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Abstract

Feature circuits aim to shed light on LLM behavior by identifying the features
that are causally responsible for a given LLM output, and connecting them into
a directed graph, or circuit, that explains how both each feature and each output
arose. However, performing circuit analysis is challenging: the tools for finding,
visualizing, and verifying feature circuits are complex and spread across libraries.
To facilitate feature-circuit finding, we introduce circuit-tracer, an open-source
library for efficient identification of feature circuits. circuit-tracer provides an
integrated pipeline for finding, visualizing, annotating, and performing interven-
tions on such circuits, tested with various model sizes, up to 14B parameters. We
make circuit-tracer available to both developers and end users, via integration
with tools such as Neuronpedia, which provides a user-friendly interface.

1 Introduction

Feature circuits are a paradigm in mechanistic interpretability that aims to provide low-level, causal
interpretations of LLM behavior in an unsupervised setting. A feature circuit for a given model, input,
and output aims to explain both which human-interpretable features caused the production of that
output, and what caused each feature to activate.

In practice, feature circuits take the form of a directed graph from a model’s inputs, through a set of
features, to the model’s outputs; see Figure 1 for an example. These features are causally-relevant
neurons of auxiliary models such as sparse autoencoders (SAEs) or transcoders, which decompose
model activations into a sparse set of features, or directions in activation space.

Feature circuits have successfully been used to study phenomena ranging from subject-verb agreement
and gender bias [29], parenthesis matching [20], and syntactic structure [15]. This is possible because
feature circuits are highly general: given a model, a behavior it exhibits (expressible as a single
next-token prediction), and a set of auxiliary models, one can find the feature circuit for that behavior.

Unfortunately, the adoption of feature circuits has been hampered by the technical complexity of
finding them. To find feature circuits, one must (1) decompose model activations into features
using auxiliary models; (2) determine which features are causally relevant to the model’s output;
(3) visualize and annotate the circuit and its features; and (4) perform causal interventions to verify
one’s interpretation of the circuit. While many libraries exist for training said auxiliary models
[28, 4], fewer exist for finding and visualizing circuits [29]; moreover, existing resources are not all
easily interoperable. As a result, while work using the auxiliary models from (1) abounds, work that
assembles these features into circuits and analyzes them as in (2)-(4) is scarce.
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Figure 1: Left: A feature circuit explaining the Gemma-2 (2B)’s prediction on the input The keys on
the cabinet. . . ; features are grouped into annotated supernodes. Right: Visualizing an SAE feature.
The top and bottom token predictions indicate which tokens are most up/downweighted by the feature,
while the highlighted text indicates where the feature fired most strongly. This feature appears to fire
on the ends of plural noun subjects.

In this paper, we introduce circuit-tracer2, a library that supports computing, visualizing, and
intervening on circuits. circuit-tracer uses Ameisen et al.’s [1] transcoder circuits, rather than
SAE feature circuits, providing more accurate edges; our implementation enables the use of models
up to 14B parameters in size. For circuit visualization, we integrate Ameisen et al.’s [1] recently-
released circuit-annotation frontend, allowing users to annotate their newly-found transcoder circuits.
Finally, circuit-tracer supports steering on transcoder features, both in the single- and efficient
multi-token generation cases.

Ease of use and accessibility are core goals for circuit-tracer: we aim to make circuit tracing
accessible to users regardless of technical experience or compute availability. For this reason, we
integrate circuit-tracer with Neuronpedia, which enables circuit tracing via a no-code user-
friendly web interface; we also optimize our library to enable running small models on Google Colab,
and aim to support remote execution on public computing resources soon.

In summary, circuit-tracer:

• Enables users to find, visualize, and intervene on feature circuits.
• Provides an efficient open-source implementation of Ameisen et al.’s [1] transcoder circuit-

tracing algorithm.
• Functions both locally and via accessible third-party compute resources, such as Google

Colab, Neuronpedia’s circuit tracing interface, and soon, the NDIF remote inference cluster.

The remainder of the paper is organized as follows. We first describe the circuit-finding process and
existing libraries (Section 2). We then introduce circuit-tracer, detailing its features and usage
(Section 3). We then walk through 2 case-studies in circuit tracing (Section 4). We conclude with
insights gained via circuit-tracing, and directions for future work (Section 5).

2 Background

2.1 Sparse Dictionary Learning

Past work has sought to identify the features LLMs use to compute their outputs. Early work did this
by identifying causally relevant neurons, but these have been found to be polysemantic: each neuron
fires in response to many concepts [34, 5], likely because models are pressured to represent many
more concepts than they have neurons [9]. Moreover, as neurons are often non-zero, it is difficult to
determine when a neuron is actively firing.

Sparse dictionary learning aims to convert dense, polysemantic representations into sparse, monose-
mantic ones [36, 6]. Formally, a sparse dictionary takes in activations h ∈ Rd from a fixed location

2https://github.com/safety-research/circuit-tracer
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in a model and attempts to reconstruct activations h′ ∈ Rd at a target location. It computes:
z = f (Wench+ benc) (1)

h̃′ = Wdecz+ bdec, (2)
where:

• Wenc ∈ Rn×d,Wdec ∈ Rd×n,benc ∈ Rn, and bdec ∈ Rd are model parameters;
• f is an activation function enforcing non-negativity, often ReLU, JumpReLU [38], or Top-k

[12]; and
• z ∈ Rn is the sparse, non-negative representation. Each dimension of z is called a feature.

Sparse dictionaries are trained to minimize reconstruction error. They are also trained to limit the
number of active features, if their activation function does not do so naturally (as Top-k does);
typically, this entails minimizing the L1-norm of z. This pressures z to faithfully represent the
original input while remaining sparse, with few active features. z’s features are encouraged to be
monosemantic by setting its dimensionality (n) much larger than that of the input (d)—often 32 times
larger, or more.

A sparse dictionary can be used to interpret a given h by visualizing the active features of the
corresponding z. This entails first computing all features’ activations over a large text dataset. Then,
one bins each feature’s activations into quantiles, and visualizes a random subset of the text inputs that
fall into each quantile; typically, the max-activating texts (in the top quantile) are most informative.
It is also common to display the output tokens that are most highly up- and down-weighted by the
active feature; see Figure 1 for an example. Given these, one can assign an interpretation to a feature
either via manual inspection or using an LLM [3], though how to best evaluate such interpretations
remains an open question [37, 17].

Sparse dictionaries often aim to reconstruct the activations that they took as input; such dictionaries
are called sparse autoencoders (SAEs). However, other variants exist: per-layer transcoders (PLTs)
predict MLP outputs from their inputs [8]. Cross-layer transcoders (CLTs) take in each layer’s MLP’s
inputs and predict a contribution to the output of each downstream MLP; the reconstruction of a given
MLP output is given by the sum of the contributions of all prior CLTs [26]. The choice of dictionary
architecture and input / output location affects the types of features found.

Though sparse dictionaries have successfully shed light on various model features, it is difficult to
understand the mechanisms driving a model’s behavior by looking at features from one dictionary:
not all active features are causally relevant to model behavior, and said behavior is often driven by
features at many layers. To resolve this problem, we use feature circuits.

2.2 Feature Circuits

A feature circuit [29, 20] is a directed graph describing how a given LLM solves a given task: it flows
from the model’s inputs, through causally relevant features, to the model’s logits. Each feature zi has
a weight that quantifies the change in model performance if zi were set to 0; this is its total effect
through all possible pathways. Each edge’s weight is the direct effect (DE) that the source node has
on the target activation. Feature circuits thus describe which features are causally relevant, and how
they combine to yield the model’s outputs.

Finding a feature circuit requires a set of dictionaries for the model, generally at least one per
layer. Then, one must quantify each edge or feature’s direct or total effect, pruning those with low
effect. Early work did this by zero-ablating each active feature, and recording the change in model
performance [20]; however, given n active features, this requires O(n) forward passes, making it
expensive even for small models. Gradient-based methods such as Nanda’s [32] activation patching,
or Marks et al.’s [29] extension thereof, produce faster but lower-quality estimates of feature and
edge importance.

2.3 Transcoder Feature Circuits

Transcoder feature circuits [1] are a new type of circuit that can be sparser, and allow for precise and
efficient calculation of node and edge weights. Their features generally come from PLTs or CLTs;
the latter provide sparser circuits, but are more challenging to train.
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Ameisen et al. show that by freezing (or, conditioning on) the underlying model’s nonlinearities,
such as its attention patterns and LayerNorm scaling factors, one can exactly compute edge weights,
i.e. the DE of one transcoder feature on another. Doing so leaves each transcoder feature’s (pre-)
activation (i.e., its activation before f is applied) as a linear function of the input embeddings and
features that came before it. As such, one can compute the exact DE of all prior nodes on a given
target node via one backwards pass from the target feature’s input, with stop-gradient operations
applied to the nonlinearities and prior MLP outputs.

Repeating this process for each output and feature node (or a subset thereof) yields an adjacency
matrix containing the direct effect of each node on each other node. This matrix characterizes the full
feature circuit, or attribution graph. Ameisen et al. include in their graph not only features, input,
and output nodes, but also error nodes that represent the difference between the true MLP outputs
and transcoder reconstructions thereof. The adjacency matrix can then be visualized, or analyzed
using metrics like Ameisen et al.’s replacement score.

This approach yields precise DE values, but also has limitations: transcoder circuits often fail to
capture features relevant to attention3, as edge weights are conditioned on the attention pattern.
Transcoder errors can also hinder interpretation: when a large proportion of the flow through the
graph originates from uninterpretable error nodes, graphs may fail to capture important mechanisms.

2.4 Existing Feature Circuit Libraries

Working with feature circuits often involves four steps: 1) training sparse dictionaries, 2) finding
feature circuits, 3) visualizing and annotating on said circuits, and 4) intervening on these circuits.
Currently, there exist libraries for individual steps in this process, but none that support all steps of it.

Many libraries support the training of sparse dictionaries (1), including dictionary-learning [28],
SAE-Lens [4], and sparsify. In contrast to these, only one library—feature-circuits [29]—
supports finding feature circuits (2), visualizing found circuits (3), or performing interventions (4).
However, it does not enable interactive circuit annotation or feature visualization, though other
libraries, such as Neuronpedia [25] or SAE-Vis [30] support the latter. Moreover, at the time of
circuit-tracer’s creation, there was no publicly available implementation of Ameisen et al.’s [1]
circuit-finding algorithm, though contemporaneous work4 has since provided another open-source
implementation.

In light of the abundance of libraries for sparse dictionary training, and the high computational
expense associated with that process, we design circuit-tracer to support the latter three steps of
circuit-finding. However, circuit-tracer aims to support transcoders trained with any library.

Compared to past work, we focus on efficiency and accessibility. We minimize circuit-tracer’s
memory usage, enabling circuit-finding in models with 14B parameters—well over 2B, the largest
size in prior open-source work. We also simplify the circuit-finding process, allowing users to
find a circuit given just a single prompt, where earlier work required constructing a dataset and
attribution metrics. circuit-tracer facilitates visualization as well, via an interactive interface
that enables users to analyze the circuit and the features composing it at the same time. Finally, we
make circuit-tracer available via many channels, including three—Google Colab, Neuronpedia,
and soon, NDIF [11]—that require no compute resources on the user’s end; see Section 3.2 and
Section 3.3 for details.

2.5 Interpretability Libraries

In releasing circuit-tracer, we contribute to a line of research that makes interpretability more
accessible by taking existing methods and releasing open-source implementations, with user-friendly
interfaces. Libraries for explainable AI and input attribution are especially abundant: Inseq provides
attribution tools for text-based models [39], while Quantus and Zennit [18, 2] focus on the image
domain; the Captum library is modality-agnostic [23]. Our work is more closely related to libraries
such as Auto-Circuit [31] or EAP-IG [16], which find and visualize component-level LLM circuits.
Foundational to this effort are libraries, such as TransformerLens [33], NNSight [11], Pyvene [42],
and Penzai [21], that provide ready access to model internals.

3Recent work has sought to address this by incorporating attention or residual stream SAEs [22].
4https://github.com/EleutherAI/attribute
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3 circuit-tracer

In this section, we answer the following questions about circuit-tracer: 1) How is it designed,
and what can it do?; 2) With which models is it compatible; and 3) How can it be used?

3.1 circuit-tracer Design and Features

3.1.1 ReplacementModel

In circuit-tracer, a model and the transcoders used to interpret it are grouped together into a
ReplacementModel. Loading this object requires only the name of the model from HuggingFace
Transformers [41], and the name of a HuggingFace Hub repository containing the transcoders:

1 from circuit_tracer import ReplacementModel
2

3 model = ReplacementModel.from_pretrained(
4 model_name = "google/gemma -2-2b",
5 transcoder_set = "gemma",
6 )

Listing 1: Loading a ReplacementModel based on Gemma-2 (2B) and GemmaScope transcoders.
We use the alias “gemma” to refer to the latter for convenience.

The ReplacementModel class is used during attribution and intervention; it also enables recording
the activations of transcoder features on a given input. By default, a ReplacementModel is a subclass
of TransformerLens’ HookedTransformer class; one can thus perform arbitrary interventions on a
ReplacementModel, just as with TransformerLens. For more information on model and transcoder
compatibility, see Section 3.2.

Currently, circuit-tracer expects models to be loaded onto a single GPU; other accelerators such
as MPS are not yet supported. Because a model’s transcoders are often much larger than the model
itself, we offload transcoders’ decoders to disk by default, loading them to GPU only when required;
this is possible when model weights are saved in the fast SafeTensors format.5 The memory footprint
of a ReplacementModel is thus similar to that of its base counterpart.

3.1.2 Attribution

Once we have loaded a ReplacementModel, attribution in circuit-tracer is simple:

1 from circuit_tracer import attribute
2

3 s = "Fact: Michael Jordan plays the sport of"
4 graph = attribute(model , s)

Listing 2: Performing attribution with an existing ReplacementModel

When performing attribution, circuit-tracer first finds the top-10 most likely next logits, or those
that compose 0.95 of the next-token probability mass, whichever is smaller. It then returns a Graph
containing the adjacency matrix of direct effects between input, feature, error, and logit nodes that
contribute to the model’s prediction of those logits, as described in Section 2.3. This adjacency matrix
can then be directly analyzed or visualized.

circuit-tracer’s attribution allows users to flexibly change the number of logits attributed from,
and supports attribution from arbitrary functions of the logits, e.g. the difference of two or more logit
tokens as used in prior work [40]. It also supports limiting the number of nodes attributed from; this
is important, as the number of active transcoder features grows linearly with input length, slowing
attribution, and causing the adjacency matrix to become prohibitively large.

3.1.3 Visualization and Annotation

Users can visualize and annotate a given attribution graph using the interface introduced by Ameisen
et al. [1]. Visualizing first involves pruning the graph, which is otherwise dense and difficult to

5https://github.com/huggingface/safetensors
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Figure 2: The circuit visualization interface. Pane A displays the entire attribution graph; nodes in
the graph can be selected by clicking on them. The level of filtering can also be adjusted, further
sparsifying the graph. Pane B displays the nodes that most affect (and are most affected by) the
current node. Pane C displays the current feature’s max-activating examples, the top and bottom
upweighted tokens, and other summary statistics; it also allows for node annotation. Pane D displays
the subgraph. Users can pin nodes from the attribution graph, and group them together for easier
analysis; grouped tokens can also be annotated.

understand. Users can specify the proportion of node and edge influence they would like to retain—
more influence means more nodes and edges retained—and circuit-tracer prunes the graph, using
Ameisen et al.’s [1] algorithm. After pruning the graph, users can create the necessary visualization
files and start a visualization server:

1 from circuit_tracer.utils import create_graph_files
2 from circuit_tracer.frontend.local_server import serve
3

4 graph_file_dir = ’./ graph_files/’
5

6 create_graph_files(
7 graph_or_path=graph ,
8 slug=’michael -jordan ’,
9 output_path=graph_file_dir ,

10 node_threshold =0.8,
11 edge_threshold =0.95
12 )
13

14 server = serve(data_dir=graph_file_dir)

Listing 3: Pruning an attribution graph, creating graph files, and starting a visualization server.

The visualization interface (Figure 2) allows users to click on any node in the attribution graph, and
view the nodes that most contribute to and receive contributions from that node. If the node is a
feature (rather than a logit or input embedding), users can also see the max-activating examples for
the feature, and then annotate the feature with its meaning on the basis of those examples.

circuit-tracer’s interface also allows users to pin nodes, saving those that are important and
displaying them as a separate pane as a subgraph (or circuit), complete with weighted edges and
node annotations. Nodes that appear to perform similar functions can be grouped together into a
supernode, which can also be annotated. Users can thus use the visualization and annotation interface
to transform an attribution graph into an interpretable circuit. All information about the circuit is
contained within its URL in the circuit-tracer interface, enabling relevant (super)nodes to be
extracted from the URL and targeted for intervention.
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Intervention After constructing a circuit, users can perform interventions on a given model with
respect to its features, causally verifying their interpretation of the circuit. Interventions take the
form of tuples specifying the layer, position, and feature index of the feature upon which to intervene,
and the new value the feature should take on; interventions return the new logits and new transcoder
activations post-intervention:

1 s = "Fact: Michael Jordan plays the sport of"
2 original_logits , original_activations = model.get_activations(s)
3

4 interventions = [(8, 3, 3829, 5.0)]
5 new_logits , new_activations = model.feature_intervention(s,

interventions)

Listing 4: Performing an intervention, setting the value of feature 3829 in layer 8, position 3 to 5.0.

Feature interventions can be performed on on arbitrary inputs, without first finding a circuit.
circuit-tracer allows for both single-token interventions and efficient, steered, multi-token gen-
erations using KV-caching. circuit-tracer performs Ameisen et al.’s [1] iterative patching by
default but also implements constrained patching and direct-effects patching.

3.2 Models and Transcoders Compatible with circuit-tracer

Finding a circuit with circuit-tracer requires a compatible model and transcoders for it.

3.2.1 Models Compatible with circuit-tracer

circuit-tracer’s ReplacementModel supports two interpretability backends: TransformerLens
(default) and NNSight. Each backend supports different models, but provides the same functionality
(attribution and intervention).

TransformerLens Backend The TransformerLens [33] backend supports only those models imple-
mented in TransformerLens. While most common open-weights model architectures (e.g. Llama,
Gemma, and Qwen) are supported, less-common architectures might not be. However, Transformer-
Lens is open-source, and new models can be added relatively easily.

NNSight Backend circuit-tracer’s NNSight [11] backend supports all language models on
HuggingFace. Initializing a ReplacementModel with backend="nnsight" yields a subclass of
NNSight’s LanguageModel class, which retains all its functionality. Though it supports more models,
the NNSight backend is slower, experimental, and does not support model offloading during attribu-
tion. In the near future, we aim to enable the NNSight backend to work with the associated National
Deep Inference Facility (NDIF) remote inference servers. When this integration is complete, users
will be able to perform attribution and intervention using NDIF’s compute resources.

3.2.2 Transcoders Compatible with circuit-tracer

Existing Transcoders To use circuit-tracer, one needs transcoders for each MLP in the model
under study. The pre-trained transcoders currently available include the following; transcoders trained
by the authors except where otherwise noted6:

Per-Layer Transcoders (PLTs)

• Gemma-2 (2B; 13): JumpReLU PLTs from Lieberum et al. [24]
• Llama-3.2 (1B; 14): ReLU PLTs
• Qwen-3 (0.6B-14B; 43): ReLU transcoders for all dense models in the Qwen-3 family

below 32B parameters.

Cross-Layer Transcoders (CLTs)

• Gemma-2 (2B): Two sets of ReLU CLTs with distinct feature dimension sizes.
• Llama-3 (1B): ReLU CLTs

6PLTs available at this link; CLTs available at this link.
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Adding Transcoders circuit-tracer also supports user-created transcoders. Given a set of
transcoder weights, one only needs to upload them, along with a configuration file that specifies
where in the model the transcoder reads from and writes to, to a HuggingFace repository. Users
must also compute the max-activating examples for each feature of a transcoder and upload them to
the same repository in Neuronpedia’s publicly-available format; code for this will soon be released
in a companion library. Finally, it may be necessary to write a function to load the weights into a
(CrossLayer-)Transcoder object.

3.3 Using circuit-tracer

To make circuit-tracer more widely accessible, we have published it through a variety of channels.

Neuronpedia End users who want to perform circuit-tracing without running Python code can
use circuit-tracer on Neuronpedia7 [25]. Neuronpedia provides a GUI for performing on-
demand attribution for Gemma-2 (2B) and Qwen-3 (4B); it also supports interventions. Unlike
local circuit-tracer, Neuronpedia provides LLM-generated interpretations of features [3] and
enables saving and sharing graphs.

Google Colab Users who would like to demo circuit-tracer can do so via Google Colab,
including Google Colab’s free T4 GPU instances. Only Gemma-2 (2b) is currently available, owing
to the limited amount of RAM (12.7 GB) and VRAM (15 GB) available; however, attribution,
visualization, and intervention are all supported.

Local Installation Advanced users will want to use circuit-tracer via local installation from
GitHub, where all features are available. We recommend at least 15 GB VRAM for circuit tracing with
Gemma-2 (2B), and up to 40 GB for larger models; more memory also allows for faster attribution.

4 Case Studies

4.1 States and Capitals

Lindsey et al. [27] observed that, given the prompt s =“Fact: The capital of the state containing
Dallas is”, the models they studied could correctly predict the answer, Austin. Moreover, the resulting
circuit clearly contained an intermediate Texas node, suggesting a reasoning chain of the form
Dallas→Texas→Austin. Causal interventions suggested that this Texas node determined the state
whose capital was output. With circuit-tracer, this result is easy to reproduce.

We first load a ReplacementModel for Gemma-2 (2B), using the 2.5M-feature CLTs we trained for
it. We next perform attribution, creating an attribution graph for s, and visualizing it.8 We performed
manual analysis of the graph, labeling features, and found that it also contained a Texas feature; see
Figure 3 (top) for an image of the graph. We repeated this procedure with s′ =“Fact: The capital of
the state containing Oakland is”, and similarly found a node corresponding to the state California.

Having identified two relevant supernodes, we can then verify the role of each supernode by per-
forming interventions. We first record the model’s most likely outputs on s. Then, we perform a
constrained intervention on the input s, downweighting all of the features that correspond to Texas
at the Dallas position (multiplying their activations by -4), and upweighting the California features
(setting their activations to 10 times their original value). We constrain our intervention to layers
16-21; we choose this range because it is late enough in our model for all intervened features to
have an effect. We find (Figure 3, bottom) that the model’s top outputs change drastically from the
expected output of s, Austin, to that of s′, Sacramento. This suggests that Gemma-2 (2B) generates
“state” representations for the intermediate hop of this task.

7https://www.neuronpedia.org/gemma-2-2b/graph
8View the graph on Neuronpedia.
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Figure 3: Top: Feature circuit for s=Fact: the capital of the state containing Dallas is, demonstrating
the existence of intermediate Texas nodes. Bottom: The next-token distributions for s pre-intervention,
and post-intervention, with Texas nodes ablated and California features upweighted. The most likely
output shifts form Austin to Sacramento.

4.2 Changing Languages

Lindsey et al. [27] also observed that, given non-English prompts like s =“Hecho: Michael Jordan
juega al” (baloncesto), models had distinct features and pathways for the underlying concept produced
(basketball) and the output language (Spanish).

Hecho: Michael Jordan juega al
Normal output:

. . .baloncesto en la NBA.
Intervened output:

. . .basket for the Boston Celtics.

Figure 4: Top: Feature circuit for s = Hecho: Michael Jordan juega al, showing distinct basketball
/ sports and Spanish features and pathways. Bottom: Sampled continuations to s during normal
generation, and with Spanish features ablated. Ablating the Spanish features causes the model to
output English text.

To reproduce this, we load a ReplacementModel for Gemma-2 (2B), using Lieberum et al.’s [24]
PLTs; note that the previous CLTs could also be used. We again perform attribution, creating an
attribution graph for s, and visualizing it (Figure 4)9. Once more, we identified the expected nodes
(representing basketball and Spanish).

In this case, instead of verifying the validity of the Spanish features by replacing them, we simply
turn them off. Moreover, rather than looking only at the next token prediction, we continually turn
the Spanish feature off, while sampling new models from the token. Concretely, we perform an
open-ended intervention, setting the Spanish features to -2 times their original value at all non-BOS
positions in the sentence, while sampling a continuation; we compare this to the generation in the
no-intervention case. We see in Figure 4 (bottom) that the model normally continues the sentence in
Spanish, the intervention causes the model to continue it with English-language text.

9Graph available on Neuronpedia
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5 Discussion and Future Work

In this paper, we introduced circuit-tracer, and provided a brief overview of its design and
functionality. We have also outlined two brief case studies demonstrating circuit-tracer’s ability
to reproduce existing results; more such demos can be found in the circuit-tracer library.

circuit-tracer aims to not only reproduce past work, but also support the research community as it
explores open research questions. Because circuit tracing is a highly general technique, practitioners
should be able to easily apply circuit tracing to their problem of choice. For example, while
prior research has provided case studies in diverse safety-relevant phenomena such as chain of
thought unfaithfulness, refusal, and jailbreaks [27], no systematic study of these using circuits has
been performed. Moreover, many other domains, such as social biases, cognitive capabilities, and
reasoning remain underexplored.

Methodological questions also abound. While circuit-tracer computes circuits for individual
inputs, how to synthesize multiple circuits into a coherent task mechanism is still unknown. Answering
this question could also require finding ways to scale feature annotation and supernode creation,
which are currently highly manual processes.

circuit-tracer can additionally serve as a testbed for innovations in transcoders and other sparse
decomposition techniques, as have been proposed in recent work [7, 19, 10, 35]. Adding these new
sparse dictionaries to circuit-tracer, in order to assess the quality of the circuits made with them,
is relatively simple. This opens up new research directions regarding the similarity of feature circuits
found using different sparse decompositions of the same model.

Finally, we note that there are many features that still remain to be added to circuit-tracer. These
range from frontend changes to improve visualization, to algorithmic additions such as attributing
to thresholded MLP neurons, or from attention patterns [22]. While we are excited to add such
new features, we encourage users to contribute to circuit-tracer as well, as some already have.
circuit-tracer is an open source library, and we hope that a healthy community of contributors
will help keep it up-to-date, even in the fast-moving field of feature circuits.
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