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Abstract

Domain generalization (DG) is a fundamental yet challenging topic in machine
learning. Recently, the remarkable zero-shot capabilities of the large pre-trained
vision-language model (e.g., CLIP) have made it popular for various downstream
tasks. However, the effectiveness of this capacity often degrades when there
are shifts in data distribution during testing compared to the training data. In
this paper, we propose a novel method, known as CLIPCEIL, a model that uti-
lizes Channel rEfinement and Image-text aLignment to facilitate the CLIP to the
inaccessible out-of-distribution test datasets that exhibit domain shifts. Specif-
ically, we refine the feature channels in the visual domain to ensure they con-
tain domain-invariant and class-relevant features by using a lightweight adapter.
This is achieved by minimizing the inter-domain variance while maximizing the
inter-class variance. In the meantime, we ensure the image-text alignment by
aligning text embeddings of the class descriptions and their corresponding image
embedding while further removing the domain-specific features. Moreover, our
model integrates multi-scale CLIP features by utilizing a self-attention fusion
module, technically implemented through one Transformer layer. Extensive ex-
periments on five widely used benchmark datasets demonstrate that CLIPCEIL
outperforms the existing state-of-the-art methods. The source code is available at
https://github.com/yuxi120407/CLIPCEIL.

1 Introduction

Machine learning models inevitably face the challenge of out-of-distribution (OOD) generalization
when encountering new tasks with different distributions from the training data. To mitigate this
issue, extensive research has been dedicated to domain generalization (DG) [66], aiming to utilize
knowledge from source domains to enhance the model’s generalizability to the test dataset with
domain shifts.

Recently, the spotlight has been on advancements in Vision-language models (VLMs), like CLIP [41],
which are trained on web-scale image-language pairs containing a diverse range of domains and
concepts from an open world, exhibit exceptional zero-shot learning and transferability to various
downstream tasks [26, 31, 33, 41, 65]. However, despite their impressive zero-shot performance,
supervised fine-tuning on task-specific datasets remains essential for further improving performance
on downstream tasks. However, recent works [27, 55] have pointed out that fine-tuning degrades the
CLIP’s generalizability on the out-of-distribution test datasets exhibiting domain shift. To tackle this
challenge, various methodologies have been proposed. For instance, CoOp [68] and CoCoOp [67]
models utilized the prompt learning, DPL [62] learned a lightweight prompt generator, while WiSE-
FT [55] combined the original zero-shot and fine-tuned models. More recently, CLIPood [44]
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achieved state-of-the-art performance by employing the beta moving average and margin metric
softmax to fine-tune the CLIP. It is noteworthy that these approaches do not explicitly guide the
model to learn domain-invariant features, potentially capturing some domain-related information.
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Figure 1: The feature channel sensitivity to domain and class
shifts are quantified through employing the histogram of their
standard deviations across different domains and classes. We
analyze CLIP’s image embeddings using the ViT-B/16 backbone
on OfficeHome [52] dataset. For each channel, the average outputs
are computed across all samples from each domain/class, and the
standard deviations are calculated on domain/class dimension.

One prominent trend in Domain
Generalization (DG) involves
acquiring domain-invariant fea-
tures across variance of source
domains [28, 32, 19, 21, 9], as
it has been demonstrated that
feature representations are gen-
eral and transferable to differ-
ent domains if they remain in-
variant across domains [3]. Intu-
itively, the domain invariant fea-
tures are intrinsic to the class
while remaining insensitive to
the domain changes. However,
as shown in Figure 1 (a), many
CLIP visual feature channels ex-
hibit unstable activations across
domains (illustrated by the blue
histogram), indicating a lack of
domain invariance. Similarly, as
shown in Figure 1 (b), many CLIP visual feature channels show insensitivity, and thus indiscrimina-
tive, to class variations. These observations prompt the question:

Can we enhance the pre-trained model’s generalizability by excluding domain-specific (sensitive)
and class-irrelevant (insensitive) features?

To answer it, we conduct a simple experiment using the pre-trained CLIP model on OfficeHome
dataset. Given the original 512 CLIP visual feature channels, we select the ones with low domain
variance and high class variance. We calculate the variance to different domains (Vd) and classes
(Vc) for each feature channel, and then utilize a criterion J = Vd − Vc to select the top-Q (Q = 400)
channels with the smallest values. Assuming effective alignment of visual-language features in CLIP,
we use the same Q channels for text features. During inference, we simply use the inner product of
the visual and text feature vectors, akin to the approach used in CLIP zero-shot [41]. As shown in
Table 1, the simple feature channel selection improves the CLIP zero-shot generalizability.

Table 1: Comparison of channel selection (Q = 400)
with the CLIP zero-shot on Office Home benchmark

Model A C P R Avg
CLIP full features 82.7 68.0 88.3 90.7 82.4
Channel-Selection 84.9 68.3 89.4 91.2 83.5

Motivated by the above observations, we
propose CLIPCEIL, a simple yet effec-
tive method aimed at promoting domain-
invariant and class-relevant information
within CLIP visual features from the per-
spective of feature channels. Specifically,
we freeze the CLIP visual and text encoders
and exclusively train a lightweight adapter
for visual features, which fuses the multi-scale features, while minimizing the inter-domain variance
and maximizing the inter-class variance. Furthermore, we establish alignment between image and
text spaces by ensuring the consistency of direction among different classes in both the image and
text domains. Our contributions are summarized as follows.

• We propose to adapt CLIP through Channel rEfinement and Image-text aLignment
(CLIPCEIL), ensuring the visual feature channels contain the domain-invariant and class-
relevant information while preserving the image-text alignment.

• Our model integrates multi-scale CLIP features by using self-attention mechanism, techni-
cally implemented through one Transformer layer.

• We comprehensively evaluate our proposed method on five benchmark datasets. The results
demonstrate that our method achieves state-of-the-art performance.
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2 Related Work

Vision-Language Models (VLM). The VLMs aim to link images and texts by embedding them into
a shared space for cross-model learning [45, 12]. Recently, equipped with advanced architecture
(e.g., Transformer [51]) and trained on huge web-scale image-text pairs, the VLMs have attracted
significant attention and demonstrated superior performance on various downstream tasks like image
classification, segmentation, object detection, and image-text retrieval. For instance, CLIP [41]
pre-trained on 400M image-text pairs using contrastive loss, demonstrates outstanding zero-shot
prediction capability. ALIGN [22], trained on 1.8B noisy image-text pairs with noise-robust con-
trastive learning, ImageBERT [39], pre-trained on four tasks simultaneously, achieving superior
image-text retrieval performance. SLIP [36] incorporates self-supervision into contrastive learning,
leading to more efficient pre-training. BLIP [30] and BLIP-2 [29] employ joint optimization with
three objectives, achieving state-of-the-art performance on a wide range of vision-language tasks.
Instead of developing a new pre-trained model, our work aims to leverage CLIP to enhance domain
generalization performance.

Domain Generalization (DG). DG aims to train a model that generalizes well to the
out-of-distribution test (target) domains, solely training on source domains. One typical way is
domain augmentation, which either diversifies the source domain or simulates the inaccessible test
(target) domain conditions like domain randomization [25, 47, 18, 20], adversarial data augmenta-
tion [53, 64, 58] and data generation [46, 43, 57, 40, 23, 69]. Alternatively, methods focus on the
learning strategies, including ensemble learning [42] and meta-learning [32]. Another prevalent
approach is representation learning, aiming to capture the domain-invariant representations on source
domains. [60] extracts the invariant semantic features by jointly learning the semantic and variation
encoders. [37] learned style-invariant representation by reducing the intrinsic style from the class
categories through the style-agnostic networks. [5] first disentangled the latent representations in
domain-specific and domain-invariant and then concatenated them to make final decisions. Similarly,
[59] proposed the information theory inspired disentanglement and purification loss functions to
explicitly disentangle the latent feature in class-relevant and class-irrelevant components. Most
recently, DomainDrop [17] dropped domain-specific channels during training by using additional
domain discriminator networks.

In recent years, research has focused on enhancing the generalization of VLMs, like CLIP. Some
studies learn the task-specific prompts [68, 67, 62], while others utilize the ensemble learning [55]
or adapter learning [14, 61]. Despite the superior performance of large pre-trained VLMs, they still
struggle with out-of-distribution (OOD) generalization. Efforts have been made to enhance their
generalizability, e.g., StyLIP [4] and DPL [68] proposed the prompt learning approach for domain
generalization. VL2V-SD [1] improved the OOD generalization of the VLM by visual-text alignment
and visual encoder distillation. More recently, approaches like inference-time fine-tuning [63] or fine-
tuning the entire visual encoder [35, 44] have been explored to further improve model generalizability.
However, the former incurs an additional computational burden during inference, while the latter
faces significant computational and storage challenges, requiring a full CLIP-sized model for each
task. In contrast, our proposed model, once trained, does not require additional adaptation during
inference, and we only need to store a lightweight model for each task.

3 Methods

3.1 Problem Setup

This paper aims to improve the out-of-distribution generalization through the pre-trained VLM. Let
X ⊂ Rd be the image space and Y ⊂ R the class label space. A domain consists of data sampled
from a joint distribution PXY on X ×Y . In the context of domain generalization, we have K labeled
training (source) domains {Dk

s = {(xk
i , y

k
i )}

nk
i=1}Kk=1, where nk is the number of samples in the kth

domain, and each domain Dk
s associated with a joint distribution P k

XY . Note that each domain has
a different joint distribution: P i

XY ̸= P j
XY , 1 ≤ i ̸= j ≤ K. The goal of domain generalization

is to train a model f : X → Y from K training domain Ds and achieve good generalization on
an out-of-distribution inaccessible test (target) domain Dt = {(xt

i, y
t
i)}

nt
i=1, where yt ∈ Y , and

P test
XY ̸= P i

XY for i ∈ {1, ...,K}.
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Figure 2: An overview of the proposed framework. We fixed the CLIP visual encoder I and text
encoder T and trained a lightweight adapter g during the training. The channel refinement ensures
each feature channel contains domain-invariant (minimizing domain variance) and class-relevant
(maximizing class variance) information. To further align the image and text, we maximize the
image-text similarity and minimize direction loss with the help of text class descriptions based on
data pairs from different classes and domains.

3.2 Framework Overview

The overview of our framework is illustrated in Figure. 2, which consists of three primary components.
The first one is the lightweight adapter, depicted in the orange block of Figure 2. It fuses the multi-
scale CLIP visual features and maps them to a latent feature space, aiming to enhance the model’s
generalizability. The second component is visual channel refinement, which aims to ensure the
visual features contain domain-invariant and class-relevant features. As observed from Figure 1,
CLIP’s visual features have numerous channels that exhibit sensitivity to domain variations, which are
essentially domain-specific features, as well as channels that exhibit insensitivity to class variations,
which are essentially class-irrelevant features. In the context of domain generalization, it is argued
that both features are often redundant and may hinder the model’s generalizability. Our framework
aim to eliminate these undesirable features by minimizing the feature variance across domains and
maximizing feature variance across classes. The third one is the image-text alignment component.
The feature channel refinement module, working solely in the image space, has the potential to disrupt
the well-aligned image-text feature space from CLIP. Therefore, realigning the image and text spaces
becomes necessary. Specifically, we introduce the direction loss to minimize the difference between
the direction of two image features and that of their corresponding textual features. We describe each
component of our framework thoroughly in the subsequent sections.

3.3 Adapter g

A CLIP’s visual encoder consists of several vision transformer layers and a final project layer, as
depicted in blue block in Figure 3. Let I denote the visual encoder within CLIP. Given an image x,
its visual features in CLIP are represented as I(x) = [{f l

x}Ll=1; f
final
x ]. Here, f l

x ∈ Rd signifies the
feature map derived from the [cls] token in the lth layer, with a dimension of d, where L stands
for the number of transformer layers. Additionally, ffinal

x ∈ RD represents the ultimate output of
CLIP’s visual encoder, obtained by passing the feature map of the last layer fL

x through an inherent
MLP projector. In this paper, we use ViT-B/16 as the visual encoder backbone with the number of
transformer layers L = 12, the feature dimensions d = 768 and D = 512.
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Figure 3: The architecture of the adapter gθ.

We aim to enhance the visual features’ resilience
to the domain shifts. Therefore, we propose a
lightweight adapter g that consists of a Trans-
former layer [51] and an MLP projector, specif-
ically utilizing the self-attention mechanism to
integrate visual features from different Trans-
former layers in the CLIP encoder and map
these features to a latent feature space that ben-
efits the model’s generalizability. Specifically,
the multi-scale features {f l

x}Ll=1 are fed into a
Transformer layer Tr, the feature obtained from
each layer is treated as a token. The feature
extracted from the [cls] token in the output
of Tr is considered as the fusion of multi-scale
features. This fused feature is then directed into
a single-layer MLP projector Pr, which maps it
from dimension d to D. Finally, both the output of Pr and the CLIP final feature ffinal

x are fused
by residual connection to obtain ultimate visual embedding zx. More formally, it is formulated as
follows:

zx = gθ(I(x)) = Pr
(
Tr
(
{f l

x}Ll=1

))
+ ffinal

x , (1)

where θ represents all the learnable parameters within the adapter g.

3.4 Channel Refinement

To extract domain-invariant and class-relevant features, while eliminating those that are domain-
specific and class-irrelevant, we design a channel refinement loss based on two criteria, 1) inter-
domain variance: domain-invariant features should exhibit minimal changes across different do-
mains, implying a smaller inter-domain variance; 2) inter-class variance: class-relevant features
should change across different classes, while the changes are expected as large as possible to have
more discriminative ability, indicating they should have larger inter-class variance.
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Figure 4: Diagram of calculating the channel domain sensi-
tivity across different domains.

Inter-domain Variance. It measures
changes in a feature channel across
domains. Given the ith input image
from kth domain, xk

i , its refined fea-
ture is zkxi

= gθ(I(x
k
i )), and we de-

note its mth dimension as zk
(m)

xi
. As

shown in Figure. 4, we first put fea-
tures from all the images from the
same domain together, i.e., each col-
umn indicates the feature of one im-
age. Then, we calculate the Z

(m)
k

refers to the mth channel-wise aver-
age value of all the samples in the
kth domain: Z(m)

k = 1
nk

∑nk

i=1 z
k(m)

xi
,

where nk is the number of samples in
the kth domain. Finally, inter-domain
variance of the mth channels is calcu-
lated as follows:

V
(m)
d =

1

K

K∑
k=1

(Z
(m)
k − Z̄

(m)
d )2, (2)

where K is the number of domains, Z̄(m)
d represents the average output at mth channel across

different domains.
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Inter-class Variance. It measures changes in a feature channel across different classes. Similarly to
inter-domain variance, we use the same way to compute the inter-class variance, formulated in Eq. 3.

V (m)
c =

1

L

L∑
ℓ=1

(Z
(m)
ℓ − Z̄(m)

c )2, (3)

where L is the number of classes and Z
(m)
ℓ = 1

nℓ

∑nℓ

i=1 z
ℓ(m)

xi
denotes the channel-wise average value

of all samples from ℓth category, where nℓ is the number of samples in the ℓth category, and zℓ
(m)

xi

denotes the refined feature from ith input image in ℓth category. Z̄(m)
c represents the average output

at mth channel across different classes.

To ensure the image feature channels contain both domain-invariant and class-relevant information,
we minimize the inter-domain variance to eliminate the domain-specific information and maximize
the inter-class variance to capture more discriminative class-relevant information. Our channel
refinement loss combines the above two criteria in the following way:

Lref =
1

D

D∑
m=1

log
(
1 +

√
V

(m)
d√

V
(m)
c

)
, (4)

where D refers to the number of feature channels.

3.5 Image-Text Alignment

The adapter gθ maps features from the CLIP’s image embedding space I to the refined image
embedding space Z , aiming for capturing domain-invariant and class-relevant features. However,
this mapping may disturb the well-alignment between image spaces I and text spaces T provided by
CLIP, leading to a misalignment between Z and T spaces. Therefore, it is necessary to re-align the
refined image space Z and text space T . To attain this objective, we first simply employ the standard
CLIP loss formulated as follows:

LCE = Cross-entropy
(
Softmax[gθ(I(x)) ·Ty], y

)
, (5)

where “·” is inner product, Ty = T (ty) denotes the text embedding of a text prompt ty of class y.

However, the standard CLIP loss only aligns image embedding with the correct text embedding on
a per-sample basis but overlooks the potential relationship between samples. Thus, we propose to
explore semantic structure information to strengthen the image-text alignment. Inspired by prior
work [13, 11], we aim to align the pairwise directions in the image and the text spaces. To this end,
we first normalize the pairwise distance in image and text space and then directly minimize their
cosine similarity. For a pair training samples {(xi, yi), (xj , yj)}, the direction loss is defined as:

Ldir = 1−

(
gθ(I(xi))− gθ(I(xj))

∥gθ(I(xi))− gθ(I(xj))∥
·

Tyi
−Tyj∥∥Tyi
−Tyj

∥∥
)
, (6)

To further remove the domain-specific information in the image space, we sample the pair data from
different domains and different classes and align them with the direction of the corresponding classes
in the text space. Since the language embedding of the class is naturally domain-invariant. Thus,
if the output of gθ(I(xi)) or gθ(I(xj)) contains any domain-specific information, the difference
between them will not align with the corresponding class text direction. Therefore, the direction
loss strengthens the image-text alignment by exploiting semantic structure information as well as
removing domain-specific information in the image space.

3.6 Training and Inference

We aggregate all the losses to our overall objective defined as follows:

min
θ

L = LCE + Lref + Ldir, (7)
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Algorithm 1 Training Procedure of CLIPCEIL
Input: Pre-trained CLIP image encoder I , text encoder T , adapter gθ, initialized with ERM.

1: for t ∈ [1, N ] do
2: Sample data {(x, y)} from the source domain set S.
3: Calculate Channel Refinement loss Lref (Eq. 4), and Cross-Entropy loss LCE (Eq. 5).
4: Sample the pair data {(xi, yi), (xj , yj)} from the source domain set S , where xi and xj are

from different domain and yi ̸= yj .
5: Calculate Direction loss Ldir (Eq. 6) on above pair data samples.
6: Update θ with total loss L (Eq. 7) with Beta Moving Average (BMA).
7: end for

return: gθ.

where θ is the parameters of trainable adapter gθ. We show the overall training procedure of the
proposed CLIPCEIL method in Algorithm 1.

To incorporate prior knowledge of CLIP, during the inference stage, we ensemble the fine-tuning
model’s prediction and CLIP zero-shot prediction to obtain the final classification logits. The logits
of sample xi are formulated as follows:

logitsxi
=

1

2

(
ffinal
xi

W + gθ(I(xi))W
)
. (8)

where W = (T1, . . . ,TC)
⊤, C is the number of classes.

4 Experiments

This section showcases the superiority of our method across five widely used DG benchmark datasets.
Furthermore, we carry out detailed ablation studies to determine the impacts of different loss terms,
the channel refinement strategies, and the architecture of adapter g.

4.1 Datasets and implementation details

We evaluate our proposed method on five standard DG benchmarks: PACS [28] contains 9991 images
of 7 categories from 4 domains; VLCS [48] comprises 5 categories from 4 domains, 10,729 images in
total; OfficeHome [52] contains 15,579 images of 65 categories from 4 domains; TerraIncognita [2]
contains 24,788 images with 10 categories from 4 domains; DomainNet [38] is a more recent and
the largest one among all five datasets, which contains 0.6 million images in 345 categories from 6
domains. We utilize the CLIP pre-trained model with the ViT-B/16 [10] backbone. More results of
other backbones are in Appendix C.1. We fixed the image and text encoders and solely trained adapter
g during training. To avoid the influence of different template prompts, the output of the text encoder
is calculated by the average of 80 template prompts from ImageNet [41]. In all experiments, we use
the open-source code DomainBed [16] and follow the train-validate-test split of each dataset on the
DomainBed benchmark. Following the literature, we train our model with 5000 iterations on PACS,
VLCS, OfficeHome, and TerraIncognia datasets and 15000 iterations on the DomainNet dataset. Our
model is selected based on the source domain validation set. All experiments are conducted on the
NVIDIA A100 GPUs. All the results were averaged after five runs with different random seeds. More
detailed information are in Appendix A

4.2 Main Results

We evaluate our CLIPCEIL model against the state-of-the-art (SOTA) approaches on five standard
benchmark datasets. We initially compare with CLIP zero-shot, which serves as a pre-trained vision-
language baseline model without any training, which outperforms state-of-the-art ResNet-50 based
models, e.g., SAGM [54] and DomainDrop [17], demonstrates the superior of the pre-trained VLMs.
We further compare with the standard linear probing, which learns a single-layer linear classifier
upon CLIP encoder, and three SOTA VLMs based models, i.e., the mutual-information regularization
based MIRO [7] model, the prompt learning based DPL [62] and StyLIP [4] models. To extend the
comparison, we adapt three widely-used prompt learning models, i.e., CoOp [68], CoCoOP [67],
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MaPLE [24], and one adapter-based method CLIP-Adapter [15], which are originally designed
for few-shot learning, to the DG task using the same experimental setting on the DG benchmark.
Furthermore, to ensure a fair comparison with methods that fine-tune the entire visual encoder such
as CLIPood [44], CAR-FT [35], and UniDG [63], we train our CLIPCEIL similarly, which we term
CLIPCEIL++. Note that UniDG [63] is an inference-time fine-tuning model, which adapts the model
with additional information from the target domain.

Table 2: Comparison of our proposed method with the State-of-the-art methods on the DomainBed
benchmark. denotes ResNet-50 backbone; denotes frozen CLIP ViT-B/16 encoder; denotes
fine-tuning the entire CLIP ViT-B/16 encoder, * denotes the two rounds inference-time fine-tuning.
Red and indicate the best performance in each group.

Model Venue PACS VLCS OfficeHome TerraInc DomainNet Avg
SAGM [54] CVPR’23 86.6 80.0 70.1 48.8 45.0 66.1
DomainDrop [17] ICCV’23 89.5 78.3 71.8 - 44.4 -
CLIP Zero-Shot - 96.2 81.7 82.4 33.4 57.5 70.2
Lin.Probing - 96.5 82.6 80.4 50.2 57.6 73.5
CoOp [68] IJCV’22 96.0 81.1 83.5 47.0 59.8 73.5
CoCoOp [67] CVPR’22 95.7 83.1 84.3 50.4 60.0 74.7
CLIP-Adapter [15] IJCV’24 96.4 84.3 82.2 - 59.9 −
MaPLE [24] CVPR’23 97.6 85.1 83.4 - 60.4 -
DPL [62] 2023 97.3 84.3 84.2 52.6 56.7 75.0
StyLIP [4] WACV’24 98.1 86.9 84.6 - 62.0 -
CLIPCEIL Ours 97.6± 0.1 88.4± 0.4 85.4± 0.2 53.0± 0.3 62.0± 0.1 77.3± 0.2

MIRO [7] ECCV’22 95.6 82.2 82.5 54.3 54.0 73.7
CLIPood [44] ICML’23 97.3 85.0 87.0 60.4 63.5 78.6
CAR-FT [35] IJCV’24 96.8 85.5 85.7 61.9 62.5 78.5
UniDG* [63] arXiv’23 96.7 86.3 86.2 62.4 61.3 78.6
VLV2-SD [1] CVPR’24 96.7 83.3 87.4 58.5 62.8 77.7
CLIPCEIL++ Ours 97.2± 0.1 85.2± 0.5 87.7± 0.3 62.0± 0.5 63.6± 0.2 79.1± 0.2

As illustrated in Table 2, our proposed CLIPCEIL exhibits significant improvement over the CLIP
Zero-Shot and achieves the best average performance on five benchmark datasets among all the
compared methods. Specifically, CLIPCEIL exceeds the second-best method DPL [62] by 2.3%
on average, CLIPCEIL++ exceeds the second-best method CLIPood [44] by 0.5% on average. The
results prove CLIPCEIL’s effectiveness in enhancing the model generalization through capturing
domain-invariant and class-relevant features. More detailed break-down results are in Appendix B.

4.3 Ablation Studies

4.3.1 Effectiveness of each loss term

Firstly, we conduct the ablation study to examine the efficacy of each loss (i.e., channel refinement
loss Lref , and direction loss Ldir) in our overall objective function. Cross-entropy loss LCE is very
standard and thus we include it by default, similar to multi-scale fusion, which will be investigated in
Section 4.3.3. Table 3 presents the results of different CLIPCEIL variants with the pre-trained ViT-
B/16 model on the OfficeHome dataset. As shown in the table, utilizing multi-scale information alone
can enhance performance compared to the CLIP Zero-Shot. Integrating Lref leads to further enhanced
performance, indicating the effectiveness in channel refinement loss to capturing domain-invariant
and class-relevant information. Similarly, the improved performance of adding Ldir suggests that the
direction loss contributes to enhancing domain-invariant features through the help of text description.
As a result, combining all three components results in the best performance, showing that each loss
works as an indispensable component for achieving superior generalization of the framework.

Table 3: Ablation study of each loss in our objective function on OfficeHome dataset.
Model A C P R Avg
Zero-Shot 82.7 68.0 88.3 90.7 82.4
+Multi-scale 82.0 69.6 90.6 90.4 83.2
+Multi-scale+Lref 83.5 70.6 91.3 90.7 84.1
+Multi-scale+Ldir 83.9 70.8 91.8 91.2 84.4
CLIPCEIL (Full Model) 86.0 71.2 92.2 92.3 85.4

8



To further demonstrate the corporation of each loss term, we visualize the image features of the CLIP
pre-trained model and our proposed CLIPCEIL on the OfficeHome dataset in Figure 5. Different
colors represent different classes or domains. As illustrated in Figure 5 (a) and (b), the image features
extracted by CLIPCEIL exhibit more discrimination than the CLIP pre-trained model, proving the
effectiveness of CLIPCEIL in capturing the class-relevant features. Meanwhile, the image features
corresponding to different domains extracted from CLIPCEIL are distributed almost equally across all
classes, demonstrated in Figure 5 (d), indicating that CLIPCEIL definitely extracts domain-invariant
features. In contrast, image features from the CLIP pre-trained model are located in various places
across different domains, shown in Figure 5 (c), suggesting that it still contains domain-specific
information. The visualization of other datasets can be found in Appendix B.2.
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Figure 5: t-SNE [49] visualization on image features of CLIPCEIL and CLIP pre-trained models
across different classes and domains. Different colors indicate different classes or domains

4.3.2 The effectiveness of the two criteria in channel refinement loss
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Figure 6: The average accuracy bar of the different
channel refinement strategies.

Our proposed channel refinement loss Lref is
based on two criteria, namely inter-domain vari-
ance and inter-class variance. To demonstrate
the effectiveness of these criteria, we conducted
experiments on all five datasets. In Figure. 6, the
results show that combining inter-domain vari-
ance with inter-class variance (represented by
the darkest bars) results in better performance
than using either criterion alone. This indicates
that the two criteria can be effectively blended
and both domain-invariant and class-relevant
information complement each other and are es-
sential to enhance a model’s generalization abil-
ity. More detailed breakdown results are in Ap-
pendix B.3.

4.3.3 Architecture of adapter g

We investigate the structure of adapter g by comparing the efficacy of multi-scale and bypass
connections. As indicated in Table 4, integrating both multi-scale and bypass connections yields
the most optimal performance. This can be attributed to two main factors: (1) The multi-scale
approach captures a wide range of image features from both lower and higher levels, making it more
generalizable than solely using the final layer output. (2) The bypass design preserves the original
CLIP pre-trained knowledge and is easier to optimize. More ablation studies for different adapter
architecture and integrating Multi-scale text features are in Appendix C.2, and C.3.

Table 4: Ablation study of different adapter architectures.
Multi-scale Bypass A C P R Avg

✗ ✗ 83.2 69.6 90.5 91.6 83.5
✗ ✓ 84.0 70.2 91.0 91.8 84.3
✓ ✗ 83.8 70.5 91.7 92.0 84.6
✓ ✓ 86.0 71.2 92.2 92.3 85.4

9



5 Discussion: Potential Data Leakage in CLIP on DomainBed Benchmarks

This section discusses the possibility of data leakage when fine-tuning the pre-trained CLIP model on
DomainBed benchmarks. A primary concern is whether the DomainBed datasets truly represent out-
of-distribution (OOD) data for CLIP, given its extensive pretraining on 400 million image-text pairs.
We argue that the data distributions differ significantly: DomainBed datasets, such as DomainNet,
display distinct characteristics like imbalance and long-tailed distributions, in contrast to the balanced
nature of CLIP’s pretraining dataset [41, 56]. Furthermore, CLIP’s zero-shot performance on
benchmarks like TerraIncognita and DomainNet highlights that certain domains (e.g., Infograph and
Quickdraw in DomainNet, and camera-trap images in TerraIncognita) remain underrepresented in the
CLIP pretraining corpus. These observations suggest that the distribution, style, and specific content
of CLIP’s pretraining data diverge meaningfully from those in DomainBed, potentially mitigating
concerns about data overlap and preserving the intended OOD nature of DomainBed benchmarks.

6 Conclusion

In this paper, we introduced the CLIPCEIL model to enhance the generalizability of the pre-trained
CLIP model to the test datasets undergoing domain shifts. Specifically, we proposed a lightweight
adapter for the refinement of visual feature channels to ensure the inclusion of domain-invariant and
class-relevant information, which is achieved by minimizing inter-domain variance while maximizing
inter-class variance. We maintained image-text alignment by aligning image features with the text
features of their corresponding textual descriptions, concurrently eliminating domain-specific features.
Comprehensive experiments on five benchmark datasets illustrated that CLIPCEIL surpasses the
existing state-of-the-art methods.

Limitations. Since calculating inter-domain variance involves multiple domains, CLIPCEIL currently
only applies to multi-source domain generalization. Exploring its applicability to single-source
domain generalization is deferred for future investigation.
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The appendix is organized into the following sections:
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C.2 Ablation studies for Adapter g
C.3 Apply multi-scale mechanism on text encoder

A Dataset and implementation details

We evaluate our proposed method on five conventional DG benchmarks. PACS [28] contains 9991
images of 7 categories from 4 domains: photo (P), art-painting (A), cartoon (C) and sketch (S).
OfficeHome [52] contains 15,579 images in total with 65 categories from 4 domains of styles:
Artistic (A), Clip-Art (C), Product (P) and Real-World (R). TerraIncognita [2] contains 24,788
images with 10 categories from 4 domains, i.e., four different locations where the images are taken.
VLCS [48] comprises 5 categories from 4 domains, VOC2007 (V), LabelMe (L), Caltech (C) and
Sun (S), and 10,729 images in total. DomainNet [38] is a more recent and the largest dataset used
in domain generalization task. In total, it contains 0.6 million images in 345 categories from six
domains: clipart, infograph, painting, quickdraw, real, and sketch.

We use the CLIP pre-trained model with ViT-B/16 as the image encoder. We freeze both image and
text encoders during the training and only train a lightweight adapter g consisting of one transformer
layer and a single-layer MLP projector. The structure details of adapter g are reported in Table 6.
To avoid the influence of different template prompts, the output of the text encoder is obtained
by averaging 80 template prompts on ImageNet [41] represented in Table 7. Our optimizer is
AdamW [34] with a weight decay of 5e− 4, and the learning rate is initialized to 5e− 5, gradually
decreasing by using the cosine annealing scheduler. We train the model for 5000 iterations for all
the datasets except for DomainNet [38] with 15000 iterations. We adopt a batch size of 32 for all
datasets, and all images are randomly resized and cropped to 224× 224. Following the same training
process of CLIPood [44], we utilize the beta moving average (BMA) to update our parameters during
the training. All the default configurations are shown in Table 5. All experiments are conducted on a
GPU server equipped with 4 NVIDIA A100-SXM4-80GB GPUs, although only 2 were used for this
paper. The server also has an Intel Xeon Gold 6336Y CPU @ 2.40GHz with 24 cores and 48 threads,
1 TB of memory. Our CLIPCEIL model is implemented and evaluated with Python 3.8.13, PyTorch
1.8.0, Torchvision 0.9.0, and CUDA 11.1.

Table 5: Default configurations for the experiments.
Default Settings Value
optimizer AdamW [34]
base lr 5× 10−5

weight decay 5× 10−4

lr scheduler cosine decay
batch size 32
augmentation RandomResizedCrop
# iterations 5000
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Table 6: Structure details of Adapter g.
Transformer (Tr) Projector (Pr)

Width Head Layer Input Output Layer
786 1 1 786 512 1

Table 7: 80 template prompts on the ImageNet

Template Prompt
a bad photo of a {}. the origami {}.
a photo of many {}. the {} in a video game.
a sculpture of a {}. a sketch of a {}.
a photo of the hard to see {}. a doodle of the {}.
a low resolution photo of the{}. a origami {}.
a rendering of a {}. a low resolution photo of a {}.
graffiti of a {}. the toy {}.
a bad photo of the {}. a rendition of the {}.
a cropped photo of the {}. a photo of the clean {}.
a tattoo of a {}. a photo of a large{}.
the embroidered {}. a rendition of a {}.
a photo of a hard to see {}. a photo of a nice {}.
a bright photo of a {}. a photo of a weird {}.
a photo of a clean {}. a blurry photo of a {}.
a photo of a dirty {}. a cartoon {}.
a dark photo of the {}. art of a {}.
a drawing of a {}. a sketch of the {}.
a photo of my {}. a embroidered {}.
the plastic {}. a pixelated photo of a{}.
a photo of the cool {}. itap of the {}.
a close-up photo of a {}. a jpeg corrupted photo of the {}.
a black and white photo of the {}. a good photo of a {}.
a painting of the {}. a plushie {}.
a painting of a {}. a photo of the nice {}.
a pixelated photo of the {}. a photo of the small {}.
a sculpture of the {}. a photo of the weird {}.
a bright photo of the {}. the cartoon {}.
a cropped photo of a {}. art of the {}.
a plastic {}. a drawing of the {}.
a photo of the dirty {}. a photo of the large {}.
a jpeg corrupted photo of a {}. a black and white photo of a {}.
a blurry photo of the {}. the plushie {}.
a photo of the {}. a dark photo of a {}.
a good photo of the {}. itap of a {}.
a rendering of the {}. graffiti of the {}.
a {} in a video game. a toy {}.
a photo of one {}. itap of my {}.
a doodle of a {}. a photo of a cool {}.
a close-up photo of the {}. a photo of a small {}.
a photo of a {}. a tattoo of the {}.

B Full results

B.1 Domain Generalization benchmarks

In the main paper, we report the average accuracy across each dataset. In the supplementary, we
provide a comprehensive breakdown of results for each domain on PACS [28] in Table 8, VLCS [48]
in Table 9, OfficeHome [52] in Table 10, TerraIncognita [2] in Table 11, and DomainNet [38] in
Table 12. We present the results reported in the original papers on comparison methods. For some
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methods, such as CoOp [68] and CoCoOp [67] where the original papers do not report results under
the domain generalization setting, we reimplement them for a unified comparison. As presented in
tables, CLIPCEIL outperforms methods with ResNet pre-trained model by a large margin, indicating
that vision-language models pre-trained on huge web-scale image-text pairs provide a promising
way to boost OOD generalization. It also outperforms SOTA using CLIP models i.e., MIRO [7] and
DPL [62]. In general, our method achieves the best performance on most domains, and our overall
average performance on a total of five benchmark datasets exceeds other SOTA DG methods. For
each result of CLIPCEIL, we report the average results and the standard deviation of five runs with
random seeds.

Table 8: Detailed comparison of our proposed method with the State-of-the-art methods on the PACS
dataset. * denotes the models that utilize the ResNet-50 backbone, and the rest utilize CLIP ViT-B/16
backbone.

Model Venue Art Cartoon Photo Sketch Avg
*SAGM [54] CVPR’23 - - - - 86.6
*DomainDrop [17] ICCV’23 98.0±0.2 89.8±0.4 84.2±0.4 86.0±1.1 89.5
CLIP Zero-Shot - 97.3 99.1 99.9 88.3 96.2
Lin.Probing - 97.6 98.9 99.9 89.7 96.5
ERM [50] - 96.5 95.3 96.2 86.5 93.7
MIRO [7] ECCV’22 - - - 95.6
CoOp [68] IJCV’22 98.3 98.8 99.7 87.3 96.0
CoCoOp [67] CVPR’22 97.6 98.6 99.7 87.0 95.7
DPL [62] 2023 - - - - 97.3
CLIPCEIL Ours 98.3±0.1 99.6±0.0 100.0±0.0 92.3±0.2 97.6±0.1

Table 9: Detailed comparison of our proposed method with the State-of-the-art methods on the
VLCS dataset. * denotes the models that utilize the ResNet-50 backbone, and the rest utilize CLIP
ViT-B/16 backbone.

Model Venue Caltech LabelMe Sun Pascal Avg
*SAGM [54] CVPR’23 - - - - 80.0
*DomainDrop [17] ICCV’23 98.9±0.2 64.0±1.3 76.4±0.9 73.7±1.2 78.3
CLIP Zero-Shot - 98.9 65.5 77.6 84.5 81.7
Lin.Probing - 99.2 68.1 83.6 79.6 82.6
ERM [50] - 97.2 67.1 80.4 86.2 82.7
MIRO [7] ECCV’22 - - - - 82.2
CoOp [68] IJCV’22 97.9 65.5 76.6 84.3 81.1
CoCoOp [67] CVPR’22 99.8 67.0 78.5 87.1 83.1
DPL [62] 2023 - - - - 84.3
CLIPCEIL Ours 100.0±0.0 80.5±0.6 85.7±0.2 87.4±0.3 88.4±0.4

B.2 Visualization of visual features

To further demonstrate the effectiveness of CLIPCEIL, we visualize the image features of CLIP
pre-trained model and our proposed CLIPCEIL. We show the t-SNE figures across different domains
and classes on PACS, VLCS, and TerrIncognita in Figure 7, Figure 8, and Figure 9, respectively. Note
that the OfficeHome results have been reported in the main paper. It is clear to see that the image
features extracted by CLIPCEIL exhibit more discrimination with respect to different classes than
CLIP pre-trained model. Meanwhile, CLIPCEIL’s image features corresponding to different domains
appear in most classes. This proves that CLIPCEIL’s image features contain domain-invariant and
class-relevant information.

B.3 Ablation studies on channel refinement criteria

To demonstrate the effectiveness of our channel refinement strategy, we compare it with other methods
that either consider the inter-domain or inter-class variance criterion. The main paper illustrates the
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Table 10: Detailed comparison of our proposed method with the State-of-the-art methods on the
OfficeHome dataset. * denotes the models that utilize the ResNet-50 backbone, and the rest utilize
CLIP ViT-B/16 backbone.

Model Venue Art Clipart Product Real Avg
*SAGM [54] CVPR’23 - - - - 70.1
*DomainDrop [17] ICCV’23 67.3±0.5 60.4±0.5 79.1±0.3 80.2±0.2 71.8
CLIP Zero-Shot - 82.7 68.0 88.3 90.7 82.4
Lin.Probing - 81.6 65.7 87.3 87.1 80.4
ERM [50] - 80.2 65.1 85.7 83.1 78.5
MIRO [7] ECCV’22 - - - - 82.5
CoOp [68] IJCV’22 82.8 69.7 91.0 90.6 83.5
CoCoOp [67] CVPR’22 83.9 70.0 91.4 91.9 84.3
DPL [62] 2023 - - - - 84.2
CLIPCEIL Ours 86.0±0.2 71.2±0.3 92.2±0.1 92.3±0.1 85.4±0.2

Table 11: Detailed comparison of our proposed method with the State-of-the-art methods on the
TerraIncognita dataset. * denotes the models that utilize the ResNet-50 backbone, and the rest utilize
CLIP ViT-B/16 backbone.

Model Venue L100 L38 L43 L46 Avg
*SAGM [54] CVPR’23 - - - - 48.8
*DomainDrop [17] ICCV’23 - - - - -
CLIP Zero-Shot - 51.2 23.4 29.9 29.1 33.4
Lin.Probing - 49.7 55.3 51.4 44.2 50.2
ERM [50] - 60.3 53.5 51.2 44.0 52.3
MIRO [7] ECCV’22 - - - - 54.3
CoOp [68] IJCV’22 41.4 53.7 48.9 44.6 47.0
CoCoOp [67] CVPR’22 50.7 56.0 51.9 44.0 50.4
DPL [62] 2023 - - - - 52.6
CLIPCEIL Ours 63.7±0.3 55.0±0.2 49.0±0.6 44.2±0.3 53.0±0.3

average accuracy bars of different channel refinement strategies across each dataset. Here, we provide
a comprehensive breakdown of results for each domain on five DG datasets in Figure 10.

C Additional experiments

C.1 Performance on different backbones

In our main experiments, we use ViT-B/16 as the backbone. To further explore performance across
different architectures, we conducted additional experiments with ResNet-50, ViT-B/32, and ViT-L/14
on the OfficeHome dataset. The process for extracting latent representations differs between ResNet
and ViT-based backbones. For ResNet, we extract latent features from the feature map and apply
Attention Pooling to transform the 2D feature map into a 1D vector. These vectors from different
layers are then passed into the adapter’s Transformer layer, g. The results, summarized in Table 13,
show that CLIPCEIL consistently outperforms zero-shot predictions on ViT backbones and other
ResNet-based models, highlighting its strong generalization ability across different architectures.

C.2 Ablation studies for Adapter

We conducted ablation studies to explore the effects of the Transformer layer in the adapter g. In this
study, we replaced the Transformer layer with Average Pooling and a one-layer MLP projector and
used a simple adapter g, i.e., one-layer MLP, that did not consider multi-scale information. As shown
in the orange block in Table 14, the Transformer layer outperformed the other fusion strategies,
indicating its necessity. The pink block of Table 14 suggests that the inclusion of the reference loss
Lref and the directional loss Ldir alongside the simple adapter g leads still improves the performance.
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Table 12: Detailed comparison of our proposed method with the State-of-the-art methods on the
DomainNet dataset. * denotes the models that utilize the ResNet-50 backbone, and the rest utilize
CLIP ViT-B/16 backbone.

Model Venue Clipart Infograph Painting Quickdraw Real Sketch Avg
*SAGM [54] CVPR’23 - - - - - - 45.0
*DomainDrop [17] ICCV’23 62.9±0.3 21.6±0.1 50.7±0.2 14.8±0.3 62.7±0.1 53.5±0.6 44.4
CLIP Zero-Shot - 71.3 47.4 66.4 14.2 83.4 63.1 57.5
Lin.Probing - 71.1 46.9 66.7 15.4 83.1 62.8 57.6
ERM [50] - 64.2 43.1 61.2 14.3 80.1 60.3 53.8
MIRO [7] ECCV’22 - - - - - - 54.0
CoOp [68] IJCV’22 75.1 49.5 69.6 15.8 81.7 66.8 59.8
CoCoOp [67] CVPR’22 74.8 51.9 69.2 16.0 80.9 67.2 60.0
DPL [62] 2023 - - - - - - 56.7
CLIPCEIL Ours 77.1±0.1 52.1±0.1 71.4±0.1 17.0±0.2 85.4±0.1 69.1±0.1 62.0±0.1
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Figure 7: t-SNE [49] visualization on image features of our proposed CLIPCEIL and CLIP pre-trained
across different classes and domains on PACS dataset. Different colors indicate different classes or
domains

C.3 Apply multi-scale mechanism on text encoder

To investigate the effectiveness of the multi-scale mechanism on the text encoder. We conducted
experiments to incorporate a multi-scale adapter into the text encoder. As shown in Table 15, using
both visual and text adapters did not perform as well as only using the visual adapter. This may be due
to the increased complexity of optimizing both adapters simultaneously. It also suggests that focusing
on image feature adaptation is more crucial for domain generalization tasks since the semantic gap
between visual features in pretrained and custom datasets is larger than that of text features.
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Figure 8: t-SNE [49] visualization on image features of our proposed CLIPCEIL and CLIP pre-trained
across different classes and domains on VLCS dataset. Different colors indicate different classes or
domains
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Figure 9: t-SNE [49] visualization on image features of our proposed CLIPCEIL and CLIP pre-trained
across different classes and domains on TerraIncognita dataset. Different colors indicate different
classes or domains
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Figure 10: Full accuracy bar results of different channel refinement strategies on the five DG datasets.
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Table 13: Performance with different backbones on OfficeHome datasets.

Model Art Clipart Product Real Avg
ResNet-50 Backbone

SAGM [54] - - - - 70.1
SWAD [6] 66.1 57.7 78.4 80.2 70.6
DomainDrop [17] 67.3 60.4 79.1 80.2 71.8
DISPEL [8] 71.3 59.4 80.3 82.1 73.3
CLIP Zero-shot 74.6 49.5 79.4 83.5 71.8
CLIPCEIL 76.9 54.3 85.0 86.3 75.6

ViT-based Backbone
CLIP (ViT-L/14) Zero-shot 89.8 74.8 93.6 94.1 88.1
CLIPCEIL (ViT-L/14) 91.1 79.6 94.8 95.1 90.2
CLIP (ViT-B/32) Zero-shot 82.7 61.8 86.6 88.6 79.9
CLIPCEIL (ViT-B/32) 84.2 66.4 90.0 91.5 83.0

Table 14: Performance of a linear layer adapter g on OfficeHome dataset with ViT-B/16 backbone.

Model A C P R Avg
CLIP Zero-shot 82.7 68.0 88.3 90.7 82.4
One linear projector 84.0 69.8 90.2 90.8 83.7
One linear projector +Lref+Ldir 85.0 70.6 91.7 91.8 84.8
Average-pooling 84.2 68.6 90.8 91.3 83.7
Two-layer MLP 85.5 70.2 90.7 91.6 84.5
CLIPCEIL (w/ Transformer layer) 86.0 71.2 92.2 92.3 85.4

Table 15: Performance comparison with text encoder adapter with ViT-B/16 backbone.

Model A C P R Avg
Visual + text multi-scale adapter 85.7 70.5 92.0 91.8 85.0
CLIPCEIL (Only visual multi-scale adapter) 86.0 71.2 92.2 92.3 85.4
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, in both abstract and introduction, we described our contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discussed the limitations of our work at the end of “Conclusion"
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

22



Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we provide detailed information about the parameter setting and configu-
ration in the section 4.1 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, the source code is available at https://github.com/yuxi120407/
CLIPCEIL, while all the data we use is publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we provide detailed information about experimental setting in the sec-
tion 4.1 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we provide the mean and standard deviation of the five runs with different
random seeds for all the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, we provide the detailed information about the computational resource we
used in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, our research is with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: As our model is designed for efficient fine-tuning the pre-trained vision
language model, we do not anticipate any ethical or social impacts at this point.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: As our model is designed for efficient fine-tuning the pre-trained vision
language model for the image classification task, we do not anticipate any risk at this point.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we cited all the existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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