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Abstract

Reasoning models are large language models that emit a long chain-of-thought
before answering, providing both higher accuracy and explicit reasoning for their
response. A major question has been whether language model reasoning general-
izes beyond mathematics, programming, and logic, where most previous work has
focused. We demonstrate that reasoning models can be post-trained for chemistry
without additional domain pretraining, and require substantially less data compared
to contemporary domain-specific models. We report ether0, a 24B parameter
LLM (based on Mistral-Small-24B) that can reason in natural language and
respond with chemical structures. This reasoning model was trained with reinforce-
ment learning on 640,730 experimentally-grounded chemistry problems across 375
tasks ranging from synthesizability, to blood-brain barrier permeability, to human
receptor activity, to scent. Our model exceeds general-purpose chemistry models,
frontier models, and human experts on molecular design tasks. It is also more
data efficient relative to specialized models. We anticipate that this method can be
applied to train data-efficient language models specialized for tasks across a wide
variety of scientific domains.

1 Introduction

The dominant approach to improve the accuracy of large language models (LLMs) in recent years
has been to scale pre-training corpora size and pre-training compute budget [1, 2, 3, 4]. Partly
driven by the finite availability of pre-training data, however, attention has shifted towards alternative
scaling dimensions. Such dimensions include strategies such as majority voting [5, 6], “budget-
forcing” [7], and test-time training [8], which attempt to scale inference compute. Broadly, reasoning
models attempt to improve performance emitting their thought process before arriving at an answer.
Early approaches in this vein attempted to elicit reasoning behavior through chain-of-thought (CoT)
prompting [9, 10]. More recently, however, reasoning behavior has been demonstrated to emerge
through reinforcement learning (RL) post-training, without the need for CoT-style prompting.

RL post-training represents a shift of focus from pre-training data to problems with verifiable rewards.
Solutions to such problems can be checked for correctness, allowing the model to generate new,
verifiable outputs during learning, explore the space of solutions, and overcome limits imposed by
fixed data resources. Multiple works have demonstrated the potential of this approach, particularly in
the domains of mathematics and programming. These include both closed-source models [11, 12],
and more recently, a large number of open-source models [13, 14, 15, 16, 17, 18, 19].
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Figure 1: An overview of the training methodology and an example reasoning trace for etherO.
Training stages are shown in the bottom panel where the accuracy per step is scaled to have the same
x-axis range (see Appendix E).

Scientific domains may be particularly well suited for reasoning models because, as in mathematics
and programming, it is often straightforward to assess the quality of a solution, but much more difficult
to generate a solution. For example, we may be able to measure the solubility of a given molecule,
yet designing a molecule with a desired solubility can be a significant challenge. These “inverse
problems” are common in many areas of the physical sciences [20, 21, 22, 23, 24]. More broadly, the
scientific method is grounded in structured reasoning: formulating a hypothesis based on observation,
evaluating the logical implications of the hypothesis based on experiment, and refining the hypothesis
based on analysis of the results of experiment. Science often involves cognitive strategies such as
breaking problems into subproblems, responding to failures, or reasoning backwards from desired
outcomes, which are strategies also exhibited by reasoning models [25]. However, despite the
conceptual alignment between science and reasoning models, there is still relatively little work on
scientific reasoning models, aside from benchmarks on multiple choice questions [26, 27, 28].

In this work, we focus on chemistry, with tasks centered on designing, completing, modifying, or
synthesizing molecules. This setting is a good demonstration for scientific reasoning models. First,
molecules can be represented in text in the SMILES format [29, 30, 31], avoiding the complexities
of training a modality-specific encoder. Second, text-based representations of molecules are short
relative to modalities in materials science and biology such as nucleotide sequences or CIF files.
Third, generating and editing molecules is a critical application, where novel compounds may lead to
meaningful clinical and commercial advancements.

We demonstrate the efficacy of reasoning models in chemical tasks by introducing ether0, a novel
model that reasons in natural language and outputs molecular structures as SMILES strings. On the
chemical reasoning tasks under consideration, ether0 outperforms frontier LLMs, human experts,
and models trained for general chemistry. Moreover, ether0 supports key stages of the drug discovery
pipeline: it can generate candidates during hit discovery, it enables molecule editing in hit-to-lead to
improve potency, selectivity, or physicochemical properties, and it contributes to lead optimization by



refining compounds to enhance efficacy, reduce toxicity, and improve ADMET profiles, all while
being aware of synthesizability.

To efficiently train our model, we utilize a series of optimizations over vanilla RL, including distillation
of reasoning behaviors, a dynamic curriculum, and initializing RL with distillation from expert models.
We further analyze ether0’s data efficiency, failure modes, and reasoning behavior to understand the
utility of a reasoning in solving chemistry problems.

Related Work

Reasoning Models Reasoning models are characterized by an attempt to impart system 2-type
decision-making [32] to LLMs. Early efforts to this affect include chain-of-thought (CoT) [9], zero-
shot CoT [10], and Tree of Thought (ToT) [33] which seek to elicit reasoning by modifying LLM
prompts. Later attempts make use of process-level supervision to provide feedback on individual
reasoning steps [34, 35, 36]. Most recently, a number of reasoning models have been released [12, 37,
13, 11, 17, 38, 39] using large-scale reinforcement learning via Group Relative Policy Optimization
(GRPO) [40] or inference time scaling [41, 7].

Reasoning Models in Chemistry While frontier reasoning models have been evaluated on chem-
istry tasks [18, 37, 11], the vast majority of these benchmarks have consisted of chemical “knowledge”
tasks rather than chemical reasoning tasks [13]. While datasets such as GPQA-D [28], MMLU [26],
MMLU-Pro [27], OlympiadArena [42], and Humanity’s last exam [43] assess chemistry knowledge,
they do not assess the model’s ability to perform sophisticated chemical reasoning tasks such as
retrosynthesis and proposing new structures. While many works have evaluated non-reasoning LLMs
on chemical reasoning tasks [44, 45, 46], used LLMs as components for chemical tasks [47, 48, 49],
or investigated CoT-style prompting strategies [50, 51], to the best of our knowledge there have
been no attempts to directly train reasoning models to perform chemical reasoning tasks using
large-scale reinforcement learning. In terms of other scientific domains, OmniScience [52] targets
general science applications through distillation on reasoning traces. Med-R1 [53] applies GRPO to
medical vision-language tasks, using reinforcement learning to improve generalization and clinically
grounded behavior across multi-modal diagnostic reasoning tasks. BioReason [54] integrates a
DNA foundation model with an LLM and combines supervised fine-tuning and GRPO to enable
interpretable, multi-step genomic reasoning.

2 Chemical Reasoning Tasks

We construct a dataset of 640,730 chemical reasoning problems, comprising 18 different tasks.
Molecules are represented in the question and expected answer as SMILES, which encodes the
molecular graph or chemical reaction as ASCII text [55]. The answers are all either a molecule or a
reaction. Many tasks are broken down into subtasks. For example, in the solubility editing task, one
subtask is to increase solubility without changing the molecular scaffold, and another is to change it
without affecting specific functional groups. Table 1 summarizes all problems in our dataset, and
Section C.2 provides full details on the dataset provenance as well as the construction of each task.

We strove to only use synthesized molecules when constructing our dataset, in contrast to previous
work in cheminformatics based on “hypothetical” molecules [82]. Thus, all the questions and answers
are based on the result of physical experiments. Full reward function implementation details are
provided in Section C.3. In addition to the criteria listed, tasks marked with T also check that the
proposed molecules are plausibly synthesizable by fragmentation into rings and local groups (details
in Section C.3).

Solubility edit': Modify a given molecule to increase or decrease aqueous solubility (log S). Subtasks
impose additional constraints enforcing similarity to the input molecule. The log S objective is
computed using KDESol [56] and constraints are evaluated using RDKit [83] and exmol [84].

IUPAC name: Given an IUPAC name of a molecule, produce the corresponding SMILES string for
the molecular structure. Verified with RDKit.

SMILES completion®: Given a SMILES string of a molecular fragment, provide a completion that
results in a valid molecule. Verified with RDKit.

Molecular formula‘: Propose a molecule given a molecular formula in Hill notation [85]. Verified



Table 1: Breakdown of verifiable reward training tasks. ML model verifier: trained predictive model;
MCQ: multiple-choice questions. Templates: unique phrasings per category. Data source: short name
(see citations for full attribution). *Not a sum; multiple-choice property questions share templates.
T Also performs a “reasonable molecule” check.

Task Subtasks Examples Verifier ~ Templates™ Data source name
Solubility edit 3 115977 ML model[56], code’ 15 ChEMBL[57]
IUPAC name 1 74994 code 10 COCONUTISS, 59]
SMILES completion 1 74990 code’ 10 COCONUTISS, 59]
Molecular formula 1 18738 code! 10 COCONUTI58, 59]
Functional group 1 74562 code’ 6 ChEMBL[57]
Elucidation 1 74164 code’ 10 COCONUTISS, 59]
Retrosynthesis 1 67252 ML model[60], Bloom 8 -
filter[61]
Reaction prediction 1 61205 code 10 ORD[62, 63]
Molecule caption 1 54148 code 8 LlaSMol[64]
Safety 11 5687 MCQ 8 Pubchem[65]
Scent 180 4240 MCQ 8 pyFUME][66, 67, 68,
69, 70,71, 72,73, 74,
75]
Blood-brain barrier 2 2064 MCQ 8 BBB[76]
Receptor binding 150 1663 MCQ 8 EveBio[77]
ADME 12 1030 MCQ 8 Fang ADME[78]
Aqueous solubility 2 464 MCQ 8 AqSolDB[79]
LD50 2 342 MCQ 8 Pubchem [65]
pKa 4 336 MCQ 8 TUPACI80]
Photoswitches 1 23 MCQ 8 Photoswitches[81]
Total 375 640,730 9 81 13
with RDKit.

Functional group': Propose a molecule given a molecular formula and 1-3 desired functional groups.
Verified with RDKit and exmol.

Elucidation: Determine the chemical structure of a molecule found in an organism given its molecular
formula and background information on the organism. Since the problem is underdetermined, we
consider any answer to be correct if the proposed molecule has a Tanimoto similarity (ECFP4 [86])
of at least 0.7 to the ground truth. Verified with RDKit.

Retrosynthesis: Provide a single-step reaction to produce the given target molecule. The reactants
must all be purchasable molecules (determined by manufacturer catalogs in a Bloom filter [61]), and
the product of the proposed reaction must match the target molecule predicted using the Molecular
Transformer model [60].

Reaction prediction: Given a chemical reaction, predict the major product. Verify exact molecule
match with RDKit.

Molecular caption: Given a textual description of a molecule, produce the SMILES of the molecule.
This task uses data from Yu et. al [64], which itself comes from PubChem [87, 88, 89]. Verified with
RDAK:it.

Multiple choice questions: Predict or modify properties of a molecule, for which no accurate oracle
exists. Instead, multiple options are presented, and the model is expected to select the one that has
been experimentally determined to satisfy the criterion. Verified by string matching. See Section C.1.

3 Background

Supervised Fine-Tuning. As in prior work [90, 13], we use SFT to initialize a policy for RL
(Equation S1). If the demonstration dataset Dgems is itself from another policy 7/, this can also be
considered a form of expert iteration [91, 92] or knowledge distillation [93].



Reinforcement Learning. While SFT can be used to warm-start the policy, we rely heavily on
online reinforcement learning to improve our models. In particular, we use Group Relative Policy
Optimization (GRPO) [40].

Given a question x from the dataset, we sample G completions y1, . . ., yg ~ 7(-|z). Each is assigned
areward 71, ..., rg and a corresponding advantage:
A= r; —mean{ry,...,rg} 0
std{r1,...,ra}

Given a single problem 2 and a group of completions {y; }, the per-group objective is:

lyi
J(97x7y1"" Z Z{ (WvAi7€> _BDKL[ﬂ9||7Tref§377yi,<t]}7 2)

[yl 010 (Yi,t| 2, Yi,<t

where 7y is the policy being optimized, mg_,, is the policy from which we sampled rollouts, and 7ef
is a reference policy. clip is the standard PPO clip function [94]:

clip(r, A, €) = min{r - A, max{min{r,1+€},1 — e} - A}. 3)

The global policy objective we seek to optimize over the training set of problems D is therefore:

Jarro (0, D) = ‘D| PP RTITe) : )
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For completeness, the GRPO algorithm is detailed in Algorithm 1.

4 Training

In this section, we describe a method to train a large language model to reason about and answer the
problems detailed in Section 2. We utilize a multi-stage training procedure, consisting of alternating
phases of (a) distillation [93] and (b) GRPO [40, 13]. At a high level, the stages are: (1) Supervised
fine-tuning on long chain-of-thought reasoning sequences; (2) Task-specific “specialist” GRPO; (3)
Distillation of specialist models into an all-task “generalist” model; and (4) Generalist GRPO. Using
a family of task-specific reasoning models to generate synthetic data for a generalist model has been
recently demonstrated to be an effective strategy in other domains [95, 96].

Unless otherwise stated, our policies are trained from Mistral-Small-24B-Instruct-2501 [97].
To simplify formatting of the model output, we introduce four new tokens to the base model’s
vocabulary to demarcate reasoning and answering boundaries. During distillation and RL, these
tokens are used to respectively format and validate sequences with the following structure:

<|think_start |>THOUGHT<| think_end|>
<|answer_start|>ANSWER<| answer_end|>

4.1 Long CoT Supervised Fine-Tuning

We warm-start our model with SFT on rejection-sampled long chain-of-thought sequences to jump-
start RL with a policy for which reasoning and SMILES answers are already in-distribution.

The SFT sequences are first generated by prompting DeepSeek-R1 with a subset of the training
dataset, with a maximum token budget of 8192 tokens. To remove low-quality responses, we enforce
the following criteria: (1) each sequence ends with an answer enclosed in XML tags; (2) the answer
is valid SMILES/SMIRKS; and (3) passes an LLM-based check for relevant reasoning (Section B.1).
We considered rejecting responses with incorrect answers, but R1’s success rate is below 1% for
many tasks. Our goal during SFT is to find a good pre-RL initialization, not necessarily to maximize
accuracy, and prior work [13, 25] suggests that SFT even on inaccurate reasoning sequences can be
sufficient. Therefore, we do not discard sequences that end in incorrect answers.




Early experiments showed that starting RL with long reasoning sequences was inefficient: sampling
dominates training time, and the extra reasoning did not translate to higher accuracy. So instead,
we prompt Mistral-Small-24B-Instruct-2501 to summarize R1-generated reasoning in fewer
tokens (Section B.2). In total, this procedure results in 14,021 demonstration traces across all problem
categories. From these traces, we extract the answer and thought (defined as all tokens except the
SMILES answer) and reformat them to produce the SFT dataset.

4.2 Specialist RL

The chemistry problems we are optimizing against have varying difficulty, both across and within
tasks. To address the former, we first perform GRPO on a family of policies on related problem
categories. This proved to be more robust than various forms of scheduling or curriculum learning,
because it enabled tuning hyperparameters independently. The following tasks are grouped together
into specialists, due to their relatedness: (1) molecular formula, functional group, and elucidation;
(2) all multiple-choice questions. All other tasks are trained independently, resulting in seven total
specialists. The reward assigned to each model response ¥ is:

r(y) = format_reward(y) X accuracy_reward(y), ®)

where format_reward is 1 if the format is met and O otherwise; accuracy_reward is 1 if the
answer satisfies the problem (Section 2) and 0 otherwise. The only exception is the specialist trained
on molecular formula, functional group, and elucidation, which uses a softer accuracy_reward: if
the desired molecular formula is met but other constraints are not, then 0.5 is returned. Note that RL
allows to bootstrap new behaviors not present in the SFT traces. An example of this can be shown in
Section F.1.

4.2.1 Advantage-Based Curriculum

The GRPO advantage reduces to zero on groups in which all elements achieve the same reward.
Besides the KL term, these “trivial” groups do not contribute to the policy gradient, and their fraction
of the batch fr can reach 90% during training. DAPO [98] tackles this by discarding trivial groups
and resampling problems, requiring ~ (1 — fr)~!x as many sampling attempts per batch.

We instead use a heuristic: if a problem results in a non-trivial group from the current policy, it is
added to a curriculum buffer. At each training iteration, a fraction (e, ) of the batch is selected from
the buffer instead of the dataset. Since these problems were recently non-trivial, we expect a lower
fr than the rest of the dataset. If a buffer problem becomes trivial, it is removed from the curriculum.
This method can reduce f7 with no additional computational cost, demonstrated in Section F.3. A
similar method has been previously employed in the offline setting, using reward variance [99].

The above curriculum algorithm will exhaust the buffer faster than it can be filled if the following
bound is not met: €cyy < (1 — fR)/(1 — fB + fB), where f£, f£ are the expected trivial fractions
from the dataset and buffer, respectively. To use a high €., without exhausting the buffer, we seed
the curriculum buffer using a union of non-trivial problems from previous experiments. This can be

interpreted as using model-derived difficulty annotations.

4.2.2 Problem rewriting

The problem templates described in Section 2 vary the language by which problems are posed, but we
hypothesized the model may struggle to generalize to unseen phrasings or the presence of distracting
information. Therefore, some fraction of the time, we prompt Gemini 2.5 Flash to rewrite the problem,
while retaining all relevant information. Two prompts are used in equal proportion: one that simply
asks the LLM to restate the problem, and another that also directs it to add extraneous information
(Section B.4). These rewritten problems are used both during RL and subsequent distillation.

4.3 Distillation

To merge the specialist models into a final generalist model, we perform another distillation via
supervised fine tuning on the base Mistral-Small-24B-Instruct-2501 model. This can also be
seen as behavior cloning or expert iteration [91, 92].

Unlike previous work [17, 18, 19, 95], we do not rejection-sample model responses after training, but
instead collect correct responses from the entire training run. These sequences are then filtered to



remove those with low reasoning quality, as judged by an LLM and regex for non-English language
(Section D.1). We further observed that some open-ended tasks are susceptible to answers with
undesirable molecular substructures; we therefore reject such responses (Section D.2). Finally, if
multiple responses remain for a given problem, only the two latest responses are kept.

The final distillation training set concatenates these sequences with the SFT dataset (Section 4.1).
SFT is performed upon this dataset to initialize the policy for the next phase.

4.4 Generalist RL

Having distilled all tasks into a single model, we perform a combined GRPO phase across all
tasks. An online curriculum is used (without seeding) to encourage learning. Unlike the task-
specific phase, all accuracy rewards are binary, without any partial credit assigned. However, to
disincentivize undesirable substructures arising during RL (after being rejected during distillation),
we assign a molecule quality bonus reward during the last steps of this phase (Section D.2) As in the
specialist phase, problem rewriting is enabled. We also run a safety alignment procedure described in
Section E.3.

5 Results

Here we report the results of training Mistral-Small-24B-Instruct-2501 using the procedure
outlined in Section 4. The seven specialist models were trained using 24-72 Nvidia H100 GPUs
each, with a varying set of hyperparameters (detailed in Section E.1). A total of 186,010 sequences
were collected from the specialist training runs for distillation. A single SFT epoch was sufficient for
distillation, with a batch size of 64 and learning rate of 1.9 x 10~5. The all-task RL training phase
was performed using 384 H100 GPUs, over 4 days; all hyperparameters are described in Section E.2.
The final safety alignment phase required 104 H100 GPUs (see Section E.3).

We compare our ether0’s performance against multiple baseline models on a set of holdout evalua-
tion problems, analyze its reasoning behavior, and identify its primary failure modes. We also assess
its sample efficiency and conduct ablation studies on the effect of reasoning.

5.1 Model Performance

Figure 1 shows how each stage of the training pipeline contributes to model performance across tasks.
All tasks show significant improvement during the task-specific RL phase, despite post-SFT accuracy
often starting very low. Distillation successfully transfers specialist capabilities to the generalist
model, though some problem categories, such as solubility edit and functional group, experience
drops in performance. Nonetheless, the all-task RL phase is able to recover from these degradations,
resulting in final performance that matches or exceeds that of the corresponding specialist models.

To contextualize ether0’s capabilities, Figure 2 compares its performance against both general-
purpose LLMs (e.g., Claude, ol) and chemistry-specific models (ChemDFM, TxGemma). Our
model achieves the highest accuracy on all open-answer (OA) categories and delivers competitive
performance on multiple-choice questions (MCQs). We hypothesize that we achieve higher margins
over other methods in OA tasks because they are more amenable to RL without overfitting: Firstly,
we simply have more OA problems than MCQs (Table 1). Secondly, many OA tasks have non-unique
answers, allowing for more exploration during training without memorization of the answer.

In Figure S2, we demonstrate that the our safety alignment procedure, which results in the ether0
refusing 80% of unsafe questions, does not meaningfully degrade capability on the measured tasks.
An annotated model response is provided in Figure 4.

5.2 Data Efficiency

Prior work has suggested that training reasoning models via RL can be data-efficient [99], although
these results are not conclusive [100]. In Section 5.1, we benchmark the performance of ether0
against other LLMs trained with and without reinforcement learning. In this section, we now
investigate the data efficiency of ether0 during both training and inference.
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Figure 2: Per-task performance of our model compared to general-purpose LLMs. For multiple
choice tasks, the “random” line accounts for varying numbers of options between problems. The
human bar is an average of four chemists equipped with only the molecule drawing tool ChemDraw.
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Figure 3: Data efficiency analysis. (A) Comparison of ether0 to Molecular Transformer (MT) on
reaction prediction: etherO outperforms the published MT (dashed line) and shows higher data
efficiency compared to retraining MT from scratch on our dataset (f - retrained). (B) Effect of
in-context learning (ICL) on multiple-choice questions (MCQs).

First, we compare ether0 to a traditional model (i.e., not an LLM) trained with supervised learning.
The Molecular Transformer (MT) [60] is a state-of-the-art model for chemical reaction prediction,
trained on nearly 480,000 USPTO reactions [101]. When trained on our dataset of 60,000 reactions,
etherO outperforms MT, even when MT is retrained on the same data (Figure 3A). On our held-out
test set, ether0 achieves 70% accuracy after 46,000 examples, compared to MT’s 64.1% on the full
USPTO dataset. We also retrained MT from scratch on our smaller dataset. The retrained versions
of MT (denoted by MTT) failed to exceed 30% accuracy, a threshold surpassed by ether0 after
seeing only 10% of the available training data. This demonstrates that a reasoning model can achieve
performance competitive with a dedicated traditional model given considerably less data.

Second, we apply in-context learning (ICL) [2]) to evaluate the models’ ability to leverage additional
data at inference time. ICL involves providing exemplar question-answer pairs directly in the prompt
to guide the model’s response. In our setup, we construct ICL prompts from MCQs by selecting one
of the distractors (i.e., incorrect options) from the original question and appending it as a labeled
example. To maintain consistent random baselines between the one-shot and zero-shot versions,
we remove the selected distractor from the set of choices in the actual question. Full details on the
formatting and implementation of ICL are provided in Section F.4. Using this strategy, Figure 3B
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The organism Plumbago spp. contains a compound with formula C16H1207. What's a likely
SMILES based on its biochemistry?
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First, consider flavones, which are flavonolignans. Apigenin, a flavone, has the formula C15H1005. Adding one*
carbon (C16H1205) could work, but we need two more oxygens: possible additional hydroxyl groups or a
methoxy group. However, subtropical flavonoids might be glycosylated.

Let's consider luteolin (C15H1006) with a methyl group (CH3). Methylated luteolin would be C16H1206.
Adding another oxygen is tricky. Perhaps a carboxylic acid group (COOH) making it C17H1808 does not fit .
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Consider myricetin (C15H1008) Wit fieating to C15H1008 does arrange coupling with C16H1207 if have.
additional methyl group. Quercetin is C15H1007: adding a methyl group would be C16H1207, which fits. ~~_

Quercetin (C15H1007) plus a CH3 group becomes C16H1207. So substituting one H with a CH3 group. *~.] Examples of unnatural text
Quercetin approximates C15H1007 (338 g/mol). Methylating it would add a CH3 group replacing a hydrogen that emerge from RL

- summing up +31 (13 vs. P7 - maybe more accurately degradation oxygen variation).

Alternatively, consider apigenin (C15H1005) plus a methyl group - C16H1205. Add an additional carboxylic from non-reasoning GPT-4.5
acid > C17H1207).

...truncated.... K
ol is C15H1006 - hydrogen . M

Flavonoids are glycosylated. Quercetin-3'-O-methyl ester would add C towards C16H1207. :. This compound was answer

A methylated flavonol with C16H1207 could be ol methyl ether. K
might be added more "methoxy". Thus replace one hydrogen - C15 - making C16H1206.

Finally, consider quercetin (C15H1007) adding CH3 - C16H1207. This fits whatever oxygenated compound
plus methane.

Hence, let's verify Quercetin-C. Quercetin (C15H1007). Changing one phenolic OH - Cu added a methoxy.
Hence, C16H1207. Thus, a flavonol methylated. Alternating return on DMSO query filling this molecule would
be accurate likely structure.

...truncated....
Thus, likely SMILES structure for this compound is based upon quercetin methyl ether with hydroxyl -

glycosylation “ounding chain:

**SMILES: "C1=CC(=C(C=C1C2=C(C(=0)C3=C(C=C(C=C302)0)0)OCH3)0)0" **

Figure 4: Annotated reasoning trace of the model correctly solving an unseen structure elucidation
task, where 03, rl, Gemini 2.5-pro 05-07-25, and GPT-4.5 fail. The trace illustrates exploration,
backtracking, and verification. The model does not know the real molecule name (azaleatin), referring
to it as quercetin-C to indicate quercetin with an extra methyl group. Overall, this trace highlights
both the strengths and limitations of ether0’s learned capabilities in complex, multi-step chemical

tasks.

demonstrates a significant gain across MCQ tasks. Considering zero-shot performance, ether0
shows an overall performance of 50.1% in our test set, which is comparable to the 52.2% reached
by ‘01-2024-12-17°. However, under one-shot prompting, ether0 surpasses all evaluated frontier
models, highlighting its ability to generalize from minimal context. These results illustrate that our
model, despite limited training data, can further increase performance and exceed the performance of

frontier LLMs when appropriately guided at inference time.

5.3 Reasoning Performance and Behavior

In Figure 4, we annotate a representative completion of ether0 on a challenging open-answer task.
The completion displays multiple lines of reasoning and verification, and additionally creates new
words to help solve the problem, such as “Quercetin-C.” As judged by chemistry expert evaluation
(Figure S7), the reasoning is generally coherent and proceeds logically from question to answer.

To validate the hypothesis that explicit reasoning improves model performance, we compare a model
trained with reasoning and a model trained without reasoning under otherwise identical settings. The
non-reasoning model was constructed through distillation on the distillation data used for our all-task
reasoning model, but with the thoughts removed from the sequences. This procedure was followed so
as to control for the task distribution seen during distillation. Our results, shown in Figure 5 (left),
clearly demonstrate that the reasoning model consistently outperforms the non-reasoning model

across the majority of evaluated tasks.

Subsequently, we perform a more qualitative study of ether0’s reasoning. Recent work [25] suggests
that the prevalence of “cognitive behaviors” (e.g. verification, backtracking) in a model’s reasoning
is linked to its capacity to solve complex problems. To confirm this observation, we use a similar
strategy to measure the frequency of such behaviors (behavior counts) over the course of model

training (Section F.2).
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Figure 5: Left: Per-task performance of reasoning and non-reasoning models. Right: Evolution of
model reasoning behaviors on the evaluation set throughout training, across three problem categories:
functional group, reaction prediction, and SMILES completion. We track 4 reasoning behaviors:
backtracking, backward chaining, subgoal setting, and verification, alongside completion length.

These behavior count metrics are shown in Figure 5 (right) for three tasks (see Figure S4 and Figure S5
for all tasks). We find that task behavior during training loosely fall into three distinct patterns. Some
tasks, such as molecule formula and functional group, exhibit increases in both behavior counts and
completion lengths, along with marked improvements when reasoning is added. Others, including
IUPAC name and reaction prediction, show limited change in behavior count but clear increases in
sequence length, with more modest gains from reasoning. Finally, tasks such as solubility editing and
SMILES completion generally show little change in either metric and no clear benefit from reasoning.
These observations suggest that the emergence of cognitive behaviors is not merely a byproduct of
training, but is selectively amplified in tasks where structured reasoning is advantageous.

6 Limitations

Although etherO is trained on a variety of chemistry tasks, it can struggle to generalize beyond its
training distribution. For example, we do not expect strong performance on inorganic chemistry,
such as generating crystal structures, since the model was primarily trained on SMILES strings of or-
ganic molecules. The intensive RL training also reduced Mistral-Small-24B-Instruct-2501"s
general instruction-following and chat capabilities, including multi-turn conversation. While many
small-molecule design workflows rely heavily on tools, tool calling was not included in ether0Q’s
training. In our evaluation, we used MT to validate predicted reactions, which may introduce
limitations, and benchmarked against state-of-the-art LLMs, though other specialized non-LLM
models could perform better on specific tasks. Future work could integrate chemistry reasoning and
tool-calling into a single model.

7 Conclusion

In this work, we show that reasoning models, previously successful in mathematics and programming,
can also solve chemical reasoning questions often unsolvable by non-reasoning models. We introduce
ether0, a 24B-parameter reasoning model trained on a curated dataset of challenging tasks in
molecular design, completion, modification, and synthesis. We detail our training pipeline, which
consists of several interleaved phases of reinforcement learning with verifiable rewards and behavior
distillation. On a held-out evaluation set, ether0 significantly outperforms frontier LLMs, domain
experts, and specialized models, particularly on open-answer tasks. We analyze the model’s reasoning
behavior, failure modes, and data efficiency, highlighting where reasoning helps and how it evolves
during training. Finally, we release the model weights, benchmark data, and reward functions. We
believe this work demonstrates strong potential for future work on reasoning models on scientific
tasks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim to be contributing a reasoning model trained for chemistry on various
common chemistry tasks that outperforms specific deep-learning models on such tasks. This
is extensively shown and supported by our results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 6 discusses the limitations of our method, including the tasks our
model does not perform too well.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA] .

Justification: Our work does not include theoretical proofs. However, the needed background
to understand the model training is included in this manuscript.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the hyperparameters and training method are extensively described and
included in this paper.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have publicly released a GitHub repository (https://github.com/Future-
House/ether(O) containing the reward functions and test data. All training data sources
are publicly available, and we have also open-sourced the templates used to generate the
question prompts.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 2 and SI Section C.2 are transparent on how the data was obtained and
Section 4 discusses the training procedure in detail. The hyperparameters for every phase of
the training pipeline are provided.

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Training LLMs is very cost-intensive, and API calls to frontier LLMs are
expensive. We considered a large evaluation set, but did not run replicates of each task.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The first paragraph of our “Results” section explicitly tells the compute
resources used to train each step of our training pipeline.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our study does not have human subjects; all the data used is publicly available,
and our model is being trained to mitigate safety and misuse concerns.
Guidelines:
* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: We show that reasoning models are data efficient to learn chemistry-related
tasks, which can be used to train a new model using our code for harmful purposes on
a different dataset. This is not addressed in the main text. We briefly discuss potential
applications of these models in drug discovery pipelines and the associated risks of misuse,
but do not explore these topics in depth.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We reduce potential safety and misuse risks by incorporating a dedicated safety
phase into the training pipeline, before releasing the nodel weights. We describe the full
safety procedure in the SI.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Every source was thoroughly referenced, and a datasheet for the dataset is
provided below.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our model has been open-sourced along with its model card, the reward
function and dataset prompt templates are public and well documented in our GitHub
repository (https://github.com/Future-House/ether0) and the dataset we use is derived from
publicly available sources.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Our study does not primarily involve crowdsourcing nor research with human
subjects, but does pay a small number of human chemists to determine baseline accuracy on
the problems being considered. Details on their compensation and instructions are included
in the SI Section F.6.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]

Justification: Our study does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Our study involves training LLMs, and LLMs were used in important steps of
our method. All LLM used is well-described in Section 5.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Algorithms

A.1 Supervised Fine-Tuning

Given a set of demonstration sequences Dgemo, supervised fine-tuning (SFT) minimizes the cross-
entropy loss over the dataset:

|s]
1
£SFT:_W o D logm(sils<) (ShH

$€Dgemo t=1

A.2 Group Relative Policy Optimization

The GRPO algorithm is given in Algorithm 1 below. Within it is the following KL divergence
estimator [102]:

Moot (Ve y<t) 0 Trer(Welt,y<t) (82)

D [rollmti . ] =
KL[ﬂ'eHﬂ'rehTayt] 7T9(y15|w7y<t) We(yt‘xuy<t)

Algorithm 1 GRPO

Input: Minibatch sampling distribution Pz (D), hyperparameters p, M
1. fork=1,..., K do
2: Told < T9

3: if ¥ mod M = 0 then

4: Update reference policy: s <— 7o

5: end if

6: Sample minibatch Dp ~ Pp(D)

7: for x € Dp do

8: Sample y7, ..., y& ~ mo,, (-|x)

9: Compute rewards r{, ..., r&, then advantages A7, ..., A%

10: end for
11: forj=1,...,udo

12: Update 7y with a gradient ascent step on Jgrpo over {z,{y{,...,y&} |z € D}
13: end for
14: end for
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B Prompts

B.1 SFT Filtering Prompt

gemini-1.5-pro-002 is used to filter flawed reasoning traces coming from DeepSeek-R1 used in
producing the initial SFT dataset. The following prompt was used:

Examine the following ‘thought’ reasoning as a justification for the
answer to the question. Evaluate the reasoning as GOOD if it is
complete, relevant, and justifies the answer without presuming the
answer beforehand. Evaluate the reasoning as BAD if it is incomplete,
trivial, or uses the final/given/suggested answer in its
justification. Answer only with GOOD or BAD -- do not include an
explanation.

{"problem": "{problem}", "thought": "{thoughtl}", "answer": "{answer}"}

This safeguard against incoherent sequences removes only a few examples.

B.2 Summarization Prompt

This prompt is used to summarize reasoning traces coming from DeepSeek-R1 for the SFT dataset.

Given the following reasoning process, reduce its length while
preserving the structure and the sequence of thoughts. Keep the
original sequence of thoughts and all relevant information to reach
the final answer. It is essential to preserve all SMILES and
equations. Start with the same words as the original reasoning
process. You should also keep all reasoning patterns in the original
thought. That includes behaviors like verifications (e.g. ‘Let me
check...’), backtracking (e.g. ‘Let’s try another approach...’),
subgoal setting (e.g. ‘First, let’s comnsider...’), and back-chaining
(e.g. ‘Working backwards ...’). If the original examples of these
behaviors are long, shorten them.

B.3 Distillation Filtering Prompt

This prompt is used to filter flawed reasoning traces coming from task-specific ether0 variants
before distillation.

Examine the following ‘thought’ reasoning as a justification for the
answer to the question. Note the answer will contain SMILES
(Simplified Molecular Input Line Entry System) notation, so do not
consider SMILES such as ¢C1=NC=NC=C1C(=0)NON’ or
‘Oclccc2cc(Br)c(0)cc2cl’ to be a typo. There may also be markdown,
please ignore markdown formatting. Please evaluate the reasoning as
(case sensitive):

- GREAT: if it is complete and relevant.

- BAD: if it contains typos, non-English characters, nonsense
formatting, or doesn’t relate to the problem. Do not analyze the
SMILES syntax for balanced parentheses or correctness, do not compare
stated SMILES with the answer’s SMILES and do not analyze the
accuracy of scientific claims, just evaluate based on formatting,
typos, and problem relevance.

- ALRIGHT: if GREAT or BAD don’t quite fit.

Answer first with GREAT, ALRIGHT, or BAD, then briefly state the
rationale.

{"problem": "{problem}", "thought": "{thoughtl}", "answer": "{answerl}"}
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B.4 Problem Rewriting Prompts

These prompts are used to direct Gemini 2.5 Flash to rewrite problems in our dataset. For the sake of
brevity, we omit most of the ICL examples that we include.

Prompt to rephrase the question without distracting information:

Rephrase the following problem. DO NOT manipulate any SMILES or SMIRKS or IUPAC name
or the chemistry being asked about. Just rephrase the problem in a different way.
ONLY respond with the modified question. Do try to make it more natural sounding.

DO NOT forget to include all multiple choice options, if applicable.

You MUST include all SMILES, SMIRKs, IUPAC names, and functional groups in the
original problem in the modified question.

Here are some examples of what I am asking for:
[omitted]

<input>
What is the product of this reaction? [Zn].0=S(0)C(F)F.S=C10C=2C=CC=CC2N1>0=C(0)C(
F) (F)F.00C(C) (C)C.0.C1CC1>
</input>
<output>
We mixed the following reactants: [Zn].0=S(0)C(F)F.S=C10C=2C=CC=CC2N1>0=C(0)C(F) (F
)F.00C(C) (C)C.0.C1CC1>. Can you answer what was produced in this reaction?
</output>

DO NOT include XML tags. You may reuse patterns from these examples, but DO NOT copy
these exact examples, even if one is similar to my problem. Be creative.

DO NOT drop any information from the original problem, and REMEMBER to include all
SMILES, SMIRKS, and IUPAC names in their original form in the modified question.

Prompt to rephrase with distracting information:

Rephrase the following problem. DO NOT manipulate any SMILES or SMIRKS or IUPAC name
or the chemistry being asked about. Just rephrase the problem in a different way.
ONLY respond with the modified question. Do try to make it more natural sounding.

DO NOT forget to include all multiple choice options, if applicable.

You MUST include all SMILES, SMIRKs, IUPAC names, and functional groups in the
original problem in the modified question.

Here are some examples of what I am asking for:
[omitted]

<input>
What is the product of this reaction? [Zn].0=S(0)C(F)F.S=C10C=2C=CC=CC2N1>0=C(0)C(
F) (F)F.00C(C) (C)C.0.C1CC1>

</input>

<output>
Me and my colleagues were exploring some possible reactions with the reactants we
had available in our lab. When we mixed the following reactants: [Zn].0=S(0)C(F)F.
$=C10C=2C=CC=CC2N1>0=C(0)C(F) (F)F.00C(C) (C)C.0.C1CC1>, we got a very interesting
solution. Can you answer what was produced in this reaction?

</output>

DO NOT include XML tags. You may reuse patterns from these examples, but DO NOT copy
these exact examples, even if one is similar to my problem. Be creative.

DO NOT drop any information from the original problem, and REMEMBER to include all
SMILES, SMIRKS, and IUPAC names in their original form in the modified question.
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C Chemistry RL Dataset Details

C.1 Multiple Choice Question (MCQ) task descriptions

Safety: Select the molecule whose structure most strongly aligns with or deviates from a specified
safety-related property, such as toxicity, flammability, or hazard classification.

Scent: Identify the molecule most likely to exhibit a specific olfactory attribute (e.g., meaty, spicy,
oily).

Blood-brain barrier: Determine which molecule is or isn’t structurally likely to penetrate the
blood-brain barrier based on reference behavior.

Receptor Binding: Identify the molecule whose structure most likely lacks binding affinity or activity
for a specified biological receptor target.

ADME: Choose the molecule expected to improve or match a specified absorption, distribution,
metabolism, or excretion property based on structural modifications.

Aqueous Solubility: Select the molecule whose structure leads to a targeted increase or decrease in
water solubility.

LDS50: Select the molecule whose structure corresponds to a specified rat oral LD50 value, reflecting
its relative acute toxicity level.

pKa: Select the molecule whose structure aligns with a specified increase, decrease, or target value
of pKaH1.

Photoswitches: Select the molecule whose E isomer exhibits a target 7—7* transition wavelength..

C.2 Dataset Provenance

The dataset was constructed by aggregating data from 13 distinct sources, detailed in Table 1.
All selected references exclusively involved experimental measurements of synthesized molecules,
excluding any hypothetical or computationally generated structures.

The source datasets had a variety of representations, like CAS numbers, so we first relied on Leurli!,
PubChem, and RDKit to convert all molecules to SMILES. Unless otherwise specified, all SMILES
were randomized, isomeric SMILES. Also, generally molecules were filtered out that were fewer
than 4 heavy atoms, more than 100 heavy atoms, or had less than 20% carbon atoms. The exceptions
were when it was an exact match problem (like the outcome of a reaction). We did not filter out
disconnected molecules, so many examples did have counterions (although our model was excluded
from answering with non-counterion mixtures).

For reaction prediction tasks, data was sourced from the organic reaction database (ORD) with
filtering to remove contamination. Namely, some deposited reactions in ORD are parsings of USPTO,
so that care must be taken to avoid contamination. Reaction strings were systematically parsed to
standardize reactants, reagents, and products into reaction SMILES (SMARTS). Trivial reactions,
defined by product-reactant identity, were filtered out. The test set was filtered based on major
outcome of the reactions.

The SMILES Completion task used data from COCONUT. Tasks were generated by randomizing
their SMILES representations and truncating these strings to create incomplete molecular fragments -
namely a fragment that cannot be parsed into a valid molecule by RDKit. The same COCONUT data
was used for the [UPAC task, meaning the compounds are relatively complex for naming.

Solubility Edit tasks drew from Chembl compounds that are small molecules and had some assay
conducted on them. Tasks required modifying original SMILES strings to achieve specified increases
or decreases in predicted solubility (e.g., by one logS unit). Additional constraints included maintain-
ing high structural similarity to the original molecule, preserving the Murcko scaffold, or retaining
specific functional groups. We used exmol’s list of functional groups for choosing these.

Retrosynthesis tasks used a curated list of experimentally synthesizable molecules. The goal was to
propose viable single-step syntheses for these targets. To generate these, we took the fragments from

"Leruli.com
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the mcule catalog? and predicted products using the reaction templates from Hartenfeller et al. [103].
Thus, we expected these to be synthesizable. A much larger catalog was used for checking proposed
solutions (ZINC20), so that more potential reactions could lead to the products.

Multiple Choice Questions (MCQs) formed a significant dataset component, designed around molecu-
lar properties challenging to predict computationally or intended to test nuanced chemical discernment.
Properties included safety profiles (e.g., LD50 values, GHS classifications), pKa values, scent at-
tributes, and ADME properties from specialized datasets. The MCQ generation algorithm began with
calculating molecular fingerprints (ECFP4) for each molecule. Structural similarity using Tanimoto
indices identified candidate distractors. These distractors were categorized based on their property
similarity or dissimilarity to the target molecule — within 0.25 (0.35 for pka problems). MCQs were
formatted either as outlier detection tasks—identifying the structurally or property-wise inconsistent
molecule from a set—or as identification tasks pinpointing a specific property within a group of
similar molecules. To detect dissimilar compounds, like “which of the following has a higher pKa
than X, we required a change in 10 percentile points of the given reference compound.

To prevent leakage, all compounds used in a question type together were excluded between train and
test. Namely, we made a graph where each edge represents when two molecules appeared in the same
MCQ. Then ensured that the train and test subgraphs had no connections, but that we could group
similar molecules densely enough to make questions with distractors. The smell, EveBio, and GHS
tasks had enough compounds that this wasn’t necessary, and we just randomly split. The categorical
receptor, GHS, and smell data MCQs were treated as multi-label. Namely, the questions were all
about single possible labels (e.g., does it smell like fresh cut grass) and no multi-class/combination
questions were added.

The formula questions are generally under-specified (e.g., make a compound with formula C3H1002),
but they were created from real molecules (from CheMBL) to ensure they are answerable.

C.3 Reward Function Implementation

The reward functions were implemented using a combination of Python code, remote calls, and
database look-ups. Tasks that had an exact match, like reaction prediction or multiple choice
prediction, the comparison was done via canonicalizing the molecule (with stereo chemistry retained)
and string comparison. For open answer questions, like solubility edits, after checking for constraints
and actually hitting the property target, we also tested that the molecule is plausible. The code for our
reward functions, as well as relevant prompt templates and data utilities, are open sourced on GitHub
at Future-House/ether0.

In tasks that involve submitting a molecule that satisfies constraints, we also do a check on the
plausibility of the molecule. See Table 1 for a list of tasks with this check. Aside from assessing if
a molecule has valid valence, we check the ring structures and atom fragments. We first take the
source molecules for our datasets, which is larger than 640,730 because we did not utilize 100% of
ChEMBL or COCONUT. We then applied some filters to ensure the molecules had been synthesized.
For example, we required 1 or more assays reported in ChEMBL or a GHS? categorization being
present for molecules from PubChem. The rings from these molecules were isolated using the ring
cut method from Pat Walters [104, 105, 106]. The rings were then stored as canonical SMILES in
a bloom filter [61]. We then isolated all molecular fragments with radius 2 (2 bonds away) from
the molecules and converted them into bit strings similar to ECFP4 fingerprints [86]. These bit
strings encode an atom plus its local neighborhood. The bit strings were then stored in a bloom filter.
At test time we apply the same ring cuts and fingerprint generation to a proposed molecule. If its
rings and fingerprints are all present in the derived bloom filters, we consider the molecule to be
reasonable. Otherwise, it is not a reasonable molecule. We use bloom filters because they are highly
memory-efficient and fast for checking set membership.

This approach is relatively conservative, because it requires the rings and molecular groups to have
been present at least once in a molecule reported in our source datasets. We did experiment with
hand-constructed rules, machine learning models, and scores like QED [107], and found them
susceptible to reward hacks such as inserting peroxides to satisfy oxygen counts, or hydrazines to
increase solubility. We found this check to be essential to ensure plausible molecules are generated.

2https://mcule.com/
3Globally Harmonized System of Classification and Labeling of Chemicals
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This check is applied at evaluation time as well, and is responsible for rejecting many answers when
training the molecule completion and molecular formula tasks.

D Method Details

D.1 Reasoning Quality Filtering
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(a) Open answer task reasoning quality across SFT (gray-shaded first bar) and task-specific RL (remaining bars).
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(b) Open answer task reasoning quality across distillation (gray-shaded first bar) and all-task RL (remaining
bars), where the distillation dataset used here did not filter upon reasoning quality.
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(c) Open answer task reasoning quality across distillation (gray-shaded first bar) and all-task RL (remaining
bars), where the distillation dataset used here did filter out BAD-level reasoning quality.

Figure S1: Reasoning quality across post-training. Note that regex-based language detection was part
of the quality determination, just a LLM judge.

We observed the emergence of reasoning containing typos (made up chemicals), non-English charac-
ters (use of languages such as Arabic or Cyrillic), nonsense formatting (blending text with brackets),
or ungrounded reasoning (off-the-rails thoughts) as RL progressed. To gauge reasoning quality across
training, we employed a LLM judge using the prompt in Section B.3. The judge evaluates reasoning
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as GREAT, ALRIGHT, or BAD. In practice we found the judgments made by OpenAl GPT 4.1 and
Google Gemini 2.5 Pro were interchangeable, and used GPT 4.1 for more favorable rate limits*.

As shown in Figure Sla, after initial SFT the reasoning quality is almost entirely GREAT. Then
during task-specific RL the quality degradation begins, most substantially in [UPAC name, solubility
edit, and retrosynthesis.

Then at distillation, we diverge into two different and identical runs: (1) Figure S1b: not filtering bad
reasoning before distillation, and (2) Figure Slc: filtering out bad reasoning before distillation. Note
that the two distillation dataset sizes are nearly identical because we face the same problem multiple
times during training, and keep only the latest problem after filtering.

Comparing these two all-task runs, we observe that filtering out bad reasoning before distillation
led to marginally higher quality reasoning while reliably boosting performance by a few percentage
points on the test-set. When qualitatively reviewed by humans, the reasoning from the filtered RL run
was preferred. Furthermore, the filtering clearly has impact because, after the LLM judge filtered out
Arabic characters, during all-task RL the model began using Cyrillic characters instead.

Thus a second improvement was made, tightening our reasoning quality filtration using a regex-based
detection of other languages. The regex checked for the following unicode categories via the \p ele-
ment: Arabic, Armenian, Bengali, Braille_Patterns, Cyrillic, Devanagari, Ethiopic,
Georgian, Gujarati, Gurmukhi, Han, Hangul, Hebrew, Hiragana, Kannada, Katakana,
Khmer, Latin_Extended_A, Latin_Extended_Additional, Latin_Extended_B, Malayalam,
Myanmar, Syriac, Tamil, Telugu, Thaana, Thai, and Tifinagh. This regex filtration ensures
all-task RL began solely upon reasoning containing English characters or symbols (e.g. math phrases
or Markdown syntax), thus unbiasing RL from any particular non-English language.

In general, our methodology leaves reasoning unconstrained beyond basic formatting, so it’s intriguing
that as task accuracy increases across RL, reasoning flaws begin to appear.

D.2 Molecule Quality

When solving tasks such as molecule completion, the model can satisfy the reward function by
coming up with an answer that meets all specified criteria (including the reasonable molecule check),
but also functional groups that are undesirable for a drug-like compound. For example, we observed
an over-representation of nitro side-groups. These are reasonable and common in chemistry, but it
is preferable to avoid them if possible. Therefore, we try to reduce the occurrence of the following
moieties, without penalizing them for correctness of a problem:

* Multiple thiol bonds
* Peroxide

* Hydrazine

* Charged amines

* Nitro groups

¢ Saturated chains of seven or more carbons

Distillation: When constructing the distillation dataset, we reject answers containing any of the
above. This is applied to molecule formula, functional group, elucidation, and solubility edit tasks.
While molecule completion would also benefit from the same treatment, we found that too few
sequences passed this filter.

Generalist RL: During the last few steps of GRPO, we further assign a molecule quality bonus
reward of 1 to correct answers that also do not contain the above motifs. This is applied to all tasks
in Section 2 marked with {.

*Note LLM judges are not 100% reliable, as we observed stray cases where reasoning with non-English
characters or typos were labeled as ALRIGHT. Using a regular expression we measured this mistake only occurs
in <0.1% of judged reasoning traces, so we these results can be trusted as directionally accurate.

33



E Training Hyperparameters

E.1 Task-Specific RL

All task-specific RL runs shared the following hyperparameters:

Maximum completion length: 2048
GRPO epochs pu: 1

Sampling temperature: 1.0

KL penalty weight 5: 0.005

Learning rate: 10~°

Linear LR warm-up steps: 20
Reference policy reset period M : never

We empirically observed top-K sampling caused unstable learning (with K=50), so we did not employ

sampling algorithms such as top-K, nucleus sampling, or beam search.

Since these experiments are relatively short and stable, we did not reset the reference policy during
training, but did resume three task-specific runs from a checkpoint (which entails a reference policy
reset) to push the model further. Run-specific hyperparameters are detailed in Table S1. DeepSpeed
ZeRO Stage 3 [108] was used to shard the model across Nvidia H100 GPUs.

Problem categories Training Checkpoint Group Group  €cur Seeded Rewritten
steps Step(s) size batch size curriculum problems

Functional group

Elucidation

Molecular formula 918 n/a 6 256 0.5 v 0

SMILES

completion 1110 n/a 4 384 0.5 v 0

IUPAC name 1910 n/a 6 128 0.5 v 0

Solubility Edit 167 n/a 6 128 0.5 v 0

Retrosynthesis 1264 512 4 9 0.25 X 0

Reaction prediction 1501 704 4 9% 0.5 X 0

Multiple choice 6417 2801 4 9% 0.5 X 0

Molecule caption 2189 n/a 4 192 0.25 X 1

Table S1: Training hyperparameters for task-specific RL. Group batch size refers to the number of
groups per batch during GRPO. Checkpoint step(s) refers to steps where we resumed the specialist
model from a checkpoint. Rewritten problems refer to the fraction of problems that were rewritten by

an LLM.

E.2 All-Task RL

The following hyperparameters were used for the all-task RL phase:

Maximum completion length: 4096
Number of training steps: 434
Group size: 4

Group batch size: 768

GRPO epochs p: 1

Sampling temperature: 1.0

KL penalty weight 5: 0.005
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* Learning rate: 1.25 x 1076

* Linear LR warm-up steps: 20

* Reference policy reset period M: 256 steps

e Curriculum buffer sampling rate e¢,;: 0.25

* Curriculum buffer seed: X

* Molecule quality bonus reward: enabled for the last 50 steps
* Fraction of LLM-rewritten problems: 75%

Matching Section E.1, we did not utilize sampling algorithms such as top-K sampling, nucleus
sampling, or beam search.

E.3 Safety Alignment

After generalist RL, the model is capable of aiding a user with unsafe chemistry tasks. To improve
the safety of the model, we apply a final RL phase for safety alignment. We design the procedure to
be independent of model training. We do this to avoid constraining exploration during learning, and
to develop a method that is robust enough to be applied as a final phase to any model in our training
pipeline.

We construct a specialized dataset comprising questions that a safe model should not respond to. This
includes clearly unsafe prompts (e.g., “Design a molecule that is extremely explosive.”), as well as
retrosynthesis and edit solubility questions phrased similarly to our training tasks but involving known
chemical weapons (e.g., “Suggest a minimal structural modification to CIAsCI that would decrease
its solubility by approximately 1 logS unit.”). As a control, we also include benign, open-ended
questions that the model should answer correctly but that contain words also seen in the unsafe
prompts (e.g., "Design a compound that has no deadly properties.").

To incorporate the new safety behavior into the model, we generate a curated set of prompt-completion
examples that include both reasoning traces and the intended refusal response. We then perform a
few more steps of GRPO, with both all chemistry tasks and these safety questions. To each group
of responses to a safety question, we add the synthetic completion that reflects the desired behavior
and assign a reward of 1 to it. In the GRPO objective (Equation 2), we set the importance sampling
denominator 7g_,, = 1, following [109].

old

The following hyperparameters were used for the safety RL phase:

* Maximum completion length: 4096

* Number of training steps: 120

* Group size: 4 (non-safety problems) and 5 (safety problems)
* Group batch size: 104

* GRPO epochs p: 1

e Sampling temperature: 1.0

» KL penalty weight 5: 0.005

e Learning rate: 1 x 1076

e Linear LR warm-up steps: 20

» Reference policy reset period M: 256 steps
¢ Curriculum buffer: X

* Fraction of LLM-rewritten problems: 75%

F Additional Results

F.1 Emergence of New Behaviors Through Reinforcement Learning

Reinforcement learning enables the discovery of new behaviors through trial and error, particularly
when outcomes are verifiable. For example, Figure S3 shows results from an early experiment
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Figure S2: Performance of ether0 before and after the safety alignment is applied.

in which the model was trained to solve the retrosynthesis task without any initial supervised fine-
tuning (SFT). Despite lacking prior knowledge, the model progresses from zero success to achieving
correct completions. In our approach, we warm-start ether0 with supervised fine-tuning on rejection-
sampled, long chain-of-thought sequences to accelerate learning. Nonetheless, reinforcement learning
remains important, as it can allow the model to bootstrap novel behaviors that are absent from the
supervised data.
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Figure S3: Accuracy over training steps. The model receives learning signals through trial and error,
gradually acquiring the ability to solve the task.

F.2 Cognitive Behavior Counts and Failure Mode Distributions Across Tasks

During evaluation steps performed throughout training, we prompt
Llama-3.3-70B-Instruct [110] to analyze each sample generated by our model. For
each behavior, we design a custom prompt, following a strategy similar to [25]. Each prompt
provides Llama with examples of the target behavior and instructs it to analyze the sample and return
the count in a specific format (i.e., <count> [1/2/...] </count>). This procedure enables automatic
extraction of behavior counts per sample.

Figure S4 and Figure S5 present behavior counts and the distribution of answer outcomes from our
model evaluation traces during training on all chemistry tasks.
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Figure S4: Evolution of model reasoning behaviors and answer outcomes on the evaluation set
throughout training on functional group, reaction prediction, [UPAC name and molecular formula
tasks. For each task, the top row shows the number of counts for each behavior and the bottom row
shows the distribution of answer outcomes, categorized by reward reason.

F.3 Advantage-Based Curriculum Ablation

Section 4.2.1 motivates an advantage-based curriculum; here, we empirically justify its use. In Fig-
ure S6, we compare the first few epochs of the reaction prediction specialist (trained with a curriculum)
to an identical training run without a curriculum.

The effect of the curriculum is visible almost immediately. The fraction of non-trivial groups (1 — fr)
starts at 30% for both experiments, but the curriculum quickly pushes it up to 50-60% (Figure S6A).
As training progresses and the model learns to solve more problems, the non-trivial fraction drops
to nearly 20% without a curriculum. That is, only 20% of each sampled batch is providing a useful
learning signal with non-zero advantage. With the curriculum, the non-trivial fraction remains above
40%.

The downstream utility of more non-trivial problems is evidenced in Figure S6B: accuracy on the
holdout starts higher and increases faster.
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Figure S5: Evolution of model reasoning behaviors and answer outcomes on the evaluation set
throughout training on SMILES completion, solubility edit, retrosynthesis and multiple choice tasks.
For each task, the top row shows the number of counts for each behavior and the bottom row shows
the distribution of answer outcomes, categorized by reward reason.

F.4 In-Context Learning

In-context learning (ICL) [2] involves adding examples directly to the prompt at inference time. Also
called few-shot, ICL has been shown to improve performance in a range of applications, from
property prediction [111, 112, 113] to molecule generation [114, 115, 116]. To build this experiment,
we select multiple-choice questions from our dataset and use one of the incorrect choices as context.

For example, given this question:

Which molecule listed here is most likely to have a rat microsomal
stability in mL/min/kg approximately equal to 1.267

€1 (C)=NN(C)C2=NC(C3C=CN=CC=3)=CC(=C12)C(=0)0
C12=NC(=CC(C(=0)0)=C2C(=NN1C)C)C(C)C
N1=CC=C(C2N=C30N=C(C3=C(C(0)=0)C=2)CCC)C=C1

C1C (C2N=C3C(=C(C(0)=0)C=2)C(=NN3C2N=CC=CC=2)C)C1

We create an ICL equivalent of this task by taking one of the incorrect choices (highlighted in red)
and using it as context in the question:
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Figure S6: RL training dynamics of reaction prediction specialist models, one with and one without
an online curriculum. A) the fraction of non-trivial groups seen during training (faint lines are raw
data; solid are a 30-step moving average). B) the evaluation set reward, computed every 64 steps.

Considering C1(C)=NN(C)C2=NC(C3C=CN=CC=3)=CC(=C12)C(=0)0 has a
measured rat microsomal stability in mL/min/kg of 1.03, which
candidate modification listed would most effectively increase this
property?

N1=CC=C(C2N=C30N=C(C3=C(C(0)=0)C=2)CCC)C=C1
C1C(C2N=C3C(=C(C(0)=0)C=2) C(=NN3C2N=CC=CC=2)C)C1
C12=NC(=CC(C(=0)0)=C2C(=NN1C)C)IC(C)C

To ensure that any observed performance improvement is not simply due to a reduced number of
answer choices, we also modify the original question by removing the same incorrect option used as
context in the ICL version. This way, both the standard and ICL queries present the same number of
choices, preserving the same baseline probability of selecting the correct answer by chance (random
baseline shown in Figure 3B.

F.5 Human expert benchmarks

In Table S2, we report the breakdown of human expert performance on our test set.

Task Accuracy
Molecular formula  0.309:%9
Functional group 0.139:39
Reaction prediction  0.41 8:5%
Solubility edit 0.059:42
Retrosynthesis 0.009:99
Safety 0.400:53
ADME 032934
LD50 04394
pKa 0.359:33

Table S2: Human expert performance on the test set. Four contractors were tasked with solving each
question, with no tools besides ChemDraw. We report the average accuracy, as well as the minimum
and maximum scores, as sub- and super-scripts respectively.

39




Rubric provided for trace evaluations

Genuineness: The provided trace does not contain any
contrived or performative reasoning.

Faithful: The model arrived at an answer based on the
reasoning trace only, and did not make any sudden leaps of
judgment.

Exploration: The trace displays examples of non-linear
reasoning, self-reflection, or backtracking in its
reasoning.

Pick the most suitable assessment for each metric:
1) Strongly disagree 2) Somewhat disagree 3) Neither agree
nor disagree 4) Somewhat agree 5) Strongly agree

Figure S7: Four expert evaluators were provided with this rubric to assess the “quality” of 15 traces
from etherO and 15 traces from DeepSeek-R1.

Non-Contrived / Genuine S. Agree Agree Neutral Disagree S. Disagree

DeepSeek-rl 28% 23% 7% 8% 33%
ether( 45% 23% 12% 15% 5%
Faithful S. Agree Agree Neutral Disagree S. Disagree
DeepSeek-rl 33% 25% 8% 20% 13%
ether( 50% 23% 10% 13% 3%
Explorative S. Agree Agree Neutral Disagree S. Disagree
DeepSeek-rl 20% 32% 18% 13% 17%
ether( 13% 28% 35% 5% 18%

Table S3: Expert evaluation of reasoning traces generated by ether0 and DeepSeek-R1.

F.6 Human evaluation

We conducted two sets of expert evaluations: 1) human baselines on a set of held-out open-ended and
multiple-choice type questions, 2) ether0 trace evaluations.

For the first set of evaluations (human baselines), we recruited four expert evaluators: two with PhDs
in organic chemistry, one with a PhD in chemical engineering, and one PhD candidate in organic
chemistry. Evaluators were instructed to respond using only the SMILES representation of the target
molecule, without relying on external tools for assistance in answering. However, tools for visualizing
SMILES as chemical structures were allowed. Tasks considered impossible to accomplish without
the use of tools were flagged by the evaluators and excluded from the final analysis. Each evaluator
was given 200 open-ended and/or multiple-choice questions from our held-out evaluation set, and
was compensated $10 per question completed. Their performance is compared with ether0 and
other frontier models in Figure 2.

For the second set of evaluations, we recruited another group of expert evaluators: three with PhDs
in organic chemistry, and one with a PhD in chemical engineering. The evaluators were provided
with a rubric to assess the reasoning traces generated by ether0 and DeepSeek-R1 (see Figure S7).
Each evaluator was given 30 reasoning traces from both model (15 from each). Compensation was
$10 per completed trace evaluation. Full comparison results are shown in Table S3. More experts
disagreed that DeepSeek-r1 demonstrated non-contrived and faithful reasoning, although they noted
it showed more extensive exploration. This is unsurprising, as DeepSeek-r1’s reasoning traces were
much longer than ether0’s.
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