
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMMUNICATION-EFFICIENT HETEROGENEOUS
FEDERATED LEARNING WITH GENERALIZED
HEAVY-BALL MOMENTUM

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) has emerged as the state-of-the-art approach for learning
from decentralized data in privacy-constrained scenarios. However, system and sta-
tistical challenges hinder real-world applications, which demand efficient learning
from edge devices and robustness to heterogeneity. Despite significant research
efforts, existing approaches (i) are not sufficiently robust, (ii) do not perform well
in large-scale scenarios, and (iii) are not communication efficient. In this work,
we propose a novel Generalized Heavy-Ball Momentum (GHBM), proving that it
enjoys an improved theoretical convergence rate w.r.t. existing FL methods based
on classical momentum in partial participation, without relying on bounded data
heterogeneity. Then, we present FEDHBM as an adaptive, communication-efficient
by-design instance of GHBM. Extensive experimentation on vision and language
tasks, in both controlled and realistic large-scale scenarios, confirms our theoretical
findings, showing that GHBM substantially improves the state of the art, especially
in large scale scenarios with high data heterogeneity and low client participation 1.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) is a paradigm to learn from decentralized data in
which a central server orchestrates an iterative two-step training process that involves 1) local training,
potentially on a large number of clients, each with its own private data, and 2) the aggregation of
these updated local models on the server into a single, shared global model. This process is repeated
over several communication rounds. While the inherent privacy-preserving nature of FL is appealing
for decentralized applications where data sharing is restricted, it also introduces some challenges.
Since local data reflects characteristics of individual clients, limiting the optimization to use only the
client’s data can lead to issues caused by statistical heterogeneity. This becomes problematic when
multiple optimization steps are performed before models are synchronized, causing clients to drift
away from the ideal global updates (Karimireddy et al., 2020). Indeed, heterogeneity has been shown
to hinder the convergence of FEDAVG (Hsu et al., 2019), increasing the number of communication
rounds to reach a target model quality (Reddi et al., 2021) and impacting final performance.

Several studies have proposed solutions to mitigate the effects of heterogeneity. For instance,
SCAFFOLD (Karimireddy et al., 2020) relies on additional control variables to correct the local
client’s updates, while FEDDYN (Acar et al., 2021) uses ADMM to align the global and local client
solutions. Albeit theoretically grounded, experimentally these methods are not sufficiently robust to
handle cases of extreme heterogeneity, low client participation, or large-scale problems, exhibiting
slow convergence and instabilities (Varno et al., 2022; Reddi et al., 2021).

Momentum-based FL methods appear to be a promising solution for addressing these challenges. By
accumulating past update directions, momentum can help clients overcome the inconsistencies of
local objectives introduced by heterogeneous data. Several works explored incorporating momentum
in FL, either at the server (Hsu et al., 2019) or at client-level to correct local updates Ozfatura
et al. (2021); Xu et al. (2021). Notably, MIME (Karimireddy et al., 2020; 2021) has been proposed
as a framework to make clients mimic the updates of a centralized model trained on i.i.d. data
by leveraging extra server statistics at client side. While the theoretical benefits of momentum in
FL have been demonstrated in full participation Cheng et al. (2024), existing FL methods based

1Code is provided for the review process and will be released upon acceptance
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solely on momentum still theoretically rely on bounded heterogeneity in partial participation and,
as our work demonstrates, experimentally present limitations in settings with low participation,
high heterogeneity and real-world large-scale problems. Moreover, current approaches often incur
increased communication costs due to the exchange of additional information required to correct
local updates (Karimireddy et al., 2020; 2021; Xu et al., 2021; Ozfatura et al., 2021). This can be a
significant drawback in communication-constrained environments, further hindering the practical
adoption of FL in real-world scenarios and underscoring the critical need for more robust, effective,
and communication-efficient FL algorithms.

In this work, we present both empirical evidence and theoretical justification for the failure cases of
previous momentum-based FL approaches. Specifically, we demonstrate that the interplay of data
heterogeneity and partial participation is not properly addressed, leading to the classical momentum
term employed in these methods to be updated with a biased estimate of the global gradient, which
diminishes its effectiveness in correcting client drift. To address these challenges, we propose a
novel Generalized Heavy-Ball (GHBM) formulation of momentum that consists of calculating
it as a decayed average of τ past momentum terms. This design choice makes the momentum
term not to be biased towards most recently selected clients, and allows GHBM to converge under
arbitrary heterogeneity even in partial participation. Then, we present FEDHBM as an adaptive,
communication-efficient by-design instance of GHBM, and show experimentally significantly im-
proved performance over the state of the art.

Contributions. We summarize our main results below.

• We present a novel formulation of momentum called Generalized Heavy-Ball (GHBM) momentum,
which extends the classical heavy-ball (Polyak, 1964), and propose variants that are robust to
heterogeneity and communication-efficient by design.

• We establish the theoretical convergence rate of GHBM for non-convex functions, extending the
previous result of Cheng et al. (2024) of classical momentum, showing that GHBM converges
under arbitrary heterogeneity even (and most notably) in partial participation.

• We empirically show that existing FL algorithms suffer severe limitations in extreme non-iid scenar-
ios and real-world settings. In contrast, FEDHBM is extremely robust and achieves higher model
quality with significantly faster convergence speeds than other client-drift correction methods.

2 RELATED WORKS

The problem of statistical heterogeneity. The detrimental effects of non-iid data in FL were first
observed by (Zhao et al., 2018), who proposed mitigating performance loss by broadcasting a small
portion of public data to reduce the divergence between clients’ distributions. Alternatively, (Li &
Wang, 2019) uses server-side public data for knowledge distillation. Both approaches rely on the
strong assumption of readily available and suitable data. Recognizing weight divergence as a source
of performance loss FEDPROX (Li et al., 2020) adds a regularization term to penalize divergence from
the global model. Nevertheless, this was proved ineffective in addressing data heterogeneity Caldarola
et al. (2022). Other works (Kopparapu & Lin, 2020; Zaccone et al., 2022; Zeng et al., 2022; Caldarola
et al., 2021) explored grouping clients based on their data distribution to mitigate the challenges of
aggregating divergent models.

Stochastic Variance Reduction in FL. Stochastic variance reduction techniques have been applied
in FL (Chen et al., 2021; Li et al., 2019) with SCAFFOLD Karimireddy et al. (2020) providing for
the first time convergence guarantees for arbitrarily heterogeneous data. The authors also shed light
on the client-drift of local optimization, which results in slow and unstable convergence. SCAFFOLD
uses control variates to estimate the direction of the server model and clients’ models and to correct
the local update. This approach requires double the communication to exchange the control variates,
and it is not robust enough to handle large-scale scenarios akin to cross-device FL (Reddi et al., 2021;
Karimireddy et al., 2021). Conversely, our novel formulation of momentum yields a graceful decay
of old and stale gradients while achieving robustness to extreme heterogeneity and low participation.
Based on it, we propose an algorithm that does not require any additional data exchange.

ADMM and adaptivity. Other methods are based on the Alternating Direction Method of Multi-
pliers (Chen et al., 2022; Gong et al., 2022; Wang et al., 2022). In particular, FEDDYN(Acar et al.,
2021) dynamically modifies the loss function such that the model parameters converge to stationary
points of the global empirical loss. Although technically it enjoys the same convergence properties
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of SCAFFOLD without suffering from its increased communication cost, in practical cases it has
displayed problems in dealing with pathological non-iid settings (Varno et al., 2022). Other works
explored the use of adaptivity to speed up the convergence of FedAvg and reduce the communication
overhead (Xie et al., 2019; Reddi et al., 2021).

Use of momentum as local correction. As a first attempt, Hsu et al. (2019) adopted momentum at
server-side to reduce the impact of heterogeneity. However, it has been proven of limited effectiveness
under high heterogeneity, because the drift happens at the client level. This motivated later approaches
that apply server momentum at each local step (Ozfatura et al., 2021; Xu et al., 2021), and the more
general approach by Karimireddy et al. (2021) to adapt any centralized optimizer to cross-device FL.
It employs a combination of control variates and server optimizer state (e.g. momentum) at each client
step, which lead to increased communication bandwidth and frequency. A recent similar approach
(Das et al., 2022) employs compressed updates, still requiring significantly more computation
client-side. Rather differently from previous works, FEDHBM is based on our novel Generalized
Heavy-Ball Momentum (GHBM): it consists in a decayed average of the previous τ momentum terms
instead of considering only the last one, and it is designed to more steadily incorporate the descent
information of clients selected at past rounds, to be used into local steps as client drift correction.
Indeed, the classical heavy-ball (Polyak, 1964) is a special case of GHBM. Remarkably, we show
that our formulation is crucial to effectively counteract the effects of statistical heterogeneity and
client sampling, and it is communication efficient by design.

Lowering communication requirements in FL. Researchers have studied methods to reduce the
memory needed for exchanging gradients in the distributed setting, for example by quantization
(Alistarh et al., 2017) or by compression (Mishchenko et al., 2019; Koloskova et al., 2020). In the
context of FL, such ideas have been developed to meet the communication and scalability constraints
(Reisizadeh et al., 2020), and to take into account heterogeneity (Sattler et al., 2020). Our work
focuses on the efficient use of the information already being sent in vanilla FEDAVG, so additional
techniques to compress that information remain orthogonal to our approach.

3 METHOD

3.1 SETUP

In FL a server and a set S of clients collaboratively solve a learning problem, with |S | = K ∈ N+.
At each round t ∈ [T ], a fraction of C ∈ (0, 1] clients from S is selected to participate to the learning
process: we denote this portion as St ⊆ S . Each client i ∈ St receives the server model θt,0i ≡ θt−1,
and performs Ji local optimization steps, using stochastic gradients g̃t,ji evaluated on local parameters
θt,j−1
i and a batch di,j , sampled from its local dataset Di. During local training, θt,ji is the model

of client i at round t after the j-th optimization step, while θti ≡ θt,Ji is the model sent back to the
server. The server then aggregates the client updates g̃ti := (θt−1 − θti), building pseudo-gradients
(Reddi et al., 2021) g̃t that are used to update the model.

3.2 ADDRESSING CLIENT DRIFT WITH MOMENTUM

One of the core propositions of federated optimization is to take advantage of local clients’ work,
by running multiple optimization steps on local parameters before synchronization. This has been
proven effective for speeding up convergence when local datasets are i.i.d. with respect to a global
distribution (Stich, 2019; Lin et al., 2020; McMahan et al., 2017), and is particularly important for
improving communication efficiency, which is the bottleneck when learning in decentralized settings.
However, the statistical heterogeneity of clients’ local datasets causes local models to drift from the
ideal trajectory of server parameters. One way of addressing such drift is to use momentum during
local optimization, based on the idea that a moving average of past server pseudo-gradients can
correct local optimization towards the solution of the global problem. At each round, FL methods
based on momentum typically use the gradients of the selected clients, whether computed at local
(Xu et al., 2021; Ozfatura et al., 2021) or global (Karimireddy et al., 2021) parameters, to update the
momentum term server-side.

Partial Participation and Biased Momentum. We claim that existing momentum-based methods
overlook a critical aspect of federated learning: partial client participation. Indeed, when only a
portion of clients participate in the training rounds, the server pseudo-gradient used to update the
momentum estimate can be biased towards the previously selected clients, hampering its corrective
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Figure 1: The error of reusing past gradients for updating the momentum, for different values of
τ , on CIFAR-100 with RESNET-20, in non-iid (α = 0, left) and iid (α = 10k, right) settings.
The plot shows the empirical measure of the deviation between (i) the average of the last τ server
pseudo-gradient (at different parameters) and (ii) the server-pseudo gradient calculated over all the
clients (at the same parameters). Reusing old gradients is beneficial despite the introduced lag.

benefit to local optimization. This effect is particularly pronounced in settings with high data
heterogeneity and low client participation (common in cross-device FL), where, as our experiments
demonstrate, conventional momentum fails to correct the drift and improve over vanilla FedAvg.

Main contribution. To address the challenges posed by partial participation, we propose a novel
momentum-based approach that explicitly accounts for client sampling. Our key idea is to update
the momentum term using a pseudo-gradient that approximates the true global gradient over all
clients, even those not participating in the current round. Our approach effectively mitigates the bias
introduced by partial participation by integrating the descent directions from past rounds into local
updates resulting in a more accurate and robust momentum estimate. Importantly, our momentum
retains a heavy-ball form similar to classical momentum. This can be exploited in FL to avoid sending
additional data from server to clients, preserving the same communication complexity as FedAvg.

3.3 GENERALIZED HEAVY-BALL MOMENTUM (GHBM)
In this section, we introduce our novel formulation for momentum, which we call Generalized
Heavy-Ball Momentum (GHBM). First, we recall that classical momentum consists of a moving
average of past gradients, and it is commonly expressed as in eq. (1), which can be equivalently
expressed in a version commonly referred to as heavy-ball momentum in eq. (2) (see lemma B.2):

HEAVY-BALL MOMENTUM (HBM)

m̃t ← βm̃t−1 + g̃t(θt−1) (1)

θt ← θt−1 − ηm̃t

m̃t ← (θt−1 − θt−2) (2)

θt ← θt−1 − ηg̃t(θt−1) + βm̃t

Let us notice that, when applied to FL optimization, the gradient referred to above as g̃t is built from
updates of clients i ∈ St, which are usually a small portion of all the clients participating in the
training. Consequently, at each round the momentum is updated using a direction biased towards the
distribution of clients selected in that round. Indeed, the prerequisites for this update to reflect the
objectives of the other clients are (i) iidness of local datasets or (ii) high client participation. Both
conditions are rarely met in practice, and lead to ineffectiveness of existing momentum-based FL
methods in realistic scenarios. Our objective is to update the momentum term at each round with a
reliable estimate of the gradient w.r.t. the global data distribution of all clients. In practice, the desired
update rule for momentum would use the average gradient of all clients selected in the last τ rounds
at current parameters θt−1, as in eq. (3).

DESIRED MOMENTUM UPDATE

m̃t ← βm̃t−1 +
1

τ

t∑

k=t−τ+1

g̃k(θt−1) (3)

PRACTICAL MOMENTUM UPDATE

m̃t ← βm̃t−1 +
1

τ

t∑

k=t−τ+1

g̃k(θk−1) (4)

While eq. (3) cannot be implemented in partial participation because clients selected in rounds
k ∈ [t− τ + 1, t) do not have access to model parameters θt−1, it is possible to reuse old gradients
calculated at parameters θk−1 as their approximation, as in eq. (4). This introduces a lag due to using
old gradients, yet experimentally the effect in heterogeneity reduction greatly compensate, and so the
deviation w.r.t. a gradient calculated over all the clients is reduced (see Fig. 1).

With this idea in mind, our proposed formulation consists of calculating the momentum term as the
decayed average of past τ momentum terms, instead of explicitly using the server pseudo-gradients
at the last τ rounds, as shown in eq. (5). This formulation is close to the update rule sketched in eq.
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(4) and has the additional advantage of enjoying a heavy-ball form similar to eq. (2) (see lemma B.3),
which will be useful to derive communication efficient FL algorithms. In practice, the difference w.r.t.
eq. (2) consists ins considering a delta τ > 1 between the two parameters:

GENERALIZED HEAVY-BALL MOMENTUM (GHBM)

m̃t
τ ←

1

τ

τ∑

k=1

βm̃t−k
τ + g̃t(θt−1) (5)

θt ← θt−1 − ηm̃t
τ

m̃t
τ ←

1

τ

(
θt−1 − θt−τ−1

)
(6)

θt ← θt−1 − ηg̃t(θt−1) + βm̃t
τ

As it is trivial to notice, GHBM with τ = 1 recovers the classical momentum, hence it can be
considered as a generalized formulation. The GHBM term is then embedded into local updates using
the heavy-ball form shown in eq. 6, leading to the following update rule:

CLIENT STEP: θt,ji ← θt,j−1
i − ηlg̃

t,j
i (θt,j−1

i ) + β̂
(
θt−1 − θt−τ−1

)
︸ ︷︷ ︸

τ−GHBM

(7)

where β̂ := β
τJ is the momentum factor scaled by the number of local steps J (see Algorithm 1).

Discussion on τ . The τ hyperparameter in GHBM plays a crucial role, since it controls the number
of server pseudo-gradients to average for estimating the update to the momentum term. Intuitively,
considering only the effect on heterogeneity reduction, the optimal value is the one that gives the
average over all the clients. That value, under proper assumptions on client sampling, is equal to
τ = 1/C, which is the inverse of client participation. As we prove, that property is the key factor
that enables GHBM to converge under arbitrary heterogeneity, achieving in partial participation the
same rate that methods based on classical momentum can only obtain by imposing full participation.
We show this property with a theoretical experiment in Appendix C.9. However, since GHBM reuses
old gradients , this introduces a lag which grows with τ . For this reason the optimal choice of τ
comes from an inevitable trade-off between the heterogeneity reduction effect and other sources of
error we will discuss in Sec. 4.2.

3.4 COMMUNICATION COMPLEXITY OF GHBM AND EFFICIENT VARIANTS

Algorithm 1: GHBM, LOCALGHBM and FEDAVG

Require: initial model θ0, K clients, C participation
ratio, T number of total round, η and ηl learning
rates.

1: for t = 1 to T do
2: St ← subset of clients ∼ U(S,max(1,K · C))

3: Send θt−1, θt−τ−1 to all clients i ∈ St

4: for i ∈ St in parallel do
5: θt,0i ← θt−1

6: Retrieve θt−τi−1 from local storage

7: m̃t
τ ← 1

τJ
(θt−1 − θt−τ−1)

8: m̃t
τi ← 1

τiJ
(θt−1 − θt−τi−1)

9: for j = 1 to J do
10: sample a mini-batch di,j from Di

11: θt,ji ← θt,j−1
i − ηlg̃

t,j
i +βm̃t

τ +βm̃t
τi

12: end for
13: Save model θt−1 into local storage
14: end for
15: g̃t ← 1

|St|
∑|St|

i=1

(
θt−1 − θt,Ji

)
16: θt ← θt−1 − ηg̃t

17: end for

As it is possible to notice from Algorithm 1,
GHBM requires the server to additionally
send the past model θt−τ−1, which is used to
calculate the momentum term in eq. (7). Alter-
natively, the server could send the momentum
term m̃t

τ but, in both cases, this introduces a
communication overhead of 1.5× w.r.t. FE-
DAVG, as momentum is usually applied to all
model parameters. However, this overhead
can be avoided by leveraging the observation
that the choice of τ = 1/C is expected to be op-
timal. Indeed, it is sufficient to notice that, if
clients participate cyclically, i.e. the period be-
tween each subsequent sampling is equal for
all clients, the frequency at which each client
is selected for training is exactly 1/C. Notice
that this is still true on average under uniform
client sampling, i.e. calling τi the sampling pe-
riod for client i, E [τi] = τ = 1/C. Leveraging
those observations and exploiting the fact that
GHBM has an equivalent heavy-ball form,
the additional requirement on communication
can be traded by allowing clients to maintain

persistent storage, and keep the model received by the server across rounds, as shown in Algorithm 1.
In this algorithm, that we call LOCALGHBM, τi is adaptive and determined stochastically by client
participation. The space complexity of LOCALGHBM is constant in the size of model parameters for
the clients and recovers the original communication complexity of FedAvg.
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Table 1: Comparison of convergence rates of FL algorithms. Our GHBM improves the rate of classical
momentum by attaining, in partial participation, the same rate of classical momentum in full participation.
Remind that L is the smoothness constant of objective functions, ∆ = f(θ0)−minθ f(θ) is the initialization
gap, σ2 is the gradient variance within clients, |S | is the number of clients, C is the participation ratio, J is
the number of local steps per round, and T is the number of communication rounds. ζ = supθ ∥∇f(θ)∥ and
G2:= supθ

1/|S |
∑|S |

i=1 ∥∇fi(θ)−∇f(θ)∥2 are uniform bounds of gradient norm and gradient dissimilarity.

Algorithm Convergence Rate 1
T

∑T
t=1 E

[
∥∇f(θt)∥2

]
≲ Additional

Assumptions
Partial

participation?

FEDAVG
(Yang et al., 2021)

(
L∆σ2

|S |JT

)1/2
+ L∆

T Bounded hetero.1 ✗

(Yang et al., 2021)
(

L∆σ2

|S |CJT

)1/2
+ L∆

T Bounded hetero.1 ✓

FEDCM
(Xu et al., 2021)2

(
L∆(σ2+|S |CJζ2)

|S |CJT

)1/2
+

(
L∆(σ/

√
J+
√

|S |C(ζ+G)√
|S |CT

)2/3
Bounded grad.
Bounded hetero. ✓

(Cheng et al., 2024)
(

L∆σ2

|S |JT

)1/2
+ L∆

T − ✗

SCAFFOLD-M
(Cheng et al., 2024)

(
L∆σ2

|S |CJT

)1/2
+ L∆

T

(
1 + |S |2/3

|S |C

)
− ✓

GHBM (Thm. 4.7)
(

L∆σ2

|S |JT

)1/2
+ L∆

T Cyclic participation ✓

1 The local learning rate vanishes to zero when gradient dissimilarity is unbounded, i.e., G→∞.
2 The work has not been published in peer-reviewed venues.

We empirically found that performance can be further improved by considering θti,j instead of
θt−1 and θt−τi

i instead of θt−τi−1 when calculating m̃t
τi (see Sec. 5.2). This adds a correction

term specific to each client objective, such that it penalizes the direction of the last updates at
round t− τi with respect to the progressive updates of local steps at the current round t. The final
communication-efficient update rule is named FEDHBM.

Applicability of GHBM-based algorithms in FL scenarios. Albeit based on the same principle,
our algorithms are suitable for different scenarios. FEDHBM and LOCALGHBM take advantage of
the fact that clients participate multiple times in the training process to remove the need to send the
momentum term from the server. As such, clients are stateful, as they require maintaining variables
across rounds (Kairouz et al., 2021). On the other hand, GHBM has stateless clients, which makes it
more suitable for cross-device FL or when additional system challenges prevent clients to store state
variables. In Sec. 4.2 we analyze such trade-offs from the perspective of optimization, and in Sec. 5.3
we show that they always perform better than the state-of-art.

4 THEORETICAL DISCUSSION

In this section, we establish the theoretical foundations of our algorithms. Our analysis reveals that:
(i) the momentum update rule implemented by GHBM in eq. (4) approximates an update with
global gradient, with τ controlling the trade-off between heterogeneity reduction and the lag due to
using old gradients; (ii) thanks to this algorithmic design choice, GHBM converges under arbitrary
heterogeneity even in partial participation, whereas FL methods based on classical momentum
inevitably require to assume bounded data heterogeneity. The proofs are deferred to Appendix B.

4.1 ASSUMPTIONS

For proving our results we rely on notions of stochastic gradient with bounded variance (4.1) and
smoothness of the objective functions of the clients (4.2), common in deep learning.

Assumption 4.1 (Unbiasedness and bounded
variance of stochastic gradient).

Edi∼Di [g̃i(θ, di)] = gi(θ,Di)

Edi∼Di

[
∥g̃i(θ, di)− gi(θ,Di)∥2

]
≤ σ2

Assumption 4.2 (Smoothness of client’s ob-
jectives). Let it be a constant L > 0, then for
any i, θ1, θ2 the following holds:

∥gi(θ1)− gi(θ2)∥2 ≤ L2 ∥θ1 − θ2∥2

To simplify the problem of determining the clients participating at different rounds, we additionally
assume clients participate in a cyclic manner (assumption 4.3). This is a technicality used in the proof
and it is not adopted in the experiments, where we select clients randomly and uniformly.
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Assumption 4.3 (Cyclic Participation). Let it be St the set of clients participating at any round t. A
sampling strategy respecting the following is denoted as “cyclic” with period τ = 1/C:

St = St−τ ∀ t > τ ∧ Sk ∩ St = ∅ ∀ k ∈ (t− τ, t)

4.2 OVERCOMING BOUNDED GRADIENT DISSIMILARITY IN PARTIAL PARTICIPATION

In this section, we explain the core elements used in our theory to guarantee convergence under
arbitrary heterogeneity for GHBM.

Bounding the participation-induced heterogeneity. Let us recall the main idea behind GHBM:
because of partial participation, at each round classical momentum is updated using a direction
biased towards the distribution of clients selected in that round. Consequently, recalling that GHBM
recovers classical momentum when τ = 1, as a first analysis we bound the effect of heterogeneity
induced by partial client participation in the estimate of momentum as function of τ .

Let us assume we run federated optimization with one full gradient step in partial participation, and
consider the momentum update in eq. (3). Then, the following lemma holds:
Lemma 4.4 (Deviation of τ -averaged gradient from true gradient). Define Stτ := ∪τ−1

k=0St−k as

the set of clients selected in the last τ rounds, and gtτ := 1/|St
τ |
∑|St

τ |
i=1 gti(θ

t−1) as the average
server pseudo-gradient. Call G2 := supθ 1/|S |

∑|S |
i=1 ∥∇fi(θ) − ∇f(θ)∥2 the bound of gradient

dissimilarity. The approximation of a gradient over the last τ rounds gtτ w.r.t. the true gradient is
quantified by the following:

E
[∥∥gtτ −∇f(θt−1)

∥∥2
]
≤ 8E

[(
|S | − |Stτ |
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(8)

Lemma 4.4 shows that, as τ increases, the effect of heterogeneity reduces quadratically as the
difference between the |St| and |Stτ | approaches to zero. While in general determining the exact
value of τ for which this condition is true is a complex problem2, we can simplify the problem of
sampling by assuming clients participate cyclically in the training process and state the following.
Corollary 4.5. Consider lemma 4.4 and further assume that, at each round of FL training, clients
are sampled according to a rule satisfying assumption 4.3. Then, for any τ ∈

(
0, 1

C

]
:

∥∥gtτ −∇f(θt−1)
∥∥2 ≤ 8 (1− τC)

2
(
G2 +

∥∥∇f(θt−1)
∥∥2
)

Corollary 4.5 shows that, under cyclic participation, the error in lemma 4.4 quadratically decreases as
τ increases until, when τ = 1

C , the error is equal to zero, as the two terms in the left-hand side (LHS)
of the inequality are the same by definition (i.e. the bound of gradient dissimilarity is not necessary).

Bounding the overall error in momentum update. In the previous paragraph, we established the
role of τ in GHBM for counteracting heterogeneity and derived its optimal value w.r.t. partial client
participation. However, our analysis assumed that all clients selected in the last τ rounds compute
a full gradient on the same server parameters. As discussed in Sec. 3.3, a more realistic update
rule for momentum would reuse past gradients as in eq. (4), computed at local parameters. This is
because clients selected in rounds k ∈ [t− τ + 1, t) do not have access to model parameters θt−1.
Consequently, increasing τ introduces additional sources of error to the momentum term, quantified
in the following lemma.
Lemma 4.6 (Bounded error of momentum update). Consider the update rule in eq. (4), and call
g̃tτ = 1

τ

∑t
k=t−τ+1

1
|Sk|J

∑|Sk|
i=1

∑J
j=1 g̃

k,j
i (θk,j−1

i ) the client stochastic pseudo-gradient over the

local optimization. Let also define the client drift Ut:= 1
|S |J

∑J
j=1

∑|S |
i=1 E∥θ

t,j
i − θt−1∥2 and the

error of server update Et:= E∥∇f(θt−1)− m̃t+1
τ ∥2. Under assumptions 4.1-4.2-4.3, it holds that:

E
[∥∥g̃tτ − gtτ

∥∥2
]
≤ 3

(
σ2

|Stτ |J︸ ︷︷ ︸
(a) noise

+
L2

τ

t∑

k=t−τ+1

Uk
︸ ︷︷ ︸

(b) Client drift

+2L2η2
t−1∑

k=t−τ+1

(
E
[∥∥∇f(θk−1)

∥∥2
]
+ Ek

)

︸ ︷︷ ︸
(c) Gradient lag

)

2Calculating the number of rounds needed to have sampled each client at least once is an instance of the
Batched Coupons Collector problem (Stadje, 1990; Ferrante & Frigo, 2012; Ferrante & Saltalamacchia, 2014),
for which a closed form solution is unknown.
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Lemma 4.6 shows that the error affecting the GHBM momentum update rule can be decomposed in
three main parts. The first term (a) is caused by clients taking stochastic gradients on mini-batched of
data: the dependency shows that actually increasing τ has a positive effect until the gradients of all
clients participate to the estimate (i.e. Stτ = S ). The second term (b) is the average client drift over
the last τ rounds, and it is due to clients performing multiple local steps: the lemma shows a benign
dependency, since increasing τ does not increase the overall error due to this term. The last term
(c) is the gradient lag, that is the error due to using client pseudo-gradients taken at old parameters.
While this may be the main source of error since it linearly increases with τ , it depends on Ek, which
is the deviation of server update from the true gradient. If momentum succeed in correcting local
optimization (i.e. Ek is small), this term will also be small and not hurt the optimization. From
experimental verification, this turns out to be the case: the heterogeneity reduction achieved by
increasing τ dominates over the error overall error bounded in lemma 4.6, as showed in Fig. 1,
underscoring a notable robustness of this approach.

4.3 CONVERGENCE GUARANTEES

We can now state the convergence result for GHBM for non-convex functions in (cyclic) partial
participation. Comparison with recent related algorithms is provided in Tab. 1.

Theorem 4.7. Under assumptions 4.1-4.2-4.3, if we take m̃0
τ = 0, and β, η and ηl as in eq. (122),

then GHBM with τ = 1/C converges as:

1

T

T∑

t=1

E
[∥∥∇f(θt−1)

∥∥2
]
≲

L∆

T
+

√
L∆σ2

|S |JT

where ∆ := f(θ0)−minθ f(θ) and ≲ absorbs numeric constants.

Discussion. The convergence rate of GHBM matched the best-known rate for FL with non-convex
objectives. The notable results we achieve is dismissing the bounded gradient dissimilarity assumption
even in partial participation. Moreover, the dominant term on the right-hand side (RHS) scales with
the size of all client population |S |, instead of the clients selected in a single round |S |C.
Comparison with FedCM (Xu et al., 2021). The best-known rate for FEDCM in partial participa-
tion Xu et al. (2021) relies both on bounded gradients and bounded gradient dissimilarity and it is
asymptotically weaker than ours. As shown by our analysis, requiring bounded gradient dissimilarity
is an intrinsic limit for classical momentum in partial participation, not a limit of their proof technique.
Comparison with FedCM (Cheng et al., 2024). In their work authors prove that, by incorporating
(classical) momentum in FedAvg, FEDCM in full participation converges without requiring bounded
client dissimilarity. Our results extend theirs in that we prove that GHBM can achieve the same
convergence rate even in (cyclic) partial participation, because our novel momentum formulation
approximates the update of momentum term with all the clients’ gradients.
Comparison with SCAFFOLD-M. By integrating classical momentum into SCAFFOLD,
SCAFFOLD-M accelerated its convergence rate while maintaining robustness to unbounded het-
erogeneity in partial participation. Besides our rate being better, SCAFFOLD-M inherits the same
limitations of SCAFFOLD, that is the dependence on the number of participating clients, which
affects its practical applicability in scenarios with very low client-participation (Reddi et al., 2021).

5 EXPERIMENTAL RESULTS

We present evidence both in controlled and real-world scenarios, showing that: (i) the GHBM
formulation is pivotal to enable momentum to provide an effective correction even in extreme
heterogeneity, (ii) our adaptive LOCALGHBM effectively exploits client participation to enhance
communication efficiency and (iii) our proposed algorithms are suitable for cross-device scenarios,
with stark improvement on large datasets and architectures (e.g. VIT-B\16).

5.1 SETUP

Scenarios, Datasets and Models. For the controlled scenarios, we employ CIFAR-10/100 as
computer vision tasks, with RESNET-20 and the same CNN similar to a LeNet-5 commonly used
in FL works (Hsu et al., 2020), and SHAKESPEARE dataset as NLP task following (Reddi et al.,
2021; Karimireddy et al., 2021). For CIFAR-10/100, the local datasets are obtained by sampling the
examples according to a Dirichlet distribution with concentration parameter α, as is common practice

8
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Figure 2: GHBM effectively counteracts the effects of heterogeneity: our momentum formulation
(τ > 1) is crucial for superior performance , with an optimal value τ = 1/C = 10, as predicted in the-
ory. Results on CIFAR-10 with CNN (left) and RESNET-20 (right), under worst-case heterogeneity.

Hsu et al. (2020) (additional details in Appendix C.2). We denote as NON-IID and IID respectively
the splits corresponding to α = 0 and α = 10.000, while for SHAKESPEARE we use instead the
predefined splits (Caldas et al., 2019). The datasets are partitioned among K = 100 clients, selecting
a portion C = 10% of them at each round. As real-world scenarios, we adopt the large-scale GLDV2
and INATURALIST datasets as CV tasks, with both a VIT-B\16 (Dosovitskiy et al., 2021) and a
MOBILENETV2 (Sandler et al., 2018) pretrained on ImageNet, and STACKOVERFLOW dataset as
NLP task, following Reddi et al. (2021); Karimireddy et al. (2021). These settings are particularly
challenging, because the learning tasks are complex, the number of client is high and the client
participation (for convenience directly reported in Tab. 3) is scarce (see Appendix C.1 for details).

Metrics and Experimental protocol. As metrics, we consider final model quality, as the top-1
accuracy over the last 100 rounds of training (Tab. 2-3, Fig. 6), and communication/computational
efficiency: this is evaluated by measuring the amount of exchanged bytes and the wall-clock time
spent by an algorithm to reach the performance of FEDAVG (Tab. 4). Results are always reported as
the average over 5 independent runs, performed on the best-performing hyperparameters extensively
and carefully searched separately for all competitor algorithms. For additional details about the
datasets, splits, model architectures, and algorithms’ hyperparameters, see Appendix C.4.

5.2 COUNTERACTING CLIENT DRIFT WITH GHBM
Figure 2 validates our momentum design under worst-case heterogeneity: τ > 1 is crucial to enable
momentum to provide an effective correction to client drift. Indeed, previous momentum-based
methods (Xu et al., 2021; Ozfatura et al., 2021), which are special cases of GHBM with τ = 1, are
observed to be ineffective in improving FEDAVG. The best value of τ is experimentally proven to be
≈ 1/C = 10, and sub-optimal large values of τ only marginal affect performance (rightmost plot),
confirming our theoretical analysis in Sec. 4.2. Our communication-efficient instances always match
or surpass the best-tuned GHBM, confirming that their adaptive estimate of each client’s momentum
positively contributes in a scenario of stochastic client participation (see Sec. 4.2).

5.3 COMPARISON WITH THE STATE-OF-ART

Results in controlled scenario Our results in Tab. 2 clearly indicate that existing algorithms
behave inconsistently when larger models are used (RESNET-20) and fail at improving FEDAVG. In
particular, our experimentation reveals that estimating the momentum using full batch gradients as
done by MIMEMOM (Karimireddy et al. (2021)) does not guarantee an effective correction in most
difficult scenarios. Conversely, our algorithms outperform the FEDAVG with an impressive margin
of +20.6% and +14.4% on RESNET-20 and CNN under worst-case heterogeneity, and consistently
over less severe conditions (higher values of α in Fig. 3). We also report the performance of FEDCM
in full participation, as upper bound for momentum in FL (see Sec. 3.3). Our methods closely match
the upper bound in all cases except for CIFAR-100, in the non-iid setting. This is motivated by the
algorithm being still far from the convergence point in the given round budget, and by the error
introduced by using past gradients (see discussion in Sec. 3.3).
Results in real-world large-scale scenarios Extending the experimentation to settings character-
ized by extremely low client participation, we test both our GHBM with τ tuned via a grid-search
and our adaptive FEDHBM, which exploits client participation to keep the same communication
complexity of FEDAVG. As discussed in sections 3.3-4.2, under such extreme client participation
patterns GHBM performs better because the trade-off between heterogeneity reduction and gradient
lag is explicitly tuned by the choice of the best performing τ , while FEDHBM will likely adopt a
suboptimal value. However, results in Tab. 3 show a stark improvement over the state-of-art for both
our algorithms, indicating that the design principle of our momentum formulation is remarkably
robust and provides effective improvement even when client participation is very low (e.g. C ≤ 1%).
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Table 2: Comparison with state-of-the-art in controlled set-
ting (acc@10k-20k rounds for RESNET-20/CNN). NON-
IID (α = 0) and IID (α = 10k). Best result in bold, second
best underlined. ✗ indicates non-convergence.

METHOD
CIFAR-100 (RESNET-20) CIFAR-100 (CNN) SHAKESPEARE

NON-IID IID NON-IID IID NON-IID IID

FEDAVG 21.9±0.9 58.6±0.4 35.6±0.2 49.7±0.2 47.3±0.1 47.1±0.2

FEDPROX 22.1±1.0 58.5±0.3 35.5±0.3 49.9±0.2 47.3±0.1 47.1±0.2

SCAFFOLD 30.7±1.3 58.0±0.6 45.5±0.1 49.4±0.4 50.2±0.1 50.1±0.1

FEDDYN 6.0±0.5 60.8±0.7 ✗ 51.9±0.2 50.7±0.2 50.8±0.2

ADABEST 8.4±2.0 55.6±0.3 35.6±0.3 49.7±0.2 47.3±0.1 47.1±0.2

MIME 9.0±0.4 59.0±0.3 36.3±0.5 50.9±0.4 48.3±0.2 48.5±0.1

FEDAVGM 22.8±0.8 58.7±0.9 35.2±0.3 50.7±0.2 50.0±0.0 50.4±0.1

SCAFFOLD-M 30.9±0.7 60.1±0.5 45.7±0.2 50.1±0.3 50.8±0.0 51.0±0.1

FEDCM (GHBM τ=1) 22.2±1.0 53.1±0.2 36.0±0.3 50.2±0.5 49.2±0.1 50.4±0.1

FEDADC (GHBM τ=1) 22.4±0.1 53.2±0.2 37.9±0.3 50.2±0.4 49.2±0.1 50.4±0.1

MIMEMOM 21.7±1.1 60.5±0.6 48.2±0.7 50.6±0.1 48.5±0.2 48.9±0.2

MIMELITEMOM 14.4±0.6 59.2±0.5 46.0±0.3 50.7±0.1 49.1±0.4 49.4±0.3

FEDCM (full participation) 51.4±1.2 62.2±0.3 50.5±0.3 51.9±0.1 51.3±0.1 51.5±0.1

LOCALGHBM (ours) 38.2±1.0 62.0±0.5 50.3±0.5 51.9±0.4 51.2±0.1 51.1±0.3

FEDHBM (ours) 42.5±0.8 62.5±0.5 50.4±0.5 52.0±0.4 51.3±0.1 51.4±0.2
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Figure 3: Final model quality at different
values of α (lower α → higher hetero-
geneity) on CIFAR-10, with CNN (top)
and RESNET-20 (bottom).

Table 3: Test accuracy (%) comparison of best SOTA FL algorithms on large-scale and realistic
settings. GHBM is the best algorithm when client participation is extremely low, while FEDHBM
still improves the other competitors by a large margin. ✗ means that the algorithm did not converge.

METHOD
MOBILENETV2 VIT-B\16

GLDV2 INATURALIST GLDV2 INATURALIST STACKOVERFLOW

C ≈ 0.79% C ≈ 0.1% C ≈ 0.5% C ≈ 1% C ≈ 0.79% C ≈ 0.1% C ≈ 0.5% C ≈ 0.12%

FEDAVG 60.3±0.2 38.0±0.8 45.25±0.1 47.59±0.1 68.5±0.5 65.6±0.1 70.7±0.8 24.0±0.4

SCAFFOLD 61.0±0.1 ✗ ✗ ✗ 67.5±3.3 ✗ ✗ 24.8±0.4

FEDAVGM 61.5±0.2 41.3±0.4 46.0±0.1 48.4±0.1 70.0±0.5 66.0±0.2 71.4±0.5 24.1±0.3

MIMEMOM ✗ ✗ ✗ ✗ ✗ ✗ ✗ 24.9±0.6

GHBM - best τ (ours) 65.9±0.1 41.8±0.1 48.7±0.1 50.5±0.1 74.3±0.6 68.8±0.3 73.5±0.4 27.0±0.1

FEDHBM (ours) 65.4±0.2 41.6±0.2 47.3±0.0 49.8±0.0 73.1±0.9 66.7±0.7 72.1±0.5 24.5±0.4

Communication efficiency To demonstrate the communication-efficiency of our algorithms, in
Tab. 4 we calculated the communication and computational cost of our simulations for reaching
the performance of FEDAVG (details in Appendix C.3). These analyses reveal that our proposed
algorithms lead to a dramatic reduction in both communication and computational cost, with an
average saving of respectively +67.5% and +62.5%. In practice, both our algorithms show faster
convergence and higher final model quality: in particular, in settings with extremely low client
participation (e.g.GLDV2 and INATURALIST), GHBM is more suitable for best accuracy, while
FEDHBM is the best at lowering the communication cost.

Table 4: Communication and computational cost for reaching the final model quality of FEDAVG,
across academic and real-world large-scale datasets (details in Appendix C.3). The coloured arrows
indicate respectively a reduction (↓) and an increase (↑) of communication/computational cost.

METHOD
COMM.

OVERHEAD

COMMUNICATION COST (BYTES EXCHANGED) COMPUTATIONAL COST (WALL-CLOCK TIME HH:MM)

CIFAR-100 (α = 0) GLDV2 CIFAR-100 (α = 0) GLDV2

CNN RESNET-20 MOBILENETV2 VIT-B\16 CNN RESNET-20 MOBILENETV2 VIT-B\16

FEDAVG 1× 30.9 GB 10.3 GB 89.8 GB 483.7 GB 02:05 03:36 13:51 13:56
SCAFFOLD 2× 31.8 GB ↑ 3.0% 12.1 GB ↑ 17.5% 51.2 GB ↓ 43.0% 967.4 GB ↑ 100.0% 01:15 ↓ 40.0% 02:27 ↓ 41.0% 08:28 ↓ 38.9% 15:15 ↑ 9.4%

FEDAVGM 1× 28.9 GB ↓ 6.5% 9.2 GB ↓ 10.7% 73.6 GB ↓ 18.0% 403.1 GB ↓ 16.7% 01:57 ↓ 6.5% 03:14 ↓ 10.2% 11:22 ↓ 18.0% 11:37 ↓ 16.7%

MIMEMOM 3× 21.5 GB ↓ 30.4% 30.9 GB ↑ 200.0% 269.4 GB ↑ 200.0% 1.417 TB ↑ 200.0% 01:27 ↓ 30.4% 10:42 ↑ 197.8% 41:07 ↑ 197.8% 41:30 ↑ 197.8%

GHBM (ours) 1.5× 6.4 GB ↓ 79.3% 6.3 GB ↓ 38.8% 48.5 GB ↓ 46.0% 314.4 GB ↓ 35.0% 00:19 ↓ 84.2% 01:28 ↓ 59.3% 05:20 ↓ 61.5% 06:30 ↓ 53.3%

FEDHBM (ours) 1× 3.9 GB ↓ 87.4% 3.7 GB ↓ 64.1% 29.6 GB ↓ 67.0% 234.4 GB ↓ 51.5% 00:17 ↓ 86.0% 01:18 ↓ 63.9% 06:23 ↓ 54.0% 07:31 ↓ 46.0%

6 CONCLUSIONS

In this work, we propose a novel Generalized Heavy-Ball Momentum (GHBM), motivating its
principled application in FL to counteract the effects of statistical heterogeneity. Based on GHBM,
we present FEDHBM as an adaptive instance which is additionally communication-efficient by design.
Our results in large-scale scenarios largely improve the state of art both in final model quality and
communication efficiency. The generality and versatility of the novel GHBM formulation expands
its potential applications to a wider range of scenarios where communication is a bottleneck, such as
distributed learning.
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REPRODUCIBILITY STATEMENT

The authors are committed to ensuring the reproducibility of all results presented in this work.
The main text provides a detailed algorithmic description of the proposed federated learning (FL)
algorithms, along with comprehensive theoretical and experimental results. The Appendix expands on
this by providing: (i) full formal proofs for the theoretical results (see Appendix B) and (ii) detailed
descriptions of the datasets, model architectures, and hyperparameter tuning used in the experiments
(see Appendix C). The code implementing the algorithms is included with the submission for the
review process and will be made publicly available upon acceptance.
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with compressed gradient differences, 2019.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtarik. ProxSkip: Yes!
Local gradient steps provably lead to communication acceleration! Finally! In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 15750–15769. PMLR, 17–23 Jul 2022.

Konstantin Mishchenko, Rui Li, Hongxiang Fan, and Stylianos Venieris. Federated learning under
second-order data heterogeneity, 2024. URL https://openreview.net/forum?id=
jkhVrIllKg.

Emre Ozfatura, Kerem Ozfatura, and Deniz Gündüz. Fedadc: Accelerated federated learning with
drift control. In 2021 IEEE International Symposium on Information Theory (ISIT), pp. 467–472.
IEEE, 2021. doi: 10.1109/ISIT45174.2021.9517850. URL http://dx.doi.org/10.1109/
ISIT45174.2021.9517850.

Boris Polyak. Some methods of speeding up the convergence of iteration methods. Ussr Compu-
tational Mathematics and Mathematical Physics, 4:1–17, 12 1964. doi: 10.1016/0041-5553(64)
90137-5.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
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A ADDITIONAL DISCUSSION

A.1 EXTENDED RELATED WORKS

Recently, similarly based on variance reduction as SCAFFOLD, (Mishchenko et al., 2022) propose
SCAFFNEW to achieve accelerated communication complexity in heterogeneous settings through
control variates, guaranteeing convergence under arbitrary heterogeneity in full participation. The
work by Mishchenko et al. (2024), under the assumption of second-order data heterogeneity, proposes
an algorithm which can reduce client drift by estimating the global update direction as well as
employing regularization. Similarly to the already discussed MIME (Karimireddy et al., 2021),
Karagulyan et al. (2024) propose the SPAM algorithm and leverage momentum as a local correction
term to benefit from second-order similarity.

Among momentum methods with similar guarantees than ours, SCAFFOLD-M (Cheng et al., 2024)
integrates classical momentum into SCAFFOLD to attain a slightly better convergence rate and
maintaining robustness to unbounded heterogeneity in partial participation. However, SCAFFOLD-
M inherits the same limitations of SCAFFOLD: it requires clients to keep local client states across
rounds, making the algorithm not well-suited for cross-device FL (Reddi et al., 2021); and it is
limited by the ineffectiveness of variance reduction in deep learning (Defazio & Bottou, 2019).
Conversely, momentum has proven fundamental to accelerate training in deep learning, and GHBM
is the first algorithm that can use only momentum to converge under arbitrary heterogeneity in partial
participation

A.2 CROSS-SILO AND CROSS-DEVICE FL
Setting Cross-silo FL. In this setting, following the characterization in (Kairouz et al., 2021), the
training nodes are expected to be different organizations or geo-distributed data centers. The number
of such nodes is modest (O(102)) and they are assumed to be almost always available and reliable.
This makes it possible to maintain a state on nodes across two different rounds, and often the use of
stateful clients is an indicator for an algorithm to be designed for this scenario. Usually, the problem
of FL in such a setting is cast as a finite-sum optimization problem, where each function is the local
clients’ loss function (eq. 9)

Setting cross-device FL. Differently from cross-silo FL, in the cross-device setting the clients are
assumed to be possibly unreliable edge devices, with only a fraction of them available at any given
time. As such, communication is the primary bottleneck. Most importantly, they can be massive in
number (O(1010)), so this motivates the fact that they should be stateless since each client is likely
to participate only once in the training procedure. Following the characterization in (Karimireddy
et al., 2021), being the number of clients enormous, this problem can be modeled by introducing the
stochasticity client-level, over the possibly sampled clients (eq. 10).

CROSS-SILO:

arg min
θ∈Rd

∑
k∈S

|Dk|
|DS |

E(x,y)∼Dk
[L(fθ; (x, y))] (9)

CROSS-DEVICE:

arg min
θ∈Rd

Ei∼S

|Di|∑
j=1

1

|Di|
L(fθ; (xj , yj))

 (10)

Cross-silo and cross-device in practice. The two aforementioned setups are however extreme
cases, and real-world scenarios will likely enjoy some features from both settings. Previous FL
works that address cross-silo FL usually experiment with a few hundred devices but account for
low participation and unreliability, and treat communication as the primary bottleneck (Karimireddy
et al., 2020; Acar et al., 2021). However, they are stateful, and this has raised concerns about their
applicability in cross-device: in particular Karimireddy et al. (2021) noticed that the control variates
in Karimireddy et al. (2020) get stale as clients are not seen again during training, and highlights
that stateless clients reflect the different formulation in equations 10, 9. In this work we show that
FEDHBM is robust to extremely low participation rates, and that it gets more effective as each client
participates in the training process. Remarkably, our method succeeds in scenarios where state-of-art
methods fail (see and tables 2-3).

A.3 NOTES ON FAILURE CASES OF SOTA ALGORITHMS

In this paper, we evaluated our approach using the large-scale FL datasets proposed by (Hsu et al.,
2020). Notably, several recent state-of-the-art FL algorithms failed to converge on these datasets. For
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SCAFFOLD this result aligns with prior works (Reddi et al., 2021; Karimireddy et al., 2021), since
it is unsuitable for cross-device FL with thousands of devices. Indeed, the client control variates can
become stale, and may consequently degrade the performance. For MIMEMOM (Karimireddy et al.,
2021), despite extensive hyperparameter tuning using the authors’ original code, we were unable
to achieve convergence. This finding is surprising since the approach has been proposed to tackle
cross-device FL. To our knowledge, this is the first work to report these failure cases, likely due to
the lack of prior evaluations on such challenging datasets. We believe these findings underscore the
need for further investigation into the factors contributing to algorithm performance in large-scale,
heterogeneous FL settings.

A.4 BROADER IMPACT AND LIMITATIONS

The algorithms presented in this work offer a substantial advancement in federated training efficiency.
By significantly improving performance while reducing computational, communication, and energy
costs, our approach contributes to a more sustainable and scalable federated learning ecosystem. This
marks a notable step towards wider adoption of FL in real-world applications, particularly in the
challenging cross-device setting, where our methods have demonstrated remarkable flexibility and
effectiveness. Despite these significant improvements over the state-of-the-art, challenges remain
in fully realizing the potential of cross-device FL. Our results underscore the critical importance
of accurately estimating the global direction for rapid algorithm convergence. Both GHBM and
FEDHBM leverage this insight, correcting client drift through global direction estimation. However,
the accurate estimation of this direction in extremely large-scale scenarios (e.g., millions of clients
with low participation rates) remains an open research problem.

B PROOFS

ALGORITHMS

To handle the proof, we analyze a simpler version of our algorithm, in which we use the update rule
in eq. (4) instead of the one described in eq. (5). The resulting Algorithm 3 we analyze is reported
along the plain GHBM (Algorithm 2) we used in the experiments. Both algorithms enjoy the same
underlying idea: use the gradients of a larger portion of the clients to estimate the momentum term.

Algorithm 2: GHBM (PRACTICAL VERSION)
Require: initial model θ0, K clients, C participation ratio, T number of total round, B batch size, η and ηl

learning rates.
1: for t = 1 to T do
2: St ← subset of clients ∼ U(S,max(1,K · C))
3: for i ∈ St in parallel do
4: θt,0i ← θt−1

5: for j = 1 to J do
6: sample a mini-batch di,j from Di

7: ut,j
i ← ∇fi(θt,j−1

i , di,j) + βm̃t
τ

8: θt,ji ← θt,j−1
i − ηlu

t,j
i

9: end for
10: end for
11: ut ← 1

|St|
∑|St|

i=1

(
θt−1 − θt,Ji

)
12: θt ← θt−1 − ηut

13: m̃t+1
τ ← 1

τJ

(
θt−τ − θt

)
14: end for
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Algorithm 3: GHBM (THEORY VERSION)
Require: initial model θ0, K clients, C participation ratio, T number of total round, B batch size, η and ηl

learning rates.
1: for t = 1 to T do
2: St ← subset of clients ∼ U(S,max(1,K · C))
3: for i ∈ St in parallel do
4: θt,0i ← θt−1

5: for j = 1 to J do
6: sample a mini-batch di,j from Di

7: ut,j
i ← β∇fi(θt,j−1

i , di,j) + (1− β)m̃t
τ

8: θt,ji ← θt,j−1
i − ηlu

t,j
i

9: end for
10: end for
11: ut ← 1

ηl|St|J
∑|St|

i=1

(
θt−1 − θt,Ji

)
12: θ̄t ← θt−1 − ut + (1− β)m̃t

τ

13: m̃t+1
τ ← (1− β)m̃t

τ + 1
τ

(
θ̄t−τ − θ̄t

)
14: θt ← θt−1 − ηm̃t+1

τ

15: end for

In the following, we list the differences between the two:

1. Explicit use of τ -averaged gradients when updating the momentum term (line 13). This
can be implemented by keeping server-side an auxiliary sequence of models θ̄t, in which
the momentum added client side is subtracted server-side (line 12), such that taking the
difference of two models gives the sum of pseudo-grads.

2. Use of convex sum in local updates (line 7). This is done to align with the formulation of
momentum methods in Cheng et al. (2024), and more in general with the formulation of
momentum commonly analyzed in literature. There is no theoretical difference between the
two versions, as they only differ by a constant scaling (Liu et al., 2020).

3. Use of gradients averaged over local steps (line 11). This is done to align with the analysis
of Cheng et al. (2024); Xu et al. (2021), and it is equivalent to coupling server and client
learning rates (i.e. setting η = γJηl in Algorithm 3, where γ is the server learning rate we
would use in Algorithm 2).

The two algorithms have similar performances, which are reported in Fig. 4
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Figure 4: Comparing the GHBM implementation analyzed in theory (Algorithm 3) with the one
proposed in the main paper (Algorithm 2). The plots show the convergence rate on CIFAR-10 (top)
and CIFAR-100 (bottom), in non-iid (left) and iid (right) scenarios with RESNET-20 architecture.
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PRELIMINARIES

Our convergence proof for GHBM is based on the recent work of Cheng et al. (2024), which
offers new proof techniques for momentum-based FL algorithms. Throughout the proofs we use the
following auxiliary variables to facilitate the presentation:

Ut :=
1

|S |J

J∑

j=1

|S |∑

i=1

E
[∥∥∥θt,ji − θt−1

∥∥∥
2
]

(11)

Et := E
[∥∥∇f(θt−1)− m̃t+1

τ

∥∥2
]

(12)

ζt,ji := E
[
θt,j+1
i − θt,ji

]
(13)

Ξt :=
1

|S |

|S |∑

i=1

E
[∥∥∥ζt,0i

∥∥∥
2
]

Λt := E




∥∥∥∥∥∥


1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

g̃k,ji (θk,j−1
i )


− gtτ

∥∥∥∥∥∥

2

 (14)

γt := E
[∥∥gtτ −∇f(θt−1)

∥∥2
]

(15)

Additionally, here we report the bounded gradient heterogeneity assumption. It is used to quantify
the heterogeneity reduction effect of GHBM varying its τ hyperparameter. Notice that our main
claim does not depend on this assumption, as for the optimal value of τ = 1/C the assumption is not
needed (see lemma 4.4).
Assumption B.1 (Bounded gradient dissimilarity). There exist a constant G ≥ 0 such that, ∀i, θ:

1

|S |

|S |∑

i=1

∥gi(θ)− g(θ)∥2 ≤ G2

B.1 MOMENTUM EXPRESSIONS

In this section we report the derivation of the momentum expressions in eq. (2) and eq. (6) from the
main paper.
Lemma B.2 (Heavy-Ball formulation of classical momentum). Let us consider the following classical
formulation of momentum:

m̃t = βm̃t−1 + g̃t(θt−1) (16)

θt = θt−1 − ηm̃t (17)
The same update rule can be equivalently expressed with the following, known as heavy-ball formula-
tion:

θt = θt−1 + β(θt−1 − θt−2)− ηg̃(θt−1) (18)

Proof. First derive the expression of m̃t from eq. (17), both for time t and t− 1:

m̃t =

(
θt−1 − θt

)

η

m̃t−1 =

(
θt−2 − θt−1

)

η

Now plug these expressions into equation (16) to obtain (18):(
θt−1 − θt

)

η
= β

(
θt−2 − θt−1

)

η
+ g̃t(θt−1)

(
θt − θt−1

)
= β

(
θt−1 − θt−2

)
− ηg̃t(θt−1)

θt = θt−1 + β
(
θt−1 − θt−2

)
− ηg̃t(θt−1)

18
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Lemma B.3 (Heavy-Ball formulation of generalized momentum). Let us consider the following
generalized formulation of momentum:

m̃t
τ =

1

τ

τ∑

k=1

βm̃t−k
τ + g̃t(θt−1) (19)

θt = θt−1 − ηm̃t
τ (20)

The same update rule can be equivalently expressed in an heavy ball form, which we call as
Generalized Heavy-Ball momentum (GHB):

θt = θt−1 +
β

τ
(θt−1 − θt−τ−1)− ηg̃(θt−1) (21)

Proof. First derive the expression of m̃t
τ from eq. (20), both for time t and t− 1:

m̃t
τ =

(
θt−1 − θt

)

η

m̃t−1
τ =

(
θt−2 − θt−1

)

η

Now plug these expressions into equation (19):
(
θt−1 − θt

)

η
=

β

τ

τ∑

k=1

(
θt−k−1 − θt−k

)

η
+ g̃t(θt−1)

(
θt − θt−1

)
=

β

τ

τ∑

k=1

(
θt−k − θt−k−1

)
− ηg̃t(θt−1)

θt = θt−1 +
β

τ

τ∑

k=1

(
θt−k − θt−k−1

)
− ηg̃t(θt−1)

θt = θt−1 +
β

τ
(θt−1 − θt−τ−1)− ηg̃t(θt−1)

Where the last equality (21) comes from telescoping the summation on the rhs.

B.2 TECHNICAL LEMMAS

Now we cover some technical lemmas which are useful for computations later on. These are known
results that are reported here for the convenience of the reader.
Lemma B.4 (relaxed triangle inequality). Let {v1, . . . ,vn} be n vectors in Rd. Then, the following
is true: ∥∥∥∥∥

n∑

i=1

vi

∥∥∥∥∥

2

≤ n

n∑

i=1

∥vi∥2

Proof. By Jensen’s inequality, given a convex function ϕ, a series of n vectors {v1, . . . ,vn} and a
series of non-negative coefficients λi with

∑n
i=1 λi = 1, it results that

ϕ

(
n∑

i=1

λivi

)
≤

n∑

i=1

λiϕ (vi)

Since the function v → ∥v∥2 is convex, we can use this inequality with coefficients λ1 = . . . =
λn = 1/n, with

∑n
i=1 λi = 1, and obtain that

∥∥∥∥∥
1

n

n∑

i=1

vi

∥∥∥∥∥

2

=
1

n2

∥∥∥∥∥
n∑

i=1

vi

∥∥∥∥∥

2

≤ 1

n

n∑

i=1

∥vi∥2

19
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B.3 PROOFS OF MAIN LEMMAS

In this section we provide the proofs of the main theoretical results presented in the main paper.

Proof of Lemma 4.4 (Deviation of τ -averaged gradient from true gradient)

Let define Sd := S − Stτ and Si := S ∩ Stτ . Let us note that when all clients participate, i.e. Sd = ∅,
the claim is trivially true. For Sd ̸= ∅, we can expand the terms at the left-hand side using their
definitions as follows:

γt = E




∥∥∥∥∥∥
1

|Stτ |

|St
τ |∑

i=1

gti −
1

|S |

|S |∑

i=1

gti

∥∥∥∥∥∥

2

 (22)

= E




∥∥∥∥∥∥
∑

i∈Si

(
1

|Stτ |
− 1

|S |

)
gti −

∑

k∈Sd

1

|S |
gtk

∥∥∥∥∥∥

2

 (23)

lemma B.4
≤ 2



E




∥∥∥∥∥∥
∑

i∈Si

(
1

|Stτ |
− 1

|S |

)
gti

∥∥∥∥∥∥

2



︸ ︷︷ ︸
T3

+E




∥∥∥∥∥∥
∑

k∈Sd

1

|S |
gtk

∥∥∥∥∥∥

2



︸ ︷︷ ︸
T4




(24)

Let us consider first T3. We have:

T3 = E




∥∥∥∥∥∥
∑

i∈Si

(
1

|Stτ |
− 1

|S |

)
gti

∥∥∥∥∥∥

2

 = E



(

1

|Stτ |
− 1

|S |

)2
∥∥∥∥∥∥
∑

i∈Si

gti

∥∥∥∥∥∥

2

 (25)

lemma B.4
≤ E



(

1

|Stτ |
− 1

|S |

)2

|Si|
∑

i∈Si

∥∥gti
∥∥2

 (26)

= E



(

1

|Stτ |
− 1

|S |

)2

|Si|
∑

i∈Si

∥∥gti −∇f(θt−1) +∇f(θt−1)
∥∥2

 (27)

lemma B.4
≤ 2E



(

1

|Stτ |
− 1

|S |

)2

|Si|
∑

i∈Si

(∥∥gti −∇f(θt−1)
∥∥2 +

∥∥∇f(θt−1)
∥∥2
)

 (28)

assumption B.1
≤ 2E



(

1

|Stτ |
− 1

|S |

)2

|Si|


|Si|G2 +

∑

i∈Si

∥∥∇f(θt−1)
∥∥2



 (29)

Since the term∇f(θt−1) does not depend on the index i, we get

2E



(

1

|Stτ |
− 1

|S |

)2

|Si|


|Si|G2 +

∑

i∈Si

∥∥∇f(θt−1)
∥∥2



 (30)

= 2E

[(
1

|Stτ |
− 1

|S |

)2

|Si|
(
|Si|G2 + |Si|

∥∥∇f(θt−1)
∥∥2
)]

(31)

= 2E

[(
1

|Stτ |
− 1

|S |

)2

|Si|2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(32)
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Now, note that Stτ ⊆ S =⇒ |Si| = |Stτ |. Therefore,

T3 ≤ 2E

[(
1

|Stτ |
− 1

|S |

)2

|Si|2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(33)

= 2E

[(
|S | − |Stτ |
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(34)

Moving now to T4, we have:

T4 = E




∥∥∥∥∥∥
∑

k∈Sd

1

|S |
gtk

∥∥∥∥∥∥

2

 ≤ E



(

1

|S |

)2
∥∥∥∥∥∥
∑

k∈Sd

gtk

∥∥∥∥∥∥

2

 (35)

lemma B.4
≤ E



(

1

|S |

)2

|Sd|
∑

k∈Sd

∥∥gtk
∥∥2

 (36)

= E



(

1

|S |

)2

|Sd|
∑

k∈Sd

∥∥gtk −∇f(θt−1) +∇f(θt−1)
∥∥2

 (37)

lemma B.4
≤ 2E



(

1

|S |

)2

|Sd|
∑

k∈Sd

(∥∥gtk −∇f(θt−1)
∥∥2 +

∥∥∇f(θt−1)
∥∥2
)

 (38)

assumption B.1
≤ 2E



(

1

|S |

)2

|Sd|


|Sd|G2 +

∑

k∈Sd

∥∥∇f(θt−1)
∥∥2



 (39)

=2E

[(
1

|S |

)2

|Sd|
(
|Sd|G2 + |Sd|

∥∥∇f(θt−1)
∥∥2
)]

(40)

=2E

[(
|Sd|
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(41)

(42)

Observing that |Sd| = |S | − |Stτ | we obtain:

T4 ≤ 2E

[(
|Sd|
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)
= E

[(
|S | − |Stτ |
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(43)

Finally, by plugging (33) and (43) in (24) we obtain

ESt∼U(S )

[∥∥∥g(t)τ (θ)−∇f(θ)
∥∥∥
2
]
≤ 8ESt∼U(S )

[(
|S | − |Stτ |
|S |

)2
](

G2 + ∥∇f(θ)∥2
)

which concludes the proof.

Proof of Corollary 4.5 This corollary follows from Lemma 4.4, which states that

ESt∼U(S )

[∥∥∥g(t)τ (θ)−∇f(θ)
∥∥∥
2
]
≤ 8ESt∼U(S )

[(
|S | − |Stτ |
|S |

)2
](

G2 + ∥∇f(θ)∥2
)

To prove the results, we use (i) assumption 4.3, (ii) the fact that |St| = |S |C ∀t and (iii) Stτ is union
of τ disjoint St sets. Using points (i)-(iii), and assuming τ ∈ [0, 1

C ], it follows that:
∥∥∥g(t)τ (θ)−∇f(θ)

∥∥∥
2

≤ 8 (1− τC)
2
(
G2 + ∥∇f(θ)∥2

)
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Proof of Lemma 4.6 (Bounded error of delayed gradients)

Note that, by assumption 4.3, |St| = |S |C ∀t, and that |S |Cτ = |Stτ |:

Λt = E




∥∥∥∥∥∥
1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

g̃k,ji (θk,j−1
i )− gtτ

∥∥∥∥∥∥

2

 (44)

= E




∥∥∥∥∥∥
1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

(
g̃k,ji (θk,j−1

i )− gi(θ
t−1)

)
∥∥∥∥∥∥

2

 (45)

= E




∥∥∥∥∥∥
1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

(
g̃k,ji (θk,j−1

i )− gi(θ
k,j−1
i ) + gi(θ

k,j−1
i )− gi(θ

k−1) + gi(θ
k−1)− gi(θ

t−1)
)
∥∥∥∥∥∥

2



(46)
≤ 3 (T1 + T2 + T3) (47)

T1 = E




∥∥∥∥∥∥
1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

(
g̃k,ji (θk,j−1

i )− gi(θ
k,j−1
i )

)
∥∥∥∥∥∥

2

 (48)

≤ 1

τ

σ2

|St|J
=

σ2

|Stτ |J
(49)

T2 = E




∥∥∥∥∥∥
1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

(
gi(θ

k,j−1
i )− gi(θ

k−1)
)
∥∥∥∥∥∥

2

 (50)

≤ L2

|S |Jτ

t∑

k=t−τ+1

|S |∑

i=1

J∑

j=1

E
[∥∥θk,j−1 − θk−1

∥∥2
]

(51)

=
L2

τ

t∑

k=t−τ+1

Uk (52)

T3 = E




∥∥∥∥∥∥
1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

(
gi(θ

k−1)− gi(θ
t−1)

)
∥∥∥∥∥∥

2

 (53)

≤ L2

|S |τ

t∑

k=t−τ+1

|S |∑

i=1

E
[∥∥θk−1 − θt−1

∥∥2
]

(54)

≤ L2

τ

t∑

k=t−τ+1

E
[∥∥θk−1 − θt−1

∥∥2
]

(55)

=
L2

τ

t∑

k=t−τ+1

(t− k)E
[∥∥θk − θk−1

∥∥2
]

(56)

≤ 2L2η2
t−1∑

k=t−τ+1

(
E
[∥∥∇f(θk−1

∥∥2
]
+ Ek

)
(57)
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So, combining with lemma B.6 and lemma B.7 we have:

T∑

t=1

Λt ≤ 3

(
Tσ2

|Stτ |J
+ L2

T∑

t=1

Ut + 2L2η2(τ − 1)

T−1∑

t=1

(
E
[∥∥∇f(θt−1)

∥∥2
]
+ Et

))
(58)

lemma B.6
= 3

(
Tσ2

|Stτ |J
+ 2L2η2(τ − 1)

T−1∑

t=1

(
E
[∥∥∇f(θt−1)

∥∥2
]
+ Et

)
(59)

+ L2TJη2l β
2σ2

(
1 + 2J3η2l β

2L2
)

︸ ︷︷ ︸
T4

+2J2L2e2
T∑

t=1

Ξt)

)

lemma B.7
= 3

(
Tσ2

|Stτ |J
+ 2L2η2(τ − 1)

T−1∑

t=1

(
E
[∥∥∇f(θt−1)

∥∥2
]
+ Et

)
(60)

+ T4 + 2J2L2e2
(
4η2l

(
(1− β)2 + e(βηLT )2

))
︸ ︷︷ ︸

α1

T−1∑

t=0

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ 2e2J2L2(2eη2l βτTGτ )︸ ︷︷ ︸
T5

)

= 3

(
Tσ2

|Stτ |J
+ T4 +

(
α1 + 2L2η2l (τ − 1)

)
︸ ︷︷ ︸

α2

T−1∑

t=1

(
E
[∥∥∇f(θt−1)

∥∥2
]
+ Et

)
+ T5

)
(61)

B.4 CONVERGENCE PROOF

Lemma B.5 (Bounded variance of server updates). Under assumptions 4.1-4.2, it holds that:

T∑

t=1

Et ≤
8

5β
E0 +

3

5

T−1∑

t=0

E
[∥∥∇f(θt−1)

∥∥2
]
+ 21β

σ2

|Stτ |J
T+ (62)

+
448

5
(ηlJL)

2(e3τT )Gτ + 6β

T∑

t=1

γt

Proof.

Et := E
[∥∥∇f(θt−1)− m̃t+1

τ

∥∥2
]

(63)

= E
[∥∥(1− β)(∇f(θt−1)− m̃t

τ ) + β(∇f(θt−1)− g̃tτ )
∥∥2
]

(64)

= E
[∥∥(1− β)(∇f(θt−1)− m̃t

τ )
∥∥2
]
+ β2E

[∥∥(∇f(θt−1)− g̃tτ )
∥∥2
]

(65)

+ 2βE



〈
(1− β)(∇f(θt−1)− m̃t

τ ),∇f(θt−1)− 1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

gi(θ
k,j−1
i )

〉


(66)
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Using the AM-GM inequality and lemma B.4:

≤
(
1 +

β

2

)
E
[∥∥(1− β)(∇f(θt−1)− m̃t

τ )
∥∥2
]
+ 2β2 (γt + Λt)+

+ 4βγt + 8β

(
L2

τ

t∑

k=t−τ+1

Uk + 2L2η2
t−1∑

k=t−τ+1

(
E
[∥∥∇f(θk−1)

∥∥2
]
+ Ek

))
(67)

lemma 4.6
≤

(
1 +

β

2

)
E
[∥∥(1− β)(∇f(θt−1)− m̃t

τ )
∥∥2
]
+
(
2β2 + 4β

)
γt + 6β2 σ2

|Stτ |J
+ (68)

+
(
6β2 + 8β

)
(
L2

τ

t∑

k=t−τ+1

Uk + 2L2η2
t−1∑

k=t−τ+1

(
E
[∥∥∇f(θk−1)

∥∥2
]
+ Ek

))

︸ ︷︷ ︸
T1

≤ (1− β)2
(
1 +

β

2

)
E
[∥∥∇f(θt−2)− m̃t

τ +∇f(θt−1)−∇f(θt−2)
∥∥2
]
+ (69)

+ 6β2 σ2

|Stτ |J
+ 6βγt + 14βT1

Applying the AM-GM inequality again:

≤ (1− β)2
(
1 +

β

2

)[(
1 +

β

4

)
E
[∥∥∇f(θt−2)− m̃t

τ

∥∥2
]
+ (70)

+

(
1 +

1

β

)
E
[∥∥∇f(θt−1)−∇f(θt−2)

∥∥2
] ]

+ 6β2 σ2

|Stτ |J
+ 6βγt + 14βT1

assumption 4.2
≤ (1− β)2

(
1 +

β

2

)[(
1 +

β

4

)
Et−1+ (71)

+

(
1 +

1

β

)
L2E

[∥∥θt−1 − θt−2
∥∥2
] ]

+ 6β2 σ2

|Stτ |J
+ 6βγt + 14βT1

≤ (1− β)2
(
1 +

β

2

)[(
1 +

β

4

)
Et−1+ (72)

+ 2

(
1 +

1

β

)
L2η2

(
E
[∥∥∇f(θt−2)

∥∥2
]
+ Et−1

)]
+ 6β2 σ2

|Stτ |J
+ 6βγt + 14βT1

Where in the last inequality we used the fact that:

∥∥θt−1 − θt−2
∥∥2 ≤ 2η2

(∥∥∇f(θt−2)
∥∥2 +

∥∥∇f(θt−2)− m̃t
τ

∥∥2
)
.

Now notice that (1− β)2
(
1 + β

2

)(
1 + β

4

)
≤ (1− β) and that 2(1− β)2

(
1 + β

2

)(
1 + 1

β

)
≤ 2

β :

Et ≤ (1− β)Et−1 +
2

β
L2η2

(
E
[∥∥∇f(θt−2)

∥∥2
]
+ Et−1

)
+ 6β2 σ2

|Stτ |J
+ 6βγt + 14βT1 (73)

=

(
1− β +

2

β
L2η2

)
Et−1 +

2

β
L2η2E

[∥∥∇f(θt−2)
∥∥2
]
+ 6β2 σ2

|Stτ |J
+ 6βγt + 14βT1 (74)

Define:

• T2 := L2TJη2l β
2σ2

(
1 + 2J3η2l β

2L2
)

• T3 := 2e2J2L2(2eη2l βτTGτ )

• α1 := 2J2L2e2
(
4η2l

(
(1− β)2 + e(βηLT )2

))
+ 2L2η2l (τ − 1)
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Summing up over T and substituting into T1 the expression for Ut:
T∑

t=1

Et ≤
(
1− β +

2

β
L2η2 + 14βα1

)

︸ ︷︷ ︸
α2

T−1∑

t=0

Et+ (75)

+

(
2

β
L2η2 + 14βα1

)

︸ ︷︷ ︸
α3

T−1∑

t=0

E
[∥∥∇f(θt−1)

∥∥2
]
+

+ 14β (T2 + T3)T + 6β2 σ2

|Stτ |J
T + 6β

T∑

t=1

γt

We now have that:

α2 :=

(
1− β +

2

β
L2η2 + 14β

[
2J2L2e2

(
4η2l

(
(1− β)2 + e(βηLT )2

))
+ 2L2η2l (τ − 1)

])

(76)

=

(
1− β +

2

β
L2η2 + 14β

[
8J2L2e2η2l

(
(1− β)2 + e(βηLT )2

)
+ 2L2η2l (τ − 1)

])
(77)

≤
(
1− β +

2

β
L2η2 + 112βe2(ηlJL)

2
[
(1− β)2 + (βηLT )2 + (τ − 1)

])
(78)

(79)

Now impose (ηlJL) ≤ (37
√
τβηLTe)

−1 and η ≤ β√
8L

. We have that:

α2 ≤
(
1− β +

2β

8
+

β

8

)
=

(
1− 5β

8

)
(80)

α3 ≤
3β

8
(81)

14βT2 = 14βL2TJη2l β
2σ2

(
1 + 2J3η2l β

2L2
)

(82)

= 14β3(ηlJL)
2

(
1

J
+ 2(ηlJLβ)

2

)
σ2T (83)

≤ 7β2 σ2

|Stτ |J
T (84)

Where in the last inequality we apply:

2β(ηlJL)
2

(
1

J
+ 2(ηlJLβ)

2

)
≤ 1

|Stτ |J

Plugging all the terms together we have:

T∑

t=1

Et ≤
(
1− 5

8β

) T−1∑

t=0

Et +
3β

8

T−1∑

t=0

E
[∥∥∇f(θt−1)

∥∥2
]
+ 13β2 σ2

|Stτ |J
T+ (85)

+ 56β(ηlJL)
2(e3τT )Gτ + 6β

T∑

t=1

γt

Rearranging the terms completes the proof.

Lemma B.6. Under assumptions 4.1-4.2, for definition 11 it holds that:

Ut ≤ 2J2e2Ξt + Jη2l β
2σ2(1 + 2J3η2l L

2β2) (86)
T∑

t=1

Ut ≤ TJη2l β
2σ2(1 + 2J3η2l β

2L2) + 2J2e2
T∑

t=1

Ξt (87)
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Proof.

E
[∥∥∥θt,ji − θt−1

∥∥∥
2
]
≤ 2E



∥∥∥∥∥

j−1∑

k=0

ζt,ki

∥∥∥∥∥

2

+ 2jη2l β

2σ2 (88)

lemma B.4
≤ 2j

j−1∑

k=0

E
[∥∥∥ζt,ki

∥∥∥
2
]
+ 2jη2l β

2σ2 (89)

For any 1 ≤ k ≤ j − 1 ≤ J − 2, using ηL ≤ 1
βJ ≤

1
β(j+1) , we have:

E
[∥∥∥ζt,ki

∥∥∥
2
]
≤
(
1 +

1

j

)
E
[∥∥∥ζt,k−1

i

∥∥∥
2
]
+ (1 + j)E

[∥∥∥ζt,ki − ζt,k−1
i

∥∥∥
2
]

(90)

≤
(
1 +

1

j

)
E
[∥∥∥ζt,k−1

i

∥∥∥
2
]
+ (1 + j)η2l β

2L2

(
η2l β

2σ2 + E
[∥∥∥ζt,k−1

i

∥∥∥
2
])

(91)

≤
(
1 +

1

j

)
E
[∥∥∥ζt,k−1

i

∥∥∥
2
]
+ (1 + j)η4l β

4L2σ2 +
1

1 + j
E
[∥∥∥ζt,ki − ζt,k−1

i

∥∥∥
2
]

(92)

≤
(
1 +

2

j

)
E
[∥∥∥ζt,k−1

i

∥∥∥
2
]
+ (1 + j)η4l β

4L2σ2 (93)

(1+ 2
j )

j≤e2

≤ e2E
[∥∥∥ζt,0i

∥∥∥
2
]
+ 4j2η4l β

4L2σ2 (94)

So it holds that:

E
[∥∥∥θt,ji − θt−1

∥∥∥
2
]
≤ 2j2

(
e2E

[∥∥∥ζt,0i

∥∥∥
2
]
+ 4j2η4l L

2σ2

)
+ 2jη2l σ

2 (95)

= 2e2j2E
[∥∥∥ζt,0i

∥∥∥
2
]
+ 2jη2l σ

2β2(1 + 4j3η2l L
2β2) (96)

So, summing up over i and j:

Ut ≤
1

|S |J

|S |∑

i=1

J∑

j=1

2e2j2E
[∥∥∥ζt,0i

∥∥∥
2
]
+ 2jη2l σ

2β2(1 + 4j3η2l L
2β2) (97)

≤ 2J2e2Ξt + Jη2l β
2σ2(1 + 2J3η2l L

2β2) (98)

Finally, summing up over T :

T∑

t=1

Ut ≤ TJη2l β
2σ2(1 + 2J3η2l β

2L2)︸ ︷︷ ︸
T1

+2J2e2
T∑

t=1

Ξt (99)

≤ T1 + 2J2e2


4η2

(
(1− β)2 + e(βηLT )2

) T−1∑

t=1

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ 2eη2β2τTGτ︸ ︷︷ ︸
T2




(100)

≤ T1 + α1

T−1∑

t=1

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ α2T2 (101)

Lemma B.7. Under assumptions 4.1-4.2-4.3, if 224e(ηlJL)2
(
(1− β)2 + e(βηLT )2

)
≤ 1, for

definition 13 it holds for t ≥ 0 that:

Ξt ≤
1

56eJ2L2

T−1∑

t=0

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ 2eη2l β
2τTGτ (102)
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Proof. Note that ζt,0i = −ηl
(
(1− β)m̃t

τ + βgi(θ
t−1)

)
,

1

|S |

|S |∑

i=1

∥∥∥ζt,0i

∥∥∥
2

≤ 2η2l


(1− β)2

∥∥m̃t
τ

∥∥2 + β2

|S |

|S |∑

i=1

∥∥gi(θt−1)
∥∥2

 (103)

For any a > 0, considering each client participates to the train every τ = 1
C rounds:

E
[∥∥gi(θt−1)

∥∥2
]
= E

[∥∥gi(θt−1)− gi(θ
t−τ−1) + gi(θ

t−τ−1)
∥∥2
]

(104)

lemma B.4
≤ (1 + a)E

[∥∥gi(θt−τ−1)
∥∥2
]
+ (105)

+

(
1 +

1

a

)
E
[∥∥gi(θt−1)− gi(θ

t−τ−1)
∥∥2
]

≤ (1 + a)E
[∥∥gi(θt−τ−1)

∥∥2
]
+ (106)

+

(
1 +

1

a

)
L2E

[∥∥θt−1 − θt−τ−1
∥∥2
]

(107)

≤ (1 + a)E
[∥∥gi(θt−τ−1)

∥∥2
]
+ (108)

+ 2

(
1 +

1

a

)
L2η2τ

τ∑

k=1

(
Et−k + E

[∥∥∇f(θt−k−1)
∥∥2
])

(109)

≤ (1 + a)
t
τ E
[∥∥gi(θti−1)

∥∥2
]
+ (110)

+ 2

(
1 +

1

a

)
L2η2τ

t
τ∑

s=1

τ∑

k=1

(
Esτ−k + E

[∥∥∇f(θsτ−k)
∥∥2
])

(1 + a)
t
τ −s

≤ (1 + a)
t
τ E
[∥∥gi(θti−1)

∥∥2
]
+ (111)

+ 2

(
1 +

1

a

)
L2η2τ

t−1∑

k=1

(
Ek + E

[∥∥∇f(θk−1)
∥∥2
])

(1 + a)
t
τ

Where ti := mint∈[T ](t s.t. i ∈ St). Now take a = τ
t :

E
[∥∥gi(θt−1)

∥∥2
]
≤ eE

[∥∥gi(θti−1)
∥∥2
]
+ (112)

+ 2eη2L2τ

(
t

τ
+ 1

) t−1∑

k=1

(
Ek + E

[∥∥∇f(θk−1)
∥∥2
])

So:
T∑

t=1

Ξt ≤
T∑

t=1

2η2l


2(1− β)2

(
Et−1 + E

[∥∥∇f(θt−2
∥∥2
])

+
β2

|S |

|S |∑

i=1

E
[∥∥gi(θt−1)

∥∥2
]

 (113)

≤
T∑

t=1

4η2l (1− β)2
(
Et−1 + E

[∥∥∇f(θt−2)
∥∥2
])

+ (114)

+ 2η2l β
2

T∑

t=1


 e

|S |

|S |∑

i=1

E
[∥∥gi(θti−1)

∥∥2
]
+ 2eη2l L

2τ

(
t

τ
+ 1

) t−1∑

k=1

(
Ek + E

[∥∥∇f(θt−1
∥∥2
])



≤ 4η2l (1− β)2
T∑

t=1

(
Et−1 + E

[∥∥∇f(θt−2)
∥∥2
])

+ (115)

+ 2η2l β
2

(
eT

τ∑

t=1

Gt + 2e(ηLT )2
T−1∑

t=1

(
Et + E

[∥∥∇f(θt−1)
∥∥2
]))
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Let us define Gτ := maxt∈[1,τ ] Gt, with Gt :=
1

|St|
∑|St|

i=1 E
[∥∥gi(θt−1)

∥∥2
]
. We have that:

T∑

t=1

Ξt ≤ 4η2l
(
(1− β)2 + e(βηLT )2

) T−1∑

t=0

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ 2eη2l β
2τTGτ (116)

Applying the upper bound of ηl completes the proof.

Lemma B.8 (Cheng et al. (2024)). Under assumption 4.2, if ηL ≤ 1
24 , the following holds for all

t ≥ 0:

E
[
f(θt)

]
≤ E

[
f(θt−1)

]
− 11η

24
E
[∥∥∇f(θt−1)

∥∥2
]
+

13η

24
Et (117)

Proof. Since f is L-smooth, we have:

f(θt) ≤ f(θt−1) +
〈
∇f(θt−1), θt − θt−1

〉
+

L

2

∥∥θt − θt−1
∥∥2 (118)

= f(θt−1)− η
∥∥∇f(θt−1

∥∥2 + η
〈
∇f(θt−1),∇f(θt−1)− m̃t+1

τ

〉
+

Lη2

2

∥∥m̃t+1
τ

∥∥2 (119)

Since θt = θt−1 − ηm̃t+1
τ , using Young’s inequality and imposing ηL ≤ 1

24 , we further have:

f(θt) ≤ f(θt−1)− η

2

∥∥∇f(θt−1)
∥∥2 + η

2

∥∥∇f(θt−1)− m̃t+1
τ

∥∥2 + (120)

+ Lη2
(∥∥∇f(θt−1)

∥∥2 +
∥∥∇f(θt−1)− m̃t+1

τ

∥∥2
)

≤ f(θt−1)− 11η

24

∥∥∇f(θt−1)
∥∥2 + 13η

24

∥∥∇f(θt−1)− m̃t+1
τ

∥∥2 (121)

Proof of Theorem 4.7 (Convergence rate of GHBM for non-convex functions)

Under assumptions 4.1-4.2-4.3, if we take:

m̃0
τ = 0, β = min

{
1,

√
|S |JL∆
σ2T

}
, η = min

{
1

24L
,

β√
8L

}
(122)

ηlJL ≲ min

{
1,

1

βηL
√
τT

,

√
L∆

β3τGτT
,

1√
β|S |

,

(
1

β3|S |J

) 1
4

}

then GHBM with optimal τ = 1
C converges as:

1

T

T∑

t=1

E
[∥∥∇f(θt−1)

∥∥2
]
≲

L∆

T
+

√
L∆σ2

|S |JT
(123)

Proof. Combining the results of lemma B.5 and lemma B.8, we have that:

T∑

t=1

(
E
[
f(θt

]
− E

[
f(θt−1

])
≤ −11η

24

T∑

t=1

E
[∥∥∇f(θt−1

∥∥2
]
+

13η

24

T∑

t=1

Et (124)

1

η
E
[
f(θt−1 − f(θ0)

]
≤ 26

30β
E0 −

1

15

T∑

t=1

E
[∥∥∇f(θt−1

∥∥2
]
+ 32β

σ2

|Stτ |J
T+ (125)

+
448

5
(ηlJL)

2(e3τT )Gτ + 6β

T∑

t=1

γt (126)
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Imposing τ = 1
C , by corollary 4.5 we have that γt = 0 and Stτ = S ∀t. Also, noticing that m̃0

τ = 0

implies E0 ≤ 2L
(
f(θ0)− f∗) = 2L∆, we have that:

1

T

T∑

t=1

E
[∥∥∇f(θt−1)

∥∥2
]
≲

L∆

ηLT
+
E0
βT

+ (ηlJLβ)
2τGτ + β

σ2

|S |J
(127)

≲
L∆

T
+

2L∆

βT
+ (ηlJLβ)

2τGτ + β
σ2

|S |J
(128)

≲
L∆

T
+

L∆

βT
+ β

σ2

|S |J
(129)

≲
L∆

T
+

√
L∆σ2

|S |JT
(130)

C EXPERIMENTAL SETTING

C.1 DATASETS AND MODELS

CIFAR-10/100 We consider CIFAR-10 and CIFAR-100 to experiment with image classification
tasks, each one respectively having 10 and 100 classes. For all methods, training images are pre-
processed by applying random crops, followed by random horizontal flips. Both training and test
images are finally normalized according to their mean and standard deviation. As the main model for
experimentation, we used a model similar to LeNet-5 as proposed in (Hsu et al., 2020). To further
validate our findings, we also employed a ResNet-20 as described in (He et al., 2015), following the
implementation provided in (Idelbayev, 2021). Since batch normalization Ioffe & Szegedy (2015)
layers have been shown to hamper performance in learning from decentralized data with skewed
label distribution (Hsieh et al., 2020), we replaced them with group normalization (Wu & He, 2018),
using two groups in each layer. For a fair comparison, we used the same modified network also in
centralized training. We report the result of centralized training for reference in Table 5: as per the
hyperparameters, we use 64 for the batch size, 0.01 and 0.1 for the learning rate respectively for the
LeNet and the ResNet-20 and 0.9 for momentum. We trained both models on both datasets for 150
epochs using a cosine annealing learning rate scheduler.

Table 5: Test accuracy (%) of centralized train-
ing over datasets and models used. Results are
reported in term of mean top-1 accuracy over the
last 10 epochs, averaged over 5 independent runs.

DATASET ACC. CENTRALIZED (%)

CIFAR-10 W/ LENET 86.48± 0.22
CIFAR-10 W/ RESNET-20 89.05± 0.44
CIFAR-100 W/ LENET 57.00± 0.09
CIFAR-100 W/ RESNET-20 62.21± 0.85
SHAKESPEARE 52.00± 0.16
STACKOVERFLOW 28.50± 0.25
GLDV2 74.03± 0.15

Shakespeare The Shakespeare language mod-
eling dataset is created by collating the collective
works of William Shakespeare and originally
comprises 715 clients, with each client denoting
a speaking role. However, for this study, a differ-
ent approach was used, adopting the LEAF (Cal-
das et al., 2019) framework to split the dataset
among 100 devices and restrict the number of
data points per device to 2000. The non-IID
dataset is formed by assigning each device to a
specific role, and the local dataset for each de-
vice contains the sentences from that role. Con-
versely, the IID dataset is created by randomly
distributing sentences from all roles across the
devices.

For this task, we have employed a two-layer Long Short-Term Memory (LSTM) classifier, consisting
of 100 hidden units and an 8-dimensional embedding layer. Our objective is to predict the next
character in a sequence, where there are a total of 80 possible character classes. The model takes in a
sequence of 80 characters as input, and for each character, it learns an 8-dimensional representation.
The final output of the model is a single character prediction for each training example, achieved
through the use of 2 LSTM layers and a densely-connected layer followed by a softmax. This model
architecture is the same used by (Li et al., 2020; Acar et al., 2021).
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We report the result of centralized training for reference in Table 5: we train for 75 epochs with
constant learning rate, using as hyperparameters 100 for the batch size, 1 for the learning rate, 0.0001
for the weight decay and no momentum.

StackOverflow The Stack Overflow dataset is a language modeling corpus that comprises questions
and answers from the popular Q&A website, StackOverflow. Initially, the dataset consists of 342477
unique users but for, practical reasons, we limit our analysis to a subset of 40k users. Our goal is to
perform the next-word prediction on these text sequences. To achieve this, we utilize a Recurrent
Neural Network (RNN) that first learns a 96-dimensional representation for each word in a sentence
and then processes them through a single LSTM layer with a hidden dimension of 670. Finally, the
model generates predictions using a densely connected softmax output layer. The model and the
preprocessing steps are the same as in (Reddi et al., 2021).

We report the result of centralized training for reference in Table 5: as per the hyperparameters, we
use 16 for the batch size, 10−1/2 for the learning rate and no momentum or weight decay. We train
for 50 epochs with a constant learning rate.

Given the size of the test dataset, testing on STACKOVERFLOW is conducted on a subset of them
made by 10000 randomly chosen test examples, selected at the beginning of training.

Large-scale real-world datasets As large-scale real-world datasets for our experimentation, we
follow Hsu et al. (2020). GLDV2 is composed of ≈ 164k images belonging to ≈ 2000 classes,
realistically split among 1262 clients. INATURALIST is composed of ≈ 120k images belonging to
≈ 1200 classes, split among 9275 clients. These datasets are challenging to train not only because of
their inherent complexity (size of images, number of classes) but also because usually at each round
a very small portion of clients is selected. In particular, for GLDV2 we sample 10 clients per round,
while for INATURALIST we experiment with different participation rates, sampling 10, 50, or 100
clients per round. In the main paper, we choose to report the participation rate instead of the number
of sampled clients to better highlight that the tested scenarios are closer to a cross-device setting,
which is the most challenging for algorithms based on client participation, like SCAFFOLD and
ours. As per the model, for both datasets, we use a MobileNetV2 pretrained on ImageNet.

Table 6: Details about datasets’ split used for our experiments

CIFAR-10 CIFAR-100 SHAKESPEARE STACKOVERFLOW GLDV2 INATURALIST

Clients 100 100 100 40.000 1262 9275
Number of clients per round 10 10 10 50 10 {10, 50, 100}
Number of classes 10 100 80 10004 2028 1203
Avg. examples per client 500 500 2000 428 130 13
Number of local steps 8 8 20 27 13 2
Average participation (round no.) 1k 1k 25 1.5 40 {5, 27, 54}

C.2 SIMULATING HETEROGENEITY

For CIFAR-10/100 we simulate arbitrary heterogeneity by splitting the total datasets according to
a Dirichlet distribution with concentration parameter α, following Hsu et al. (2020). In practice,
we draw a multinomial qi ∼ Dir(αp) from a Dirichlet distribution, where p describes a prior class
distribution over N classes, and α controls the heterogeneity among all clients: the greater α the
more homogeneous the clients’ data distributions will be. After drawing the class distributions qi, for
every client i, we sample training examples for each class according to qi without replacement.

In the main paper, we considered only two levels of heterogeneity: the first uses α = 0 and is used to
simulate a pathological non-iid scenario, while the second uses α = 10k and corresponds to having
homogeneous local datasets. To further investigate the impact of heterogeneity, we provide the results
for different values of α in section C.6 of this supplementary.

C.3 EVALUATING COMMUNICATION AND COMPUTATIONAL COST

In the main paper we showed a comparison in communication and computational cost of state-of-art
FL algorithms compared to our solutions GHBM and FEDHBM: in this section we detail how those
results in table Tab. 4 have been obtained. We follow a three-step procedure:

1. For each algorithm a, we calculate the minimum number of rounds ra to reach the perfor-
mance of FEDAVG, the total amount of bytes exchanged ba in the whole training budget
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(number of rounds, as described in Appendix C.5) and the measure the corresponding total
training time ta. In this way, the different requirements in communication and computation
of each algorithm are taken into account for the next steps.

2. We calculate the actual communication and computational requirements as (tba = ba ·
sa, tta = ta · sa), where sa = ra

T is the speedup of the algorithm w.r.t. FEDAVG. For those
competitor algorithms that did not reach the target performance (e.g.MIMEMOM) in the
training budget T , we conservatively consider ra = T . In this way, the convergence speed
of each algorithm is taken into account for determining the actual amount of computation
needed.

3. We complement the above information with with a reduction/increase factor w.r.t. FEDAVG,
calculated as rtba =

(
1− tba

tbFEDAVG

)
and rtta =

(
1− tta

ttFEDAVG

)
and expressed as a percent-

age. A cost reduction (i.e. rtba > 0 or rtta > 0) is indicated with ↓, while a cost increase
(i.e. rtba < 0 or rtta < 0) is indicated with ↑. This gives a practical indication of how
much communication/computation have been saved in choosing the algorithm at hand as an
alternative for FEDAVG.

C.4 HYPERPARAMETERS

For ease of consultation, we report the hyper-parameters grids as well as the chosen values in Table 7.
For GLDV2 and INATURALIST we only test the best SOTA algorithms: FEDAVG and FEDAVGM as
baselines, SCAFFOLD and MIMEMOM.

MOBILENETV2 For all algorithms we perform E = 5 local epochs, and searched η ∈
{0.1, 1} and ηl ∈ {0.01, 0.1}, and found η = 0.1, ηl = 0.1 works best for FEDAVGM, while
η = 1, ηl = 0.1 works best for the others. For INATURALIST, we had to enlarge the grid
for SCAFFOLD and MIMEMOM: for both we searched η ∈ {10−3/2, 10−1, 10−1/2, 1} and
ηl ∈ {10−2, 10−3/2, 10−1, 10−1/2}.

VIT-B\16 For all algorithms we perform E = 5 local epochs, and searched η ∈ {0.1, 1} and
ηl ∈ {0.03, 0.01} following (Steiner et al., 2022), and found η = 0.1, ηl = 0.03 works best for
FEDAVGM, while η = 1, ηl = 0.03 works best for the others.

C.5 IMPLEMENTATION DETAILS

We implemented all the tested algorithms and training procedures in a single codebase, using
PYTORCH 1.10 framework, compiled with CUDA 10.2. The federated learning setup is simulated by
using a single node equipped with 11 Intel(R) Core(TM) i7-6850K CPUS and 4 NVIDIA GeForce
GTX 1070 GPUS. For the large-scale experiments we used the computing capabilities offered by
LEONARDO cluster of CINECA-HPC, employing nodes equipped with 1 CPU Intel(R) Xeon
8358 32 core, 2,6 GHz CPUS and 4 NVIDIA A100 SXM6 64GB (VRAM) GPUS. The simulation
always runs in a sequential manner (on a single GPU) the parallel client training and the following
aggregation by the central server.

Practicality of experiments Under the above conditions, a single FEDAVG experiment on CIFAR-
100 takes ≈ 02:05 hours (CNN, with T = 20.000) and ≈ 03:36 hours (RESNET-20, with T =
10.000). For SCAFFOLD we always use the "option II" of their algorithm (Karimireddy et al.,
2020) to calculate the client controls, incurring almost no overhead in our simulations. We found
that using "option I" usually degrades both final model quality and requires almost double the
training time, due to the additional forward+backward passes. Conversely, all MIME’s methods
incur a significant overhead due to the additional round needed to calculate the full-batch gradients,
taking ≈ 10:40 hours for CIFAR-100 with RESNET-20. On SHAKESPEARE and STACKOVERFLOW,
FEDAVG takes ≈ 22 minutes and ≈ 3.5 hours to run respectively T = 250 and T = 1500 rounds.

C.6 ADDITIONAL EXPERIMENTS

Experiments on CIFAR-10 Table 8 reports the results of experiments analogous to the ones
presented in Tab. 2. For the main paper, we report experiments on CIFAR-100, as it is a more
complex dataset and often a more reliable testing ground for FL algorithms. Indeed, sometimes
algorithms perform well on CIFAR-10 but worse on CIFAR-100 (as for the already discussed case of
FEDDYN). Results in Tab. 8 confirm the findings of the main paper: under extreme heterogeneity,
some algorithms behave inconsistently across CNN and RESNET-20 (notice that FEDDYN and
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Table 7: Hyper-parameter search grid for each combination of method and dataset (for α = 0). The
best values are indicated in bold.

METHOD HPARAM CIFAR-10/100 SHAKESPEARE STACKOVERFLOW

LENET RESNET-20

ALL FL wd [0.001, 0.0008, 0.0004] [0.0001, 0.00001] [0, 0.0001, 0.00001] [0, 0.0001, 0.00001]
B 64 64 100 16

FEDAVG
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]

FEDPROX
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
µ [0.1, 0.01, 0.001] [0.1, 0.01, 0.001] [0.1, 0.01, 0.001, 0.0001] [0.1, 0.01, 0.001, 0.0001]

SCAFFOLD η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]

FEDDYN
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
α [0.1, 0.01, 0.001] [0.1, 0.01, 0.001] [0.1, 0.009, 0.001] [0.1, 0.009, 0.001]

ADABEST
η [1, 0.5, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.05, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
α [0.1, 0.01, 0.001] [0.1, 0.01, 0.001] [0.1, 0.009, 0.001] [0.1, 0.009, 0.001]

MIME
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]

FEDAVGM
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [0.99, 0.9] [0.99, 0.9] [0.99, 0.9] [0.99, 0.9]

MIMEMOM
η [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.05, 0.03, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [0.99, 0.95, 0.9] [0.99, 0.95, 0.9] [0.99, 0.9] [0.99, 0.9]

MIMELITEMOM
η [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.05, 0.03, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [0.99, 0.9] [0.99, 0.95, 0.9] [0.99, 0.9] [0.99, 0.9]

FEDCM
η [1, 0.5, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1] -
ηl [1, 0.5, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1] -
α [0.05, 0.1, 0.5] [0.05, 0.1, 0.5] [0.05, 0.1, 0.5] -

GHBM (ours)
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [1, 0.5, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [0.9] [0.9] [0.9] [0.9]
τ [5, 10, 20, 40] [5, 10, 20, 40] [5, 10, 20, 40] [5, 10, 20, 40]

FEDHBM(ours)
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [1, 0.99, 0.9] [1, 0.99, 0.9] [1, 0.99, 0.9] [1, 0.99, 0.9]
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Figure 5: Accuracy plot of the best performing algorithms on CIFAR-10 (left, Tab. 8) and CIFAR-100
(right, Tab. 2) on CNN (top) and RESNET-20 (bottom), on our most heterogeneous setting (α = 0).

MIMELITEMOM only with CNN improve FEDAVG. Conversely, LOCALGHBM and FEDHBM
both consistently improve the state-of-art by a large margin.
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Figure 6: Ablation study on the effect of several degrees of heterogeneity on performance of SOTA
algorithms and FEDHBM on CIFAR-10 and CNN. The left figure shows the final accuracy reached
by algorithms, while the right figure shows the number of rounds needed to reach 70% of absolute
accuracy. The tables show the values depicted in the respective picture above. The best results are in
bold, second best are in underlined.

METHOD α = 0 α = 0.1 α = 0.3 α = 0.6

FEDAVG 66.12 79.82 80.90 81.44
SCAFFOLD 74.83 80.72 81.49 81.84
FEDDYN 70.93 80.05 80.89 81.76
FEDAVGM 67.58 80.30 81.21 81.70
MIMEMOM 80.95 82.11 82.37 82.53
FEDHBM (ours) 81.71 82.40 82.65 82.96

METHOD α = 0 α = 0.1 α = 0.3 α = 0.6

FEDAVG - 2130 1800 1620
SCAFFOLD 5610 1140 940 810
FEDDYN 2780 650 570 500
FEDAVGM - 2110 1800 1540
MIMEMOM 2670 1830 1580 1520
FEDHBM (ours) 1410 480 440 390

Effect of different levels of heterogeneity Figure 6 presents an analysis of the effect of hetero-
geneity on (i) final model quality (left) and (ii) convergence speed (right). The experimental results,
while confirming that it is crucial to perform some form of drift control during local optimization,
show that momentum methods handle extreme heterogeneity scenarios better than methods that rely
on stochastic variance reduction, such as SCAFFOLD. Let us notice that the considered algorithms
are robust w.r.t. non-extreme heterogeneity: this underlines the need for algorithms that do not
sacrifice communication efficiency for robustness to heterogeneity. The right part of the figure shows
that heterogeneity has a strong effect also on convergence speed. In line with the results on the
left graph, MIMEMOM and FEDHBM are the fastest when facing the pathological case of α = 0.
Surprisingly, MIMEMOM is not significantly faster than FEDAVG and FEDAVGM in non-extremely
heterogeneous scenarios; indeed it is slower if taking into account the communication overhead. In
all cases FEDHBM performs best, demonstrating high robustness to heterogeneity from both the
considered perspectives.

C.7 ABOUT THE USE OF LEARNING RATE SCHEDULERS

Table 8: Test accuracy (%) comparison of SOTA FL
algorithms in a controlled setting. Best result is in bold,
second best is underlined.

METHOD
CIFAR-10 (RESNET-20) CIFAR-10 (CNN)

NON-IID IID NON-IID IID

FEDAVG 61.0±1.0 86.4±0.2 66.1±0.3 83.1±0.3

FEDPROX 61.0±1.8 86.7±0.2 66.1±0.3 83.1±0.3

SCAFFOLD 71.8±1.7 86.8±0.3 74.8±0.2 82.9±0.2

FEDDYN 60.2±3.0 87.0±0.3 70.9±0.2 83.5±0.1

ADABEST 73.6±3.0 86.7±0.5 66.1±0.3 83.1±0.4

MIME 53.7±2.9 86.7±0.1 75.1±0.5 83.1±0.2

FEDAVGM 66.0±2.2 87.7±0.3 67.6±0.3 83.6±0.3

FEDCM(GHBM τ=1) 65.2±3.2 87.1±0.3 69.0±0.3 83.4±0.3

FEDADC(GHBM τ=1) 65.7±3.0 87.1±0.2 66.1±0.3 83.4±0.3

MIMEMOM 69.2±3.6 88.0±0.1 80.9±0.4 83.1±0.2

MIMELITEMOM 57.0±0.9 88.0±0.4 78.8±0.4 83.2±0.3

LOCALGHBM (ours) 80.6±0.3 88.8±0.1 81.1±0.3 83.7±0.1

FEDHBM (ours) 83.4±0.3 89.2±0.1 81.7±0.1 83.8±0.1

For simplicity, in all our FL experiments
we did not use any learning rate scheduler.
In fact, while using strategies to change
the learning rate as training proceeds is in
general beneficial, this would result in a
difficult tuning of hyper-parameters asso-
ciated with the scheduler, since the algo-
rithms present very different convergence
rates.

Let us also point out that many well-
established works in FL do not use learning
rate schedules (McMahan et al., 2017; Li
et al., 2020; Hsu et al., 2019; Karimireddy
et al., 2020; 2021), while some others do
(Acar et al., 2021). Figure 7 shows the accu-
racy curves of the best FL algorithms from
Tab. 2, using a learning rate decay with de-
cay coefficient fine-tuned for each algorithm, searched in the range {0.999, 0.9992, 0.9995, 0.9999}.
For all the algorithms, the best learning rate decay turned out to be 0.9999. Comparing with perfor-
mances without learning rate decay, it is possible to notice that: (i) the use of learning rate decay, in
general, does not change the relative performance of the algorithms; (ii) in these settings, the use of
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Figure 7: Experiments with learning rate decay of SOTA algorithms and FEDHBM on
CIFAR-100 with RESNET-20. The decay coefficient has been searched in the range
{0.999, 0.9992, 0.9995, 0.9999} separately for each algorithm.

learning rate decay does not help convergence. This is particularly true in non-iid scenarios, where the
performances are degraded w.r.t. not applying any schedule. This is motivated by the fact that a large
number of rounds is needed to achieve convergence, and probably the simple decay strategy adopted
from Acar et al. (2021) is not optimal to practically give an advantage. Other learning rate schedules
may be more appropriate, but this largely expands the needed hyperparameter search, considering
that it must be searched separately for each algorithm.

C.8 GHBM AS SERVER-SIDE MOMENTUM

In this section, we show a comparison between GHBM applied at the client side, as proposed
in this work, and its use as a server-side optimizer. In the latter case, clients simply run vanilla
SGD locally, their gradients are then aggregated and the resulting server pseudo-gradient is used
to update the momentum term and the global model. The momentum update rule itself remains
unchanged, i.e. follows eq. (7), the only difference is that momentum is applied server-side, similarly
to FEDAVGM (Hsu et al., 2019) and accordingly to the FEDOPT framework (Reddi et al., 2021). As
shown in Fig. 8, server-side GHBM shows surprisingly good results, very close to client-side GHBM,
but only with one of the architectures adopted in this study. This underscores that, if clients have not
irremediably drifted during the local update, then server-side GHBM can be highly effective, even
in the most heterogeneous settings. However, these findings are not consistent across architectures;
indeed server-side GHBM does not show the same improvement when the experiment is carried
out on a simpler CNN. In summary, these results confirm the findings in previous work about the
necessity of integrating drift correction locally at clients (Karimireddy et al., 2020; 2021).
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Figure 8: Comparison between server-side (s-*) and client-side (c-*) GHBM, on CIFAR-10 (left)
and CIFAR-100 (right), with RESNET-20 (top) and a simpler CNN (bottom) on non-iid setting
(α = 0). Results show that client-side GHBM always performs better, confirming previous work on
the necessity of integrating drift correction locally at clients (Karimireddy et al., 2020; 2021).
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C.9 THEORETICAL EXPERIMENTS ON THE RELATIONSHIP BETWEEN FEDCM AND GHBM

In this section, we conduct an experimental verification that FEDCM in partial participation, even
when enforcing cyclic participation (see assumption 4.3), does not behave like GHBM, i.e. the
algorithms are not equivalent.
We propose to analyze a theoretical setting where a federation of K = 10 clients with non-iid
local datasets, collaboratively learns a quadratic function. In the experiment, K · C = 2 clients are
cyclically selected at each round. We compare, FEDCM (equivalent to GHBM with τ = 1) and
GHBM using the theoretical optimum τ = 1/C = 5. As it is possible to notice from the training
losses in Fig. 9, FEDCM in cyclic partial participation (in blue) does not converge as GHBM (in red).
Indeed, if the two algorithms were equivalent, the two curves should be always overlapping.
This experiment also validates an important point of our theoretical analysis: GHBM with optimal τ
approximates in (cyclic) partial participation the same momentum update rule that FEDCM applies
in full participation. This is shown by comparing the lines of GHBM in partial participation (i.e.
C = 0.2) and FEDCM in full participation (i.e. C = 1) (in orange). The red curve approaches the
orange one, with a slight slowdown introduced by (i) the initial τ rounds in which GHBM is still
building up the momentum buffer and (ii) the errors analyzed in lemma 4.6 and shown in Fig. 1.
This finding also holds in deep learning experiments: in Tab. 9 we compare GHBM and FEDCM in

Figure 9: Comparison between FEDCM and GHBM (train loss) in cyclic partial participation on
a theoretical, non-iid setting, across different numbers of local steps J . The plots show that: (i)
FEDCM cannot achieve the results of GHBM (even enforcing cyclic participation) and (ii) GHBM
in cyclic partial participation has nearly the same performance as FEDCM in full participation.

cyclic partial participation, on RESNET-20 with CIFAR-100, α = 0 and C = 0.1. This experiment
confirms that even when enforcing cyclic participation, the gap between the two algorithms remains
the same. Furthermore, it shows that the performance of GHBM under random and uniform client
sampling is similar to the ones in cyclic participation, corroborating the fact that, from an experimental
perspective, strictly enforcing cyclic participation is not necessary for obtaining good performance.

Method Participation scenario Final Test Accuracy (%)

FEDCM random, uniform sampling 22.2±1.0

GHBM random, uniform sampling 38.5±1.0

FEDCM cyclic participation 22.5±0.8

GHBM cyclic participation 39.0±0.7

Table 9: Comparison between FEDCM and GHBM in cyclic and uniform partial participation.
FEDCM is cannot attain the results of GHBM, even when enforcing cyclic participation.
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C.10 ADDITIONAL PLOTS OVER FEWER ROUNDS

Fig. 10 shows some results using fewer rounds than our experimental setup described in Sec. 5. We
remind that the number of rounds T = 10.000 had been chosen because algorithms present very
different convergence speeds depending on heterogeneity. Restricting a low number of rounds would
cause evaluating the algorithms when they are too far from their convergence point in our most
difficult setting (α = 0). Indeed, as it is possible to notice from Fig. 10, none of the algorithms have
reached its convergence point, so evaluating the algorithms under this restricted training budget can
be misleading.

Figure 10: Accuracy plot of algorithms on CIFAR-10 (left, Tab. 8) and CIFAR-100 (right, Tab. 2) on
RESNET-20, on our most heterogeneous setting (α = 0).
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