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GSLAMOT: A Tracklet andQuery Graph-based Simultaneous
Locating, Mapping, and Multiple Object Tracking System

Anonymous Authors

ABSTRACT
For interacting with mobile objects in unfamiliar environments,
simultaneously locating, mapping, and tracking the 3D poses of
multiple objects are crucially required. This paper proposes a Track-
let and Query Graph-based framework, i.e., GSLAMOT, to address
this challenge. GSLAMOT utilizes camera and LiDAR multimodal
information as inputs and represents the dynamic scene by a com-
bination of semantic map, agent trajectory, and an online maintained
Tracklet Graph (TG). TG tracks and predicts the 3D poses of the
detected active objects. A Query Graph (QG) is constructed in each
frame by object detection to query and update TG, the semantic
map, and the agent trajectory. For accurate object association, a
Multi-criteria Star Graph Association (MSGA) method is proposed
to find matched objects between the detections in QG and the pre-
dicted tracklets in TG. Then, an Object-centric Graph Optimization
(OGO) method is proposed to simultaneously optimize the TG, se-
mantic map, and the agent trajectory. It triangulates the detected
objects into the map to enrich the map’s semantic information. We
address the efficiency issues to handle the three tightly coupled
tasks in parallel. Experiments are conducted on KITTI, Waymo, and
an emulated Traffic Congestion dataset that highlights challeng-
ing scenarios. Experiments show that GSLAMOT enables accurate
crowded object tracking while conducting SLAM accurately in chal-
lenging scenarios, demonstratingmore excellent performances than
the state-of-the-art methods.

CCS CONCEPTS
• Computer systems organization → Robotic autonomy; •
Computing methodologies→ Simulation evaluation.

KEYWORDS
localization, 3D tracking, optimization, graph matching

1 INTRODUCTION
Conducting self-locating, mapping, i.e., SLAM, and multiple ob-
ject 3D pose tracking (3D MOT) simultaneously using multimodel
information is a fundamental requirement for dynamic scene per-
ception, such as object tracking in autonomous driving, unmanned
aerial vehicles (UAVs), and robotics human-machine collaboration
[17, 22, 38].
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Multiple factors work collectively making this problem very chal-
lenging. (1) SLAM and 3D MOT need to be conducted concurrently
and depend on each other. SLAM relies on object detection to elim-
inate the impacts of the dynamic objects for accurately tracking
the agent poses and for static mapping, whereas 3D MOT relies on
the accurate pose of the agent for triangulating the 3D poses of the
mobile objects; (2) The concurrent movements of both the agent
and the dynamic objects pose challenges for locating and object
tracking; (3) Errors in possible object detection algorithms and sen-
sor noise also contribute to inaccuracies in localizing surrounding
objects; (4) Factors such as occlusions and high-speed movement
also introduce difficulty in object matching, leading to locating and
tracking errors.

Existing works in 3D multiple object tracking (3D MOT)[25, 34,
46] often assume that the ego-motion is known and free from noise
or the sensor is fixed in the world frame. However, in real-world
applications, it is general that both the agent and surrounding
objects are in motion, requiring concurrent SLAM and 3D MOT.
Furthermore, due to motion, the agent may produce inconsistent
observations of the same object in different frames, leading to in-
accuracies of the bounding boxes (Figure 3) and the difficulty in
object matching across frames. Object-Oriented SLAM (OOSLAM)
[3, 28, 33, 48] is another closely related area, but OOSLAM primar-
ily focuses on estimating the ego-motion trajectory. It does not
explicitly address the optimization of the detailed object 3D trajec-
tories. But many applications do require real-time tracking of the
3D object poses[11, 18, 21].

To address the above challenges, this paper presents GSLAMOT,
a graph matching and graph optimization based system for con-
ducting SLAM and 3D MOT simultaneously, which takes stereo
images and LiDAR point cloud sequences as input. To the best of
our knowledge, it is the first work that outputs ego trajectory and
object trajectories concurrently and accurately, even in challenging
scenarios with crowded and highly dynamic objects. In particular,
GSLAMOT represents the dynamic scene by a combination of (1) a
semantic map representing the environment, (2) the agent trajectory,
and (3) an online maintained Tracklet Graph representing the 3D
MOT trajectories. TG tracks the 3D poses of multiple objects and
can predict their poses at time 𝑡 . A Query Graph (QG) is constructed
in each frame based on object detection to query the predicted ob-
ject poses. For accurate object association, a novel Multi-criteria
Star Graph Association (MSGA) method is proposed for robust
association to deal with the matching challenges in dynamic, con-
gested, and noisy environments. MSGA evaluates neighborhood
consistency, spatial consistency, and shape consistency between TG
and QG, significantly improving multi-object tracking compared to
using only spatial features.

After finding associations, an Object-centric Graph Optimiza-
tion (OGO) method is proposed to simultaneously optimize the
TG, the map, and the agent trajectory. We divide the optimization

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Our system receives LiDAR point clouds and stereo images as inputs. The 3D detection algorithm extracts detection
boxes from the point cloud, and the front-end of the visual odometry obtains the initial ego-motion pose. In the world frame,
we construct query graphs and tracklet graphs for detections and tracklets, respectively. Then, we use the MSGA algorithm to
perform association and tracking. Ego-motion, map points, and tracklets are optimized in OGO. The states of the tracklets in
the next frame will be estimated through the motion model and then participate in the tracking of the next frame.

into two parts: (1) a real-time Object-Centric Optimization Window
(OCOW) and (2) a long-term Object-Ego Fusion Window (OEFW).
In OCOW, a two-stage optimization strategy is adopted. Then, the
well-optimized ego-motion, environmental points, and tracklets
will be fused in the OEFW in a tightly coupled manner. Experi-
ments show this object-centric graph optimization achieves better
convergence speed (Figure 4) and accuracy than the ego-centric
methods.

In system implementation, to enable the localization, 3D MOT,
and semantic mapping to run concurrently and efficiently, We
employ multi-thread parallel, executing modules such as visual
front-end, mapping, detection, feature extraction, and tracking con-
currently across threads. The main contributions of this work are
as follows:

• We present GSLAMOT, which utilizes multimodel informa-
tion, including stereo images and LiDAR point clouds, as
inputs, and uses graph matching and graph optimization to
conduct SLAM and 3D MOT simultaneously even in chal-
lenging scenarios.

• Multi-criteria Star Graph Association (MSGA) is proposed
to match QG and the predicted TG.

• Object-Centric Graph Optimization (OGO) is proposed to es-
timate tracklets’ poses. Object-Ego Fusion Window (OEFW)
is proposed to jointly optimize the object poses and the ego-
motion poses in a long-term sliding window.

• We exploit parallel threads to address the concurrency re-
quirements in implementing the GSLAMOT system. Exper-
iments demonstrate that GSLAMOT exhibits better real-
time performance than the OOSLAM systems without object
tracking.

• We have also created a Traffic Congestion dataset for object-
level scene understanding using the Carla simulator[9]. The
dataset encompasses a wide range of maps and has a varying

number of dynamic and static objects, providing a valuable
resource for research and development in this field.

2 RELATEDWORK
The most closely related works are reviewed, which are categorized
into two areas: Object-Oriented SLAM (OOSLAM) and 3D Multiple
Object Tracking (3D MOT).

2.1 Object-oriented SLAM
Early semantic SLAM systems typically focus on removing dynamic
objects to reduce the influence of dynamic features on pose estima-
tion, including DynaSLAM[3], BlitzSLAM[10], and DynaVINS[30].
However, these systems do not provide poses of dynamic objects.

Object-oriented SLAM (OOSLAM), as an important branch in the
research of object-level scene understanding, aims to extract, model,
and track the static and dynamic objects in the environment[1].
Early OOSLAM systems[28, 32] typically maintain a database of
objects. These systems utilize RGB-D cameras as inputs and employ
ICP losses along with pose graph optimization to solve for the cam-
era and object poses. However, this model-based approach requires
prepared object models in advance and cannot exhibit robust scala-
bility to unknown scenes. Recent advancements in OOSLAM have
increasingly focused on improving object feature extraction and
modeling. In QuadricSLAM[24], objects are modeled as ellipsoids
or quadric geometry, enabling more effective optimization of shape
and scale. CubeSLAM[36] aligns the detection bounding boxes with
the image edges to enhance object proposals. DSP-SLAM[33] lever-
ages the signed distance function (SDF) to reconstruct the objects
after detection. The learned shape embedding serve as priors dur-
ing the reconstruction, and the shapes of the objects are jointly
optimized in the bundle adjustment process. In MOTSLAM[41],
Zhang et al. apply three neural networks to extract 2D bounding
boxes, 3D bounding boxes, and semantic segmentation, respectively.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

GSLAMOT ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

While the multi-network approach can extract accurate informa-
tion about an object from different scales, it does demand large
computational resources. DynaSLAM II[2] employs instance se-
mantic segmentation and tracks ORB features on dynamic objects.
Similarly, VDO-SLAM[42] leverages instance semantic segmenta-
tion, utilizing dense optical flow to maximize the number of tracked
points onmoving objects. Furthermore, dense optical flow is applied
to ensure consistent tracking across multiple objects.

However, most of OOSLAM systems only utilize objects as land-
marks for observation, lacking a complete multi-object tracking
process and failing to output trajectories for surrounding objects.
For the noises in object detection and camera pose tracking, object
tracking remains a challenging problem in SLAM settings, espe-
cially in object-crowded environments.

2.2 3D Multiple Object Tracking
2D multi-object tracking, which involves tracking object bounding
boxes in the image plane, has been extensively studied [40, 43–45].
3D multi-object tracking remains a challenging problem due to the
involvement of spatial motion and the 3D appearance of the objects
[26, 29].

The framework of 3D MOT is mainly divided into tracking by
detection and learning-based algorithms. The former mainly uses
Kalman filtering to estimate objects and then relies on specific
indicators such as Intersection of Union (IoU)[34], Mahalabnobis
distance[7], or Generalized IoU[25] for association.

For learning-based algorithms, many works model 3D MOT
as GNN, representing the association information of objects by
predicting edges[4, 35, 39]. More relevant to this paper is the ap-
proach based on geometric information. PolarMOT[16] only uses
3D boxes as inputs to GNN to learn the geometric features of ob-
jects. BOTT[46] relies on self-attention to represent global context
information and associate boxes.

Existing 3D MOT approaches generally work either in the ego-
motion frame or under the assumption of known ego-motion. How-
ever, SLAM and 3D MOT are specially required in unknown envi-
ronments or in the presence of ego-motion noise. Therefore, our
GSLAMOT presents a practical approach.

3 APPROACH OVERVIEW
The proposed GSLAMOT framework is shown in Figure 1. We con-
sider the agent is conducting self-locating, environment mapping,
and multiple object 3D pose tracking in an unfamiliar environment.
The agent is equipped with a stereo camera that captures RGB
image pairs, and a 3D LiDAR. The stereo images are processed by
the visual odometry (VO) system and the LiDAR point clouds are
used for 3D object detection[19, 20].

For the 𝑡-th frame, the sensor input is denoted as Ω𝑡 . The 3D
detector provides the object detection results O𝑡 . The VO front-
end outputs the current ego-motion pose 𝑇𝑡 . The detections O𝑡 are
transformed into the world coordinate frame by Q𝑡 = 𝑇𝑡O𝑡 , and
the Query Graph G𝑄 is constructed.

Ot = 𝑓𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 (Ω𝑡 ) (1)
𝑇𝑡 = 𝑓𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦 (Ω𝑡 ,𝑇𝑡−1,...) (2)

G𝑄 = 𝑓𝑞𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (Q𝑡 ) (3)

In processing this new frame, the active tracklets J𝑡−1 are pre-
dicted to time 𝑡 based on motion model, denoted as J𝑝𝑟𝑒𝑑

𝑡 . Then
a tracklet graph G𝑇 is constructed based on J𝑝𝑟𝑒𝑑

𝑡 . Subsequently,
we employ Multi-criteria Star Graph Association (MSGA) to match
between G𝑄 and G𝑇 to obtain the matching relationshipM𝑡 .

J𝑝𝑟𝑒𝑑
𝑡 = 𝑓𝑚𝑜𝑡𝑖𝑜𝑛 (J𝑡−1) (4)

G𝑇 = 𝑓𝑡𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 (J𝑝𝑟𝑒𝑑
𝑡 ) (5)

M𝑡 = 𝑓𝑀𝑆𝐺𝐴 (G𝑄 ,G𝑇 ) (6)

Then, We employ Object-centric Graph Optimization (OGO)
to optimize the ego-motion 𝑇𝑡 , tracklets J𝑡 , and the map points
𝑃𝑡 . OGO operates within a window size𝑤 , incorporating Object-
Centric Optimization Window (OCOW) and Object-Ego Fusion
Window (OEFW). The optimized results are used to update the
Tracklet Graphs.

𝑇𝑡 ,J𝑡 , 𝑃𝑡 = 𝑓𝑂𝐶𝑂𝑊 (𝑇𝑡 ,M𝑡 ,J𝑝𝑟𝑒𝑑
𝑡 ,Q𝑡 ) (7)

𝑇 ∗
𝑡−𝑤:𝑡 ,J ∗

𝑡−𝑤:𝑡 , 𝑃
∗
𝑡−𝑤:𝑡 = 𝑓𝑂𝐸𝐹𝑊 (𝑇𝑡−𝑤:𝑡 ,M𝑡−𝑤:𝑡 ,J𝑡−𝑤:𝑡 ,Q𝑡−𝑤:𝑡 ) (8)

We use Pointpillars[19] for LiDAR-based 3D object detection, and
use ORB-SLAM3[5] for visual odometry front-end. Their results,
i.e., O𝑡 and 𝑇𝑡 are inputs of following steps.

4 MULTI-CRITERIA STAR GRAPH
ASSOCIATION

We firstly introduction the construction of TG and QG, and the
Multi-criteria Star Graph Association (MSGA).

...... ......

+ +

Neighbor Spatial Shape

......

(1) (1)

(2)

(3)

Star SubgraphsQuery Graph Tracklet Graph

New born

Matching Result

Figure 2: Multi-criteria Star Graph Association.

4.1 Query Graph and Tracklet Graph
At frame 𝑡 , we select the active tracklets from frame 𝑡 −𝑤 to frame
𝑡 − 1 as J𝑡−1, where𝑤 is the OGO window size (detailed in Section
5). The critical task at this stage is to correctly associate the objects



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

in O𝑡 with those in J𝑡−1. The association is challenging for the
following reasons: (1) the agent and the objects are moving; (2) the
objects may be crowded; and (3) the detections may be noisy.

Thus, we firstly predict the poses of the tracklets, i.e., J𝑝𝑟𝑒𝑑
𝑡 =

𝑓𝑚𝑜𝑡𝑖𝑜𝑛 (J𝑡−1), where 𝑓𝑚𝑜𝑡𝑖𝑜𝑛 is based on Kalman Filter[25] using
the objects’ estimated motion velocities and historical trajectories.
Then we construct a graph for both the detections O𝑡 and the
predicted poses of the tracklets, named Query Graph (QG) and
Tracklet Graph (TG) respectively.

In particular, in constructing QG, we firstly transform the poses
of the detected 3D boxes to the world frame, obtaining Q𝑡 . Then
for each detection 𝑖 in Q𝑡 , the nearest 𝐾 detections within distance
𝐿 are chosen as 𝑖’s neighbor set N𝑖 . We build edges between each
detection and its neighbors. This converts the detection set Q𝑡 to
a graph G𝑄 . Each detection 𝑖 also forms a local star-graph G𝑄

𝑖
=

(V𝑖 , E𝑖 ), where V𝑖 = {𝑖} ∪ N𝑖 , and E𝑖 includes the edges from 𝑖 to
each element in N𝑖 .

In constructing TG, for each 𝑗 in J𝑝𝑟𝑒𝑑
𝑡 , the nearest 𝐾 predicted

object poses within distance 𝐿 are chosen as 𝑗 ’s neighbor set N𝑗 .
We also build edges between each tracklet and its neighbors, and
converts J𝑝𝑟𝑒𝑑

𝑡 to a graph G𝑇 . Each predicted object 𝑗 also forms
a local star-graph G𝑇

𝑗
= (V𝑗 , E 𝑗 ), where V𝑗 = { 𝑗} ∪ N𝑗 , and E 𝑗

includes the edges from 𝑗 to its neighbors.

4.2 Multi-criteria Consistency
The purpose of association is to determine whether a detection
𝑖 ∈ Q𝑡 and a tracklet 𝑗 ∈ J𝑝𝑟𝑒𝑑

𝑡 are corresponding to the same
object in the environment. We access this by multi-criteria of G𝑄

𝑖

and G𝑇
𝑗
. Two subgraphs with similar structures and features should

exhibit a high graph feature consistency[23]. We particularly con-
sider consistency evalution from three aspects: (1) neighborhood
consistency, which can be considered as edge similarity; (2) spatial
consistency, evaluated by Normalized Generalized Intersection over
Union (NGIoU)[27] and (3) shape consistency, evaluated by Itera-
tive Closest Point (ICP)[15] between the point clouds in the object
bounding boxes.

4.2.1 Neighborhood Consistency. In detection 𝑖’s local star graph,
the edge 𝑒𝑖𝑚 between vertex 𝑖 and𝑚 ∈ N𝑖 can be represented by a
relative pose transformation from 𝑖 to the neighbor𝑚, denoted by
T𝑖𝑚
𝑡 . If 𝑖 ∈ G𝑄

𝑖
and 𝑗 ∈ G𝑇

𝑗
are consistent, the local neighborhood

edges of 𝑖 and 𝑗 should be highly consistent. For example, if vertex𝑚
in G𝑄

𝑖
is corresponding to vertex 𝑛 in G𝑇

𝑗
, T𝑗𝑛

𝑡 should be consistent
with T𝑖𝑚

𝑡 . So we evaluate the neighborhood consistency between
𝑒𝑖𝑚𝑡 and 𝑒 𝑗𝑛𝑡 by:

𝑙 (𝑒𝑖𝑚𝑡 , 𝑒
𝑗𝑛
𝑡 ) = 𝑒𝑥𝑝 (−∥T𝑖𝑚𝑡 (T𝑗𝑛

𝑡 )−1 − I∥𝑭 ) (9)

where T𝑖𝑚𝑡 is the transformation of 𝑒𝑖𝑚𝑡 and (T𝑗𝑛
𝑡 )−1 is the inverse

transformation of 𝑒 𝑗𝑛𝑡 . ∥ · ∥𝑭 represents the Frobenius norm.
However, at this stage, we have not yet completed the object

association, meaning that for the query and tracklet graphs, the cor-
respondence of leaf vertices (𝑚 and 𝑛 in Equation (9)) is unknown.
This presents a classic chicken-and-egg problem. We propose a
Greedy Neighbor Strategy to address this issue. For query local

star graph G𝑄

𝑖
and tracklet local star graph G𝑇

𝑗
. We firstly assume

their central vertices represent the same object, then if the edge 𝑒𝑖𝑚

in G𝑄

𝑖
exhibits the highest consistency (Equation 9) with the edge

𝑒 𝑗𝑛 in G𝑇
𝑗
, 𝑒𝑖𝑚 and 𝑒 𝑗𝑛 are considered the corresponding edges.

If the highest consistency edge pairs G𝑄

𝑖
and G𝑇

𝑗
do not actually

correspond to each other, we still select the edge in G𝑇
𝑗
with the

highest consistency for each edge in G𝑄

𝑖
, even if their consistency is

low. This low consistency can contribute to discrimination in multi-
criteria star graph matching (Section 4.3). The overall neighborhood
consistency score between G𝑄

𝑖
and G𝑇

𝑗
is therefore:

𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑖, 𝑗) =
1

|N′
𝑖
|
∑︁

𝑚∈N′
𝑖

𝑙 (𝑒𝑖𝑚𝑡 , 𝑒
𝑗𝑖𝑚

𝑡 ) (10)

where N′
𝑖
contains the leaf vertices in G𝑄

𝑖
that have corresponding

vertices in G𝑇
𝑗
. 𝑒 𝑗

𝑖𝑚

𝑡 represents the corresponding edge of 𝑒𝑖𝑚𝑡 in
G𝑇
𝑗
, which is obtained from the Greedy Neighbor Strategy.

4.2.2 Spatial Consistency. Traditional 3D object tracking typically
relies on spatial metrics based on Intersection over Union (IoU)[34]
or inter-distance[7]. However, traditional methods based on inter-
distance or IoU between the current detection and tracklets may fail
when the distance or IoU values exceed thresholds. This is generally
when the agent or objects move at high speed or when there are
detection errors. Furthermore, IoU cannot handle cases where two
bounding boxes do not overlap, leading to redundant objects in the
tracking results.

To address the issues above, we utilize Normalized Generalized
Intersection over Union (NGIoU) as our spatial consistency met-
ric. For two centering vertices 𝑖 and 𝑗 corresponding to two star
graphs (for instance, detection 𝑖 and tracklet 𝑗 ), we suppose their
3D bounding boxes are 𝐵𝑖 and 𝐵 𝑗 respectively. Then the value of
GIoU is calculated as follows:

𝐺𝐼𝑜𝑈 (𝑖, 𝑗) =
|𝐵𝑖 ∩ 𝐵 𝑗 |
|𝐵𝑖 ∪ 𝐵 𝑗 |

−
|𝐵𝑖 ∪ 𝐵 𝑗 | − |𝐵𝑖 ∩ 𝐵 𝑗 |

|𝐵𝑖 ∪ 𝐵 𝑗 |
(11)

We further normalize GIoU to ensure its range lies within [0, 1]:

𝑆𝑁𝐺𝐼𝑜𝑈 =
𝐺𝐼𝑜𝑈 + 1

2
(12)

Experimental results in Section 7 demonstrate that this metric
enhances object tracking performances in challenging scenarios.

4.2.3 Shape Consistency. Traditional 3D object tracking methods
[7, 34] rarely leverage semantic information within the bounding
boxes, while deep learning-based approaches rely on implicit fea-
tures. We find that the point cloud within the bounding box inher-
ently represents the shape of the object, which can be considered as
semantic information and is an important clue for evaluating object
consistency. Although the shapes of the same object in consecutive
frames are similar, the view angles maybe different. So we propose
a point cloud registration based methods to evaluate the point cloud
shape similarity.

For detection 𝑖 in G𝑄 and tracklet 𝑗 in G𝑇 , the point clouds
within their respective bounding boxes are denoted as 𝑃𝑄

𝑖
and 𝑃𝑇

𝑗
.
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The ICP algorithm with RANSA[47] is used to compute the point-
to-point correspondence between 𝑃𝑄

𝑖
and 𝑃𝑇

𝑗
. The fitness score

calculated for the two point clouds is given by:

𝑆𝑓 𝑖𝑡 (𝑖, 𝑗) =
𝑛𝑐

𝑚𝑎𝑥 ( |𝑃𝑄
𝑖
|, |𝑃𝑇

𝑗
|)

(13)

where 𝑛𝑐 represents the number of successfully registered points.

4.3 Subgraph Matching
For each G𝑄

𝑖
and its central vertex 𝑖 , we first collect the candidata

set C𝑖 . For each tracklet star-graph in C𝑖 , the distance between its
central vertex and 𝑖 is less than 𝐿. For a query star-graph G𝑄

𝑖
and a

tracklet star-graph G𝑇
𝑗
in C𝑖 , the multi-criteria feature consistency

is given by:

𝑆 (𝑖, 𝑗) = 𝜆1𝑆𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑖, 𝑗) + 𝜆2𝑆𝑁𝐺𝐼𝑜𝑈 (𝑖, 𝑗) + 𝜆3𝑆𝑓 𝑖𝑡 (𝑖, 𝑗) (14)

If 𝑆 (𝑖, 𝑗) falls below a threshold 𝜏 , then we consider 𝑖 and 𝑗 should
not be associated, leading to the removal of 𝑗 from the candidate
set C𝑖 . If the candidate set C𝑖 is empty, this indicates that 𝑖 is a
newly detected object does not originally exist in the map. We
create a new tracklet, which is added as the only element in C𝑖 .
Finally, we utilize the Kuhn-Munkres algorithm to compute the final
one-to-one detection-to-tracklet matching by seeking maximum
consistency:

M∗
𝑡 = argmax

M𝑡 ∈Ψ𝑡

∑︁
𝑖∈Q𝑡 , 𝑗=M𝑖

𝑡

𝑆 (𝑖, 𝑗) (15)

where Ψ𝑡 represents the set of all possible matches and 𝑗 = M𝑖
𝑡

represents the association of detection 𝑖 with tracklet 𝑗 under the
matching relationshipM𝑡 .

Object-centric Optimization Window

Object-ego Fusion Window

Object-centric Graph Optimization

Detection result in each frame

Tracklet box after optimization

Ego-motion pose in OCOW

Ego-motion pose in OEFW

Figure 3: The Object-centric Graph Optimiaztion (OGO). Be-
fore optimization, the detection boxes for each object at dif-
ferent frames are inconsistent. After applying OGO, we ob-
tain accurate object poses. The residual edges in solid lines
participate in graph optimization operations, while the resid-
ual edges in dashed lines do not participate.

5 OBJECT-CENTRIC GRAPH OPTIMIZATION
Graph optimization is the widely employed back-end in SLAM
(Simultaneous Localization and Mapping)[8, 13]. It represents ego-
motion states and sensor measurements as nodes and edges in a

graph, utilizing optimization algorithms to estimate the agent’s
trajectory and the environment map. However, we observed that
this approach performs well primarily in static scenes.

For tracking dynamic objects, the ego-motion errors and the
object pose errors coexist, affecting the convergence speed and
accuracy of the graph optimization. To enable optimization tai-
lored for 3D tracklets, we propose a graph optimization framework
named Object-centric Graph Optimization (OGO). We divide the
sliding window into two parts: Object-centric Optimization Win-
dow (OCOW) and Object-Ego Fusion Window (OEFW), and two
windows adopt different optimization strategies.

0 2 4 6 8
#iteration

4500

5000

5500

6000

6500

7000

Re
sid

ua
l

object-centric optimization
ego-centric optimization

Figure 4: The residual curves of our proposed object-centric
optimization and classic ego-centric optimization. The resid-
ual refers to the summary of all mapping-based errors and
object detection errors in Equation (19). Our proposed OGO
strategy can better optimize the system.

5.1 Object-centric Optimization Window
Before graph optimization, we obtain initial ego-motion poses and
map points for each frame from the visual odometry. Additionally,
initial tracklets and the matching resultM𝑡 for each frame are also
available after tracking and association.

In the object-centric optimization window, we adopt a two-stage
optimization strategy (Figure 3). In the first stage, we solely utilize
residuals from static environment landmarks in SLAM and ego-
motion poses to estimate ego-motion. At this point, the ego motion
serves as a relatively reliable initial value. The objective function
of the first stage is:

𝑠𝑡𝑎𝑔𝑒 1 : T∗, P∗ = argmin
T,P

∑︁
𝑡 ∈T𝑂𝐶𝑂𝑊

𝐸
𝑚𝑎𝑝
𝑡 (16)

where T𝑂𝐶𝑂𝑊 represents the set of frames in OCOW and 𝐸𝑚𝑎𝑝
𝑡

represents the mapping residuals in ORBSLAM3[5]. T𝑂𝐶𝑂𝑊 repre-
sents the set of ego-motion poses, and P represents the set of map
point positions.

After the first stage, the estimated ego-motion is reliable due to
the elimination of dynamic objects in estimation. Then, we fix the
ego-motion and solely optimize the object poses using residuals
from object detection. The object detection residual at frame 𝑡 is:

𝐸
𝑜𝑏 𝑗𝑒𝑐𝑡
𝑡 =

∑︁
𝑖∈O𝑡

| |T𝑐𝑤𝑡 T𝑤𝑗
𝑡 (T𝑐𝑖𝑡 )−1 | |𝑭 (17)

where 𝑗 = M𝑖
𝑡 and T𝑎𝑏

𝑡 represents the transformation from 𝑎 to 𝑏
at frame 𝑡 . The objective function for the sliding window is:

𝑠𝑡𝑎𝑔𝑒 2 : J ∗ = argmin
J

∑︁
𝑡 ∈T𝑂𝐶𝑂𝑊

𝐸
𝑜𝑏 𝑗𝑒𝑐𝑡
𝑡 (18)
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5.2 Object-ego Fusion Window
We combine reliable tracklets and ego-motion poses for joint opti-
mization in OEFW, thereby enhancing the accuracy of both.

When the number of frames where a static object is observed
exceeds a threshold𝑤 , we move it from the object-centric optimiza-
tion window (OCOW) to the object-ego fusion window (OEFW).
Once all detections in a frame have been moved to the OEFW,
we transfer that frame’s ego-motion pose and map points to the
OEFW. In OEFW, objects and tracklets have undergone sufficient
multi-frame observations, possessing good initial values and low
system error. Reliable observation and joint optimization can help
correct cumulative errors and improve the accuracy of locating and
tracking. We employ a tightly coupled optimization strategy within
the window, jointly optimizing ego-motion poses, map points, and
tracklet poses. The objective function of OEFW is:

T∗,J ∗, P∗ = argmin
T,J,P

∑︁
𝑡 ∈T𝑂𝐸𝐹𝑊

𝐸
𝑜𝑏 𝑗𝑒𝑐𝑡
𝑡 + 𝐸𝑚𝑎𝑝

𝑡 (19)

whereT,J , P represent the set of ego-motion poses, the set of object
poses, and the set of landmark positions, respectively. T𝑂𝐸𝐹𝑊 is
the set of frames in OEFW.

6 SYSTEM IMPLEMENTATION DETAILS
6.1 System Acceleration
GSLAMOT demands high real-time performance for localization
and tracking. To enhance system efficiency, we leverage parallel
operations, effectively reducing the processing time for each frame
of data. Specifically, tasks including visual front-end localization,
environment map construction, object detection, and tracking are
processed concurrently by different threads. The VO front-end de-
termineswhether a frame is a keyframe[5]. Keyframes are processed
by MSGA and OGO. Localization and mapping for non-keyframes
proceed in other parallel threads, thus eliminating the need to wait
for time-consuming keyframe operations. Specifically, the odom-
etry, mapping, detection, and submodules of OGO and MSGA all
run on separate threads (Figure 5). In addition, we utilize parallel
acceleration for point cloud operations and registration[47] during
the computation of shape features. Experimental results demon-
strate that our system achieves real-time performance and incurs
less time overhead compared to other OOSLAM systems (Section
7.6).
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OCOWthread 
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Figure 5: The system architecture and multiple threads for
parallel.

6.2 Traffic Congestion Dataset
Highly dynamic and congested traffic environments are ubiquitous
in the real world, but few data sets emphasize these scenarios. To

address this challenge, we use the Carla simulator[9] to simulate
dynamic and crowded scenes, and generate theTrafficCongestion
Dataset (TCD). We collected several sequences from four maps and
the sensors on the vehicle include stereo cameras and 64-channel
LiDAR data.

In addition to the ego vehicle, hundreds of other dynamic or
static vehicles are on the map to simulate dynamic and crowded en-
vironments in reality. In each segment sequence of the Waymo
Open Dataset[31], the average number of vehicles is less than
one hundred, while in our Traffic Congestion dataset, the num-
ber of vehicles per segment sequence ranges from 200 to 300. The
dense and dynamic flow of vehicles pose challenges to accurate self-
localization and MOT. We will open-source this dataset to support
further research in localization and 3D object tracking.

7 EXPERIMENTS
7.1 Experimental Settings
We perform evaluations of the proposed algorithm and compare it
with the state-of-the-art algorithms, including the SLAM-based sys-
tems: ORBSLAM3[5], DynaSLAM[3], VDO-SLAM[42], DSP-SLAM[33]
andMOT algorithms: AB3DMOT[34], ProbTrack[7], CenterPoint[37],
BOTT[46], SimpleTrack[25], TrajectoryFormer[6]. All experiments
are conducted on a computer with a CPU of i7-12700, GPU of RTX
3060Ti, and 16G RAM. We adopt ORB-SLAM3 as our visual odome-
try front-end. We use Pointpillars[19] for 3D object detection. We
evaluated our system on the KITTI benchmark[12], Waymo Open
Dataset[31] and our emulated Traffic Congestion dataset.

Figure 6: The examples of the maps in Traffic Congestion
dataset and the outputs of GSLAMOT. Blue points represent
ego-motion trajectories, green boxes represent tracklets, and
black points represent map points.

7.2 3D Object Tracking Evaluation
We evaluate the results of 3D MOT on both the Traffic Congestion
Dataset (TCD) (Table 2) and the widely used Waymo Open Dataset
(WOD) (Table 1). For the WOD, we report the mismatch metrics
and the MOTA metrics for each of the three categories (vehicle,
pedestrian, and cyclist).

Researches on 3D MOT typically assume known ego-motion
poses. However, our system computes the ego-motion in real-time,
making the comparisons unfair. Therefore, we provide two sys-
tem implementations: one calculates ego-motion poses simultane-
ously (GSLAMOT) and another utilizes ground truth ego-motion
poses as inputs (GSLAMOT*). Results show that our methods out-
perform other methods in both known ego-motion and unknown
ego-motion scenarios.
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Figure 7: Examples of 3D MOT on Traffic Congestion dataset.

Table 1: 3D MOT Evaluation on Waymo Open Dataset. The
top one is in bold and the second is underlined.

Method MOTA(L1)↑ MOTA(L2)↑ Mismatch↓ MOTA(L2)↑
vehicle pedestrian cyclist

AB3DMOT[34] - - - 40.1 33.7 50.39
ProbTrack[7] 48.26 45.25 1.05 54.06 48.10 22.98

CenterPoint[37] 58.35 55.81 0.74 59.38 56.64 60.0
SimpleTrack[25] 59.44 56.92 0.36 56.12 57.76 56.88

BOTT[46] 59.67 57.14 0.35 59.49 58.82 60.41
TrajectoryF[6] - - - 59.7 61.0 60.6

GSLAMOT 59.69 57.10 0.33 60.45 60.02 60.33
GSLAMOT* 59.75 57.20 0.33 60.47 60.23 60.45

GSLAMOT: The ego-motion poses are estimated by odometry front-end.
GSLAMOT*: The groundtruth ego-motion poses are given as other MOT algorithms.

Table 2: 3D MOT Evaluation on Traffic Congestion Dataset.
The top one is in bold and the second is underlined.

MOTA↑ MOTP↑ IDS↓ Recall↑ Precision↑
AB3DMOT[34] 36.95 39.42 99 36.49 37.05
ProbTrack[7] 39.07 45.56 77 47.23 43.87

SimpleTrack[25] 43.12 59.91 60 56.35 55.27
GSLAMOT* 54.36 70.92 15 68.05 66.89

DSP-SLAM[33] 20.95 51.58 51 30.01 57.21
VDO-SLAM[42] 33.24 53.1 29 40.68 55.12

GSLAMOT 49.10 69.71 22 67.55 65.52
GSLAMOT: The ego-motion poses are estimated by odometry front-end.
GSLAMOT*: The groundtruth ego-motion poses are given as other MOT algorithms.

7.3 Robustness Evaluation
The environment conditions, like rainy, snowy, and foggy days,
may interfere with hardware devices and algorithms and then may
produce noises. However, few studies have focused on these noises
in 3D object tracking. We add Gaussian noise to the ego-motion
and 3D detection boxes to test the algorithm’s robustness to noise
on the Traffic Congestion dataset.

Specifically, gaussian noise with zero mean and standard devia-
tion 𝜎 is added to the sampled detections. We gradually increase
the value of 𝜎 . Experimental results (Figure 8) show that our system
maintains superior tracking results compared to other algorithms
even as noise increases, demonstrating strong robustness.

7.4 Trajectory Evaluation
We comprehensively evaluate the trajectory accuracy on two bench-
mark datasets: the KITTI dataset and the Traffic Congestion dataset.
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Figure 8: MOTA(a) and MOTP(b) results in robustness evalu-
ation experiments.

We employ standard metrics and compare them against the state-
of-the-art SLAM systems. Trajectory results are processed using
the EVO tool[14]. Specifically, we consider both the Absolute Pose
Error (APE) and Relative Pose Error (RPE) for each trajectory. The
Root Mean Square Error (RMSE) is chosen as it provides a more
robust evaluation than the mean value.

The evaluation results are detailed in Table 3 for the TCD and
Table 4 for the KITTI dataset. The results show the superior per-
formance of our approach across different datasets. For the per-
formances on KITTI, our algorithm has achieved top-1 or top-2 in
most sequences. Although the vehicles in the scenes of the KITTI
dataset are not crowded, our proposed association method still
achieves a modest improvement. It performs particularly better in
sequences with a larger number of objects, such as in KITTI-07.
In the TCD dataset, our algorithm has demonstrated significantly
superior performance due to the presence of crowded objects in
the scenes.

7.5 Ablation Experiments
We test the efficiency of the proposed modules in ablation experi-
ments, including the Multi-criteria Star Graph Association (MSGA)
and Object-centric Graph Optimization (OGO). The experiments
are conducted on the proposed TCD dataset to better facilitate the
evaluation of both 3D MOT and SLAM.

In the ablation experiments of OGO (Table 6), the tightly coupled
OEFW significantly reduces APE, while the two-stage real-time
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Table 3: Trajectory Accuracy Evaluation on Traffic Congestion Dataset. The top one is in bold and the second is underlined.

TC Seq. 0 1 2 3 4 Average

Metrics(m) RPE APE RPE APE RPE APE RPE APE RPE APE RPE APE

ORBSLAM3[5] 5.10 0.95 4.88 0.55 2.97 0.68 5.22 0.94 5.14 0.74 4.66 0.77
DSP-SLAM[33] 5.07 0.74 4.73 0.59 2.97 0.56 4.01 0.68 5.11 0.59 4.38 0.63
DynaSLAM[3] 4.86 0.73 4.83 0.61 2.98 0.57 5.2 0.62 5.09 0.73 4.59 0.62
VDO-SLAM[42] 4.79 0.69 4.14 0.63 2.61 0.59 4.12 0.65 4.81 0.50 4.09 0.61
GSLAMOT(Ours) 4.73 0.58 4.18 0.46 2.52 0.51 3.28 0.63 3.31 0.40 3.60 0.52

Table 4: Trajectory Accuracy Evaluation on KITTI Dataset. The top one is in bold and the second is underlined.

KITTI Seq. 00 01 02 03 04 05 06 07 08 Average

Metrics(m) RPE APE RPE APE RPE APE RPE APE RPE APE RPE APE RPE APE RPE APE RPE APE RPE APE

ORBSLAM3[5] 2.09 1.46 7.52 12.70 2.3 3.5 0.84 1.44 0.6 0.25 0.91 0.93 0.92 0.99 0.49 0.49 3.06 3.06 2.08 2.76
DSP-SLAM[33] 1.09 1.10 3.87 12.06 0.94 0.89 1.28 0.47 0.64 0.73 0.53 0.46 0.81 0.42 0.5 0.48 3.17 11.99 1.40 3.18
DynaSLAM[3] 1.05 1.28 3.75 21.13 1.1 0.91 0.68 1.43 0.73 0.82 0.64 1.52 0.8 1.35 0.51 0.78 3.06 10.41 1.36 4.40
VDO-SLAM[42] 1.02 1.44 3.80 13.79 0.98 0.99 0.79 0.83 0.61 0.25 0.59 0.49 0.75 0.63 0.49 0.52 3.34 9.76 1.50 3.19
GSLAMOT(Ours) 1.01 1.02 3.69 13.1 0.92 0.91 0.68 0.57 0.56 0.23 0.53 0.41 0.70 0.44 0.48 0.43 3.05 3.16 1.29 2.25

optimization of OCOW reduces RPE. For the MSGA (Table 5), spa-
tial, neighborhood, and shape consistency all contribute to the
improvement of MOT.

Table 5: Ablation Experiments of MSGA on Traffic Conges-
tion.

MSSA MOTA↑ MOTP↑ APE↓ RPE↓
Spatial 43.25 61.01 0.59 3.82

Spatial+Neighborhood 46.79 67.88 0.57 3.77
Spatial+Neighborhood+Shape 49.10 69.71 0.52 3.60

Table 6: Ablation Experiments of OGO on Traffic Congestion.

OGO MOTA↑ MOTP↑ APE↓ RPE↓
OEFW 43.66 59.91 0.63 4.21
OCOW 48.93 63.40 1.30 3.81

OCOW+OEFW 49.10 69.71 0.52 3.60

7.6 Time Evaluation
To evaluate the system’s efficiency and real-time applicability, we
measure the average processing time per frame, encompassing
all stages, including ego-motion pose estimation, object analysis,
association, optimization, and map integration. We conduct ex-
periments over sequences from the KITTI and TCD. The average
computation time is reported. The evaluation results in Table 7 af-
firm GSLAMOT’s real-time capability and computational efficiency.

We evaluate the running time of each main module in the sys-
tem. Note that some modules, such as detection, tracking, and
optimization, run only on keyframes selected by the VO front-end.
To facilitate a more intuitive time comparison, we calculate the av-
erage time expenditure of all modules across all frames. The results
are shown in Table 8. Due to the parallel computing strategy, the
total time expenditure per frame is significantly less than the time
consumed by serial computation of individual modules.

Table 7: Time Evaluation.

Method Time Per Frame(s)↓
ORBSLAM3[5] 0.025
DSP-SLAM[33] 0.12
DynaSLAM[3] 0.086
VDO-SLAM[42] 0.14
GSLAMOT( ours) 0.082

Table 8: Running Time of the Main Modules in Our System.

Module Time Per Frame(s)↓
Ego-motion Tracking 0.031

Mapping 0.027
3D Detection† 0.022

MSSA† 0.024
OGO† 0.037

Total 0.082
†: only for keyframes.

8 CONCLUSION
This paper investigates the problem of Simultaneous Locating, Map-
ping, and 3D Multiple Object Tracking. We propose the MSGA al-
gorithm, which computes features from query graphs and tracklet
graphs to achieve detection and tracklet association. After asso-
ciation, we design the OGO strategy to optimize ego-motion and
tracklet poses in multiple stages. Additionally, we create a simu-
lation dataset to explore the challenges of 3D MOT in highly con-
gested, dynamic scenes. In the future, we plan to extend GSLAMOT
to multi-agent collaborative scenarios to leverage the information
from multiple agents and viewpoints to enhance system perfor-
mance.
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