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Abstract

Training supervised machine learning systems001
with a fairness loss can ensure prediction002
fairness across different demographic groups.003
However, doing so requires demographic an-004
notations for training data, without which we005
cannot produce debiased classifiers for most006
tasks. Drawing inspiration from transfer learn-007
ing methods, we investigate whether we can008
utilize demographic data from a related task to009
improve the fairness of a target task. We adapt a010
single-task fairness loss to a multi-task setting011
to exploit demographic labels from a related012
task in debiasing a target task, and demonstrate013
that demographic fairness objectives transfer014
fairness within a multi-task framework. Addi-015
tionally, we show that this approach enables016
intersectional fairness by transferring between017
two datasets with different single-axis demo-018
graphics. We explore different data domains019
to show how our loss can improve fairness do-020
mains and tasks.021

1 Introduction022

Machine learning models can have disparate perfor-023

mance on specific subpopulations even when they024

have relatively high performance overall. High025

overall accuracy can, in fact, mask poor perfor-026

mance for smaller subpopulations. To alleviate027

disparate performance and biased model behav-028

ior, a variety of techniques can make for fairer AI029

systems, such as additional training objectives to030

debias models. These training objectives utilize031

example metadata, such as author demographics032

of a document, to influence the loss towards fairer033

model behavior. Unfortunately, these techniques re-034

quire demographic metadata for training sets which035

is often unavailable, and thus creating a barrier to036

training systems that behave fairly.037

Transfer learning is a general strategy for learn-038

ing with limited or no training labels, where annota-039

tions from one task are used to produce a model in040

a related task. Multi-task learning (MTL) utilizes041
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Figure 1: Our approach, MTL fair, a multitask method
to utilize an auxiliary task (B) to train a fair model for a
task (A) without demographic annotations.

transfer learning between tasks by jointly training a 042

model over several related tasks. We draw inspira- 043

tion from MTL methods and ask, can MTL transfer 044

demographic fairness between related tasks? Sup- 045

pose we have target labels for two tasks A and B, 046

but demographic labels only for task A; can we 047

transfer fairness learned from task A to task B? We 048

adapt existing MTL and fairness loss methods to 049

achieve the goal of demographic fairness transfer. 050

Figure 1 shows a representation of our method to 051

achieve model fairness given demographic annota- 052

tions for only one task. 053

The success of this approach can be adapted to 054

address a limitation in current demographic fair- 055

ness methods: intersectional fairness. Intersec- 056

tional fairness means that fairness conditions hold 057

across cross-products of orthogonal attributes and 058

not just within a single attribute. Crenshaw (1989) 059

introduced the term intersectionality in the legal 060
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field1 to describe how anti-discrimination laws061

failed to protect Black women workers, as employ-062

ers avoided charges of discrimination by hiring063

enough Black men and White women to satisfy064

the single-identity clauses. Similarly, early work065

in the machine learning field found biases in the066

performance of vision models at the intersection067

of gender and skin color (Buolamwini and Gebru,068

2018), where facial recognition models performed069

worse for Black women. Current methods cannot070

produce intersection fairness unless we have anno-071

tations for both attributes on the same instances.072

This high bar for training data further exacerbates073

data scarcity since most datasets with demographic074

attributes only consider single-axis attributes (e.g.075

race or gender alone.) Therefore, we use our MTL076

approach to explore how two related tasks, each077

with different single-axis demographic annotations078

(i.e. gender or race), can produce an intersection-079

ally fair model for both tasks (gender and race).080

Finally, we explore how the relationship between081

tasks enables fairness transfer by conducting exper-082

iments with different tasks in two domains (clinical083

and social media) and evaluate the fairness transfer084

between tasks within and across domains.085

We summarize our contributions as follows:086

• We transfer fairness across tasks by adapting087

single-task fairness losses to multi-task set-088

tings.089

• We enable intersectional fairness by leverag-090

ing two tasks with single-axis demographic091

attributes using a multi-task fairness loss.092

• We explore the relationship between task sim-093

ilarity and fairness generalization.094

2 Methods095

We begin by describing the learning setting shown096

in Figure 1. Let us assume we desire an unbiased097

model for task A for which we have input text (X)098

and associated labels (Y), but no demographic at-099

tributes. Instead, we have demographic data for100

task B, a task related to but distinct from A. Since101

there exist similarities between tasks A and B, we102

wish to utilize the demographic attributes (Z) avail-103

able for task B to obtain a fair classifier for task A.104

Specifically, by using multi-task training to jointly105

train a model with both tasks A and B, with an106

added fairness loss supported by task B alone, we107

hope to produce a fair model for task A.108

1The idea can be found in prior sources (Truth, 1851), as
described in Costanza-Chock (2020).

Employing a similar idea, we generalize our ap- 109

proach to intersectional fairness. We want to train 110

classifiers for both tasks A and B, which consist of 111

text data and target labels. We have demographic 112

attributes for both A and B, but they are different 113

attributes for each task, e.g. task A has gender 114

attributes and task B has race attributes. Since 115

neither task has both attributes, we are unable to 116

utilize an intersectional fairness loss to the tasks 117

individually. Therefore, we propose a multi-task 118

objective to combine attributes from both tasks to 119

obtain intersectional fairness. 120

This section introduces our fairness definitions 121

and losses, provides formal definitions of our train- 122

ing objectives and describes our training procedure. 123

2.1 Fairness Loss 124

We select a fairness definition that supports in- 125

tersectionality and that is differentiable so that 126

it can be included in model training. We use ϵ- 127

Differential Equalized Odds (ϵ-DEO), a variant of 128

ϵ-DF (Foulds et al., 2020), that applies the equal- 129

ized odds objective, to ensure that both the recall 130

and specificity rates are equal across demographic 131

groups (Barocas et al., 2019) and intersectional 132

subgroups, and that is learnable and differentiable. 133

Utilizing the equalized odds objective is important– 134

as opposed to others, e.g. demographic parity– 135

because it avoids limitations that arise when the 136

labels are correlated with demographic variables, 137

which is the case in many real-world problems and 138

some of the datasets used in our experiments, e.g. 139

the clinical datasets (Hardt et al., 2016). Under ϵ- 140

DEO, perfect fairness would be a score of 0, which 141

would mean that there is no difference in the recall 142

and specificity rates across demographic subgroups. 143

A formal definition is provided in Appendix A. 144

The standard approach to incorporating fairness 145

metrics into learning objectives uses an additive 146

term. For example, for a deep neural network clas- 147

sifier M(X) with parameters θ, we obtain the sin- 148

gle task equation in Table 1, where ϵ(X; θ) is the 149

ϵ-DEO measure for the classifier, ϵt is the desired 150

base fairness (in our experiments 0), and λ is a 151

hyper-parameter that trades between prediction loss 152

and fairness (Foulds et al., 2020). Since the fairness 153

term is differentiable, the model can be trained us- 154

ing stochastic gradient descent on the objective via 155

backpropagation and automatic differentiation. A 156

burn-in period and stochastic approximation-based 157

update are adopted following Foulds et al. (2020). 158
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Fairness loss Objective

single task minθ f(X; θ)
∆
= 1

N

∑N
i=1 L(xi; θ) + λ[max(0, ϵ(X; θ)− ϵt)]

MTL
minθ f(A;B; θ)

∆
= 1

|A||B|
∑|A|

i=1

∑|B|
j=1 L(xa,i; [θs ∪ θa])

+L(xb,i; [θs ∪ θb]) + λ[max(0, ϵ(B; [θs ∪ θb])− ϵt)]

MTL
intersectional

minθ f(A;B; θ)
∆
= 1

|A||B|
∑|A|

i=1

∑|B|
j=1 L(xa,i; [θs ∪ θa]) + λ[max(0, ϵ(A; [θs ∪ θa])− ϵt)]

+L(xb,i; [θs ∪ θb]) + λ[max(0, ϵ(B; [θs ∪ θb])− ϵt)]

Table 1: Objectives for adding fairness losses in single task, MTL and MTL intersectional cases.

One optimization challenge that emerges from in-159

corporating fairness is instability due to the rep-160

resentativeness of the mini-batches: a diverse set161

of examples is needed on which the fairness loss162

can be meaningfully measured. Following prior163

work (Foulds et al., 2020), we use a stochastic164

approximation-based update for ϵ(X; θ) by esti-165

mating mini-batch noisy expected counts per in-166

tersecting demographic group with a hyperparam-167

eter ρ, Ñt = (1 − ρ)Ñt−1 + ρNt, where Ñt is168

the approximated count at time t and Nt is the169

actual count. Thus ρ controls the smoothness of170

the approximation of the demographic counts in171

mini-batches.172

2.2 MTL fairness173

We train a model jointly on tasks A and B with174

a fairness loss applied only to task B, as seen in175

Figure 1 (MTL fair.) The MTL training will op-176

timize the shared model parameters (the encoder)177

to exploit task similarities and improve fairness in178

task A based on the fairness constraints of task B.179

Assume we have a target task A with training180

instances of input features xa and task labels ya,181

and an auxiliary task B, with training instances of182

input features xb, task labels yb and demographic183

attributes zb. Adding the fairness loss with respect184

to task B in a multi-task objective of a DNN-based185

classifier M(X) with shared parameters θs, task186

A-specific parameters θa and task B-specific pa-187

rameters θb, where θ = (θs ∪ θa ∪ θb) becomes188

MTL equation in Table 1, where ϵ(B; [θs ∪ θb]) is189

the ϵ-DEO measure for the classifier on task B. No-190

tably, ϵ(B; [θs∪θb]) is applied to both task-specific191

and shared parameters.192

2.3 Intersectionality193

We formalize the problem of intersectional fairness194

across tasks using the ϵ-DEO loss across both tasks195

using MTL training with two fairness losses, one 196

for each task. 197

Assume we have a target task A, with train- 198

ing instances of input features xa, task labels ya, 199

and demographic attributes wa, and an auxiliary 200

task B with training instances of input features 201

xb, task labels yb and demographic attributes wb. 202

We seek an intersectionally fair classifier on both 203

tasks with respect to z = wa × wb. Adding the 204

fairness loss in a multi-task objective of a DNN- 205

based classifier M(X) with shared parameters θs, 206

task A-specific parameters θa and task B-specific 207

parameters θb, where θ = (θs∪ θa∪ θb) MTL inter- 208

sectional equation in Table 1, where ϵ(A; [θs ∪ θa]) 209

and ϵ(B; [θs ∪ θb]) are the ϵ-DEO measure for the 210

classifier on task A and B respectively. Notably, 211

both losses update the shared parameters θs. 212

3 Data 213

Transferring demographic fairness from one task to 214

another can, in principle, be applied to any setting 215

with multiple tasks but where demographic infor- 216

mation is available for only one task. However, 217

to evaluate our method we require demographic 218

information for each task’s test set, and a dataset 219

with multiple demographic attributes to test inter- 220

sectional fairness. This makes data selection more 221

challenging. We select datasets in varied domains: 222

clinical text records, online reviews, and social 223

media. A summary of the selected datasets is in 224

Table 2. Appendix C gives a more detailed descrip- 225

tion of datasets as well as showing in-depth dataset 226

statistics in Table 7. 227

3.1 Clinical Records 228

We use the Multiparameter Intelligence Monitor- 229

ing in Intensive Care (MIMIC-III) dataset (Johnson 230

et al., 2016b,a; Goldberger et al., 2000), a collec- 231

tion of anonymized English medical records that 232
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Data
Task Demog. Demog.

classes attributes groups
Clinical notes

In-hosp. Mort. 2 gender 2
Phenotyping 28 gender 2

Online reviews
Sentiment 3 gender + age 4
Topic 8 gender + age 4

Twitter
Sentiment 2 race 2
HateXplain 2 race 5

Table 2: Datasets used in our experiments.

include clinical notes drawn from a critical care233

unit from the Beth Israel Deaconess Medical Cen-234

ter between 2001 and 2012. We select two tasks235

from those defined by Zhang et al. (2020):236

In-hospital Mortality. The task is to predict237

whether a patient will die in the hospital based on238

the textual content of all the clinical notes created239

within the first 48 hours of the hospital stay.240

Phenotyping.2 The task of assigning medical241

conditions based on the evidence in the clinical242

record. In our task, we will assign up to 25 acute243

or chronic conditions from the HCUP CCS code244

groups (Harutyunyan et al., 2019), labeled with245

ICD-9 codes, and three extra summary-labels: any,246

chronic, or acute condition. Therefore, the task is247

modeled as a set of 28 binary classification tasks,248

and evaluated as a multi-label problem. We use249

the same pre-processing pipeline and train-dev-test250

splits as Zhang et al. (2020).3251

3.2 Online Reviews252

We use the Trustpilot data of Hovy (2015), who253

provide data from an open review platform that al-254

lows users to review a range of products, stores, and255

services. Each instance is an English language re-256

view and a 5-point rating. For our experiments, we257

utilize the sentiment (100k reviews) and topic258

(24k reviews) tasks which share demographics for259

age – under 35 (U35) and over 45 (O45) years old –260

and gender – men and women.261

Reviews sentiment. Labels assigned based on262

the stars of the reviews and selected reviews that263

have both age and gender labels available.264

Reviews topic. Labels assigned based on the265

general topic of the review, e.g. fashion, fitness,266

etc. using the Trustpilot taxonomy for seller com-267

panies and selected the top 5 most popular topics:268

2In a medical record, a phenotype is a clinical condition or
characteristic.

3https://github.com/MLforHealth/HurtfulWords

Fitness & Nutrition (Fitness), Fashion Accessories 269

(Fashion), Gaming (Gaming), Cell phone acces- 270

sories (Cell Phone) and Hotels (Hotels)), following 271

Hovy (2015). We perform the same demographic 272

selection criteria as the sentiment task. We ob- 273

tain randomly stratified train-dev-test (60-20-20%) 274

splits ensuring equal representations for both gen- 275

der and age groups. 276

3.3 Social Media 277

Twitter sentiment. We use the twitter senti- 278

ment classification task introduced by Elazar and 279

Goldberg (2018). Labels were assigned based on 280

common emojis and demographic variables are 281

based on the dialectal corpus from Blodgett et al. 282

(2016), were race was assigned based on geolo- 283

cation and words used in the tweet, obtaining a 284

binary AAE (African-American English) and SAE 285

(Standard American English) which we use as prox- 286

ies for non-Hispanic African-Americans and non- 287

Hispanic Caucasians. 288

HateXplain. This is a hate speech classifica- 289

tion dataset obtained from a combination of Twitter 290

and Gab posts (Mathew et al., 2021). We use the 291

binary version of the task which classifies for toxi- 292

city of posts. We select the posts for which there 293

is a majority agreement of annotators for race tar- 294

get groups, and for which we have representation 295

across train-dev-test splits. 296

For each dataset, we follow the splits provided 297

by Elazar and Goldberg (2018) and Mathew et al. 298

(2021), respectively. 299

4 Experiments 300

This section describes baselines and model training. 301

Table 8 in Appendix D shows all combinations of 302

models, training datasets, and fairness attributes. 303

4.1 Models 304

We implement our fairness objectives in an MTL 305

setting based on a shared language encoder 306

and task-specific classification heads. We use 307

BERT-style encoders (Devlin et al., 2019) with a 308

domain-specific vocabulary: SciBERT for clinical 309

tasks, pretrained on scientific text (Beltagy et al., 310

2019), following prior work (Zhang et al., 2020; 311

Amir et al., 2021),4 RoBERTa for the online re- 312

views tasks (Liu et al., 2019) initialized with the 313

roberta-base checkpoint,5 and BERTweet for the 314

4https://huggingface.co/allenai/scibert_
scivocab_uncased

5https://huggingface.co/roberta-base
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social media tasks (Nguyen et al., 2020), initialized315

with the vinai/bertweet-base checkpoint.6 We316

add a separate linear classification head for each317

task, with a Softmax output function to allow for318

multi-class classification or a Sigmoid output func-319

tion for binary and multi-label classification. The320

document representation for the classification head321

is a mean-pooled aggregation across all subword322

representations of the document taken at the top323

layer of the network. The training objective is an324

additive combination of the loss for each of the325

individual tasks. Models were trained on Nvidia326

A100 GPUs, using jiant (Phang et al., 2020), a327

multi-task wrapper library.328

Fairness methods require a careful tradeoff be-329

tween the task loss and fairness loss (Islam et al.,330

2021). To obtain the best performing model, we use331

a grid search for each task, with a learning rate=332

[1e−4, 1e−5, 1e−6] with Adam optimizer (Kingma333

and Ba, 2014), and batch size= [16, 32, 48]. We334

select the best performing model on development335

data and report test data results.336

4.2 Baselines337

We establish baselines against which to compare338

our MTL fairness transfer method.339

STL-base. We train a single-task model for each340

task, i.e. a fine-tuned encoder and classification341

layer. These models do not include a fairness loss342

since they represent the classifiers obtained when343

no demographic attributes are available. We named344

these models single task learning base (STL-base),345

and they serve as an upper bound in task perfor-346

mance when fairness is not a goal.347

STL-fair. Finetuning models without fairness348

losses can result in unfair classifiers (Lan and Huan,349

2017; Zhang et al., 2020), which is known as350

no fairness through unawareness (Barocas et al.,351

2019). To determine how well we could do with352

full demographic information, we train single-task353

models with both a task loss and fairness loss §4.2.354

For the models trained on the clinical dataset and355

Twitter datasets, we add a single-attribute fairness356

loss, with gender and race groups respectively. For357

the models trained on the online reviews datasets358

(sentiment and topic), we add an intersectional fair-359

ness loss, with age and gender attributes. This360

allows us to test both single-attribute and intersec-361

tional fairness. We call these single task models362

with fairness objectives STL-fair. We performed363

6https://huggingface.co/vinai/bertweet-base

a grid search on each task, with the same search 364

spaces as before, in addition to the fair-related hy- 365

perparameters λ = [.01, .05, .1], ρ = [.01, .1, .9], 366

and burn-in= [.5, 1] epochs, defined in §2.1. 367

MTL-base. We next evaluate models trained in 368

a multi-task setting. While MTL can lead to better 369

performance, it often leads to worse results com- 370

pared to single-task baselines due to task conflict 371

and other optimization challenges (Weller et al., 372

2022; Gottumukkala et al., 2020). A dynamic 373

scheduler, which changes the rate that a task is 374

seen based on the current relative performance, has 375

been shown to improve performance in traditional 376

MTL setups (Gottumukkala et al., 2020). There- 377

fore, we first train MTL models with a dynamic 378

scheduler on mutually related task pairs to avoid 379

a domain mismatch: In-hospital Mortality &Phe- 380

notyping (clinical setting), reviews sentiment & re- 381

views topic (online reviews domain), and Twitter 382

sentiment & HateXplain (social media setting). We 383

name these models multi-task baselines MTL-base. 384

BLIND. We also compare our work with other 385

bias removal methods that do not require demo- 386

graphic attributes. Orgad and Belinkov (2023) pro- 387

pose that often classifiers make predictable mis- 388

takes when implicit demographic features are used 389

as shorcut features, a bias also known as simplic- 390

ity bias (Bell and Sagun, 2023). BLIND trains 391

a success classifier that takes the encoder fea- 392

tures and predicts the success of the model on the 393

task. A correct prediction by the success classi- 394

fier means the model used a shallow, or simple, 395

decision and the sample is down-weighted. We 396

use their implementation of the algorithm7 and per- 397

form a hyperparameter search, γ = [1, 2, 4, 8, 16], 398

temp= [1, 2, 4, 8, 16], as suggested by authors (Or- 399

gad and Belinkov, 2023). BLIND does not support 400

multi-label tasks so we do not report results for the 401

clinical tasks. 402

4.3 Our Methods 403

We propose variations on multi-task learning with 404

a fairness loss in support of our proposed setup. 405

MTL-fair. We evaluate the fairness loss applied 406

to one of the two tasks for each in-domain task 407

pair: clinical, online reviews, and social media 408

domains. We call these models with an MTL ob- 409

jective and a fairness loss MTL-fair. To report a 410

fair comparison, each of the MTL-fair models is 411

compared with the task for which no fairness loss 412

7code: https://github.com/technion-cs-nlp/BLIND
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was added, e.g. for the In-hospital Mortality task,413

we compare the STL-base and STL-fair trained414

on In-hospital Mortality data only, the MTL-base415

trained on In-hospital Mortality and Phenotyping416

(without fairness loss), and the MTL-fair trained417

on In-hospital Mortality and Phenotyping, with a418

fairness loss applied to the Phenotyping task only.419

We performed a grid search with the same base420

search space as in §4.2421

MTL-inter. To train intersectionally fair models422

on two tasks for which we have only a single axis of423

demographic attributes, we use an MTL objective424

with two different single-axis fairness losses. We425

focus on the online reviews datasets, for which we426

have sufficient demographic data to support this427

experiment.8 We call these models that use MTL428

with intersectionally fair losses MTL-inter.429

4.4 Evaluation430

We utilize established evaluation metrics for all431

datasets. The clinical datasets are evaluated at the432

patient level. We use the aggregation function from433

Zhang et al. (2020) since clinical notes are too long434

to fit in the context window of models; see §C435

for more details. We report macro-averaged F1436

scores for task performance and ϵ-DEO for fairness437

metrics. The best model criteria for STL-base,438

MTL-base and BLIND models is their F1 score on439

the validation set. We choose STL-fair, MTL-fair440

& MTL-inter models with the lowest ϵ-DEO and441

at least 95% performance of the STL-base models442

in the validation set.443

So far, it has been assumed that there is an extra444

dataset that has access to demographic attributes445

within the same domain. However, due to the446

scarcity of NLP datasets with access to demograph-447

ics, it may not be possible to find an eligible dataset448

within the same domain. To evaluate the robustness449

of our method, we test the impact of domain mis-450

match and task similarity on the MTL models with451

fairness loss. We focus on the Twitter sentiment452

task, as it allows us to pair it with a task within the453

same domain (HateXplain), a similar task but in454

a different domain (reviews sentiment) and other455

tasks with varied domains and task similarities.456

5 Results & Analysis457

Table 3 reports performance and fairness scores for458

within-domain MTL-fair experiments. Our base-459

8MIMIC has demographic data but is highly skewed, result-
ing in intersection groups with only a handful of individuals.

Clinical

In-hosp Mort. Phenotyping

F1 (%) ↑ ϵ-DEO ↓ F1 (%) ↑ ϵ-DEO ↓

STL-base 62.1 0.25 53.6 0.28
STL-fair 65.1 0.22 52.9 0.26
MTL-base 65.6 0.17 53.3 0.27

MTL-fair 64.0 0.19 53.0 0.21

Twitter

HateXplain Sentiment

F1 (%) ↑ ϵ-DEO ↓ F1 (%) ↑ ϵ-DEO ↓

BLIND 70.4 1.15 77.6 0.30
STL-base 71.3 1.58 76.4 0.33
STL-fair 71.5 1.63 76.5 0.28
MTL-base 69.9 1.45 76.2 0.37

MTL-fair 70.4 0.80 75.5 0.28

Table 3: Scores of the MTL fairness loss (MTL-fair)
within-domain experiments. Best per task is bold.

lines perform comparably with prior work (Zhang 460

et al., 2020; Hovy, 2015; Mathew et al., 2021; 461

Elazar and Goldberg, 2018) so we can evaluate 462

the use of multi-task learning methods to debias al- 463

gorithms with high-performing models. In contrast 464

to the common perception that we must trade off 465

fairness and performance, we observe that the per- 466

formance of STL-fair models is equal to or better 467

in 3/4 tasks compared to the STL-base model base- 468

lines and produces fairer models based on ϵ-DEO. 469

This confirms recent work suggesting that an exten- 470

sive grid search of hyperparameters avoids the fair- 471

ness vs. performance trade-off (Islam et al., 2021). 472

Multi-task fairness generalizes to tasks with- 473

out demographics. We expected the STL-fair 474

models to be an upper bound for fairness, and 475

STL-base an upper bound for performance 476

compared to the MTL-fair models. However, for 477

3/4 tasks, the MTL-fair models are fairer than 478

the STL-fair counterparts! In these cases, the 479

performance of the MTL-fair models is slightly 480

worse than STL-fair models but still comparable 481

to STL-base, obtaining models that are fairer while 482

maintaining model performance. This suggests that 483

just as multi-task learning finds representations that 484

are useful for training multiple tasks, multi-task 485

fairness learning corrects model representations 486

to be fairer for both tasks – sometimes finding a 487

fairness minimum that is fairer than it would with 488

access to target task demographic attributes. This 489

technique may be yielding more generalizable 490

and fair representations. Comparing to BLIND, 491
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we observe that BLIND yields fairer models than492

STL-base but less fair than STL-fair and our493

method MTL-fair. This suggests that when we494

have no demographic attributes, BLIND is better495

than not attempting fairness, but effectively using496

demographics, whether internally or in another497

task, increases the fairness of the models. In all498

settings, the multi-task fairness loss produced499

a model that is fairer than the single-task base-500

line without demographic attributes and with501

comparable performance.502

Multi-task enables intersectional fairness. Ta-503

ble 4 shows the results for the intersectional fair-504

ness experiments. The best MTL-inter model per-505

forms comparably to the STL-base and is fairer506

compared to the STL-fair models in both tasks.507

We obtain an intersectionally fairer model com-508

pared to the baselines when only one demographic509

attribute is available per task. This suggests that510

the single-attribute fairness losses combine to ob-511

tain model representations that are beneficial to the512

fairness of both protected attributes and their inter-513

sectional groups. Compared to prior work, we see514

fairness benefits when utilizing single-axis demo-515

graphics, perhaps due to greater loss stability and516

the ability of MTL setups to integrate all the losses.517

Multi-task fairness generalizes across do-518

mains and tasks. So far we have assumed ac-519

cess to a task with demographic attributes available520

within the same domain, exploiting text similarities521

between the tasks to generalize the fairness across522

tasks. However, given the scarcity of datasets with523

demographic attributes, we may wonder whether524

domain similarity is necessary to transfer fairness.525

In Table 5 we show the results of the single-task526

Twitter sentiment models as well as applying the527

MTL fair loss across different datasets. We ob-528

serve that adding a fairness loss to the MTL set-529

tings helps in fairness with tasks across domains530

and task similarities, except for the clinical Pheno-531

typing task. This may be because the performance532

of the Phenotyping task in the MTL system was533

poor (possibly because of task incompatibility) and534

the fairness loss might not have actually provided535

any meaningful change to the model. Regardless,536

on tasks where we obtain competitive performance537

for both tasks, the fairness loss was able to general-538

ize fairness, obtaining models that are fairer than539

the single-task baselines and sometimes fairer than540

applying a fairness loss to the target task, showing541

evidence that our method is robust across domains,542

demographic attributes, and task similarities. 543

Why does the multi-task fairness loss work? 544

The results in this section suggest that the multi- 545

task fairness loss produces more generalizable and 546

fairer representations. We hypothesize that the com- 547

bination of (A) the regularizing effect of the fair- 548

ness loss, as suggested by prior work (Islam et al., 549

2021), (B) shared parameters across tasks and (C) 550

the simultaneous learning of both tasks allows for 551

positive fairness transfer. First, we note that multi- 552

task learning alone (B & C, MTL-base) or a fair- 553

ness loss (A, STL-fair) may suffer in performance 554

or fairness (or sometimes both) compared to our 555

method. Further, one could have shared parameters, 556

B, but not train simultaneously by finetuning on 557

individual tasks consecutively rather than simulta- 558

neously, a multi-task method also known as STILT 559

(Weller et al., 2022; Phang et al., 2018). In Ap- 560

pendix B we show that when the fairness loss is ap- 561

plied consecutively, rather than simultaneously, the 562

fairness transfer effect is no longer observed. Thus, 563

the MTL objective plus the shared parameters are 564

instrumental in enabling the positive transfer of the 565

fairness loss from one task to another. 566

6 Related Work 567

Machine learning methods that seek to transfer fair- 568

ness to unseen tasks have recently received a lot 569

of focus, some utilizing external datasets to ensure 570

fairness on a target task via MTL (Oneto et al., 571

2020) and domain-shift transfer methods (Chen 572

et al., 2022; Schrouff et al., 2022b); however, they 573

often rely on strong assumptions of distribution 574

shifts, limiting their impact with real-world appli- 575

cations (Schrouff et al., 2022a) or applicability to 576

NLP methods. In comparison, while our method 577

does not include explicit domain-shift assumptions, 578

it relies on some domain similarities that are well 579

studied for general multi-task setups (Weller et al., 580

2022). Another solution to debias models is to use 581

proxy variables or inferred demographics in set- 582

tings where we lack demographic data. However, 583

these methods are dependent on the accuracy of the 584

demographic inference model (Aguirre et al., 2021; 585

Bharti et al., 2023) or the availability of proxy vari- 586

ables, e.g. names (Romanov et al., 2019). 587

Particularly, within the field of Natural Language 588

Processing (NLP), MTL has become the standard 589

training setting through the use of Large Language 590

Models (LLM) (Devlin et al., 2019; Radford et al., 591

2019; Brown et al., 2020). Unfortunately, studies 592
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Reviews sentiment Reviews topic

F1 (%) per sub-group ↑ F1 (%) per sub-group ↑

F1 (%) ↑ ϵ-DEO ↓ F-U35 F-O45 M-U35 M-O45 F1 (%) ↑ ϵ-DEO ↓ F-U35 F-O45 M-U35 M-O45

BLIND 84.3 1.16 82.7 85.7 84.4 83.8 92.0 1.05 91.7 86.7 89.7 89.9
STL-base 84.5 0.95 87.1 83.9 83.1 84.6 91.9 1.42 90.0 85.7 90.3 88.5
STL-fair 85.6 0.77 86.4 84.8 84.6 86.3 92.1 1.04 90.9 88.7 90.2 88.1
MTL-base 84.4 0.89 86.1 84.6 82.9 84.7 91.6 1.52 91.4 85.9 89.4 89.5
MTL-fair 83.6 0.65 85.5 82.7 82.8 83.7 91.2 0.86 90.9 88.3 88.1 89.1

MTL-inter 84.1 0.58 86.0 83.7 82.4 84.7 91.6 0.82 90.6 86.6 89.4 88.9

Table 4: Scores of the intersectional experiments on the reviews datasets (MTL-inter). Best per task is bold.

Method F1 (%) ↑ ϵ-DEO ↓

BLIND 77.6 0.30
STL-base 76.4 0.33
STL-fair 76.5 0.28

MTL-fair: HateXplain 75.5 0.28
review sentiment 76.3 0.23
review topic 75.7 0.23
In-Hosp Mort. 75.8 0.25
Phenotyping 75.2 0.32

Table 5: Scores of MTL-fair for the Twitter sentiment
task paired with different domain and task annotations:
same domain, same task, and neither. Bold is best.

have found that fine-tuning LLMs often results in593

unfair models, even when starting from a debiased594

pre-trained encoder (Lan and Huan, 2017; Zhang595

et al., 2020). Instead, they conclude that fairness596

requires applying debiasing methods in fine-tuning597

for the task of interest, requiring demographic in-598

formation for each task.599

In our work we use a separation-based group-600

wise definition of fairness, equalized odds (Hardt601

et al., 2016), that was adapted to be differentiable602

and applied to training procedures inspired by the603

ϵ-Differential Fairness from Foulds et al. (2020).604

However, there are many other group-wise defini-605

tions of fairness that may be adapted in a similar606

way for other tasks, e.g. equalized opportunity607

(Hardt et al., 2016), which ensures equal true pos-608

itive rates (recall) across demographic subgroups.609

There is also adversarial fairness loss, where an610

adversary is added in the training procedure to pre-611

dict the demographic attributes from the output of612

the task classifier. This loss also achieves indepen-613

dence of predictions and demographic attributes,614

similar to demographic parity, and has found suc-615

cess in similar setups from prior work (Islam et al.,616

2021; Zhang et al., 2020). Our methods can be617

easily used with any of these demographic losses618

in the procedure.619

7 Conclusion 620

We explored whether MTL methods for NLP tasks 621

can transfer demographic fairness from one task 622

to another. To achieve this, we adapted single- 623

task fairness losses to multi-task settings to transfer 624

fairness across tasks. We tested our method in mul- 625

tiple NLP datasets in different domains: clinical 626

notes (Johnson et al., 2016b,a; Goldberger et al., 627

2000), online reviews (Hovy, 2015) and social me- 628

dia (Mathew et al., 2021; Elazar and Goldberg, 629

2018). We found that while MTL alone and other 630

consecutive variations of MTL (e.g. STILTS) do 631

not help in fairness and may hurt performance, 632

MTL methods with our fairness loss are able to 633

debias models using the demographic attributes 634

from a secondary task, opening up the possibil- 635

ity for producing fair models for a wide range of 636

tasks that lack demographic data. This finding also 637

informs future work on MTL, suggesting adding 638

regularizers, e.g. fairness losses, can help in perfor- 639

mance deficits found in prior work (Weller et al., 640

2022; Gottumukkala et al., 2020). 641

Additionally, we showed that MTL methods can 642

debias models for intersectional fairness by lever- 643

aging two tasks, each with different demographic 644

attributes, to learn a model that achieves intersec- 645

tional fairness on both tasks. This finding opens 646

up the integration of intersectional fairness losses 647

to new applications and settings that were previ- 648

ously restricted by limited access to demographic 649

attributes. Finally, we test the ability of the MTL 650

fairness loss to generalize fairness across domains 651

and tasks, we find that the transfer of fairness is 652

not dependent on domain or task similarity, but 653

rather related to the performance of the secondary 654

task. Our methods increase the range of tasks that 655

fairness methods can be applied to in the machine 656

learning and NLP community, by allowing the use 657

of external tasks that have demographic attributes 658

to obtain fairer models. 659
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8 Limitations660

Our results suggest that our MTL methods are able661

to utilize external demographic attributes to achieve662

better fairness for our target task. However, the663

selection criteria for the best-performing models664

require access to demographic attributes for the665

test set to assess the fairness of the models. A so-666

lution to this would be to select the models that667

are the best performing for our target task with the668

lowest fairness score for the task that we do have669

demographic data available. This selection crite-670

ria, however, does not guarantee the most optimal671

model, especially if the demographic attribute dis-672

tributions or the task domains are different. Our673

recommendation is to validate the fairness of the674

models with access to demographic attributes when675

possible.676

9 Ethics Statement677

We address intersectionality as intersectional group678

fairness in the methods and analysis when possible679

given the data availability, as they enable a practical680

approach for inquiry of these models. We acknowl-681

edge that there are real interlocking systems of682

power that contribute to causing these disparities683

in society, and that our dataset capture these. For684

example, we evaluate models on the clinical do-685

main using the MIMIC-III dataset: the healthcare686

system has been historically biased against peo-687

ple in groups in many protected attribute axis e.g.688

socio-economic status, race/ethnicity, gender, and689

age. The goal of our approach is to address these690

biases in machine learning models so they are less691

likely to exacerbate the real-life biases as they are692

integrated in society.693
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A Fairness Definition916

ϵ-Differential Fairness is a demographic-parity917

based metric, which requires that the demographic918

attributes are independent of the classifier output919

(Barocas et al., 2019; Foulds et al., 2020). Formally,920

we assume a finite dataset of size N , with each sam-921

ple consisting of three attributes: features x (in our922

datasets these are text sequences), task labels y, and923

demographic attributes z. Let s1, ..., sp be discrete-924

valued demographic attributes, z = s1×s2×...×sp.925

A model M(X) satisfies ϵ-DF with respect to z if926

for all x, and ŷ ∈ Range(M),927

e−ϵ ≤ Pr(M(x) = ŷ|ζi)
Pr(M(x) = ŷ|ζj)

≤ eϵ,928

for all (ζi, ζj) ∈ z × z where Pr(ζi) > 0,929

Pr(ζj) > 0. Smaller ϵ is better with ϵ = 0 meaning930

perfect fairness (Foulds et al., 2020). Perfect fair-931

ness under this definition means that the rates of932

predicted labels are the same across demographic933

groups, achieving independence between demo-934

graphic attributes and predictions.935

In short, ϵ-Differential Fairness is an936

independence-based metric that measures937

the biggest difference in prediction rates between938

intersections of demographic attributes. However,939

independence based fairness definitions, like940

demographic parity and ϵ-DF, have limitations in941

settings where the prevalence of the target labels is942

somehow related to the demographic attributes, e.g.943

breast cancer is much more common in women944

than men. In these settings, independence based945

definitions would require model predictions to be946

independent of the demographic attributes, which947

would encourage lower performance on the desired948

task, e.g. either an increase in the prediction949

of breast cancer for men and/or a decrease in950

breast cancer for women which are both not ideal.951

For these reasons, we favor a separation based952

metric, like equalized odds, that avoids limitations953

associated with dependence of model predictions954

on demographics by requiring independence955

conditioned on the target variable (Hardt et al.,956

2016), i.e. that both recall and specificity rates are957

equal across demographic groups.958

We apply equalized odds on the ϵ-DF framework959

to obtain a metric that is also differentiable, and960

call it ϵ-Differential Equalized Odds (ϵ-DEO). For-961

mally, let s1, ..., sp be discrete-valued demographic962

attributes, and z = s1 × s2 × ...× sp the intersec-963

tional groups. A model M(X) satisfies ϵ-DEO964

with respect to z if for all x, ŷ ∈ Range(M) and 965

y ∈ Range(M), 966

e−ϵ ≤ Pr(M(x) = ŷ|ζi, y)
Pr(M(x) = ŷ|ζj , y)

≤ eϵ, (1) 967

for all (ζi, ζj) ∈ z × z where Pr(ζi) > 0, 968

Pr(ζj) > 0; smaller ϵ is better, with ϵ = 0 for per- 969

fect fairness. Perfect fairness results from a classi- 970

fier with the same recall and specificity rates across 971

intersectional groups of demographic attributes. 972

B STILT and frozen experiments 973

In this section we test the hypothesis of whether it 974

is important to have shared parameters and simulta- 975

neous learning when implementing the multi-task 976

fairness loss. 977

MTL. We label MTL the models that were trained 978

simultaneously, as described in §2.2. 979

STILT. We label STILT the models that were 980

trained consecutively. First, the model is finetuned 981

only for task B with the fairness loss, the task with 982

demographic attributes as seen in Figure 1. This 983

step results in a model similar to STL-fair for task 984

B. Second, the model is further finetuned for task A 985

(as seen in Figure 1), with a different classification 986

layer and without a fairness loss. Both steps to- 987

gether result in a model that has been trained with 988

the same data and the same number of parame- 989

ters as MTL-fair, however the tasks are not trained 990

simultaneously. 991

Frozen. In order to test the importance of pa- 992

rameter sharing, we train a variance of the model 993

where the shared parameters, BERT-based encoder, 994

are frozen during training. In this way, the num- 995

ber of shared parameters, θs in Table 1, is empty. 996

First, we train a single-task model with a fairness 997

loss where the encoder is frozen, we label this 998

STL-fair-frozen. We also train a STILT model, 999

where we first finetune for the task that has de- 1000

mographic attributes (Task B) with a fairness loss 1001

end-to-end, and then we finetune for the task with- 1002

out demographic attributes without a fairness loss 1003

and with the encoder frozen. The idea is that the 1004

fairness loss will influence the encoder towards a 1005

fairer minima that then the classification loss for 1006

the second task will be able to exploit. 1007

Table 6 shows the results for STILT-fair, 1008

and the frozen versions STL-fair-frozen and 1009

STILT-fair-frozen. First we see that the frozen 1010

versions of the models drastically underperform 1011

compared to the end-to-end models (∆F1 ≈ 10.) 1012



F1 (%) ↑ ϵ-DEO ↓

STL-base 71.3 1.58
BLIND 70.4 1.15
STL-fair 71.5 1.63

-frozen 61.8 0.69
STILT-fair 70.4 1.42

-frozen 63.4 0.60

MTL-fair 70.4 0.80

Table 6: Scores for the STILT and frozen version of
the model on HateXplain dataset.

while also being more fair. This is a clear exam-1013

ple of the accuracy-fairness trade-off, which is ex-1014

pected given the drastically smaller amount of pa-1015

rameters available for training for these frozen mod-1016

els. It is clear that these models are fairer because1017

they perform equally worse for all demographic1018

groups.1019

When comparing the STILT-fair to our method1020

MTL-fair, we see that while the performance of1021

the models is very similar (both scoring 70.4 F1),1022

the fairness is drastically better in the simultaneous1023

training (MTL-fair ϵ-DEO=.80) vs. consecutively1024

(STILT-fair ϵ-DEO=1.42). This suggests that the1025

MTL objective, which allows for both tasks to in-1026

fluence the learning, is instrumental for the fairness1027

loss on task B to transfer to task A.1028

C Data Details1029

In this section, we report dataset statistics, in-1030

cluding the number of posts per label and demo-1031

graphic. We select datasets in varied domains: clin-1032

ical text records, online reviews, and social media,1033

with both single and intersectional demographic1034

attributes, gender, race and gender+age subgroups,1035

and in a variety of classification paradigms: mul-1036

ticlass, binary and multilabel. Table 7 shows the1037

total and percentage for all datasets.1038

C.1 Clinical Records1039

It is crucial to implement behavioral fairness mea-1040

sures to secure fair behavior in the critical context1041

of AI applications for medical records. We use1042

the Multiparameter Intelligence Monitoring in In-1043

tensive Care (MIMIC-III) dataset (Johnson et al.,1044

2016b,a; Goldberger et al., 2000), a collection of1045

anonymized English medical records that include1046

clinical notes drawn from a critical care unit from1047

the Beth Israel Deaconess Medical Center between1048

train val test

In-Hosp Mort. 13191 2701 2445

Men 55.4 54.8 55.2
Women 44.6 45.2 44.8

Positive 13.1 13.8 11.5

Phenotyping 13839 2850 2519

Men 57.2 55.8 56.4
Women 42.8 44.2 43.6

Upper Resp. 2.6 2.5 2.6
Lower Resp. 3.5 4.0 3.7
Shock 3.8 3.6 4.2
Any Acute 70.8 69.9 70.6
Any Chronic 77.1 78.5 76.8
Any Disease 89.6 90.6 90.1

reviews sentiment 58259 19420 19420

Men Under 35 23.2 23.2 23.2
Men Over 45 34.7 34.7 34.7
Women Under 35 14.8 14.8 14.7
Women Over 45 27.3 27.3 27.3

positive 84.5 84.5 84.5
neutral 3.5 3.5 3.5
negative 12.0 12.0 12.0

reviews topic 14744 4915 4915

Men Under 35 54.0 54.0 54.0
Men Over 45 14.2 14.2 14.3
Women Under 35 21.1 21.1 21.1
Women Over 45 10.7 10.7 10.6

Fitness 39.6 39.5 39.6
Fashion 16.6 16.6 16.7
Gaming 16.0 16.0 16.0
Cell Phone 14.4 14.4 14.4
Hotels 13.4 13.4 13.4

HateXplain 5376 661 681

African 54.5 54.0 55.1
Arab 18.8 18.8 17.8
Asian 6.2 6.2 6.5
Hispanic 5.4 5.1 5.1
Caucasian 15.1 15.9 15.6

Toxic 81.3 81.2 79.7

twitter sentiment 156000 4000 8000

African American 50.0 50.0 50.0
Caucasian 50.0 50.0 50.0

Happy 50.0 50.0 50.0
Sad 50.0 50.0 50.0

Table 7: Total (first line) and percentage of documents
in the splits all the datasets, separated by demographics
and then task labels.



2001 and 2012. We select two tasks from those de-1049

fined by Zhang et al. (2020): in-hospital mortality1050

and phenotyping. We use the same pre-processing1051

pipeline as Zhang et al. (2020)9 and only use gender1052

demographics since the other attributes are highly1053

imbalanced, resulting in very small subgroups, as1054

noted by prior work (Amir et al., 2021). These1055

tasks should be evaluated at the patient level (Zhang1056

et al., 2020), however, because the clinical notes1057

are too long to fit in the input size of the encoder,1058

we created subsequences using sliding windows.1059

The model predicts a label for each subsequence1060

and at evaluation time we aggregate these predic-1061

tions to obtain a single prediction for each patient.1062

We use an aggregation function from prior work1063

(Zhang et al., 2020):1064

Pr(y = 1|Ŷ ) =
max(Ŷ ) +mean(Ŷ )n/c

1 + n/c
,1065

where Ŷ are the predictions for all the subse-1066

quences from a patient, n is the number of sub-1067

sequences and c is a scaling factor (c = 2 (Zhang1068

et al., 2020).)1069

In-hospital Mortality. The task of in-hospital1070

mortality is to predict whether a patient will die in1071

the hospital based on the textual content of all the1072

clinical notes created within the first 48 hours of1073

the hospital stay. To avoid low information notes,1074

we limit the notes to “nurse", “nursing/other" and1075

“physician" types. We concatenate all notes avail-1076

able within the specified time period and tokenize1077

the concatenated notes and split them into sliding1078

subsequences of 512 subwords, to fit within the1079

BERT context window (Devlin et al., 2019). We1080

limit the number of subsequences per patient by1081

selecting the last 30 subsequences of the concate-1082

nated notes, following Zhang et al. (2020).1083

Phenotyping. In a medical record, a phenotype1084

is a clinical condition or characteristic. Phenotyp-1085

ing is the task of assigning these conditions based1086

on the evidence in the medical record. In our task,1087

we will assign up to 25 acute or chronic conditions1088

from the HCUP CCS code groups (Harutyunyan1089

et al., 2019), labeled with ICD-9 codes. In addition1090

to those conditions, three summary labels are also1091

added for patients that have any chronic or acute1092

condition. Therefore, the task is modeled as a set1093

of 28 binary classification tasks, and evaluated as1094

a multi-label problem. For this task we select the1095

first note written by a “nurse", “nursing/other" or1096

9https://github.com/MLforHealth/HurtfulWords

“physician" within the first 48 hours of the stay, as 1097

proposed by Zhang et al. (2020). 1098

For each dataset, we use the train-dev-test splits 1099

provided by Zhang et al. (2020). Table 7 shows the 1100

final breakdown of the number of subsequences in 1101

the datasets. 1102

C.2 Online Reviews 1103

Developing automated NLP methods for online 1104

product reviews can help companies understand 1105

customer feedback, improve the user experience, 1106

and enable market analysis. There are a variety 1107

of tasks defined for online reviews, such as sen- 1108

timent analysis, determining the helpfulness of a 1109

review, and the topic of the review. Furthermore, 1110

reviews are authored by a diverse population and 1111

we seek models that perform fairly across this user 1112

population. 1113

We use data from Trustpilot, an open review 1114

platform that allows users to review a range of 1115

products, stores, and services (Hovy, 2015). Each 1116

instance is an English language review selected 1117

from the Trustpilot website that consists of a text 1118

review and a 5-point star rating, along with item 1119

information, such as the seller. The original dataset 1120

defined three tasks: sentiment (based on the rat- 1121

ing of the review), topic (the subject of the re- 1122

view), and attributes (demographic attributes of 1123

the review author). For our experiments, we utilize 1124

the sentiment (100k reviews) and topic (24k re- 1125

views) tasks which share demographics for age – 1126

under 35 (U35) and over 45 (O45) years old – and 1127

gender – men and women. 1128

Reviews sentiment. This is a multiclass task 1129

where the labels were assigned based on the stars 1130

of the reviews: 1-star reviews were labeled as “neg- 1131

ative”, 3-star labeled as “neutral” and 5-star labeled 1132

as “positive”. We selected reviews that have both 1133

age and gender labels available with age ranges 1134

between 16-35 and 45-70 years old, and discarded 1135

reviews with 2 and 4 stars. 1136

Reviews topic. This is a multiclass task where 1137

labels are assigned based on the general topic of the 1138

review, e.g. fashion, fitness, etc. These concepts 1139

were assigned to each review using the Trustpilot 1140

taxonomy for seller companies, which summarizes 1141

the services and products offered by each com- 1142

pany in the corpus with high-level concepts. We 1143

selected the top 5 most popular topics: Fitness & 1144

Nutrition (Fitness), Fashion Accessories (Fashion), 1145

Gaming (Gaming), Cell phone accessories (Cell 1146

https://github.com/MLforHealth/HurtfulWords


Phone) and Hotels (Hotels)). We perform the same1147

demographic selection criteria as the sentiment1148

task, resulting in a multiclass task with 5 labels.1149

For each dataset, we obtain randomly stratified1150

train-dev-test (60-20-20%) splits ensuring equal1151

representations for both gender and age groups.1152

For each review, we follow prior work (Hung et al.,1153

2023) and set the maximum sequence length to 5121154

subword tokens, the max input size of BERT-style1155

models (Devlin et al., 2019). Table 7 shows the1156

final breakdown of the number of reviews in the1157

datasets.1158

C.3 Social Media1159

Social media platforms host a diverse population,1160

with studies demonstrating NLP system bias on1161

related tasks (Aguirre et al., 2021).1162

Twitter sentiment. This is a binary sentiment1163

classification task using Twitter data. Sentiment1164

labels were assigned based on common emojis,1165

following the preprocessing procedure of Elazar1166

and Goldberg (2018). The demographic variables1167

are based on the dialectal corpus from Blodgett1168

et al. (2016), where race was assigned based on1169

geolocation and words used in the tweet, obtain-1170

ing a binary AAE (African-American English) and1171

SAE (Standard American English) which we use as1172

proxies for non-Hispanic African-Americans and1173

non-Hispanic Caucasians.1174

HateXplain. This hate speech classifica-1175

tion dataset combines Twitter and Gab messages1176

(Mathew et al., 2021). We use the binary version1177

of the task which identifies toxicity of posts. We1178

select the posts for which there is a majority agree-1179

ment of annotators for race target groups, and for1180

which we have representation across train-dev-test1181

splits.1182

For each dataset, we follow the splits provided1183

by Elazar and Goldberg (2018) and Mathew et al.1184

(2021) respectively. Table 7 shows the number1185

of posts for the HateXplain and Twitter sentiment1186

datasets respectively.1187

D Experiment Table1188

For each dataset, the model setup and their respec-1189

tive training data, fairness loss attribute and which1190

task the fairness loss was applied to. MTL-fair1191

are the models with the fairness loss from §2.2,1192

and MTL-inter is the model with the intersectional1193

fairness loss discussed in §2.3. * The MTL-inter1194

model uses two separate single-attribute fairness1195

losses for each task. 1196

E Results without access to val set 1197

demographic attributes 1198

The selection criteria for the best-performing mod- 1199

els requires access to demographic attributes for 1200

the test set of the target task to assess the fairness 1201

of the models. In the absence of this, Table 9 1202

shows the results for the model setting where we 1203

select models with the target task performance of 1204

at least 95% of STL-base and with the lowest fair- 1205

ness score of the auxiliary task. These models 1206

are labeled as MTL-fair no demo. For all of the 1207

datasets, MTL-fair no demo are less fair than if 1208

we could select models based on the fairness of 1209

the target task, MTL-fair. In some cases, we ob- 1210

tain models that are less fair than our single-task 1211

baselines (STL-base, 2/4) and multi-task baselines 1212

(MTL-base, 3/4). This suggest that while we are 1213

able to generalize the fairness loss to other tasks 1214

during training, the fairness measures across tasks 1215

are not related. For these reasons we recommend 1216

that MTL-fair models are validated for fairness on 1217

the target task. 1218



Table 8: list of experiments

Review Sentiment
training data fairness loss attributes fairness loss target task

STL-base sentiment no no
STL-fair sentiment gender+age sentiment
MTL-base sentiment+topic no no
MTL-fair sentiment+topic gender+age topic

Review Topic
training data fairness loss attributes fairness loss target task

STL-base topic no no
STL-fair topic gender+age topic
MTL-base sentiment+topic no no
MTL-fair sentiment+topic gender+age sentiment

In-Hospital Mortality
training data fairness loss attributes fairness loss target task

STL-base In-hosp Mort. no no
STL-fair In-hosp Mort. gender In-hosp Mort.
MTL-base In-hosp Mort.+Phenotyping no no
MTL-fair In-hosp Mort.+Phenotyping gender Phenotyping

Phenotyping
training data fairness loss attributes fairness loss target task

STL-base Phenotyping no no
STL-fair Phenotyping gender Phenotyping
MTL-base In-hosp Mort.+Phenotyping no no
MTL-fair In-hosp Mort.+Phenotyping gender In-hosp Mort.

Twitter Sentiment
training data fairness loss attributes fairness loss target task

STL-base Twitter sentiment no no
STL-fair Twitter sentiment race twitter sentiment
MTL-base HateXplain+Twitter sentiment no no
MTL-fair HateXplain+Twitter sentiment race HateXplain

HateXplain
training data fairness loss attributes fairness loss target task

STL-base HateXplain no no
STL-fair HateXplain race HateXplain
MTL-base Twitter sentiment+HateXplain no no
MTL-fair Twitter sentiment+HateXplain race Twitter sentiment

Intersectional Experiments
training data fairness loss attributes fairness loss target task

STL-base-sentiment sentiment no no
STL-base-topic topic no no
STL-fair-sentiment sentiment gender+age sentiment
STL-fair-topic topic gender+age topic
MTL-base sentiment+topic no no
MTL-inter sentiment+topic gender/age* sentiment/topic*



Table 9: Scores of the multi-task fairness loss experiments. For the Phenotyping task, these are macro-averages over
all labels. Bold is best per task.

method AUROC (%) ↑ ϵ-DEO ↓ ∆Recall (%) ↓ ∆Specificity (%) ↓

clinical

In-hosp Mort. stl-base 77.7 0.22 2.05 5.99
stl-fair 77.5 0.18 3.46 3.54

mtl-base 78.1 0.17 0.23 4.45
mtl-fair 78.1 0.14 0.98 3.83

mtl-fair no demo. 78.4 0.18 1.80 4.02

Phenotyping stl-base 69.5 0.24 4.97 3.17
stl-fair 69.6 0.21 4.63 2.96

mtl-base 69.7 0.29 5.47 4.12
mtl-fair 69.9 0.23 5.94 2.46

mtl-fair no demo. 70.9 0.28 6.18 4.25

method F1 (%) ↑ ϵ-DEO ↓ ∆F1 (%) ↓

reviews

sentiment stl-base 83.9 0.83 3.79
stl-fair 86.1 0.68 3.05

mtl-base 83.5 0.66 4.75
mtl-fair 84.4 0.63 1.96

mtl-fair no demo. 83.3 0.89 5.92

topic stl-base 91.9 1.42 4.58
stl-fair 92.1 1.04 2.86

mtl-base 91.3 1.10 6.15
mtl-fair 91.6 0.85 3.22

mtl-fair no demo. 91.3 1.11 4.79


