
circuit-tracer: A New Library for Finding Feature
Circuits

Michael Hanna1∗, Mateusz Piotrowski2*, Jack Lindsey2, Emmanuel Ameisen2

1ILLC, University of Amsterdam 2Anthropic
m.w.hanna@uva.nl

Abstract

Feature circuits aim to shed light on LLM behavior by identifying the features
that are causally responsible for a given LLM output, and connecting them into
a directed graph, or circuit, that explains how both each feature and each output
arose. However, performing circuit analysis is challenging: the tools for finding,
visualizing, and verifying feature circuits are complex and spread across libraries.
To facilitate feature-circuit finding, we introduce circuit-tracer, an open-source
library for efficient identification of feature circuits. circuit-tracer provides an
integrated pipeline for finding, visualizing, annotating, and performing interven-
tions on such circuits, tested with various model sizes, up to 14B parameters. We
make circuit-tracer available to both developers and end users, via integration
with tools such as Neuronpedia, which provides a user-friendly interface.

1 Introduction

Feature circuits are a paradigm in mechanistic interpretability that aims to provide low-level, causal
interpretations of LLM behavior in an unsupervised setting. A feature circuit for a given model, input,
and output aims to explain both which human-interpretable features caused the production of that
output, and what caused each feature to activate.

In practice, feature circuits take the form of a directed graph from a model’s inputs, through a set of
features, to the model’s outputs; see Figure 1 for an example. These features are causally-relevant
neurons of auxiliary models such as sparse autoencoders (SAEs) or transcoders, which decompose
model activations into a sparse set of features, or directions in activation space.

Feature circuits have successfully been used to study phenomena ranging from subject-verb agreement
and gender bias [29], parenthesis matching [20], and syntactic structure [15]. This is possible because
feature circuits are highly general: given a model, a behavior it exhibits (expressible as a single
next-token prediction), and a set of auxiliary models, one can find the feature circuit for that behavior.

Unfortunately, the adoption of feature circuits has been hampered by the technical complexity of
finding them. To find feature circuits, one must (1) decompose model activations into features
using auxiliary models; (2) determine which features are causally relevant to the model’s output;
(3) visualize and annotate the circuit and its features; and (4) perform causal interventions to verify
one’s interpretation of the circuit. While many libraries exist for training said auxiliary models
[28, 4], fewer exist for finding and visualizing circuits [29]; moreover, existing resources are not all
easily interoperable. As a result, while work using the auxiliary models from (1) abounds, work that
assembles these features into circuits and analyzes them as in (2)-(4) is scarce.

∗Equal contribution. Work completed as part of the Anthropic Fellows Program.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability.

mailto:m.w.hanna@uva.nl


Figure 1: Left: A feature circuit explaining the Gemma-2 (2B)’s prediction on the input The keys on
the cabinet. . . ; features are grouped into annotated supernodes. Right: Visualizing an SAE feature.
The top and bottom token predictions indicate which tokens are most up/downweighted by the feature,
while the highlighted text indicates where the feature fired most strongly. This feature appears to fire
on the ends of plural noun subjects.

In this paper, we introduce circuit-tracer2, a library that supports computing, visualizing, and
intervening on circuits. circuit-tracer uses Ameisen et al.’s [1] transcoder circuits, rather than
SAE feature circuits, providing more accurate edges; our implementation enables the use of models
up to 14B parameters in size. For circuit visualization, we integrate Ameisen et al.’s [1] recently-
released circuit-annotation frontend, allowing users to annotate their newly-found transcoder circuits.
Finally, circuit-tracer supports steering on transcoder features, both in the single- and efficient
multi-token generation cases.

Ease of use and accessibility are core goals for circuit-tracer: we aim to make circuit tracing
accessible to users regardless of technical experience or compute availability. For this reason, we
integrate circuit-tracer with Neuronpedia, which enables circuit tracing via a no-code user-
friendly web interface; we also optimize our library to enable running small models on Google Colab,
and aim to support remote execution on public computing resources soon.

In summary, circuit-tracer:

• Enables users to find, visualize, and intervene on feature circuits.
• Provides an efficient open-source implementation of Ameisen et al.’s [1] transcoder circuit-

tracing algorithm.
• Functions both locally and via accessible third-party compute resources, such as Google

Colab, Neuronpedia’s circuit tracing interface, and soon, the NDIF remote inference cluster.

The remainder of the paper is organized as follows. We first describe the circuit-finding process and
existing libraries (Section 2). We then introduce circuit-tracer, detailing its features and usage
(Section 3). We then walk through 2 case-studies in circuit tracing (Section 4). We conclude with
insights gained via circuit-tracing, and directions for future work (Section 5).

2 Background

2.1 Sparse Dictionary Learning

Past work has sought to identify the features LLMs use to compute their outputs. Early work did this
by identifying causally relevant neurons, but these have been found to be polysemantic: each neuron
fires in response to many concepts [34, 5], likely because models are pressured to represent many
more concepts than they have neurons [9]. Moreover, as neurons are often non-zero, it is difficult to
determine when a neuron is actively firing.

Sparse dictionary learning aims to convert dense, polysemantic representations into sparse, monose-
mantic ones [36, 6]. Formally, a sparse dictionary takes in activations h ∈ Rd from a fixed location

2https://github.com/safety-research/circuit-tracer

2

https://github.com/safety-research/circuit-tracer


in a model and attempts to reconstruct activations h′ ∈ Rd at a target location. It computes:
z = f (Wench+ benc) (1)

h̃′ = Wdecz+ bdec, (2)
where:

• Wenc ∈ Rn×d,Wdec ∈ Rd×n,benc ∈ Rn, and bdec ∈ Rd are model parameters;
• f is an activation function enforcing non-negativity, often ReLU, JumpReLU [38], or Top-k

[12]; and
• z ∈ Rn is the sparse, non-negative representation. Each dimension of z is called a feature.

Sparse dictionaries are trained to minimize reconstruction error. They are also trained to limit the
number of active features, if their activation function does not do so naturally (as Top-k does);
typically, this entails minimizing the L1-norm of z. This pressures z to faithfully represent the
original input while remaining sparse, with few active features. z’s features are encouraged to be
monosemantic by setting its dimensionality (n) much larger than that of the input (d)—often 32 times
larger, or more.

A sparse dictionary can be used to interpret a given h by visualizing the active features of the
corresponding z. This entails first computing all features’ activations over a large text dataset. Then,
one bins each feature’s activations into quantiles, and visualizes a random subset of the text inputs that
fall into each quantile; typically, the max-activating texts (in the top quantile) are most informative.
It is also common to display the output tokens that are most highly up- and down-weighted by the
active feature; see Figure 1 for an example. Given these, one can assign an interpretation to a feature
either via manual inspection or using an LLM [3], though how to best evaluate such interpretations
remains an open question [37, 17].

Sparse dictionaries often aim to reconstruct the activations that they took as input; such dictionaries
are called sparse autoencoders (SAEs). However, other variants exist: per-layer transcoders (PLTs)
predict MLP outputs from their inputs [8]. Cross-layer transcoders (CLTs) take in each layer’s MLP’s
inputs and predict a contribution to the output of each downstream MLP; the reconstruction of a given
MLP output is given by the sum of the contributions of all prior CLTs [26]. The choice of dictionary
architecture and input / output location affects the types of features found.

Though sparse dictionaries have successfully shed light on various model features, it is difficult to
understand the mechanisms driving a model’s behavior by looking at features from one dictionary:
not all active features are causally relevant to model behavior, and said behavior is often driven by
features at many layers. To resolve this problem, we use feature circuits.

2.2 Feature Circuits

A feature circuit [29, 20] is a directed graph describing how a given LLM solves a given task: it flows
from the model’s inputs, through causally relevant features, to the model’s logits. Each feature zi has
a weight that quantifies the change in model performance if zi were set to 0; this is its total effect
through all possible pathways. Each edge’s weight is the direct effect (DE) that the source node has
on the target activation. Feature circuits thus describe which features are causally relevant, and how
they combine to yield the model’s outputs.

Finding a feature circuit requires a set of dictionaries for the model, generally at least one per
layer. Then, one must quantify each edge or feature’s direct or total effect, pruning those with low
effect. Early work did this by zero-ablating each active feature, and recording the change in model
performance [20]; however, given n active features, this requires O(n) forward passes, making it
expensive even for small models. Gradient-based methods such as Nanda’s [32] activation patching,
or Marks et al.’s [29] extension thereof, produce faster but lower-quality estimates of feature and
edge importance.

2.3 Transcoder Feature Circuits

Transcoder feature circuits [1] are a new type of circuit that can be sparser, and allow for precise and
efficient calculation of node and edge weights. Their features generally come from PLTs or CLTs;
the latter provide sparser circuits, but are more challenging to train.

3



Ameisen et al. show that by freezing (or, conditioning on) the underlying model’s nonlinearities,
such as its attention patterns and LayerNorm scaling factors, one can exactly compute edge weights,
i.e. the DE of one transcoder feature on another. Doing so leaves each transcoder feature’s (pre-)
activation (i.e., its activation before f is applied) as a linear function of the input embeddings and
features that came before it. As such, one can compute the exact DE of all prior nodes on a given
target node via one backwards pass from the target feature’s input, with stop-gradient operations
applied to the nonlinearities and prior MLP outputs.

Repeating this process for each output and feature node (or a subset thereof) yields an adjacency
matrix containing the direct effect of each node on each other node. This matrix characterizes the full
feature circuit, or attribution graph. Ameisen et al. include in their graph not only features, input,
and output nodes, but also error nodes that represent the difference between the true MLP outputs
and transcoder reconstructions thereof. The adjacency matrix can then be visualized, or analyzed
using metrics like Ameisen et al.’s replacement score.

This approach yields precise DE values, but also has limitations: transcoder circuits often fail to
capture features relevant to attention3, as edge weights are conditioned on the attention pattern.
Transcoder errors can also hinder interpretation: when a large proportion of the flow through the
graph originates from uninterpretable error nodes, graphs may fail to capture important mechanisms.

2.4 Existing Feature Circuit Libraries

Working with feature circuits often involves four steps: 1) training sparse dictionaries, 2) finding
feature circuits, 3) visualizing and annotating on said circuits, and 4) intervening on these circuits.
Currently, there exist libraries for individual steps in this process, but none that support all steps of it.

Many libraries support the training of sparse dictionaries (1), including dictionary-learning [28],
SAE-Lens [4], and sparsify. In contrast to these, only one library—feature-circuits [29]—
supports finding feature circuits (2), visualizing found circuits (3), or performing interventions (4).
However, it does not enable interactive circuit annotation or feature visualization, though other
libraries, such as Neuronpedia [25] or SAE-Vis [30] support the latter. Moreover, at the time of
circuit-tracer’s creation, there was no publicly available implementation of Ameisen et al.’s [1]
circuit-finding algorithm, though contemporaneous work4 has since provided another open-source
implementation.

In light of the abundance of libraries for sparse dictionary training, and the high computational
expense associated with that process, we design circuit-tracer to support the latter three steps of
circuit-finding. However, circuit-tracer aims to support transcoders trained with any library.

Compared to past work, we focus on efficiency and accessibility. We minimize circuit-tracer’s
memory usage, enabling circuit-finding in models with 14B parameters—well over 2B, the largest
size in prior open-source work. We also simplify the circuit-finding process, allowing users to
find a circuit given just a single prompt, where earlier work required constructing a dataset and
attribution metrics. circuit-tracer facilitates visualization as well, via an interactive interface
that enables users to analyze the circuit and the features composing it at the same time. Finally, we
make circuit-tracer available via many channels, including three—Google Colab, Neuronpedia,
and soon, NDIF [11]—that require no compute resources on the user’s end; see Section 3.2 and
Section 3.3 for details.

2.5 Interpretability Libraries

In releasing circuit-tracer, we contribute to a line of research that makes interpretability more
accessible by taking existing methods and releasing open-source implementations, with user-friendly
interfaces. Libraries for explainable AI and input attribution are especially abundant: Inseq provides
attribution tools for text-based models [39], while Quantus and Zennit [18, 2] focus on the image
domain; the Captum library is modality-agnostic [23]. Our work is more closely related to libraries
such as Auto-Circuit [31] or EAP-IG [16], which find and visualize component-level LLM circuits.
Foundational to this effort are libraries, such as TransformerLens [33], NNSight [11], Pyvene [42],
and Penzai [21], that provide ready access to model internals.

3Recent work has sought to address this by incorporating attention or residual stream SAEs [22].
4https://github.com/EleutherAI/attribute

4

https://github.com/EleutherAI/sparsify
https://github.com/EleutherAI/attribute


3 circuit-tracer

In this section, we answer the following questions about circuit-tracer: 1) How is it designed,
and what can it do?; 2) With which models is it compatible; and 3) How can it be used?

3.1 circuit-tracer Design and Features

3.1.1 ReplacementModel

In circuit-tracer, a model and the transcoders used to interpret it are grouped together into a
ReplacementModel. Loading this object requires only the name of the model from HuggingFace
Transformers [41], and the name of a HuggingFace Hub repository containing the transcoders:

1 from circuit_tracer import ReplacementModel
2

3 model = ReplacementModel.from_pretrained(
4 model_name = "google/gemma -2-2b",
5 transcoder_set = "gemma",
6 )

Listing 1: Loading a ReplacementModel based on Gemma-2 (2B) and GemmaScope transcoders.
We use the alias “gemma” to refer to the latter for convenience.

The ReplacementModel class is used during attribution and intervention; it also enables recording
the activations of transcoder features on a given input. By default, a ReplacementModel is a subclass
of TransformerLens’ HookedTransformer class; one can thus perform arbitrary interventions on a
ReplacementModel, just as with TransformerLens. For more information on model and transcoder
compatibility, see Section 3.2.

Currently, circuit-tracer expects models to be loaded onto a single GPU; other accelerators such
as MPS are not yet supported. Because a model’s transcoders are often much larger than the model
itself, we offload transcoders’ decoders to disk by default, loading them to GPU only when required;
this is possible when model weights are saved in the fast SafeTensors format.5 The memory footprint
of a ReplacementModel is thus similar to that of its base counterpart.

3.1.2 Attribution

Once we have loaded a ReplacementModel, attribution in circuit-tracer is simple:

1 from circuit_tracer import attribute
2

3 s = "Fact: Michael Jordan plays the sport of"
4 graph = attribute(model , s)

Listing 2: Performing attribution with an existing ReplacementModel

When performing attribution, circuit-tracer first finds the top-10 most likely next logits, or those
that compose 0.95 of the next-token probability mass, whichever is smaller. It then returns a Graph
containing the adjacency matrix of direct effects between input, feature, error, and logit nodes that
contribute to the model’s prediction of those logits, as described in Section 2.3. This adjacency matrix
can then be directly analyzed or visualized.

circuit-tracer’s attribution allows users to flexibly change the number of logits attributed from,
and supports attribution from arbitrary functions of the logits, e.g. the difference of two or more logit
tokens as used in prior work [40]. It also supports limiting the number of nodes attributed from; this
is important, as the number of active transcoder features grows linearly with input length, slowing
attribution, and causing the adjacency matrix to become prohibitively large.

3.1.3 Visualization and Annotation

Users can visualize and annotate a given attribution graph using the interface introduced by Ameisen
et al. [1]. Visualizing first involves pruning the graph, which is otherwise dense and difficult to

5https://github.com/huggingface/safetensors

5

https://github.com/huggingface/safetensors


Figure 2: The circuit visualization interface. Pane A displays the entire attribution graph; nodes in
the graph can be selected by clicking on them. The level of filtering can also be adjusted, further
sparsifying the graph. Pane B displays the nodes that most affect (and are most affected by) the
current node. Pane C displays the current feature’s max-activating examples, the top and bottom
upweighted tokens, and other summary statistics; it also allows for node annotation. Pane D displays
the subgraph. Users can pin nodes from the attribution graph, and group them together for easier
analysis; grouped tokens can also be annotated.

understand. Users can specify the proportion of node and edge influence they would like to retain—
more influence means more nodes and edges retained—and circuit-tracer prunes the graph, using
Ameisen et al.’s [1] algorithm. After pruning the graph, users can create the necessary visualization
files and start a visualization server:

1 from circuit_tracer.utils import create_graph_files
2 from circuit_tracer.frontend.local_server import serve
3

4 graph_file_dir = ’./ graph_files/’
5

6 create_graph_files(
7 graph_or_path=graph ,
8 slug=’michael -jordan ’,
9 output_path=graph_file_dir ,

10 node_threshold =0.8,
11 edge_threshold =0.95
12 )
13

14 server = serve(data_dir=graph_file_dir)

Listing 3: Pruning an attribution graph, creating graph files, and starting a visualization server.

The visualization interface (Figure 2) allows users to click on any node in the attribution graph, and
view the nodes that most contribute to and receive contributions from that node. If the node is a
feature (rather than a logit or input embedding), users can also see the max-activating examples for
the feature, and then annotate the feature with its meaning on the basis of those examples.

circuit-tracer’s interface also allows users to pin nodes, saving those that are important and
displaying them as a separate pane as a subgraph (or circuit), complete with weighted edges and
node annotations. Nodes that appear to perform similar functions can be grouped together into a
supernode, which can also be annotated. Users can thus use the visualization and annotation interface
to transform an attribution graph into an interpretable circuit. All information about the circuit is
contained within its URL in the circuit-tracer interface, enabling relevant (super)nodes to be
extracted from the URL and targeted for intervention.

6



Intervention After constructing a circuit, users can perform interventions on a given model with
respect to its features, causally verifying their interpretation of the circuit. Interventions take the
form of tuples specifying the layer, position, and feature index of the feature upon which to intervene,
and the new value the feature should take on; interventions return the new logits and new transcoder
activations post-intervention:

1 s = "Fact: Michael Jordan plays the sport of"
2 original_logits , original_activations = model.get_activations(s)
3

4 interventions = [(8, 3, 3829, 5.0)]
5 new_logits , new_activations = model.feature_intervention(s,

interventions)

Listing 4: Performing an intervention, setting the value of feature 3829 in layer 8, position 3 to 5.0.

Feature interventions can be performed on on arbitrary inputs, without first finding a circuit.
circuit-tracer allows for both single-token interventions and efficient, steered, multi-token gen-
erations using KV-caching. circuit-tracer performs Ameisen et al.’s [1] iterative patching by
default but also implements constrained patching and direct-effects patching.

3.2 Models and Transcoders Compatible with circuit-tracer

Finding a circuit with circuit-tracer requires a compatible model and transcoders for it.

3.2.1 Models Compatible with circuit-tracer

circuit-tracer’s ReplacementModel supports two interpretability backends: TransformerLens
(default) and NNSight. Each backend supports different models, but provides the same functionality
(attribution and intervention).

TransformerLens Backend The TransformerLens [33] backend supports only those models imple-
mented in TransformerLens. While most common open-weights model architectures (e.g. Llama,
Gemma, and Qwen) are supported, less-common architectures might not be. However, Transformer-
Lens is open-source, and new models can be added relatively easily.

NNSight Backend circuit-tracer’s NNSight [11] backend supports all language models on
HuggingFace. Initializing a ReplacementModel with backend="nnsight" yields a subclass of
NNSight’s LanguageModel class, which retains all its functionality. Though it supports more models,
the NNSight backend is slower, experimental, and does not support model offloading during attribu-
tion. In the near future, we aim to enable the NNSight backend to work with the associated National
Deep Inference Facility (NDIF) remote inference servers. When this integration is complete, users
will be able to perform attribution and intervention using NDIF’s compute resources.

3.2.2 Transcoders Compatible with circuit-tracer

Existing Transcoders To use circuit-tracer, one needs transcoders for each MLP in the model
under study. The pre-trained transcoders currently available include the following; transcoders trained
by the authors except where otherwise noted6:

Per-Layer Transcoders (PLTs)

• Gemma-2 (2B; 13): JumpReLU PLTs from Lieberum et al. [24]
• Llama-3.2 (1B; 14): ReLU PLTs
• Qwen-3 (0.6B-14B; 43): ReLU transcoders for all dense models in the Qwen-3 family

below 32B parameters.

Cross-Layer Transcoders (CLTs)

• Gemma-2 (2B): Two sets of ReLU CLTs with distinct feature dimension sizes.
• Llama-3 (1B): ReLU CLTs

6PLTs available at this link; CLTs available at this link.

7

https://huggingface.co/collections/mntss/per-layer-transcoders-68917bb0c97d8d5f31401edc
https://huggingface.co/collections/mntss/cross-layer-transcoders-688c39eaa8d5562e9c864055


Adding Transcoders circuit-tracer also supports user-created transcoders. Given a set of
transcoder weights, one only needs to upload them, along with a configuration file that specifies
where in the model the transcoder reads from and writes to, to a HuggingFace repository. Users
must also compute the max-activating examples for each feature of a transcoder and upload them to
the same repository in Neuronpedia’s publicly-available format; code for this will soon be released
in a companion library. Finally, it may be necessary to write a function to load the weights into a
(CrossLayer-)Transcoder object.

3.3 Using circuit-tracer

To make circuit-tracer more widely accessible, we have published it through a variety of channels.

Neuronpedia End users who want to perform circuit-tracing without running Python code can
use circuit-tracer on Neuronpedia7 [25]. Neuronpedia provides a GUI for performing on-
demand attribution for Gemma-2 (2B) and Qwen-3 (4B); it also supports interventions. Unlike
local circuit-tracer, Neuronpedia provides LLM-generated interpretations of features [3] and
enables saving and sharing graphs.

Google Colab Users who would like to demo circuit-tracer can do so via Google Colab,
including Google Colab’s free T4 GPU instances. Only Gemma-2 (2b) is currently available, owing
to the limited amount of RAM (12.7 GB) and VRAM (15 GB) available; however, attribution,
visualization, and intervention are all supported.

Local Installation Advanced users will want to use circuit-tracer via local installation from
GitHub, where all features are available. We recommend at least 15 GB VRAM for circuit tracing with
Gemma-2 (2B), and up to 40 GB for larger models; more memory also allows for faster attribution.

4 Case Studies

4.1 States and Capitals

Lindsey et al. [27] observed that, given the prompt s =“Fact: The capital of the state containing
Dallas is”, the models they studied could correctly predict the answer, Austin. Moreover, the resulting
circuit clearly contained an intermediate Texas node, suggesting a reasoning chain of the form
Dallas→Texas→Austin. Causal interventions suggested that this Texas node determined the state
whose capital was output. With circuit-tracer, this result is easy to reproduce.

We first load a ReplacementModel for Gemma-2 (2B), using the 2.5M-feature CLTs we trained for
it. We next perform attribution, creating an attribution graph for s, and visualizing it.8 We performed
manual analysis of the graph, labeling features, and found that it also contained a Texas feature; see
Figure 3 (top) for an image of the graph. We repeated this procedure with s′ =“Fact: The capital of
the state containing Oakland is”, and similarly found a node corresponding to the state California.

Having identified two relevant supernodes, we can then verify the role of each supernode by per-
forming interventions. We first record the model’s most likely outputs on s. Then, we perform a
constrained intervention on the input s, downweighting all of the features that correspond to Texas
at the Dallas position (multiplying their activations by -4), and upweighting the California features
(setting their activations to 10 times their original value). We constrain our intervention to layers
16-21; we choose this range because it is late enough in our model for all intervened features to
have an effect. We find (Figure 3, bottom) that the model’s top outputs change drastically from the
expected output of s, Austin, to that of s′, Sacramento. This suggests that Gemma-2 (2B) generates
“state” representations for the intermediate hop of this task.

7https://www.neuronpedia.org/gemma-2-2b/graph
8View the graph on Neuronpedia.

8

https://www.neuronpedia.org/gemma-2-2b/graph
https://www.neuronpedia.org/gemma-2-2b/graph?slug=gemma-fact-dallas-austin&pruningThreshold=0.6&densityThreshold=1&pinnedIds=27_22605_10%2C20_15589_10%2CE_26865_9%2C21_5943_10%2C23_12237_10%2C20_15589_9%2C16_25_9%2C14_2268_9%2C18_8959_10%2C4_13154_9%2C7_6861_9%2C19_1445_10%2CE_2329_7%2CE_6037_4%2C0_13727_7%2C6_4012_7%2C17_7178_10%2C15_4494_4%2C6_4662_4%2C4_7671_4%2C3_13984_4%2C1_1000_4%2C19_7477_9%2C18_6101_10%2C16_4298_10%2C7_691_10&supernodes=%5B%5B%22capital%22%2C%2215_4494_4%22%2C%226_4662_4%22%2C%224_7671_4%22%2C%223_13984_4%22%2C%221_1000_4%22%5D%2C%5B%22state%22%2C%226_4012_7%22%2C%220_13727_7%22%5D%2C%5B%22Texas%22%2C%2220_15589_9%22%2C%2219_7477_9%22%2C%2216_25_9%22%2C%224_13154_9%22%2C%2214_2268_9%22%2C%227_6861_9%22%5D%2C%5B%22preposition+followed+by+place+name%22%2C%2219_1445_10%22%2C%2218_6101_10%22%5D%2C%5B%22capital+cities+%2F+say+a+capital+city%22%2C%2221_5943_10%22%2C%2217_7178_10%22%2C%227_691_10%22%2C%2216_4298_10%22%5D%5D


 Austin

 the

 Oklahoma

_

 Texas

0.438

0.125

0.032

0.032

0.025

Top 5 Tokens Pre-Intervention

0.0 0.1 0.2 0.3 0.4 0.5
Probability

 Sacramento

 the

 Austin

 San

 Santa

0.234

0.126

0.086

0.052

0.032

Top 5 Tokens Post-Intervention

Output Distribution for "Fact: The state containing Dallas has its capital in"

Figure 3: Top: Feature circuit for s=Fact: the capital of the state containing Dallas is, demonstrating
the existence of intermediate Texas nodes. Bottom: The next-token distributions for s pre-intervention,
and post-intervention, with Texas nodes ablated and California features upweighted. The most likely
output shifts form Austin to Sacramento.

4.2 Changing Languages

Lindsey et al. [27] also observed that, given non-English prompts like s =“Hecho: Michael Jordan
juega al” (baloncesto), models had distinct features and pathways for the underlying concept produced
(basketball) and the output language (Spanish).

Hecho: Michael Jordan juega al
Normal output:

. . .baloncesto en la NBA.
Intervened output:

. . .basket for the Boston Celtics.

Figure 4: Top: Feature circuit for s = Hecho: Michael Jordan juega al, showing distinct basketball
/ sports and Spanish features and pathways. Bottom: Sampled continuations to s during normal
generation, and with Spanish features ablated. Ablating the Spanish features causes the model to
output English text.

To reproduce this, we load a ReplacementModel for Gemma-2 (2B), using Lieberum et al.’s [24]
PLTs; note that the previous CLTs could also be used. We again perform attribution, creating an
attribution graph for s, and visualizing it (Figure 4)9. Once more, we identified the expected nodes
(representing basketball and Spanish).

In this case, instead of verifying the validity of the Spanish features by replacing them, we simply
turn them off. Moreover, rather than looking only at the next token prediction, we continually turn
the Spanish feature off, while sampling new models from the token. Concretely, we perform an
open-ended intervention, setting the Spanish features to -2 times their original value at all non-BOS
positions in the sentence, while sampling a continuation; we compare this to the generation in the
no-intervention case. We see in Figure 4 (bottom) that the model normally continues the sentence in
Spanish, the intervention causes the model to continue it with English-language text.

9Graph available on Neuronpedia

9

https://www.neuronpedia.org/gemma-2-2b/graph?slug=gemma-michael-jordan-es&pruningThreshold=0.7&densityThreshold=1&pinnedIds=27_143831_6%2CE_18853_4%2C25_13416_6%2C21_4818_6%2C21_9324_6%2C23_8855_6%2C24_13490_6%2C24_3865_6%2C24_3018_6%2C23_14713_6%2C24_7980_6%2C25_9334_6%2C20_9090_6%2C4_1742_4%2C19_7590_6%2C25_11463_6%2C18_12672_6%2C7_852_4%2C19_15763_6%2CE_113501_5%2C15_15208_5%2C15_15208_6%2C6_7377_5%2CE_717_6%2C18_15704_6%2C16_5654_6%2C22_15500_6%2C20_341_6%2C21_4818_4%2C1_1173_4%2C22_11854_6%2C21_7256_6%2C17_14627_6&supernodes=%5B%5B%22sports%22%2C%2219_15763_6%22%2C%2223_8855_6%22%2C%2220_9090_6%22%2C%2221_9324_6%22%2C%2219_7590_6%22%5D%2C%5B%22play%22%2C%2216_5654_6%22%2C%2218_15704_6%22%2C%2215_15208_6%22%2C%2215_15208_5%22%2C%226_7377_5%22%5D%2C%5B%22basketball%22%2C%2221_4818_6%22%2C%224_1742_4%22%2C%227_852_4%22%2C%2218_12672_6%22%2C%2221_4818_4%22%2C%221_1173_4%22%5D%2C%5B%22Spanish+%2F+non-English+text%22%2C%2222_11854_6%22%2C%2221_7256_6%22%2C%2217_14627_6%22%2C%2222_15500_6%22%2C%2220_341_6%22%2C%2224_7980_6%22%2C%2224_3865_6%22%2C%2225_9334_6%22%2C%2225_13416_6%22%2C%2225_11463_6%22%2C%2224_13490_6%22%2C%2224_3018_6%22%2C%2223_14713_6%22%5D%5D


5 Discussion and Future Work

In this paper, we introduced circuit-tracer, and provided a brief overview of its design and
functionality. We have also outlined two brief case studies demonstrating circuit-tracer’s ability
to reproduce existing results; more such demos can be found in the circuit-tracer library.

circuit-tracer aims to not only reproduce past work, but also support the research community as it
explores open research questions. Because circuit tracing is a highly general technique, practitioners
should be able to easily apply circuit tracing to their problem of choice. For example, while
prior research has provided case studies in diverse safety-relevant phenomena such as chain of
thought unfaithfulness, refusal, and jailbreaks [27], no systematic study of these using circuits has
been performed. Moreover, many other domains, such as social biases, cognitive capabilities, and
reasoning remain underexplored.

Methodological questions also abound. While circuit-tracer computes circuits for individual
inputs, how to synthesize multiple circuits into a coherent task mechanism is still unknown. Answering
this question could also require finding ways to scale feature annotation and supernode creation,
which are currently highly manual processes.

circuit-tracer can additionally serve as a testbed for innovations in transcoders and other sparse
decomposition techniques, as have been proposed in recent work [7, 19, 10, 35]. Adding these new
sparse dictionaries to circuit-tracer, in order to assess the quality of the circuits made with them,
is relatively simple. This opens up new research directions regarding the similarity of feature circuits
found using different sparse decompositions of the same model.

Finally, we note that there are many features that still remain to be added to circuit-tracer. These
range from frontend changes to improve visualization, to algorithmic additions such as attributing
to thresholded MLP neurons, or from attention patterns [22]. While we are excited to add such
new features, we encourage users to contribute to circuit-tracer as well, as some already have.
circuit-tracer is an open source library, and we hope that a healthy community of contributors
will help keep it up-to-date, even in the fast-moving field of feature circuits.

Acknowledgments

The authors thank Johnny Lin for his invaluable help and support in making circuit-tracer
available on Neuronpedia; the authors also thank Curt Tigges and David Chanin for their contributions
to this process. The authors also thank those who have contributed PRs to circuit-tracer. We
thank Jaden Fiotto-Kaufman, Adam Belfki, and Emma Bortz from the NNSight team for their support
in porting circuit-tracer to NNSight. Finally, the authors thank the Anthropic Fellows Program
for enabling and supporting this project.

References
[1] Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian

Chen, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael
Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas
Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam
Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing:
Revealing computational graphs in language models. Transformer Circuits Thread, 2025. URL
https://transformer-circuits.pub/2025/attribution-graphs/methods.html.

[2] Christopher J. Anders, David Neumann, Wojciech Samek, Klaus-Robert Müller, and Sebastian
Lapuschkin. Software for dataset-wide xai: From local explanations to global insights with
zennit, corelay, and virelay, 2023. URL https://arxiv.org/abs/2106.13200.

[3] Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in
language models. https://openaipublic.blob.core.windows.net/neuron-explainer/
paper/index.html, 2023.

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://arxiv.org/abs/2106.13200
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html


[4] Joseph Bloom, Curt Tigges, Anthony Duong, and David Chanin. Saelens. https://github.
com/jbloomAus/SAELens, 2024.

[5] Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and
Martin Wattenberg. An interpretability illusion for bert, 2021. URL https://arxiv.org/
abs/2104.07143.

[6] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

[7] Valérie Costa, Thomas Fel, Ekdeep Singh Lubana, Bahareh Tolooshams, and Demba Ba.
From flat to hierarchical: Extracting sparse representations with matching pursuit, 2025. URL
https://arxiv.org/abs/2506.03093.

[8] Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable LLM
feature circuits. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=J6zHcScAo0.

[9] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam Mc-
Candlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models
of superposition. Transformer Circuits Thread, 2022. URL https://transformer-circuits.
pub/2022/toy_model/index.html.

[10] Thomas Fel, Ekdeep Singh Lubana, Jacob S. Prince, Matthew Kowal, Victor Boutin, Is-
abel Papadimitriou, Binxu Wang, Martin Wattenberg, Demba E. Ba, and Talia Konkle.
Archetypal SAE: Adaptive and stable dictionary learning for concept extraction in large vi-
sion models. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=9v1eW8HgMU.

[11] Jaden Fried Fiotto-Kaufman, Alexander Russell Loftus, Eric Todd, Jannik Brinkmann, Koyena
Pal, Dmitrii Troitskii, Michael Ripa, Adam Belfki, Can Rager, Caden Juang, Aaron Mueller,
Samuel Marks, Arnab Sen Sharma, Francesca Lucchetti, Nikhil Prakash, Carla E. Brodley, Arjun
Guha, Jonathan Bell, Byron C Wallace, and David Bau. NNsight and NDIF: Democratizing
access to open-weight foundation model internals. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://openreview.net/forum?id=MxbEiFRf39.

[12] Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In The
Thirteenth International Conference on Learning Representations, 2025. URL https://
openreview.net/forum?id=tcsZt9ZNKD.

[13] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan
Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,
Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-
son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,
Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu
Kumar, Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David
Weinberger, Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma
Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel
Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska,
Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff
Stanway, Jetha Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe

11

https://github.com/jbloomAus/SAELens
https://github.com/jbloomAus/SAELens
https://arxiv.org/abs/2104.07143
https://arxiv.org/abs/2104.07143
https://arxiv.org/abs/2506.03093
https://openreview.net/forum?id=J6zHcScAo0
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://openreview.net/forum?id=9v1eW8HgMU
https://openreview.net/forum?id=MxbEiFRf39
https://openreview.net/forum?id=tcsZt9ZNKD
https://openreview.net/forum?id=tcsZt9ZNKD


Fernandez, Joost van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji,
Kareem Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin
Nguyen, Kiranbir Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena
Heuermann, Leticia Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas
Dixon, Luciano Martins, Machel Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat
Velloso, Mateo Wirth, Matt Davidow, Matt Miller, Matthew Rahtz, Matthew Watson, Meg
Risdal, Mehran Kazemi, Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park,
Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan, Neta
Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul
Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu,
Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh
Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien M. R. Arnold, Sebastian Krause,
Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting
Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh
Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han,
Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe
Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral,
Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol
Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya,
Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi, and
Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL
https://arxiv.org/abs/2408.00118.

[14] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson,
Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind
Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason
Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya
Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton,
Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Va-
suden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield,
Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke
de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin
Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi,
Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert
Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre,
Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hos-
seini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale,
Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,

12

https://arxiv.org/abs/2408.00118


Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin
Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan,
Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine
Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert,
Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain,
Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit
Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu,
Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco,
Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe,
Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang,
Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock,
Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker,
Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester
Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon
Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine,
Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin
Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan
Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison
Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff
Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin,
Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh
Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh,
Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt,
Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew
Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao
Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat,
Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,
Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,
Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,
Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,
Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ
Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,
Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao
Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang,
Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng,
Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez,
Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez,
Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman,
Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin
Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3
herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

13

https://arxiv.org/abs/2407.21783


[15] Michael Hanna and Aaron Mueller. Incremental sentence processing mechanisms in autore-
gressive transformer language models. In Luis Chiruzzo, Alan Ritter, and Lu Wang, editors,
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pages 3181–3203, Albuquerque, New Mexico, April 2025. Association for Computa-
tional Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.164. URL
https://aclanthology.org/2025.naacl-long.164/.

[16] Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. Have faith in faithfulness: Going
beyond circuit overlap when finding model mechanisms. In First Conference on Language
Modeling, 2024. URL https://openreview.net/forum?id=TZ0CCGDcuT.

[17] Thomas Heap, Tim Lawson, Lucy Farnik, and Laurence Aitchison. Sparse autoencoders
can interpret randomly initialized transformers, 2025. URL https://arxiv.org/abs/2501.
17727.

[18] Anna Hedström, Leander Weber, Daniel Krakowczyk, Dilyara Bareeva, Franz Motzkus, Woj-
ciech Samek, Sebastian Lapuschkin, and Marina M.-C. Höhne. Quantus: An explainable ai
toolkit for responsible evaluation of neural network explanations and beyond. Journal of Ma-
chine Learning Research, 24(34):1–11, 2023. URL http://jmlr.org/papers/v24/22-0142.
html.

[19] Sai Sumedh R. Hindupur, Ekdeep Singh Lubana, Thomas Fel, and Demba E. Ba. Projecting
assumptions: The duality between sparse autoencoders and concept geometry. In ICML 2025
Workshop on Methods and Opportunities at Small Scale, 2025. URL https://openreview.
net/forum?id=AKaoBzhIIF.

[20] Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
autoencoders find highly interpretable features in language models. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
F76bwRSLeK.

[21] Daniel D. Johnson. Penzai + Treescope: A toolkit for interpreting, visualizing, and editing
models as data. ICML 2024 Workshop on Mechanistic Interpretability, 2024.

[22] Harish Kamath, Emmanuel Ameisen, Isaac Kauvar, Rodrigo Luger, Wes Gurnee, Adam Pearce,
Sam Zimmerman, Joshua Batson, Thomas Conerly, Chris Olah, and Jack Lindsey. Tracing
attention computation: Attention connects features, and features direct attention. Transformer
Circuits Thread, 2025. URL https://transformer-circuits.pub/2025/attention-qk/
index.html.

[23] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan
Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, and Orion Reblitz-
Richardson. Captum: A unified and generic model interpretability library for pytorch, 2020.
URL https://arxiv.org/abs/2009.07896.

[24] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,
Vikrant Varma, Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open
sparse autoencoders everywhere all at once on gemma 2. In Yonatan Belinkov, Najoung Kim,
Jaap Jumelet, Hosein Mohebbi, Aaron Mueller, and Hanjie Chen, editors, Proceedings of the 7th
BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 278–300,
Miami, Florida, US, November 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.blackboxnlp-1.19. URL https://aclanthology.org/2024.blackboxnlp-1.19/.

[25] Johnny Lin. Neuronpedia: Interactive reference and tooling for analyzing neural networks,
2023. URL https://www.neuronpedia.org. Software available from neuronpedia.org.

[26] Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christo-
pher Olah. Sparse crosscoders for cross-layer features and model diffing. Transformer Circuits
Thread, October 2024. URL https://transformer-circuits.pub/2024/crosscoders/
index.html.

14

https://aclanthology.org/2025.naacl-long.164/
https://openreview.net/forum?id=TZ0CCGDcuT
https://arxiv.org/abs/2501.17727
https://arxiv.org/abs/2501.17727
http://jmlr.org/papers/v24/22-0142.html
http://jmlr.org/papers/v24/22-0142.html
https://openreview.net/forum?id=AKaoBzhIIF
https://openreview.net/forum?id=AKaoBzhIIF
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://transformer-circuits.pub/2025/attention-qk/index.html
https://transformer-circuits.pub/2025/attention-qk/index.html
https://arxiv.org/abs/2009.07896
https://aclanthology.org/2024.blackboxnlp-1.19/
https://www.neuronpedia.org
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html


[27] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large
language model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.
pub/2025/attribution-graphs/biology.html.

[28] Samuel Marks, Adam Karvonen, and Aaron Mueller. dictionary_learning. https://github.
com/saprmarks/dictionary_learning, 2024.

[29] Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=I4e82CIDxv.

[30] Callum McDougall. SAE Visualizer. https://github.com/callummcdougall/sae_vis,
2024.

[31] Joseph Miller, Bilal Chughtai, and William Saunders. Transformer circuit evaluation metrics
are not robust. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=zSf8PJyQb2.

[32] Neel Nanda. Attribution Patching: Activation Patching At Industrial Scale, 2023. URL
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching.

[33] Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/
TransformerLensOrg/TransformerLens, 2022.

[34] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017.
doi: 10.23915/distill.00007. URL https://distill.pub/2017/feature-visualization.

[35] James Oldfield, Shawn Im, Yixuan Li, Mihalis A. Nicolaou, Ioannis Patras, and Grigorios G
Chrysos. Towards interpretability without sacrifice: Faithful dense layer decomposition with
mixture of decoders, 2025. URL https://arxiv.org/abs/2505.21364.

[36] Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A
strategy employed by v1? Vision Research, 37(23):3311–3325, 1997. ISSN 0042-6989. doi:
https://doi.org/10.1016/S0042-6989(97)00169-7. URL https://www.sciencedirect.com/
science/article/pii/S0042698997001697.

[37] Gonçalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting
millions of features in large language models, 2025. URL https://arxiv.org/abs/2410.
13928.

[38] Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma,
János Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu
sparse autoencoders, 2024. URL https://arxiv.org/abs/2407.14435.

[39] Gabriele Sarti, Nils Feldhus, Ludwig Sickert, and Oskar van der Wal. Inseq: An interpretability
toolkit for sequence generation models. In Danushka Bollegala, Ruihong Huang, and Alan
Ritter, editors, Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 3: System Demonstrations), pages 421–435, Toronto, Canada, July 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-demo.40. URL https:
//aclanthology.org/2023.acl-demo.40/.

[40] Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

15

https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://github.com/saprmarks/dictionary_learning
https://github.com/saprmarks/dictionary_learning
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=I4e82CIDxv
https://github.com/callummcdougall/sae_vis
https://openreview.net/forum?id=zSf8PJyQb2
https://openreview.net/forum?id=zSf8PJyQb2
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://distill.pub/2017/feature-visualization
https://arxiv.org/abs/2505.21364
https://www.sciencedirect.com/science/article/pii/S0042698997001697
https://www.sciencedirect.com/science/article/pii/S0042698997001697
https://arxiv.org/abs/2410.13928
https://arxiv.org/abs/2410.13928
https://arxiv.org/abs/2407.14435
https://aclanthology.org/2023.acl-demo.40/
https://aclanthology.org/2023.acl-demo.40/
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul


[41] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art
natural language processing. In Qun Liu and David Schlangen, editors, Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 38–45, Online, October 2020. Association for Computational Linguistics. doi: 10.18653/
v1/2020.emnlp-demos.6. URL https://aclanthology.org/2020.emnlp-demos.6/.

[42] Zhengxuan Wu, Atticus Geiger, Aryaman Arora, Jing Huang, Zheng Wang, Noah Good-
man, Christopher Manning, and Christopher Potts. pyvene: A library for understanding
and improving PyTorch models via interventions. In Kai-Wei Chang, Annie Lee, and
Nazneen Rajani, editors, Proceedings of the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies (Vol-
ume 3: System Demonstrations), pages 158–165, Mexico City, Mexico, June 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.naacl-demo.16. URL
https://aclanthology.org/2024.naacl-demo.16/.

[43] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang,
Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin
Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang,
Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi
Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang
Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu
Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025. URL
https://arxiv.org/abs/2505.09388.

16

https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2024.naacl-demo.16/
https://arxiv.org/abs/2505.09388

	Introduction
	Background
	Sparse Dictionary Learning
	Feature Circuits
	Transcoder Feature Circuits
	Existing Feature Circuit Libraries
	Interpretability Libraries

	circuit-tracer
	circuit-tracer Design and Features
	ReplacementModel
	Attribution
	Visualization and Annotation

	Models and Transcoders Compatible with circuit-tracer
	Models Compatible with circuit-tracer
	Transcoders Compatible with circuit-tracer

	Using circuit-tracer

	Case Studies
	States and Capitals
	Changing Languages

	Discussion and Future Work

