
circuit-tracer: A Library for Finding Feature
Circuits

Anonymous Author(s)
Affiliation
Address
email

Abstract

Feature circuits aim to shed light on LLM behavior by identifying the features1

that are causally responsible for a given LLM output, and connecting them into2

a directed graph, or circuit, that explains how both each feature and each output3

arose. However, performing circuit analysis is challenging: the tools for finding,4

visualizing, and verifying feature circuits are complex and spread across libraries.5

To facilitate feature-circuit finding, we introduce circuit-tracer, an open-source6

library for efficient identification of feature circuits. circuit-tracer provides an7

integrated pipeline for finding, visualizing, annotating, and performing interven-8

tions on such circuits, tested with various model sizes, up to 14B parameters. We9

make circuit-tracer available to both developers and end users, via integration10

with tools such as Neuronpedia, which provides a user-friendly interface.11

1 Introduction12

Feature circuits are a paradigm in mechanistic interpretability that aims to provide low-level, causal13

interpretations of LLM behavior in an unsupervised setting. A feature circuit for a given model, input,14

and output aims to explain both which human-interpretable features caused the production of that15

output, and what caused each feature to activate.16

In practice, feature circuits take the form of a directed graph from a model’s inputs, through a set of17

features, to the model’s outputs; see Figure 1 for an example. These features are causally-relevant18

neurons of auxiliary models such as sparse autoencoders (SAEs) or transcoders, which decompose19

model activations into a sparse set of features, or directions in activation space.20

Feature circuits have successfully been used to study phenomena ranging from subject-verb agreement21

and gender bias [21], parenthesis matching [15], and syntactic structure [13]. This is possible because22

feature circuits are highly general: given a model, a behavior it exhibits (expressible as a single23

next-token prediction), and a set of auxiliary models, one can find the feature circuit for that behavior.24

Unfortunately, the adoption of feature circuits has been hampered by the technical complexity of25

finding them. To find feature circuits, one must (1) decompose model activations into features26

using auxiliary models; (2) determine which features are causally relevant to the model’s output;27

(3) visualize and annotate the circuit and its features; and (4) perform causal interventions to verify28

one’s interpretation of the circuit. While many libraries exist for training said auxiliary models29

[20, 3], fewer exist for finding and visualizing circuits [21]; moreover, existing resources are not all30

easily interoperable. As a result, while work using the auxiliary models from (1) abounds, work that31

assembles these features into circuits and analyzes them as in (2)-(4) is scarce.32

In this paper, we introduce circuit-tracer1, a library that supports computing, visualizing, and33

intervening on circuits. circuit-tracer uses Ameisen et al.’s [1] transcoder circuits, rather than34

1https://anonymous.4open.science/r/circuit-tracer-anonymized-2C5F/README.md

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/circuit-tracer-anonymized-2C5F/README.md


Figure 1: Left: A feature circuit explaining the Gemma-2 (2B)’s prediction on the input The keys on
the cabinet. . . ; features are grouped into annotated supernodes. Right: Visualizing an SAE feature.
The top and bottom token predictions indicate which tokens are most up/downweighted by the feature,
while the highlighted text indicates where the feature fired most strongly. This feature appears to fire
on the ends of plural noun subjects.

SAE feature circuits, providing more accurate edges; our implementation enables the use of models35

up to 14B parameters in size. For circuit visualization, we integrate Ameisen et al.’s [1] recently-36

released circuit-annotation frontend, allowing users to annotate their newly-found transcoder circuits.37

Finally, circuit-tracer supports steering on transcoder features, both in the single- and efficient38

multi-token generation cases.39

Ease of use and accessibility are core goals for circuit-tracer: we aim to make circuit tracing40

accessible to users regardless of technical experience or compute availability. For this reason, we41

integrate circuit-tracer with Neuronpedia, which enables circuit tracing via a no-code user-42

friendly web interface; we also optimize our library to enable running small models on Google Colab,43

and aim to support remote execution on public computing resources soon.44

In summary, circuit-tracer:45

• Enables users to find, visualize, and intervene on feature circuits.46

• Provides an efficient open-source implementation of Ameisen et al.’s [1] transcoder circuit-47

tracing algorithm.48

• Functions both locally and via accessible third-party compute resources, such as Google49

Colab, Neuronpedia’s circuit tracing interface, and soon, the NDIF remote inference cluster.50

The remainder of the paper is organized as follows. We first describe the circuit-finding process and51

existing libraries (Section 2). We then introduce circuit-tracer, detailing its features and usage52

(Section 3). We then walk through 2 case-studies in circuit tracing (Section 4). We conclude with53

insights gained via circuit-tracing, and directions for future work (Section 5).54

2 Background55

2.1 Sparse Dictionary Learning56

Past work has sought to identify the features LLMs use to compute their outputs. Early work did this57

by identifying causally relevant neurons, but these have been found to be polysemantic: each neuron58

fires in response to many concepts [25, 4], likely because models are pressured to represent many59

more concepts than they have neurons [8]. Moreover, as neurons are often non-zero, it is difficult to60

determine when a neuron is actively firing.61

Sparse dictionary learning aims to convert dense, polysemantic representations into sparse, monose-62

mantic ones [27, 5]. Formally, a sparse dictionary takes in activations h ∈ Rd from a fixed location63

in a model and attempts to reconstruct activations h′ ∈ Rd at a target location. It computes:64

z = f (Wench+ benc) (1)

h̃′ = Wdecz+ bdec, (2)

2



where:65

• Wenc ∈ Rn×d,Wdec ∈ Rd×n,benc ∈ Rn, and bdec ∈ Rd are model parameters;66

• f is an activation function enforcing non-negativity, often ReLU, JumpReLU [28], or Top-k;67

and68

• z ∈ Rn is the sparse, non-negative representation. Each dimension of z is called a feature.69

Sparse dictionaries are trained to minimize reconstruction error and L1-norm of z. This pressures z70

to faithfully represent the original input while remaining sparse, with few active features. z’s features71

are encouraged to be monosemantic by setting its dimensionality (n) much larger than that of the72

input (d)—often 32 times larger, or more.73

A sparse dictionary can be used to interpret a given h by visualizing the active features of the74

corresponding z. This entails computing feature activations over a large text dataset, and inferring the75

meaning of the feature of interest from the text inputs that maximize its activation. It is also common76

to display the output tokens that are most highly up- and down-weighted by the active feature; see77

Figure 1 for an example.78

Sparse dictionaries often aim to reconstruct the activations that they took as input; such dictionaries79

are called sparse autoencoders (SAEs). However, other variants exist: per-layer transcoders predict80

MLP outputs from their inputs [7], while cross-layer transcoders take in each layer’s MLP’s inputs81

and predict the outputs of all downstream MLPs. The choice of dictionary architecture and input /82

output location affects the type and number of features found.83

Though sparse dictionaries have successfully shed light on various model features, it is difficult to84

understand the mechanisms driving a model’s behavior by looking at features from one dictionary:85

not all active features are causally relevant to model behavior, and said behavior is often driven by86

features at many layers. To resolve this problem, we use feature circuits.87

2.2 Feature Circuits88

A feature circuit [21, 15] is a directed graph describing how a given LLM solves a given task: it flows89

from the model’s inputs, through causally relevant features, to the model’s logits. Each feature zi90

has a weight that quantifies the change in model performance if zi were set to 0; this its total effect91

through all possible pathways. Each edge’s weight is the direct effect that the source node has on the92

target activation. Feature circuits thus describe which features are causally relevant, and how they93

combine to yield the model’s outputs.94

Finding a feature circuit requires a set of dictionaries for the model, generally at least one per layer.95

Then, one must quantify each edge or feature’s (in)direct effect, pruning those with low effect. Early96

work did this by zero-ablating each active feature, and recording the change in model performance97

[15]; however, given n active features, this requires O(n) forward passes, making it expensive even98

for small models. Gradient-based methods such as Nanda’s [23] activation patching, or Marks et al.’s99

[21] extension thereof, produce faster but lower-quality estimates of feature and edge importance.100

2.3 Transcoder Feature Circuits101

Transcoder feature circuits [1] are a new type of circuit that can be sparser, and allow for precise and102

efficient calculation of node and edge weights. Their features generally come from PLTs or CLTs;103

the latter provide sparser circuits, but are more challenging to train.104

Ameisen et al. show that by freezing (or, conditioning on) the underlying model’s nonlinearities,105

such as its attention patterns and LayerNorm scaling factors, one can exactly compute edge weights,106

i.e. the DE of one transcoder feature on another. Doing so leaves each transcoder feature’s (pre-)107

activation (i.e., its activation before f is applied) as a linear function of the input embeddings and108

features that came before it. As such, one can compute the exact DE of all prior nodes on a given109

target node via one backwards pass from the target feature’s input, with stop-gradient operations110

applied to the nonlinearities and prior MLP outputs.111

Repeating this process for each output and feature node (or a subset thereof) yields an adjacency112

matrix containing the direct effect of each node on each other node. This matrix characterizes the full113

feature circuit, or attribution graph. Ameisen et al. include in their graph not only features, input,114

3



and output nodes, but also error nodes that represent the difference between the true MLP outputs115

and transcoder reconstructions thereof. The adjacency matrix can then be visualized, or analyzed116

using metrics like Ameisen et al.’s replacement score.117

This approach yields precise DE values, but also has limitations: transcoder circuits often fail to118

capture features relevant to attention2, as edge weights are conditioned on the attention pattern.119

Transcoder errors can also hinder interpretation: when a large proportion of the flow through the120

graph originates from uninterpretable error nodes, graphs may fail to capture important mechanisms.121

2.4 Existing Libraries122

Circuit research involves four distinct steps: 1) sparse dictionary training, 2) circuit-finding, 3)123

circuit visualization / annotation, and 4) intervention. Many libraries support the training of sparse124

dictionaries (1), including dictionary-learning [20], SAE-Lens [3], and sparsify. In contrast to125

these, only one library—feature-circuits [21]—supports finding feature circuits (2), visualizing126

found circuits (3), or performing interventions (4). However, it does not enable interactive circuit127

annotation or feature visualization, though other libraries, such as Neuronpedia [18] or SAE-Vis128

[22] support the latter. Moreover, at the time of circuit-tracer’s creation, there was no publicly129

available implementation of Ameisen et al.’s [1] circuit-finding algorithm, though contemporaneous130

work3 has provided another open-source implementation.131

In light of the abundance of sparse dictionary training libraries, we design circuit-tracer to132

support the latter three steps of circuit-finding, while remaining compatible with transcoders from133

any library. We focus on reducing memory usage, enabling circuit-finding in models with over 2B134

parameters (the largest size in prior open-source work). Finally, we prioritize accessibility, aiming to135

lower circuit-finding’s technical barrier to entry.136

3 circuit-tracer137

In this section, we answer the following questions about circuit-tracer: 1) How is it designed,138

and what can it do?; 2) With which models is it compatible; and 3) How can it be used?139

3.1 circuit-tracer Design and Features140

3.1.1 ReplacementModel141

In circuit-tracer, a model and the transcoders used to interpret it are grouped together into a142

ReplacementModel. Loading this object requires only the name of the model from HuggingFace143

Transformers [30], and the name of a HuggingFace Hub repository containing the transcoders:144

1 from circuit_tracer import ReplacementModel145

2146

3 model = ReplacementModel.from_pretrained(147

4 model_name = "google/gemma -2-2b",148

5 transcoder_set = "gemma",149

6 )150

Listing 1: Loading a ReplacementModel based on Gemma-2 (2B) and GemmaScope transcoders.
We use the alias “gemma” to refer to the latter for convenience.

The ReplacementModel class is used during attribution and intervention; it also enables recording151

the activations of transcoder features on a given input. By default, a ReplacementModel is a subclass152

of TransformerLens’ HookedTransformer class; one can thus perform arbitrary interventions on a153

ReplacementModel, just as with TransformerLens. For more information on model and transcoder154

compatibility, see Section 3.2.155

Currently, circuit-tracer expects models to be loaded onto a single GPU; other accelerators such156

as MPS are not yet supported. Because a model’s transcoders are often much larger than the model157

itself, we offload transcoders’ decoders to disk by default, loading them to GPU only when required;158

2Recent work has sought to address this by incorporating attention or residual stream SAEs [16].
3https://github.com/EleutherAI/attribute

4

https://github.com/EleutherAI/sparsify
https://github.com/EleutherAI/attribute


this is possible when model weights are saved in the fast SafeTensors format.4 The memory footprint159

of a ReplacementModel is thus similar to that of its base counterpart.160

3.1.2 Attribution161

Once we have loaded a ReplacementModel, attribution in circuit-tracer is simple:162

1 from circuit_tracer import attribute163

2164

3 s = "Fact: Michael Jordan plays the sport of"165

4 graph = attribute(model , s)166

Listing 2: Performing attribution with an existing ReplacementModel

When performing attribution, circuit-tracer first finds the top-10 most likely next logits, or those167

that compose 0.95 of the next-token probability mass, whichever is smaller. It then returns a Graph168

containing the adjacency matrix of direct effects between input, feature, error, and logit nodes that169

contribute to the model’s prediction of those logits, as described in Section 2.3. This adjacency matrix170

can then be directly analyzed or visualized.171

circuit-tracer’s attribution allows users to flexibly change the number of logits attributed from,172

and supports attribution from arbitrary functions of the logits, e.g. the difference of two or more logit173

tokens as used in prior work [29]. It also supports limiting the number of nodes attributed from; this174

is important, as the number of active transcoder features grows linearly with input length, slowing175

attribution, and causing the adjacency matrix to become prohibitively large.176

3.1.3 Visualization and Annotation177

Users can visualize and annotate a given attribution graph using the interface introduced by Ameisen178

et al. [1]. Visualizing first involves pruning the graph, which is otherwise dense and difficult to179

understand. Users can specify the proportion of node and edge influence they would like to retain—180

more influence means more nodes and edges retained—and circuit-tracer prunes the graph, using181

Ameisen et al.’s [1] algorithm. After pruning the graph, users can create the necessary visualization182

files and start a visualization server:183

1 from circuit_tracer.utils import create_graph_files184

2 from circuit_tracer.frontend.local_server import serve185

3186

4 graph_file_dir = ’./ graph_files/’187

5188

6 create_graph_files(189

7 graph_or_path=graph ,190

8 slug=’michael -jordan ’,191

9 output_path=graph_file_dir ,192

10 node_threshold =0.8,193

11 edge_threshold =0.95194

12 )195

13196

14 server = serve(data_dir=graph_file_dir)197

Listing 3: Pruning an attribution graph, creating graph files, and starting a visualization server.

The visualization interface (Figure 2) allows users to click on any node in the attribution graph, and198

view the nodes that most contribute to and receive contributions from that node. If the node is a199

feature (rather than a logit or input embedding), users can also see the max-activating examples for200

the feature, and then annotate the feature with its meaning on the basis of those examples.201

circuit-tracer’s interface also allows users to pin nodes, saving those that are important and202

displaying them as a separate pane as a subgraph (or circuit), complete with weighted edges and203

node annotations. Nodes that appear to perform similar functions can be grouped together into a204

supernode, which can also be annotated. Users can thus use the visualization and annotation interface205

to transform an attribution graph into an interpretable circuit. All information about the circuit is206

4https://github.com/huggingface/safetensors

5

https://github.com/huggingface/safetensors


Figure 2: The circuit visualization interface. Pane A displays the entire attribution graph; nodes in
the graph can be selected by clicking on them. The level of filtering can also be adjusted, further
sparsifying the graph. Pane B displays the nodes that most affect (and are most affected by) the
current node. Pane C displays the current feature’s max-activating examples, the top and bottom
upweighted tokens, and other summary statistics; it also allows for node annotation. Pane D displays
the subgraph. Users can pin nodes from the attribution graph, and group them together for easier
analysis; grouped tokens can also be annotated.

contained within its URL in the circuit-tracer interface, enabling relevant (super)nodes to be207

extracted from the URL and targeted for intervention.208

Intervention After constructing a circuit, users can perform interventions on a given model with209

respect to its features, causally verifying their interpretation of the circuit. Interventions take the210

form of tuples specifying the layer, position, and feature index of the feature upon which to intervene,211

and the new value the feature should take on; interventions return the new logits and new transcoder212

activations post-intervention:213

1 s = "Fact: Michael Jordan plays the sport of"214

2 original_logits , original_activations = model.get_activations(s)215

3216

4 interventions = [(8, 3, 3829, 5.0)]217

5 new_logits , new_activations = model.feature_intervention(s, interventions218

)219

Listing 4: Performing an intervention, setting the value of feature 3829 in layer 8, position 3 to 5.0.

Feature interventions can be performed on on arbitrary inputs, without first finding a circuit.220

circuit-tracer allows for both single-token interventions and efficient, steered, multi-token gen-221

erations using KV-caching. circuit-tracer performs Ameisen et al.’s [1] iterative patching by222

default but also implements constrained patching and direct-effects patching.223

3.2 Models and Transcoders Compatible with circuit-tracer224

Finding a circuit with circuit-tracer requires a compatible model and transcoders for it.225

3.2.1 Models Compatible with circuit-tracer226

circuit-tracer’s ReplacementModel supports two interpretability backends: TransformerLens227

(default) and NNSight. Each backend supports different models, but provides the same functionality228

(attribution and intervention).229

6



TransformerLens Backend The TransformerLens [24] backend supports only those models imple-230

mented in TransformerLens. While most common open-weights model architectures (e.g. Llama,231

Gemma, and Qwen) are supported, less-common architectures might not be. However, Transformer-232

Lens is open-source, and new models can be added relatively easily.233

NNSight Backend circuit-tracer’s NNSight [10] backend supports all language models on234

HuggingFace. Initializing a ReplacementModel with backend="nnsight" yields a subclass of235

NNSight’s LanguageModel class, which retains all its functionality. Though it supports more models,236

the NNSight backend is slower, experimental, and does not support model offloading during attribu-237

tion. In the near future, we aim to enable the NNSight backend to work with the associated National238

Deep Inference Facility (NDIF) remote inference servers. When this integration is complete, users239

will be able to perform attribution and intervention using NDIF’s compute resources.240

3.2.2 Transcoders Compatible with circuit-tracer241

Existing Transcoders To use circuit-tracer, one needs transcoders for each MLP in the model242

under study. The pre-trained transcoders currently available include the following; transcoders trained243

by the authors except where otherwise noted5:244

Per-Layer Transcoders (PLTs)245

• Gemma-2 (2B; 11): JumpReLU PLTs from Lieberum et al. [17]246

• Llama-3.2 (1B; 12): ReLU PLTs247

• Qwen-3 (0.6B-14B; 31): ReLU transcoders for all dense models in the Qwen-3 family248

below 32B parameters.249

Cross-Layer Transcoders (CLTs)250

• Gemma-2 (2B): Two sets of ReLU CLTs with distinct feature dimension sizes.251

• Llama-3 (1B): ReLU CLTs252

Adding Transcoders circuit-tracer also supports user-created transcoders. Given a set of253

transcoder weights, one only needs to upload them, along with a configuration file that specifies254

where in the model the transcoder reads from and writes to, to a HuggingFace repository. Users255

must also compute the max-activating examples for each feature of a transcoder and upload them to256

the same repository in Neuronpedia’s publicly-available format; code for this will soon be released257

in a companion library. Finally, it may be necessary to write a function to load the weights into a258

(CrossLayer-)Transcoder object.259

3.3 Using circuit-tracer260

To make circuit-tracer more widely accessible, we have published it through a variety of channels.261

Neuronpedia End users who want to perform circuit-tracing without running Python code can262

use circuit-tracer on Neuronpedia6 [18]. Neuronpedia provides a GUI for performing on-263

demand attribution for Gemma-2 (2B) and Qwen-3 (4B); it also supports interventions. Unlike264

local circuit-tracer, Neuronpedia provides LLM-generated interpretations of features [2] and265

enables saving and sharing graphs.266

Google Colab Users who would like to demo circuit-tracer can do so via Google Colab,267

including Google Colab’s free T4 GPU instances. Only Gemma-2 (2b) is currently available, owing268

to the limited amount of RAM (12.7 GB) and VRAM (15 GB) available; however, attribution,269

visualization, and intervention are all supported.270

Local Installation Advanced users will want to use circuit-tracer via local installation from271

GitHub, where all features are available. We recommend at least 15 GB VRAM for circuit tracing with272

Gemma-2 (2B), and up to 40 GB for larger models; more memory also allows for faster attribution.273

5Links to transcoders to be added if accepted
6Link omitted for anonymity; see screenshot in App. A.

7



4 Case Studies274

4.1 States and Capitals275

Lindsey et al. [19] observed that, given the prompt s =“Fact: The state containing Dallas has276

its capital in”, the models they studied could correctly predict the answer, Austin. Moreover, the277

resulting circuit clearly contained an intermediate Texas node, suggesting a reasoning chain of the278

form Dallas→Texas→Austin. Causal interventions suggested that this Texas node determined the279

state whose capital was output. With circuit-tracer, this result is easy to reproduce.280

We first load a ReplacementModel for Gemma-2 (2B), using the CLTs we trained for it. We next281

perform attribution, creating an attribution graph for s, and visualizing it.7 We performed manual282

analysis of the graph, labeling features, and found that it also contained a Texas feature; see Figure 3283

(top) for an image of the graph. We repeated this procedure with s′ =“Fact: The state containing284

Oakland has its capital in”, and similarly found a node corresponding to the state California.285

 Austin

 the

 Oklahoma

_

 Texas

0.438

0.125

0.032

0.032

0.025

Top 5 Tokens Pre-Intervention

0.0 0.1 0.2 0.3 0.4 0.5
Probability

 Sacramento

 the

 Austin

 San

 Santa

0.234

0.126

0.086

0.052

0.032

Top 5 Tokens Post-Intervention

Output Distribution for "Fact: The state containing Dallas has its capital in"

Figure 3: Top: Feature circuit for s=Fact: The state containing Dallas has its capital in, demonstrating
the existence of intermediate Texas nodes. Bottom: The next-token distributions for s pre-intervention,
and post-intervention, with Texas nodes ablated and California features upweighted. The most likely
output shifts form Austin to Sacramento.

Having identified two relevant supernodes, we can then verify the role of each supernode by per-286

forming interventions. We first record the model’s most likely outputs on s. Then, we perform a287

constrained intervention on the input s, downweighting all of the features that correspond to Texas288

at the Dallas position(multiplying their activations by -4), and upweighting the California features289

(setting their activations to 10 times their original value). We constrain our intervention to layers290

16-21; we choose this range because it is late enough in our model for all intervened features to291

have an effect. We find (Figure 3, bottom) that the model’s top outputs change drastically from the292

expected output of s, Austin, to that of s′, Sacramento. This suggests that Gemma-2 (2B) generates293

“state” representations for the intermediate hop of this task.294

4.2 Changing Languages295

Lindsey et al. [19] also observed that, given non-English prompts like s =“Hecho: Michael Jordan296

juega al” (baloncesto), models had distinct features and pathways for the underlying concept produced297

(basketball) and the output language (Spanish).298

To reproduce this, we load a ReplacementModel for Gemma-2 (2B), using Lieberum et al.’s [17]299

PLTs; note that the previous CLTs could also be used. We again perform attribution, creating an300

attribution graph for s, and visualizing it (Figure 4). Once more, we identified the expected nodes301

(representing basketball and Spanish).302

In this case, instead of verifying the validity of the Spanish features by replacing them, we simply303

turn them off. Moreover, rather than looking only at the next token prediction, we continually turn304

7If accepted, we will include a link to the graph, omitted currently for anonymity reasons.

8



Hecho: Michael Jordan juega al
Normal output:

. . .baloncesto en la NBA.
Intervened output:

. . .basket for the Boston Celtics.

Figure 4: Top: Feature circuit for s = Hecho: Michael Jordan juega al, showing distinct basketball
/ sports and Spanish features and pathways. Bottom: Sampled continuations to s during normal
generation, and with Spanish features ablated. Ablating the Spanish features causes the model to
output English text.

the Spanish feature off, while sampling new models from the token. Concretely, we perform an305

open-ended intervention, setting the Spanish features to -2 times their original value at all non-BOS306

positions in the sentence, while sampling a continuation; we compare this to the generation in the307

no-intervention case. We see in Figure 4 (bottom) that the model normally continues the sentence in308

Spanish, the intervention causes the model to continue it with English-language text.309

5 Discussion and Future Work310

In this paper, we introduced circuit-tracer, and provided a brief overview of its design and311

functionality. We have also outlined two brief case studies demonstrating circuit-tracer’s ability312

to reproduce existing results; more such demos can be found in the circuit-tracer library.313

circuit-tracer aims to not only reproduce past work, but also support the research community as it314

explores open research questions. Because circuit tracing is a highly general technique, practitioners315

should be able to easily apply circuit tracing to their problem of choice. For example, while316

prior research has provided case studies in diverse safety-relevant phenomena such as chain of317

thought unfaithfulness, refusal, and jailbreaks [19], no systematic study of these using circuits has318

been performed. Moreover, many other domains, such as social biases, cognitive capabilities, and319

reasoning remain underexplored.320

Methodological questions also abound. While circuit-tracer computes circuits for individual321

inputs, how to synthesize multiple circuits into a coherent task mechanism is still unknown. Answering322

this question could also require finding ways to scale feature annotation and supernode creation,323

which are currently highly manual processes.324

circuit-tracer can additionally serve as a testbed for innovations in transcoders and other sparse325

decomposition techniques, as have been proposed in recent work [6, 14, 9, 26]. Adding these new326

sparse dictionaries to circuit-tracer, in order to assess the quality of the circuits made with them,327

is relatively simple. This opens up new research directions regarding the similarity of feature circuits328

found using different sparse decompositions of the same model.329

Finally, we note that there are many features that still remain to be added to circuit-tracer. These330

range from frontend changes to improve visualization, to algorithmic additions such as attributing331

to thresholded MLP neurons, or from attention patterns [16]. While we are excited to add such332

new features, we encourage users to contribute to circuit-tracer as well, as some already have.333

circuit-tracer is an open source library, and we hope that a healthy community of contributors334

will help keep it up-to-date, even in the fast-moving field of feature circuits.335

9



References336

[1] Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian337

Chen, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael338

Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas339

Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam340

Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing:341

Revealing computational graphs in language models. Transformer Circuits Thread, 2025. URL342

https://transformer-circuits.pub/2025/attribution-graphs/methods.html.343

[2] Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya344

Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in345

language models. https://openaipublic.blob.core.windows.net/neuron-explainer/346

paper/index.html, 2023.347

[3] Joseph Bloom, Curt Tigges, Anthony Duong, and David Chanin. Saelens. https://github.348

com/jbloomAus/SAELens, 2024.349

[4] Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and350

Martin Wattenberg. An interpretability illusion for bert, 2021. URL https://arxiv.org/351

abs/2104.07143.352

[5] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-353

erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,354

Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex355

Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,356

Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language357

models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-358

circuits.pub/2023/monosemantic-features/index.html.359

[6] Valérie Costa, Thomas Fel, Ekdeep Singh Lubana, Bahareh Tolooshams, and Demba Ba.360

From flat to hierarchical: Extracting sparse representations with matching pursuit, 2025. URL361

https://arxiv.org/abs/2506.03093.362

[7] Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable LLM363

feature circuits. In The Thirty-eighth Annual Conference on Neural Information Processing364

Systems, 2024. URL https://openreview.net/forum?id=J6zHcScAo0.365

[8] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna366

Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam Mc-367

Candlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models368

of superposition. Transformer Circuits Thread, 2022. URL https://transformer-circuits.369

pub/2022/toy_model/index.html.370

[9] Thomas Fel, Ekdeep Singh Lubana, Jacob S. Prince, Matthew Kowal, Victor Boutin, Is-371

abel Papadimitriou, Binxu Wang, Martin Wattenberg, Demba E. Ba, and Talia Konkle.372

Archetypal SAE: Adaptive and stable dictionary learning for concept extraction in large vi-373

sion models. In Forty-second International Conference on Machine Learning, 2025. URL374

https://openreview.net/forum?id=9v1eW8HgMU.375

[10] Jaden Fried Fiotto-Kaufman, Alexander Russell Loftus, Eric Todd, Jannik Brinkmann, Koyena376

Pal, Dmitrii Troitskii, Michael Ripa, Adam Belfki, Can Rager, Caden Juang, Aaron Mueller,377

Samuel Marks, Arnab Sen Sharma, Francesca Lucchetti, Nikhil Prakash, Carla E. Brodley, Arjun378

Guha, Jonathan Bell, Byron C Wallace, and David Bau. NNsight and NDIF: Democratizing379

access to open-weight foundation model internals. In The Thirteenth International Conference380

on Learning Representations, 2025. URL https://openreview.net/forum?id=MxbEiFRf39.381

[11] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya382

Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan383

Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,384

Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,385

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://github.com/jbloomAus/SAELens
https://github.com/jbloomAus/SAELens
https://github.com/jbloomAus/SAELens
https://arxiv.org/abs/2104.07143
https://arxiv.org/abs/2104.07143
https://arxiv.org/abs/2104.07143
https://arxiv.org/abs/2506.03093
https://openreview.net/forum?id=J6zHcScAo0
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://openreview.net/forum?id=9v1eW8HgMU
https://openreview.net/forum?id=MxbEiFRf39


Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,386

Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-387

son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,388

Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu389

Kumar, Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David390

Weinberger, Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma391

Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel392

Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska,393

Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff394

Stanway, Jetha Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe395

Fernandez, Joost van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji,396

Kareem Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin397

Nguyen, Kiranbir Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena398

Heuermann, Leticia Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas399

Dixon, Luciano Martins, Machel Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat400

Velloso, Mateo Wirth, Matt Davidow, Matt Miller, Matthew Rahtz, Matthew Watson, Meg401

Risdal, Mehran Kazemi, Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park,402

Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan, Neta403

Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul404

Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu,405

Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh406

Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien M. R. Arnold, Sebastian Krause,407

Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting408

Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh409

Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han,410

Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe411

Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral,412

Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol413

Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya,414

Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi, and415

Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL416

https://arxiv.org/abs/2408.00118.417

[12] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-418

mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela419

Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem420

Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson,421

Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,422

Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,423

Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,424

Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,425

Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab426

AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco427

Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind428

Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah429

Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan430

Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason431

Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya432

Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton,433

Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Va-434

suden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield,435

Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal436

Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz437

Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke438

de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin439

Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-440

badur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi,441

Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,442

Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal443

11

https://arxiv.org/abs/2408.00118


Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao444

Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert445

Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre,446

Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hos-447

seini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov,448

Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale,449

Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane450

Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,451

Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal452

Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,453

Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin454

Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan,455

Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine456

Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert,457

Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain,458

Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay459

Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit460

Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu,461

Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco,462

Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe,463

Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang,464

Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock,465

Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker,466

Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester467

Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon468

Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine,469

Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin470

Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn,471

Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,472

Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank473

Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,474

Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan475

Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison476

Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,477

Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman,478

James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff479

Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin,480

Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh481

Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun482

Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh,483

Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro484

Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt,485

Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew486

Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao487

Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel488

Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat,489

Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,490

Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich491

Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem492

Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,493

Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,494

Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,495

Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ496

Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,497

Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma,498

Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao499

Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang,500

Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen501

Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng,502

12



Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez,503

Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim504

Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez,505

Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu506

Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-507

stable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman,508

Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin509

Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary510

DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3511

herd of models, 2024. URL https://arxiv.org/abs/2407.21783.512

[13] Michael Hanna and Aaron Mueller. Incremental sentence processing mechanisms in autore-513

gressive transformer language models. In Luis Chiruzzo, Alan Ritter, and Lu Wang, editors,514

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Asso-515

ciation for Computational Linguistics: Human Language Technologies (Volume 1: Long516

Papers), pages 3181–3203, Albuquerque, New Mexico, April 2025. Association for Computa-517

tional Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.164. URL518

https://aclanthology.org/2025.naacl-long.164/.519

[14] Sai Sumedh R. Hindupur, Ekdeep Singh Lubana, Thomas Fel, and Demba E. Ba. Projecting520

assumptions: The duality between sparse autoencoders and concept geometry. In ICML 2025521

Workshop on Methods and Opportunities at Small Scale, 2025. URL https://openreview.522

net/forum?id=AKaoBzhIIF.523

[15] Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse524

autoencoders find highly interpretable features in language models. In The Twelfth International525

Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=526

F76bwRSLeK.527

[16] Harish Kamath, Emmanuel Ameisen, Isaac Kauvar, Rodrigo Luger, Wes Gurnee, Adam Pearce,528

Sam Zimmerman, Joshua Batson, Thomas Conerly, Chris Olah, and Jack Lindsey. Tracing529

attention computation: Attention connects features, and features direct attention. Transformer530

Circuits Thread, 2025. URL https://transformer-circuits.pub/2025/attention-qk/531

index.html.532

[17] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,533

Vikrant Varma, Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open534

sparse autoencoders everywhere all at once on gemma 2. In Yonatan Belinkov, Najoung Kim,535

Jaap Jumelet, Hosein Mohebbi, Aaron Mueller, and Hanjie Chen, editors, Proceedings of the 7th536

BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pages 278–300,537

Miami, Florida, US, November 2024. Association for Computational Linguistics. doi: 10.18653/538

v1/2024.blackboxnlp-1.19. URL https://aclanthology.org/2024.blackboxnlp-1.19/.539

[18] Johnny Lin. Neuronpedia: Interactive reference and tooling for analyzing neural networks,540

2023. URL https://www.neuronpedia.org. Software available from neuronpedia.org.541

[19] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,542

Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,543

Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,544

Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,545

Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large546

language model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.547

pub/2025/attribution-graphs/biology.html.548

[20] Samuel Marks, Adam Karvonen, and Aaron Mueller. dictionary_learning. https://github.549

com/saprmarks/dictionary_learning, 2024.550

[21] Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.551

Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.552

In The Thirteenth International Conference on Learning Representations, 2025. URL https:553

//openreview.net/forum?id=I4e82CIDxv.554

13

https://arxiv.org/abs/2407.21783
https://aclanthology.org/2025.naacl-long.164/
https://openreview.net/forum?id=AKaoBzhIIF
https://openreview.net/forum?id=AKaoBzhIIF
https://openreview.net/forum?id=AKaoBzhIIF
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://transformer-circuits.pub/2025/attention-qk/index.html
https://transformer-circuits.pub/2025/attention-qk/index.html
https://transformer-circuits.pub/2025/attention-qk/index.html
https://aclanthology.org/2024.blackboxnlp-1.19/
https://www.neuronpedia.org
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://github.com/saprmarks/dictionary_learning
https://github.com/saprmarks/dictionary_learning
https://github.com/saprmarks/dictionary_learning
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=I4e82CIDxv


[22] Callum McDougall. SAE Visualizer. https://github.com/callummcdougall/sae_vis,555

2024.556

[23] Neel Nanda. Attribution Patching: Activation Patching At Industrial Scale, 2023. URL557

https://www.neelnanda.io/mechanistic-interpretability/attribution-patching.558

[24] Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/559

TransformerLensOrg/TransformerLens, 2022.560

[25] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017.561

doi: 10.23915/distill.00007. URL https://distill.pub/2017/feature-visualization.562

[26] James Oldfield, Shawn Im, Yixuan Li, Mihalis A. Nicolaou, Ioannis Patras, and Grigorios G563

Chrysos. Towards interpretability without sacrifice: Faithful dense layer decomposition with564

mixture of decoders, 2025. URL https://arxiv.org/abs/2505.21364.565

[27] Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A566

strategy employed by v1? Vision Research, 37(23):3311–3325, 1997. ISSN 0042-6989. doi:567

https://doi.org/10.1016/S0042-6989(97)00169-7. URL https://www.sciencedirect.com/568

science/article/pii/S0042698997001697.569

[28] Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma,570

János Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu571

sparse autoencoders, 2024. URL https://arxiv.org/abs/2407.14435.572

[29] Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.573

Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In574

The Eleventh International Conference on Learning Representations, 2023. URL https:575

//openreview.net/forum?id=NpsVSN6o4ul.576

[30] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony577

Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,578

Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain579

Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art580

natural language processing. In Qun Liu and David Schlangen, editors, Proceedings of the 2020581

Conference on Empirical Methods in Natural Language Processing: System Demonstrations,582

pages 38–45, Online, October 2020. Association for Computational Linguistics. doi: 10.18653/583

v1/2020.emnlp-demos.6. URL https://aclanthology.org/2020.emnlp-demos.6/.584

[31] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,585

Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang,586

Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei587

Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin588

Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang,589

Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi590

Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang591

Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu592

Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025. URL593

https://arxiv.org/abs/2505.09388.594

A Neuronpedia Interface595

The Neuronpedia circuit-tracer interface is visible in Figure 5.596

14

https://github.com/callummcdougall/sae_vis
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://distill.pub/2017/feature-visualization
https://arxiv.org/abs/2505.21364
https://www.sciencedirect.com/science/article/pii/S0042698997001697
https://www.sciencedirect.com/science/article/pii/S0042698997001697
https://www.sciencedirect.com/science/article/pii/S0042698997001697
https://arxiv.org/abs/2407.14435
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://aclanthology.org/2020.emnlp-demos.6/
https://arxiv.org/abs/2505.09388


Figure 5: The interface of circuit-tracer when accessed via Neuronpedia [18]. Users can easily
create a new graph, by clicking on + New Graph. They can also upload existing graphs. Neuronpedia
provides automatic, LLM-derived interpretations of transcoder features, though it also supports
manual facilitation. It moreover facilitates grouping features into labeled supernodes, and saving the
resulting circuit.

15


	Introduction
	Background
	Sparse Dictionary Learning
	Feature Circuits
	Transcoder Feature Circuits
	Existing Libraries

	circuit-tracer
	circuit-tracer Design and Features
	ReplacementModel
	Attribution
	Visualization and Annotation

	Models and Transcoders Compatible with circuit-tracer
	Models Compatible with circuit-tracer
	Transcoders Compatible with circuit-tracer

	Using circuit-tracer

	Case Studies
	States and Capitals
	Changing Languages

	Discussion and Future Work
	Neuronpedia Interface

