tracing40

accessible to users regardless of technical experience or compute availability. For this reason, we41

integrate circuit-tracer with Neuronpedia, which enables circuit tracing via a no-code user-42

friendly web interface; we also optimize our library to enable running small models on Google Colab,43

and aim to support remote execution on public computing resources soon.44

In summary, circuit-tracer:45

• Enables users to find, visualize, and intervene on feature circuits.46

• Provides an efficient open-source implementation of Ameisen et al.’s [1] transcoder circuit-47

tracing algorithm.48

• Functions both locally and via accessible third-party compute resources, such as Google49

Colab, Neuronpedia’s circuit tracing interface, and soon, the NDIF remote inference cluster.50

The remainder of the paper is organized as follows. We first describe the circuit-finding process and51

existing libraries (Section 2). We then introduce circuit-tracer, detailing its features and usage52

(Section 3). We then walk through 2 case-studies in circuit tracing (Section 4). We conclude with53

insights gained via circuit-tracing, and directions for future work (Section 5).54

2 Background55

2.1 Sparse Dictionary Learning56

Past work has sought to identify the features LLMs use to compute their outputs. Early work did this57

by identifying causally relevant neurons, but these have been found to be polysemantic: each neuron58

fires in response to many concepts [25, 4], likely because models are pressured to represent many59

more concepts than they have neurons [8]. Moreover, as neurons are often non-zero, it is difficult to60

determine when a neuron is actively firing.61

Sparse dictionary learning aims to convert dense, polysemantic representations into sparse, monose-62

mantic ones [27, 5]. Formally, a sparse dictionary takes in activations h ∈ Rd from a fixed location63

in a model and attempts to reconstruct activations h′ ∈ Rd at a target location. It computes:64

z = f (Wench+ benc) (1)

h̃′ = Wdecz+ bdec, (2)
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where:65

• Wenc ∈ Rn×d,Wdec ∈ Rd×n,benc ∈ Rn, and bdec ∈ Rd are model parameters;66

• f is an activation function enforcing non-negativity, often ReLU, JumpReLU [28], or Top-k;67

and68

• z ∈ Rn is the sparse, non-negative representation. Each dimension of z is called a feature.69

Sparse dictionaries are trained to minimize reconstruction error and L1-norm of z. This pressures z70

to faithfully represent the original input while remaining sparse, with few active features. z’s features71

are encouraged to be monosemantic by setting its dimensionality (n) much larger than that of the72

input (d)—often 32 times larger, or more.73

A sparse dictionary can be used to interpret a given h by visualizing the active features of the74

corresponding z. This entails computing feature activations over a large text dataset, and inferring the75

meaning of the feature of interest from the text inputs that maximize its activation. It is also common76

to display the output tokens that are most highly up- and down-weighted by the active feature; see77

Figure 1 for an example.78

Sparse dictionaries often aim to reconstruct the activations that they took as input; such dictionaries79

are called sparse autoencoders (SAEs). However, other variants exist: per-layer transcoders predict80

MLP outputs from their inputs [7], while cross-layer transcoders take in each layer’s MLP’s inputs81

and predict the outputs of all downstream MLPs. The choice of dictionary architecture and input /82

output location affects the type and number of features found.83

Though sparse dictionaries have successfully shed light on various model features, it is difficult to84

understand the mechanisms driving a model’s behavior by looking at features from one dictionary:85

not all active features are causally relevant to model behavior, and said behavior is often driven by86

features at many layers. To resolve this problem, we use feature circuits.87

2.2 Feature Circuits88

A feature circuit [21, 15] is a directed graph describing how a given LLM solves a given task: it flows89

from the model’s inputs, through causally relevant features, to the model’s logits. Each feature zi90

has a weight that quantifies the change in model performance if zi were set to 0; this its total effect91

through all possible pathways. Each edge’s weight is the direct effect that the source node has on the92

target activation. Feature circuits thus describe which features are causally relevant, and how they93

combine to yield the model’s outputs.94

Finding a feature circuit requires a set of dictionaries for the model, generally at least one per layer.95

Then, one must quantify each edge or feature’s (in)direct effect, pruning those with low effect. Early96

work did this by zero-ablating each active feature, and recording the change in model performance97

[15]; however, given n active features, this requires O(n) forward passes, making it expensive even98

for small models. Gradient-based methods such as Nanda’s [23] activation patching, or Marks et al.’s99

[21] extension thereof, produce faster but lower-quality estimates of feature and edge importance.100

2.3 Transcoder Feature Circuits101

Transcoder feature circuits [1] are a new type of circuit that can be sparser, and allow for precise and102

efficient calculation of node and edge weights. Their features generally come from PLTs or CLTs;103

the latter provide sparser circuits, but are more challenging to train.104

Ameisen et al. show that by freezing (or, conditioning on) the underlying model’s nonlinearities,105

such as its attention patterns and LayerNorm scaling factors, one can exactly compute edge weights,106

i.e. the DE of one transcoder feature on another. Doing so leaves each transcoder feature’s (pre-)107

activation (i.e., its activation before f is applied) as a linear function of the input embeddings and108

features that came before it. As such, one can compute the exact DE of all prior nodes on a given109

target node via one backwards pass from the target feature’s input, with stop-gradient operations110

applied to the nonlinearities and prior MLP outputs.111

Repeating this process for each output and feature node (or a subset thereof) yields an adjacency112

matrix containing the direct effect of each node on each other node. This matrix characterizes the full113

feature circuit, or attribution graph. Ameisen et al. include in their graph not only features, input,114
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and output nodes, but also error nodes that represent the difference between the true MLP outputs115

and transcoder reconstructions thereof. The adjacency matrix can then be visualized, or analyzed116

using metrics like Ameisen et al.’s replacement score.117

This approach yields precise DE values, but also has limitations: transcoder circuits often fail to118

capture features relevant to attention2, as edge weights are conditioned on the attention pattern.119

Transcoder errors can also hinder interpretation: when a large proportion of the flow through the120

graph originates from uninterpretable error nodes, graphs may fail to capture important mechanisms.121

2.4 Existing Libraries122

Circuit research involves four distinct steps: 1) sparse dictionary training, 2) circuit-finding, 3)123

circuit visualization / annotation, and 4) intervention. Many libraries support the training of sparse124

dictionaries (1), including dictionary-learning [20], SAE-Lens [3], and sparsify. In contrast to125

these, only one library—feature-circuits [21]—supports finding feature circuits (2), visualizing126

found circuits (3), or performing interventions (4). However, it does not enable interactive circuit127

annotation or feature visualization, though other libraries, such as Neuronpedia [18] or SAE-Vis128

[22] support the latter. Moreover, at the time of circuit-tracer’s creation, there was no publicly129

available implementation of Ameisen et al.’s [1] circuit-finding algorithm, though contemporaneous130

work3 has provided another open-source implementation.131

In light of the abundance of sparse dictionary training libraries, we design circuit-tracer to132

support the latter three steps of circuit-finding, while remaining compatible with transcoders from133

any library. We focus on reducing memory usage, enabling circuit-finding in models with over 2B134

parameters (the largest size in prior open-source work). Finally, we prioritize accessibility, aiming to135

lower circuit-finding’s technical barrier to entry.136

3 circuit-tracer137

In this section, we answer the following questions about circuit-tracer: 1) How is it designed,138

and what can it do?; 2) With which models is it compatible; and 3) How can it be used?139

3.1 circuit-tracer Design and Features140

3.1.1 ReplacementModel141

In circuit-tracer, a model and the transcoders used to interpret it are grouped together into a142

ReplacementModel. Loading this object requires only the name of the model from HuggingFace143

Transformers [30], and the name of a HuggingFace Hub repository containing the transcoders:144

1 from circuit_tracer import ReplacementModel145

2146

3 model = ReplacementModel.from_pretrained(147

4 model_name = "google/gemma -2-2b",148

5 transcoder_set = "gemma",149

6 )150

Listing 1: Loading a ReplacementModel based on Gemma-2 (2B) and GemmaScope transcoders.
We use the alias “gemma” to refer to the latter for convenience.

The ReplacementModel class is used during attribution and intervention; it also enables recording151

the activations of transcoder features on a given input. By default, a ReplacementModel is a subclass152

of TransformerLens’ HookedTransformer class; one can thus perform arbitrary interventions on a153

ReplacementModel, just as with TransformerLens. For more information on model and transcoder154

compatibility, see Section 3.2.155

Currently, circuit-tracer expects models to be loaded onto a single GPU; other accelerators such156

as MPS are not yet supported. Because a model’s transcoders are often much larger than the model157

itself, we offload transcoders’ decoders to disk by default, loading them to GPU only when required;158

2Recent work has sought to address this by incorporating attention or residual stream SAEs [16].
3https://github.com/EleutherAI/attribute
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this is possible when model weights are saved in the fast SafeTensors format.4 The memory footprint159

of a ReplacementModel is thus similar to that of its base counterpart.160

3.1.2 Attribution161

Once we have loaded a ReplacementModel, attribution in circuit-tracer is simple:162

1 from circuit_tracer import attribute163

2164

3 s = "Fact: Michael Jordan plays the sport of"165

4 graph = attribute(model , s)166

Listing 2: Performing attribution with an existing ReplacementModel

When performing attribution, circuit-tracer first finds the top-10 most likely next logits, or those167

that compose 0.95 of the next-token probability mass, whichever is smaller. It then returns a Graph168

containing the adjacency matrix of direct effects between input, feature, error, and logit nodes that169

contribute to the model’s prediction of those logits, as described in Section 2.3. This adjacency matrix170

can then be directly analyzed or visualized.171

circuit-tracer’s attribution allows users to flexibly change the number of logits attributed from,172

and supports attribution from arbitrary functions of the logits, e.g. the difference of two or more logit173

tokens as used in prior work [29]. It also supports limiting the number of nodes attributed from; this174

is important, as the number of active transcoder features grows linearly with input length, slowing175

attribution, and causing the adjacency matrix to become prohibitively large.176

3.1.3 Visualization and Annotation177

Users can visualize and annotate a given attribution graph using the interface introduced by Ameisen178

et al. [1]. Visualizing first involves pruning the graph, which is otherwise dense and difficult to179

understand. Users can specify the proportion of node and edge influence they would like to retain—180

more influence means more nodes and edges retained—and circuit-tracer prunes the graph, using181

Ameisen et al.’s [1] algorithm. After pruning the graph, users can create the necessary visualization182

files and start a visualization server:183

1 from circuit_tracer.utils import create_graph_files184

2 from circuit_tracer.frontend.local_server import serve185

3186

4 graph_file_dir = ’./ graph_files/’187

5188

6 create_graph_files(189

7 graph_or_path=graph ,190

8 slug=’michael -jordan ’,191

9 output_path=graph_file_dir ,192

10 node_threshold =0.8,193

11 edge_threshold =0.95194

12 )195

13196

14 server = serve(data_dir=graph_file_dir)197

Listing 3: Pruning an attribution graph, creating graph files, and starting a visualization server.

The visualization interface (Figure 2) allows users to click on any node in the attribution graph, and198

view the nodes that most contribute to and receive contributions from that node. If the node is a199

feature (rather than a logit or input embedding), users can also see the max-activating examples for200

the feature, and then annotate the feature with its meaning on the basis of those examples.201

circuit-tracer’s interface also allows users to pin nodes, saving those that are important and202

displaying them as a separate pane as a subgraph (or circuit), complete with weighted edges and203

node annotations. Nodes that appear to perform similar functions can be grouped together into a204

supernode, which can also be annotated. Users can thus use the visualization and annotation interface205

to transform an attribution graph into an interpretable circuit. All information about the circuit is206

4https://github.com/huggingface/safetensors
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Figure 2: The circuit visualization interface. Pane A displays the entire attribution graph; nodes in
the graph can be selected by clicking on them. The level of filtering can also be adjusted, further
sparsifying the graph. Pane B displays the nodes that most affect (and are most affected by) the
current node. Pane C displays the current feature’s max-activating examples, the top and bottom
upweighted tokens, and other summary statistics; it also allows for node annotation. Pane D displays
the subgraph. Users can pin nodes from the attribution graph, and group them together for easier
analysis; grouped tokens can also be annotated.

contained within its URL in the circuit-tracer interface, enabling relevant (super)nodes to be207

extracted from the URL and targeted for intervention.208

Intervention After constructing a circuit, users can perform interventions on a given model with209

respect to its features, causally verifying their interpretation of the circuit. Interventions take the210

form of tuples specifying the layer, position, and feature index of the feature upon which to intervene,211

and the new value the feature should take on; interventions return the new logits and new transcoder212

activations post-intervention:213

1 s = "Fact: Michael Jordan plays the sport of"214

2 original_logits , original_activations = model.get_activations(s)215

3216

4 interventions = [(8, 3, 3829, 5.0)]217

5 new_logits , new_activations = model.feature_intervention(s, interventions218

)219

Listing 4: Performing an intervention, setting the value of feature 3829 in layer 8, position 3 to 5.0.

Feature interventions can be performed on on arbitrary inputs, without first finding a circuit.220

circuit-tracer allows for both single-token interventions and efficient, steered, multi-token gen-221

erations using KV-caching. circuit-tracer performs Ameisen et al.’s [1] iterative patching by222

default but also implements constrained patching and direct-effects patching.223

3.2 Models and Transcoders Compatible with circuit-tracer224

Finding a circuit with circuit-tracer requires a compatible model and transcoders for it.225

3.2.1 Models Compatible with circuit-tracer226

circuit-tracer’s ReplacementModel supports two interpretability backends: TransformerLens227

(default) and NNSight. Each backend supports different models, but provides the same functionality228

(attribution and intervention).229
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TransformerLens Backend The TransformerLens [24] backend supports only those models imple-230

mented in TransformerLens. While most common open-weights model architectures (e.g. Llama,231

Gemma, and Qwen) are supported, less-common architectures might not be. However, Transformer-232

Lens is open-source, and new models can be added relatively easily.233

NNSight Backend circuit-tracer’s NNSight [10] backend supports all language models on234

HuggingFace. Initializing a ReplacementModel with backend="nnsight" yields a subclass of235

NNSight’s LanguageModel class, which retains all its functionality. Though it supports more models,236

the NNSight backend is slower, experimental, and does not support model offloading during attribu-237

tion. In the near future, we aim to enable the NNSight backend to work with the associated National238

Deep Inference Facility (NDIF) remote inference servers. When this integration is complete, users239

will be able to perform attribution and intervention using NDIF’s compute resources.240

3.2.2 Transcoders Compatible with circuit-tracer241

Existing Transcoders To use circuit-tracer, one needs transcoders for each MLP in the model242

under study. The pre-trained transcoders currently available include the following; transcoders trained243

by the authors except where otherwise noted5:244

Per-Layer Transcoders (PLTs)245

• Gemma-2 (2B; 11): JumpReLU PLTs from Lieberum et al. [17]246

• Llama-3.2 (1B; 12): ReLU PLTs247

• Qwen-3 (0.6B-14B; 31): ReLU transcoders for all dense models in the Qwen-3 family248

below 32B parameters.249

Cross-Layer Transcoders (CLTs)250

• Gemma-2 (2B): Two sets of ReLU CLTs with distinct feature dimension sizes.251

• Llama-3 (1B): ReLU CLTs252

Adding Transcoders circuit-tracer also supports user-created transcoders. Given a set of253

transcoder weights, one only needs to upload them, along with a configuration file that specifies254

where in the model the transcoder reads from and writes to, to a HuggingFace repository. Users255

must also compute the max-activating examples for each feature of a transcoder and upload them to256

the same repository in Neuronpedia’s publicly-available format; code for this will soon be released257

in a companion library. Finally, it may be necessary to write a function to load the weights into a258

(CrossLayer-)Transcoder object.259

3.3 Using circuit-tracer260

To make circuit-tracer more widely accessible, we have published it through a variety of channels.261

Neuronpedia End users who want to perform circuit-tracing without running Python code can262

use circuit-tracer on Neuronpedia6 [18]. Neuronpedia provides a GUI for performing on-263

demand attribution for Gemma-2 (2B) and Qwen-3 (4B); it also supports interventions. Unlike264

local circuit-tracer, Neuronpedia provides LLM-generated interpretations of features [2] and265

enables saving and sharing graphs.266

Google Colab Users who would like to demo circuit-tracer can do so via Google Colab,267

including Google Colab’s free T4 GPU instances. Only Gemma-2 (2b) is currently available, owing268

to the limited amount of RAM (12.7 GB) and VRAM (15 GB) available; however, attribution,269

visualization, and intervention are all supported.270

Local Installation Advanced users will want to use circuit-tracer via local installation from271

GitHub, where all features are available. We recommend at least 15 GB VRAM for circuit tracing with272

Gemma-2 (2B), and up to 40 GB for larger models; more memory also allows for faster attribution.273

5Links to transcoders to be added if accepted
6Link omitted for anonymity; see screenshot in App. A.
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4 Case Studies274

4.1 States and Capitals275

Lindsey et al. [19] observed that, given the prompt s =“Fact: The state containing Dallas has276

its capital in”, the models they studied could correctly predict the answer, Austin. Moreover, the277

resulting circuit clearly contained an intermediate Texas node, suggesting a reasoning chain of the278

form Dallas→Texas→Austin. Causal interventions suggested that this Texas node determined the279

state whose capital was output. With circuit-tracer, this result is easy to reproduce.280

We first load a ReplacementModel for Gemma-2 (2B), using the CLTs we trained for it. We next281

perform attribution, creating an attribution graph for s, and visualizing it.7 We performed manual282

analysis of the graph, labeling features, and found that it also contained a Texas feature; see Figure 3283

(top) for an image of the graph. We repeated this procedure with s′ =“Fact: The state containing284

Oakland has its capital in”, and similarly found a node corresponding to the state California.285

 Austin

 the

 Oklahoma

_

 Texas

0.438

0.125

0.032

0.032

0.025

Top 5 Tokens Pre-Intervention

0.0 0.1 0.2 0.3 0.4 0.5
Probability

 Sacramento

 the

 Austin

 San

 Santa

0.234

0.126

0.086

0.052

0.032

Top 5 Tokens Post-Intervention

Output Distribution for "Fact: The state containing Dallas has its capital in"

Figure 3: Top: Feature circuit for s=Fact: The state containing Dallas has its capital in, demonstrating
the existence of intermediate Texas nodes. Bottom: The next-token distributions for s pre-intervention,
and post-intervention, with Texas nodes ablated and California features upweighted. The most likely
output shifts form Austin to Sacramento.

Having identified two relevant supernodes, we can then verify the role of each supernode by per-286

forming interventions. We first record the model’s most likely outputs on s. Then, we perform a287

constrained intervention on the input s, downweighting all of the features that correspond to Texas288

at the Dallas position(multiplying their activations by -4), and upweighting the California features289

(setting their activations to 10 times their original value). We constrain our intervention to layers290

16-21; we choose this range because it is late enough in our model for all intervened features to291

have an effect. We find (Figure 3, bottom) that the model’s top outputs change drastically from the292

expected output of s, Austin, to that of s′, Sacramento. This suggests that Gemma-2 (2B) generates293

“state” representations for the intermediate hop of this task.294

4.2 Changing Languages295

Lindsey et al. [19] also observed that, given non-English prompts like s =“Hecho: Michael Jordan296

juega al” (baloncesto), models had distinct features and pathways for the underlying concept produced297

(basketball) and the output language (Spanish).298

To reproduce this, we load a ReplacementModel for Gemma-2 (2B), using Lieberum et al.’s [17]299

PLTs; note that the previous CLTs could also be used. We again perform attribution, creating an300

attribution graph for s, and visualizing it (Figure 4). Once more, we identified the expected nodes301

(representing basketball and Spanish).302

In this case, instead of verifying the validity of the Spanish features by replacing them, we simply303

turn them off. Moreover, rather than looking only at the next token prediction, we continually turn304

7If accepted, we will include a link to the graph, omitted currently for anonymity reasons.
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Hecho: Michael Jordan juega al
Normal output:

. . .baloncesto en la NBA.
Intervened output:

. . .basket for the Boston Celtics.

Figure 4: Top: Feature circuit for s = Hecho: Michael Jordan juega al, showing distinct basketball
/ sports and Spanish features and pathways. Bottom: Sampled continuations to s during normal
generation, and with Spanish features ablated. Ablating the Spanish features causes the model to
output English text.

the Spanish feature off, while sampling new models from the token. Concretely, we perform an305

open-ended intervention, setting the Spanish features to -2 times their original value at all non-BOS306

positions in the sentence, while sampling a continuation; we compare this to the generation in the307

no-intervention case. We see in Figure 4 (bottom) that the model normally continues the sentence in308

Spanish, the intervention causes the model to continue it with English-language text.309

5 Discussion and Future Work310

In this paper, we introduced circuit-tracer, and provided a brief overview of its design and311

functionality. We have also outlined two brief case studies demonstrating circuit-tracer’s ability312

to reproduce existing results; more such demos can be found in the circuit-tracer library.313

circuit-tracer aims to not only reproduce past work, but also support the research community as it314

explores open research questions. Because circuit tracing is a highly general technique, practitioners315

should be able to easily apply circuit tracing to their problem of choice. For example, while316

prior research has provided case studies in diverse safety-relevant phenomena such as chain of317

thought unfaithfulness, refusal, and jailbreaks [19], no systematic study of these using circuits has318

been performed. Moreover, many other domains, such as social biases, cognitive capabilities, and319

reasoning remain underexplored.320

Methodological questions also abound. While circuit-tracer computes circuits for individual321

inputs, how to synthesize multiple circuits into a coherent task mechanism is still unknown. Answering322

this question could also require finding ways to scale feature annotation and supernode creation,323

which are currently highly manual processes.324

circuit-tracer can additionally serve as a testbed for innovations in transcoders and other sparse325

decomposition techniques, as have been proposed in recent work [6, 14, 9, 26]. Adding these new326

sparse dictionaries to circuit-tracer, in order to assess the quality of the circuits made with them,327

is relatively simple. This opens up new research directions regarding the similarity of feature circuits328

found using different sparse decompositions of the same model.329

Finally, we note that there are many features that still remain to be added to circuit-tracer. These330

range from frontend changes to improve visualization, to algorithmic additions such as attributing331

to thresholded MLP neurons, or from attention patterns [16]. While we are excited to add such332

new features, we encourage users to contribute to circuit-tracer as well, as some already have.333

circuit-tracer is an open source library, and we hope that a healthy community of contributors334

will help keep it up-to-date, even in the fast-moving field of feature circuits.335
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Figure 5: The interface of circuit-tracer when accessed via Neuronpedia [18]. Users can easily
create a new graph, by clicking on + New Graph. They can also upload existing graphs. Neuronpedia
provides automatic, LLM-derived interpretations of transcoder features, though it also supports
manual facilitation. It moreover facilitates grouping features into labeled supernodes, and saving the
resulting circuit.
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