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ABSTRACT

Asymptotically unbounded regret of order O(
√
T ) has been proved to be the lowest

possible regret order that can be achieved in typical linear contextual bandit settings.
Here we present a linear contextual bandit setting with repetitive arrivals of a set
of agents where bounded, i.e., O(1), expected regret can be achieved for each
agent. We provide a novel Counterfactual UCB (CFUCB) policy where agents
benefit from the experiences of other agents. It is shown that sharing of information
is a Subgame Perfect Nash Equilibrium for the agents with respect to the order
of the regret, which results in each agent realizing bounded regret. Personalized
recommender systems and adaptive experimentation are two important applications.

1 INTRODUCTION

In personalized recommender platforms, users (hereafter called agents) repeatedly explore the
available choices (hereafter called arms). The platform then obtains increasing information with
time about the rewards each agent gets from its choices. Moreover, the platform learns from the
experiences of not just one agent but from the experiences of all agents. Could it put that totality of
information to good use in helping each agent’s exploration? The standard linear contextual bandit
model does not feature repeated arrivals of the same agents and has an unbounded regret of Θ(

√
T )

(Auer (2002); Chu et al. (2011); Abbasi-Yadkori et al. (2011); Li et al. (2017)). We propose a model
of recurring linear contextual bandits in which the expected regret is bounded, i.e., O(1), under the
condition that the number of agents is relatively large compared to the number of arms.

In the recurring linear contextual bandit framework each agent/each arm in a set A has its own fixed
feature vector where the arm feature vectors are unknown, and the mean reward of agent j playing
arm m is the inner product of their two feature vectors. Adaptive medical prescriptions is a good
example of a linear contextual bandit problem where the number of agents (patients) is much larger
than the number of arms (possible treatments). Each patient (agent) is represented by his/her medical
record that is embedded into a known feature vector. There is a set of drugs (arms), with the individual
effect of each drug unknown. As in other contextual linear bandit problems, the physician learns
about other arms beyond the one played played, due to the linear dependences among their feature
vectors. We show that after some time agents become fully relieved from further exploration, leading
to bounded regret for all agents.

Another issue is that while a mediator (e.g., a physician, YouTube) may coordinate agents’ exploration
(e.g., by recommendations), agents are usually selfish and strategic, so they might not follow the
suggested policy or might not report properly (e.g., refusing to provide the physician their previous
medical history, or turn on the privacy mode while using YouTube). We show that all agents truthfully
reporting their private information initially, conforming to the policy provided, and truthfully reporting
their subsequent arm-pulling experiences to the mediator, constitutes a Subgame Perfect Nash
Equilibrium (SPNE) for the agents with asymptotically indifferent preference. This means that the
first-best outcome of bounded regret is achieved under this equilibrium.

The rest of this paper is organized as follows. In Section 2, we propose the recurring linear contextual
bandit problem and explore the condition under which bounded regret is shown to be achieved.
Section 3 then explores how our problem relates to other existing problems. The main algorithm
is proposed in Section 4 and analyzed in Section 5. We then investigate the proposed algorithm’s
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robustness with respect to incentive constraints in Section 6 and noise in Section 7. Finally, we
empirically demonstrate the bounded regret result using a simulation experiment in Section 8.

2 THE PROBLEM SETTING

Agent arrivals Let A denote the set of agents. Each agent repeatedly arrives according to a renewal
process where the inter-arrival times are independent and identically distributed (i.i.d.). Two cases
are considered: When all inter-arrival times are (i) i.i.d. subgaussian with a density on the real line,
or (ii) i.i.d. exponential. Denote the time of the n-th arrival of agent j by S

(j)
n , and the associated

inter-arrival time by Y
(j)
n := S

(j)
n − Sj

n−1. We denote the associated counting process of agent j’s
arrivals by N (j)(t). That is, {S(j)

n ≤ t} = {N (j)(t) ≥ n}.

Feature Vectors of Agents and Arms Denote the set arms by M . Each of the agents and each of the
arms is associated with a feature vector of dimension d. Denote the feature vector of agent j by α(j),
and the feature vector of arm m by βm. For the feature vectors associated with the agents, we further
assume that any d-sized subset of A is linearly independent (note that this is justified by the fact that
fullness of rank is generic). Under the cooperative setting, we assume, as of now, that each agent’s
feature vector is common knowledge. Later we will show that sharing this constitutes a SPNE with
respect to the order of the regret for each agent.

Rewards and objective An agent gets to pull an arm every time that it arrives. Therefore N (j)(t) is also
the total number of pulls over all arms by agent j until time t. We further denote by N (j)

m (t) the number
of agent j’s pulls of arm m until time t. Agent j receives a random reward with mean µ

(j)
m := α(j)βm

when it pulls arm m. The kth reward of agent j from arm m is X(j)
m,k := α(j)βm + ϵ

(j)
m (k) where

ϵ
(j)
m (k) follows a sub-Gaussian distribution with E[ϵ

(j)
m (k)] = 0 and proxy variance σ2 (Rivasplata

(2012)). Under the cooperative setup assumed for now, and later shown to be a SPNE, the reward
observation immediately becomes common knowledge of all agents.

For each agent j ∈ A, define m∗
j ∈ M as an arbitrarily chosen arm that satisfies µ(j)

m∗
j
≥ µ

(j)
m ∀m ∈

M . We define ∆
(j)
m := µ

(j)
m∗

j
− µ

(j)
m and An := {j ∈ A : m∗

j = n}. Note that {An}n∈M partitions
A. Denote the arm pulled by agent j at its n-th arrival by mj(n). Then the finite time regret of agent

j until time T is Regret(j)(T ) :=
∑N(j)(T )

n=1 ∆
(j)
mj(n)

=
∑N(j)(T )

n=1 (µ
(j)
m∗

j
− µ

(j)
mj(n)

).

Agent set size constraint In the following sections, we will show that E[Regret(j)(T )] is upper
bounded by a constant under the following condition that intuitively holds when |A| is large enough:

|Am| ≥ d+ 1, ∀m ∈ M. (1)

How large should the number of agents be in order to make this condition as probable as desired?
Theorem 1 answers this question which is a previously unaddressed version of the Double Dixie cup
problem Newman (1960):

Theorem 1. Suppose that the optimal arms associated with agents {m∗
j : j ∈ A} are independently

and uniformly distributed over A. If

|A| ≥ |M |d+max{η|M |d, 2(1 + η)

η

(
|M | ln |M |+ |M | ln 1

ϵ
+ d

)
}, (2)

then
P (|Am| ≥ d+ 1 ∀m ∈ M) ≥ 1− ϵ.

The parameter η is a parameter to be tuned. The proof of Theorem 1 is provided in Appendix A. It
shows that at least a multiple of (|M | ln |M |+ |M |d) number of agents is required, and an additional
multiple of |M | ln 1

ϵ agents is needed if we want (1− ϵ) probability assurance.

If this condition does not hold, then there will be some agents who suffer O(log T ) expected regret
instead of enjoying bounded expected regret. For the rest of the paper, we will assume that the
condition (1) holds.
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3 COMPARISON TO RELATED WORKS ON LINEAR CONTEXTUAL BANDITS AND
MULTI-AGENT EXPLORATION

First we point out some differences with usual formulations and the motivation. In typical linear
contextual bandits Auer (2002); Chu et al. (2011); Abbasi-Yadkori et al. (2011), at each time-step,
an arrival of agent is modeled as a context newly born, which actually contains one feature vector
for each arm for that agent. In our setup, there is a finite set of agents A, and an agent j ∈ A has a
known feature vector α(j). Typically, there is no concept of agents’ repeated arrivals or record of
past plays. In our setup, each agent in A repeatedly arrives, and the platform can thus keep track of
an individual agent’s past record, as many real-world platforms do, e.g., YouTube. In typical linear
contextual bandits, there is only a single vector θ that is unknown. In our setup, there is a whole set
of vectors, one for each arm, that is unknown. For drug prescription, for example, there is a separate
unknown feature vector for every drug.

The closest to our problem’s formulation are cooperative linear bandits and multi-task linear bandits
Soare & Pineau (2018) and Moradipari et al. (2022), where the agent side vectors are unknown, and
the arm side vectors are known. In our formulation, it is the opposite. In Soare & Pineau (2018), only
an empirical analysis is provided. In Moradipari et al. (2022), a special case where the agents share
the effect of the arm pulled at each time-step is analyzed to provide a regret of O

(√
T/N(log T )2

)
.

In our paper, we suggest a linear contextual bandit problem and achieve O(1) regret.

The decentralized version of the proposed algorithm (see Appendix B) that conveys the concept of
each agent uploading local information to a mediator that coordinates information is also related
to Federated Learning Huang et al. (2021). A notable result proved in Huang et al. (2021) is that
a tight minimax regret performance of O(

√
T log T ) is achieved in spite of keeping information

private. Our paper is motivated by a different consideration: How can agents obtain a bounded
regret of O(1)? We show that this is achieved by the fact that sharing information constitutes a
Subgame Perfect Nash Equilibrium (SPNE). This is an equilibrium where at every stage of the game
no agent can strictly benefit by lying or not conforming Fudenberg & Levine (1983); Selten (1965).
We establish that everyone reporting their private context to the mediator at time 0, following the
CFUCB policy and reporting the rewards truthfully afterward does constitute a Subgame Perfect
Nash equilibrium (SPNE) since O(1) regret cannot be improved. There are some previous works on
incentive constraints in coordinating exploration: Shi et al. (2021) shows that identification of a social
planner’s best arm does not require extra payment when you must incentivize individually rational
agents (Jackson (2014)) instead of forcing them. In comparison, our paper shows that the context
information enables an individual agent’s best arm to be chosen after a finite time. Immorlica et al.
(2019) considers incentive-compatible coordination of agents’ exploration with a setting opposite to
ours: the context is private, but the mean reward associated with each arm is known.

4 THE COUNTERFACTUAL UCB ALGORITHM

We now introduce the Counterfactual-UCB (CFUCB) algorithm 1 that achieves bounded regret.

The high-level idea of this algorithm is as follows. In a typical UCB-based algorithm (e.g., Auer
(2002) for the multi-armed bandit problem, an agent forms a confidence interval based solely on its
own experience, which we call the self-experienced confidence interval. In our problem, an agent can
also construct a confidence interval for each arm based on the experience of other agents in addition
to itself. We call this the counterfactual confidence interval.

The main idea that enables the bounded expected regret result is somewhat related to the idea of a
technique called imputation, which has recently been popularized in the causal inference community
(Abadie & Imbens (2011); Stuart (2010); Athey & Imbens (2015); Cunningham (2021); Ye et al.
(2020)): Suppose that arm m is not the optimal arm for agent j, but it is optimal for a set of other
agents, say Am. If the total number of agents is large enough, we can express the feature vector of
agent j by a linear combination of feature vectors of agents in Am. Then this linear combination
relationship can be used to simulate a counterfactual estimate of agent j’s experience on arm m using
the experiences of Am on arm m. If we can further impute the uncertainty of that estimate, the agent
j may be fully exempt from the burden of further exploring arm m after a finite time.
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Self-experienced Confidence interval. Denote by X
(j)

m (t) =
∑N

(j)
m (t)

k=1 X
(j)
m,k

N
(j)
m (t)

the empirical mean

reward of agent j on arm m. Then the width w
(j)
m (t) of the lone wolf confidence interval is chosen as

w
(j)
m (t) :=

√
logN(j)(t)

N
(j)
m (t)

. Defining X
(j)

m (t)+w
(j)
m (t) as ucb(j)m (t), and X

(j)

m (t)−w
(j)
m (t) as lcb(j)m (t),

the lone wolf confidence interval is CI
(j)
m (t) :=

(
lcb

(j)
m (t), ucb

(j)
m (t)

)
.

Counterfactual Confidence interval. Define Am(d, t) := {j ∈ A : |{i ∈ A : N
(i)
m (t) >

N
(j)
m (t)}| < d}. This set includes the top d agents for arm m with all ties at the bottom being included.

Taking into account Theorem 1, suppose that |A| ≥ d+1. Note that this implies |Am(d+1, t)| ≥ d+1.
Now arbitrarily choose a d-size subset E(j)

m (t) of Am(d+ 1, t) \ j. Since the feature vectors of the
d-size subset of A are linearly independent, α(j) =

∑
i∈E

(j)
m (t)

a
(j)
i α(i) for some coefficients {a(j)i }

, and consequently µ
(j)
m =

∑
i∈E

(j)
m (t)

a
(j)
i µ

(i)
m . Define X̂

(j)
m (t) :=

∑
i∈E

(j)
m (t)

a
(j)
i X

(i)

m (t) and call

it the counterfactual mean reward of agent j for arm m. The width ŵ
(j)
m (t) of the corresponding

counterfactual confidence interval is chosen as ŵ
(j)
m (t) :=

√
log(N(j)(t)/d)

N
(min)
m (d,t,j)/c2m,t

, where cm,t :=∑
i∈E

(j)
m (t)

|a(j)i |, and N
(min)
m (d, t, j) := min

i∈E
(j)
m (t)

N
(i)
m (t). If we define X̂

(j)
m (t) + ŵ

(j)
m (t) as

ûcb
(j)

m (t), and X̂
(j)
m (t)− ŵ

(j)
m (t) as l̂cb

(j)

m (t), then the counterfactual confidence interval is defined

as ĈI
(i)

n (t) := (l̂cb
(j)

m (t), ûcb
(j)

m (t)).

The corresponding Self-experienced upper confidence bound and counterfactual upper confidence
bound are

ucb(j)m (t) := X
(j)

m (t) + w(j)
m (t), ûcb

(j)

m (t) := X̂(j)
m (t) + ŵ(j)

m (t). (3)

The Counterfactual UCB (CFUCB) algorithm We introduce a notion of epochs. Define S :=

∪i∈A{S(i)
n }n∈N, the set of all arrival times of all agents. The elements of S can be ordered as as a

monotone increasing sequence {sk}k∈N, with sk denoting the time of the kth arrival, irrespective
of agent identity. From now on, denote by sk the time of the kth arrival epoch, or simply the kth
epoch. Define a sequence of agent indices {ak}k∈N such that ak = i ∈ A if sk = S

(i)
n for some

n ∈ N. That is, {ak}k∈N indicates the identity of the agent that arrives at each epoch. Ties between
agents arriving at the same time can be be broken arbitrarily, while the probability of simultaneous
arrivals at subsequent times is zero due to the existence of a density for inter-arrival times. Given
{ak}k∈N, denote the index of the arm pulled by agent ak at epoch k by mk, and the corresponding
accrued reward by rk, where mk ∈ M and rk ∈ R+ ( rk = α(ak)βmk

+ ϵk, where ϵk is noise at
epoch k). Recall that X(j)

m (n) denotes the n-th reward of agent j from arm m. N (j)
m (t) denotes agent

j’s number of pulls of arm m until time t.

Algorithm 1: CFUCB Algorithm

Input: {α(j)}j∈A where α(j) denotes the feature vector of agent j
1 for k = 1, 2, . . . do
2 Observe sk and ak
3 for m = 1, 2, . . . , |M | do
4 Compute ucb(ak)

m (sk) (Self-experienced upper confidence bound) according to the Eq (3)

5 Compute ûcb
(ak)

m (sk) (counterfactual upper confidence bound) according to the Eq (3)

6 ũcb
(ak)

m (sk) = min(ucb
(ak)
m (sk), ûcb

(ak)

m (sk))

7 Set mk = argminm∈M{ũcb
(ak)

m (sk)}
8 Let agent ak pull the arm mk and obtain rk

9 Store X
(ak)
mk (N

(ak)
mk (sk)) = rk for the future use in later loop’s line 4 and line 5
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Algorithm 1 describes the pseudocode of the CFUCB Algorithm. The only difference between

CFUCB and UCB is that arm j at time t chooses the arm with largest ũcb
(j)

m (t), not ucb(j)m (t).

5 THE ANALYSIS OF CFUCB

We first start by describing how the confidence intervals are chosen. We follow the spirit of Auer
(2002) - that is, we bound the violation probability by the inverse square of the total number of
pulls at time t. Lemmas 2 and 3 describe this confidence interval choice. The proofs are deferred to
Appendix A.

Lemma 2 (Auer (2002)). For ϵ ≥
√

logN(j)(t)

N
(j)
m (t)

, P (|X(j)

m (t)− µ
(j)
m | > ϵ) ≤ N (j)(t)−2.

Lemma 3. Denote cm,t :=
∑

i∈E
(j)
m (t)

|a(j)i | and N
(min)
m (d, t, j) := min

i∈E
(j)
m (t)

N
(i)
m (t). Then, for

ϵ ≥
√

log(N(j)(t)/d)

N
(min)
m (d,t,j)/c2m,t

, P (|X̂(j)
m (t)− µ

(j)
m | > ϵ) ≤ N (j)(t)−2.

Now we are ready to derive the condition for the agent j to pull a non-optimal arm m in Lemma 4.
Lemma 4 is the key result in that it provides the intuition about why bounded regret is achieved.

Note that as a consequence of Lemmas 2 and 3, at time t, for every arm n and every agent i, the

Self-experienced confidence interval CI
(i)
n (t) and the counterfactual confidence interval ĈI

(i)

n (t)

both include the true mean µ
(i)
n , with high probability.

Lemma 4. If CI
(i)
n (t) and ĈI

(i)

n (t) both include the true mean µ
(i)
n for all i ∈ A and n ∈ M , then

an agent j who arrives at time t pulls a non-optimal arm m, i.e., one with ∆
(j)
m > 0, only if

min
i∈Am

{N (i)(t)− (
∑
n ̸=m

4

∆
(i)
n

2 ) logN
(i)(t)} ≤

4c2m,t log(N
(j)(t)/d)

∆
(j)
m

2 . (4)

One may note that the LHS of (4 will increase far faster than the RHS of 4 unless some agent i ∈ Am

arrives far slower than agent j. Soon, therefore, the inequality will cease to hold for all non-optimal
arms, and only the optimal arm will be pulled afterwards.

Lemma 4 is based on the following Lemma 5.
Lemma 5. Under the same conditions as in Lemma 4, agent j pulls arm m only if

min

(
2

√
logN(j)(t)

N
(j)
m (t)

, 2

√
log(N(j)(t)/d)

N
(min)
m (d,t,j)/c2m,t

)
≥ ∆

(j)
m . That is, both N

(j)
m (t) ≤ 4 logN(j)(t)

∆
(j)
m

2 and

N
(min)
m (d, t, j) ≤ 4c2m,t log(N

(j)(t)/d)

∆
(j)
m

2 must hold for agent j to pull arm m.

Proof of Lemma 5. Denote the optimal arm for agent j as arm m∗
j . According to Algorithm 1, {Agent

j pulls arm m} ⊆ {ũcb
(j)

m (t) ≥ ũcb
(i)

m∗
j
(t)}. Note that l̃cb

(j)

m (t) ≤ µ
(j)
m ≤ ũcb

(j)

m (t) and l̃cb
(j)

m∗
j
(t) ≤

µ
(j)
m∗

j
≤ ũcb

(j)

m∗
j
(t) holds according to the assumptions of Lemma 4. Therefore, under the assumption of

Lemma 4, {Agent j pulls arm m} ⊆ {l̃cb
(j)

m (t) ≤ µ
(j)
m , µ

(j)
m ≤ µ

(j)
m∗

j
, µ

(j)
m∗

j
≤ ucb(j)

m∗
j
(t), ũcb

(j)

m∗
j
(t) ≤

ũcb
(j)

m (t)} = {l̃cb
(j)

m (t) ≤ µ
(j)
m ≤ µ

(j)
m∗

j
≤ ũcb

(j)

m (t)} = {µ(j)
m , µ

(j)
m∗

j
∈ CI

(j)
m (t) ∩ ĈI

(j)

m (t)}. Note

that {µ(j)
m , µ

(j)
m∗

j
∈ CI

(j)
m (t) ∩ ĈI

(j)

m (t)} ⊆ {min(2w
(j)
m (t), 2ŵ

(j)
m (t)) ≥ ∆

(j)
m }. Therefore, under

the assumptions of Lemma 4, agent j pulls arm m only if min(2w
(j)
m (t), 2ŵ

(j)
m (t)) ≥ ∆

(j)
m holds.

Combining this with Lemma 2 and 3 yields the result.

As can be seen in the proof of Lemma 5, by using Algorithm 1 it is assured that the arm m is pulled
by agent j only if both µ

(j)
m and µ

(j)
m∗

j
are included in the intersection of Self-experienced confidence
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interval CI
(j)
m (t) and the counterfactual confidence interval ĈI

(j)

m (t). If any of them shrinks and
cannot include both µ

(j)
m and µ

(j)
m∗

j
anymore, agent j won’t pull the arm m anymore.

Proof of Lemma 4. Fix agent j and arm m. Note that for any arm i ∈ A, N (i)
m (t) = N (i)(t) −∑

n∈M\m N
(i)
n (t). Let tn be the last time prior to t at which a non-optimal arm n is played

by agent i. Then N
(i)
n (t) = N

(i)
n (tn) ≤ 4 logN(i)(tn)

∆
(i)
n

2 ≤ 4 logN(i)(t)

∆
(i)
n

2 holds by Lemma 5.

Therefore, for agent i ∈ Am, for arm m, N
(i)
m (t) ≥ N (i)(t) − (

∑
n ̸=m

4

∆
(i)
n

2 ) logN (i)(t).

By the assumption (1), |Am| ≥ d + 1, and Nmin
m (d, t, j) ≥ N

(i)
m (t) for some i ∈ Am.

Therefore, Nmin
m (d, t, j) ≥ N

(i)
m (t) ≥ N (i)(t) − (

∑
n ̸=m

4

∆
(i)
n

2 ) logN (i)(t) for some i ∈ Am.

That is, Nmin
m (d, t, j) ≥ mini∈Am

{N (i)(t) − (
∑

n ̸=m
4

∆
(i)
n

2 ) logN (i)(t)}. Substituting this into

N
(min)
m (d, t, j) ≤ 4c2m,t log(N

(j)(t)/d)

∆
(j)
m

2 from Lemma 5, it can be seen that arm m is pulled by agent j

only when mini∈Am{N (i)(t)− (
∑

n ̸=m
4

∆
(i)
n

2 ) logN (i)(t)} ≤ 4c2m,t log(N
(j)(t)/d)

∆
(j)
m

2 .

Lemma 6 draws a connection between the expected regret and the probability of agent j arriving at
time t pulling a non-optimal arm m. The proof of the following Lemma 6 is deferred to Appendix A.

Lemma 6. Denote the event {Agent j arrives at time t and pulls a non-optimal arm m} by

G
(j)
m (t), and the event {µ(i)

n ∈ CI
(i)
n (t) ∩ ĈI

(i)

n (t) ∀i ∈ Am, n ∈ M} as V (t). Suppose
that there is a function g

(j)
m (t) such that P (G

(j)
m (t)|V (t)) ≤ g

(j)
m (t). Then E[Regret(j)(T )] ≤∑

m∈M\m∗
j
∆m

(
π2

6 +
∑∞

n=1

∫ +∞
0

g
(j)
m (t)dF

(j)
n (t)

)
holds, where F

(j)
n (t) := P (S

(j)
n ≤ t).

Showing
∑∞

n=1

∫ +∞
0

g
(j)
m (t)dF

(j)
n (t) < ∞ will yield the result on bounded expected regret. The

strategy of the proof is to show that
∫ +∞
0

g
(j)
m (t)dF

(j)
n (t) = O( 1

n2 ) holds for the two arrival process
models: 1) agents arrive according to sub-Gaussian inter-arrival times (Section 5.1) and 2) agents
arrive according to exponential inter-arrival times (Section 5.2). Before discussing how (4) of Lemma
4 can be used, in Lemma 7 we make an observation on the functional form of (4).

Lemma 7. For A,B,C > 0, Ay−B ln y < C ln(xd ) is satisfied only if y < −B
AW−1

(
−A

B (xd )
−C

B

)
,

where W−1 denotes the lower branch of the Lambert W -function (Corless et al. (1996)).

Proof of Lemma 7. For A,B,C > 0, A
C y − B

C ln y < ln(xd ) ⇐⇒ y−
B
C e

A
C y < (xd ) ⇐⇒

ye−
A
B y > (xd )

−C
B ⇐⇒ −A

B ye−
A
B y < −A

B (xd )
−C

B ⇐⇒ −B
AW0

(
−A

B (xd )
−C

B

)
< y <

−B
AW−1

(
−A

B (xd )
−C

B

)
where W0 denotes the principal branch of the Lambert W -function. There-

fore, Ay −B ln y < C ln(xd ) holds only if y < −B
AW−1

(
−A

B (xd )
−C

B

)
.

In the present case, y = N (i)(t), x = N (j)(t), A = 1, B =
∑

n̸=m
4

∆
(i)
n

2 and C =
4c2m,t

∆
(j)
m

2 . Define

qij as qij(x) = −B
AW−1

(
−A

B (xd )
−C

B

)
where we use the above parameter values. One can easily

check that B
AW−1

(
−A

Bx−C
B

)
is a function growing faster than log x and slower than x.

5.1 BOUNDED EXPECTED REGRET RESULT FOR THE AGENTS WITH SUB-GAUSSIAN
INTER-ARRIVAL TIMES

Lemma 8. Suppose that each agent i ∈ A arrives independently with i.i.d. 1-subgaussian inter-
arrival times with mean θi, plays according to CFUCB. Then P (G

(j)
m (t)|V (t)) ≤ g

(j)
m (t) holds,

6
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where g
(j)
m (t) = |A|(exp(−2

(t−qij(⌈ t

θj−ϵj
⌉)θmax)

2

qij(⌈ t

θj−ϵj
⌉) ) + exp(−2 ϵj

2

θj−ϵj t)), with θmax =: maxi∈A θi

and ϵj is a parameter to be tuned later.

The proof of Lemma 8 is a bit technical is deferred to Appendix A.

Theorem 9. Suppose that each agent i ∈ A arrives independently with i.i.d. 1-subgaussian
inter-arrival times with mean θi. Then with g

(j)
m defined as in Lemma 8, E[Regret(T )] ≤∑

m∈M ∆m

(
π2|A||M |

6 +
∑∞

n=1

∫ +∞
0

g
(j)
m (t)dF

(j)
n (t)

)
< ∞ for all T under CFUCB.

Proof. From
∫ +∞
0

g
(j)
m (t)dF

(j)
n (t) = 2|A|(2 exp(−2nϵ2) + exp(−2

(n(θj−ϵ))−qij(n)θmin)
2

qij(n)
)) =

O( 1
n2 ) where θmin = mini∈A θi, the result follows. See Appendix A for the details.

5.2 BOUNDED EXPECTED REGRET RESULT FOR THE AGENTS WITH EXPONENTIAL
INTER-ARRIVAL TIMES

Lemma 10. Suppose that each agent i of A arrives independently with i.i.d. exponentially distributed
inter-arrival times with Mean 1

λi
. Every time an agent arrives, it plays according to CFUCB. Then

P (G
(j)
m (t)|V (t)) ≤ g

(j)
m (t) holds, where g(j)m (t) = |A|(exp(− (λmint−qij((λj+ϵj)t))

2

2λmint
)+exp(− ϵj

2

2λj
t))

and λmin = mini∈A λi and ϵj is a parameter to be tuned later.

The proof of Lemma 10 is a bit technical and so we defer it to Appendix A.

Theorem 11. Suppose that each agent i ∈ A arrives independently with i.i.d. exponentially dis-
tributed inter-arrival times with λi, and employs the CFUCB Policy. Then with g

(j)
m defined as in

Lemma 10, E[Regret(T )] ≤
∑

m∈M ∆m

(
π2|A||M |

6 +
∑∞

n=1

∫ +∞
0

g
(j)
m (t)dF

(j)
n (t)

)
< ∞ for all

T .

Proof. The result follows from
∫ +∞
0

g
(j)
m (t)dF

(j)
n (t) ≤ 3|A| exp(− ϵ2j

2λj

n−1
λj+ϵj

) +

|A| exp(−
(λmin

n−1
λj+ϵj

−qij(n−1))2

2λmin
n−1

λj+ϵj

) = O( 1
n2 ) where λmin = mini∈A λi. See the Appendix A

for the details.

6 NON-COOPERATIVE AGENTS AND TRUTHTELLING

Now we turn to the non-cooperative case. Users of most real-world platforms are generally selfish
and not necessarily cooperative. So far in the cooperative setup, there were the following two implicit
truthfulness assumptions on each agent’s behavior which will not be true in the non-cooperative case:

T1. Each agent truthfully shares its feature vector (to the mediator) at the very beginning.

T2. Each agent follows the CFUCB policy and truthfully shares every arm-pulling result (to the
mediator) as it happens.

The idea of the decentralized CFUCB algorithm (see Appendix B for details) is as follows. When
agent j arrives, the mediator assumes that all the agents have been conforming to T1 and T2 (e.g.,
all patients disclosing their previous medical records to the physician and reporting their progress

accurately afterwards). The mediator computes {ûcb
(j)

m (t)}m∈M (agent j’s counterfactual UCBs
for all arms m ∈ M ) and lets agent j know. (Intuitively, this is a form of negative recommendation
that reduces confidence bound). As we saw from equation (3) of Algorithm 1, agent j can compute

ũcb
(j)

m (t) = min(ucb(j)m (t) , ûcb
(j)

m (t)) for all arms m ∈ M . (Intuitively, a patient updates her
expectation of a relatively self-unexplored drug’s side effects due to the physician’s recommendation).

The question we address is the following: Fix an agent i, and suppose that all other agents in A \ i
don’t violate the truthfulness assumptions. Would there be any incentive for the agent i to choose a

7
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behavior that violates T1 and T2 at any time? This,is a dynamic game, and the question relates to
whether truthtelling constitutes a Subgame Perfect Nash Equilibrium Fudenberg & Tirole (1991).

The answer, in plain English, is as follows. Suppose that an agent i only cares about the asymptotic
order of the regret. That is, the agent i is indifferent between an f(T ) regret and an g(T ) regret if
f(T ) = Θ(g(T )). Then we say that the agent i has an asymptotically indifferent preference, (defined
formally in Appendix B). If all the agents of A have asymptotically indifferent preferences, it is trivial
that no agent can strictly improve herself by violating T1 and T2 since she already has O(1) regret.
Hence one has the following result.
Theorem 12. If all agents have asymptotically indifferent preferences, then the strategy where every
agent conforms to T1 and T2 is a Subgame Perfect Nash Equilibrium.

The formal formulation of this game and result are provided in the Appendix B.

7 ROBUSTNESS TO NOISE

The results in Section 4 implicitly assume that all measurements and reportings of rewards are
perfectly accurate. That is, there is no measurement/communication noise. The following Theorem
13 shows that the algorithm 4 is robust to sub-Gaussian noise, and still achieves bounded regret.

Theorem 13. Let X ′(j)
m (k) = X

(j)
m (k) + e

(j)
m (k) be the noisy observation of X(j)

m (k). If the noise
e
(j)
m (k) is i.i.d. and follows a sub-Gaussian distribution, then each agent still has only bounded regret

under the same conditions as Theorem 9.

The proof is deferred to Appendix A.

8 SIMULATION EXPERIMENTS

Figure 1: The regret of the CFUCB algorithm compared to that of the UCB algorithm, for the problem
with 200 agents and 20 arms of feature vector dimension 5.

We conduct a simulation experiment to empirically demonstrate that the CFUCB algorithm indeed
achieves O(1) expected regret for the linear contextual bandit problem introduced in Section 2.

8
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In this experiment, there are 200 agents repeatedly arriving to explore 20 arms. Each agent inde-
pendently arrives according to its own renewal process with positively truncated i.i.d. Normally
distributed inter-arrival times. Both agent and arm feature vectors are randomly and uniformly
generated as vectors on the surface of the 0-centered unit sphere in R5 (also known as unit 4-sphere).
The inner product of the agent’s pulled arm’s feature vectors, plus noise that is i.i.d N(0, 0.1), is the
reward resulting from an arm pull. As a baseline for comparing the CFUCB algorithm’s performance,
we consider the same system, with the same arrival sequences, but with the agents following the
vanilla UCB algorithm Auer (2002). As can be seen in Figure 1, the regret graph of CFUCB levels
off, indicating that the regret does not increase further after a finite number of arrivals, showing
that a regret of O(1) is indeed achieved. In contrast, the average regret of the UCB algorithm is
O(log T ). Figure 1 averages the result of ten experiments in which arrivals and feature vectors are
newly generated each time. For the codes, refer to Supplementary materials or Appendix C.

9 CONCLUDING REMARKS

In many applications, multiple agents are simultaneously exploring choices. This paper proposes
a new contextual bandit framework for which a policy that we call Counterfactual-UCB (CFUCB)
guarantees that the expected regret of the totality of all agents is O(1), i.e., it is bounded. The key
idea enabling this result is to take advantage of the exploitation results of other agents to give every
agent relief from its own exploration requirements on its bad arms.
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