
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A FEW LARGE SHIFTS: LAYER-INCONSISTENCY
BASED MINIMAL OVERHEAD ADVERSARIAL EXAM-
PLE DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks (DNNs) are highly susceptible to adversarial exam-
ples—subtle, imperceptible perturbations that can lead to incorrect predictions.
While detection-based defenses offer a practical alternative to adversarial train-
ing, many existing methods depend on external models, complex architectures,
or adversarial data, limiting their efficiency and generalizability. We introduce a
lightweight, plug-in detection framework that leverages internal layer-wise inconsis-
tencies within the target model itself, requiring only benign data for calibration. Our
approach is grounded in the A Few Large Shifts Assumption, which posits that
adversarial perturbations induce large, localized violations of layer-wise Lipschitz
continuity in a small subset of layers. Building on this, we propose two comple-
mentary strategies—Recovery Testing (RT) and Logit-layer Testing (LT)—to
empirically measure these violations and expose internal disruptions caused by
adversaries. Evaluated on CIFAR-10, CIFAR-100, and ImageNet under both stan-
dard and adaptive threat models, our method achieves state-of-the-art detection
performance with negligible computational overhead. Furthermore, our system-
level analysis provides a practical method for selecting a detection threshold with a
formal lower-bound guarantee on accuracy.

1 INTRODUCTION

+Adversarial Noise

Adversarial Sample

Cat → Dog

⋯ ⋯

Cat → Cat

Dog → Dog

Clean Sample (Dog)
Clean Sample (Cat)

Manifold Manifold of Cat ClassVulnerable Manifold

Manifold of Dog Class Transition Layer Targetted Layer

\

Figure 1: Illustration of A Few Large Shifts Assumption–an assumption on a few large perturbation
shifts on a simple target classifier causes vulnerable manifolds that can trigger an unexpected transition
to a different manifold space. Leveraging these vulnerable regions, an adversarial sample is crafted
using an attack algorithm that applies perturbation noise, causing the original sample to shift from the
cat class manifold to the dog class manifold through transitions occurring at specific targeted layers.

Deep neural networks (DNNs) have been broadly deployed in computer vision, natural language
processing, multi-modal tasks, and beyond Nan et al. (2024); Khachatryan et al. (2023); Zhang
et al. (2024). Although they exhibit remarkable performance, adversarial examples (AEs)—inputs
containing small yet malicious perturbations—can induce misclassifications while appearing virtually
unchanged to human observers Demontis et al. (2019). This vulnerability poses severe risks in
high-stakes domains such as autonomous driving or disease diagnosis Zheng et al. (2024); Ravikumar
et al. (2024), underlining the need for robust defenses.

1
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Existing defensive strategies generally fall into three categories: adversarial training, input purifica-
tion, and AE detection He et al. (2022); Abusnaina et al. (2021). Adversarial training, re-trains or
fine-tunes a model using adversarially perturbed samples to have Adversarially Trained Classifier
(ATC) Wang et al. (2024); Liu et al. (2024), despite its robustness Elfwing et al. (2018); Zhang
et al. (2019), it incurs high computational costs and may compromise clean-data accuracy. Input
purification methods Mao et al. (2021); Song et al. (2024) attempt to remove adversarial noise through
preprocessing (e.g., denoising), yet often fail against adaptive attacks Croce & Hein (2020).

A more flexible alternative is AE detection, which avoids the costly retraining process of ATCs by
instead rejecting suspicious inputs at test time Xu et al. (2017); Zuo & Zeng (2021). Detection-based
defenses offer distinct advantages, including lower implementation costs, as they do not require
exhaustive adversarial training with adversarial data, and tunable robustness, where sensitivity can be
adjusted to meet application-specific accuracy–robustness trade-offs. Furthermore, their plug-and-
play nature allows them to be integrated with existing models, including ATCs, to further enhance
system-level robustness. By architecturally separating the detection mechanism from the classifier,
this approach introduces an additional layer of security at the system level. AE detection techniques
are often categorized into two types: those that compare inputs to a reference set (e.g., Deep k-Nearest
Neighbors, DkNN Papernot & McDaniel (2018); Latent Neighborhood Graph, LNGAbusnaina
et al. (2021)), and those that analyze invariants in the learned representations Jiang et al. (2020);
Chen & He (2021). Despite these benefits, prominent detection paradigms suffer from practical
limitations. Reference-based detectors often require storing adversarial examples or constructing
complex neighbor graphs, which is computationally intensive. To address this, recent work Zhiyuan
et al. (2024) has proposed detecting consistency between augmented inputs using pre-trained Self-
Supervised Learning (SSL) models. However, this introduces significant overhead from large external
models—which can be over 22 times larger than the target classifier—and assumes the availability of
high-quality, domain-specific SSL models.

To eliminate the overhead of external models, complex data structures, or heavy augmentations,
we develop a self-contained, layer-wise detector that scrutinizes the network’s own representations.
This raises a central question: How do adversarial perturbations propagate through a deep neural
network? Prior work suggests that such perturbations often leave early-layer features largely intact
while inducing sharp deviations in deeper layers. Motivated by these findings, our own empirical
analysis confirms this behavior (subsection 3.4). As visualized in Figure 3, we observe that while
benign inputs produce relatively flat error profiles across layers, many common adversarial attacks
induce large, localized shifts at only a few critical points in the network. Rather than contrasting
these deviations with external references, we ask a different core question: Do these internal feature
jumps themselves expose adversarial inputs? We formalize this intuition in the A Few Large Shifts
Assumption, which posits that adversarial perturbations produce large, localized shifts between a
few critical layers. To quantify the observed localized shifts, we introduce the concept of layer-wise
Lipschitz continuity, defining these shifts as localized violations of layer-wise Lipschitz continuity.
Guided by this principle, our framework is the first designed to empirically measure these violations
using a detector calibrated only on benign data. As illustrated in Figure 1, these sparse disruptions
leave a detectable footprint across successive layers, which we capture using a lightweight detection
framework grounded in layer-wise inconsistency with two complementary probes: Recovery Testing
(RT) and Logit-layer Testing (LT). We then fuse their signals through Recovery-and-Logit Testing
(RLT), aligning their scores via quantile normalization to robustly flag a broad spectrum of attacks,
including those that evade one probe in isolation.

The distinguishing features and requirements of our method are summarized in Table 1, where we
compare RT and LT against several representative baselines. As shown, our method is self-sufficient
(requires no adversarial examples), model-local (requires no external SSL), and low-overhead (no
kNN graphs or excessive augmentation). Furthermore, while prior AE detection works lack the
thorough system-level analysis essential for practical deployment, our work addresses this gap by
introducing a formal method to select a detection threshold with a guaranteed lower bound on overall
system accuracy, as detailed in Appendix H. This enhances the practical reliability of our detector,
making it highly suitable for scalable deployment.

Our key contributions are as follows:
• We propose a novel adversarial detection paradigm that exploits partial consistency in internal

feature transformations of adversarial examples. Unlike prior methods that rely on computationally
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expensive external reference sets or large auxiliary models, our approach eliminates this overhead
by measuring inconsistencies across a model’s own layers for a single input.

• We are the first to formalize these internal disruptions as violations of layer-wise Lipschitz continuity.
We introduce two complementary probes, Recovery Testing (RT) and Logit-layer Testing (LT),
as practical and efficient methods to empirically quantify these violations using only benign data.

• We conduct a comprehensive evaluation on standard benchmarks, demonstrating state-of-the-art
performance against a wide range of threats, including strong, end-to-end adaptive attacks and
generalization to various architectures. Crucially, our system-level analysis yields a formal method
for selecting a detection threshold with a guaranteed lower bound on system accuracy, enhancing
the method’s practical reliability.

Table 1: Comparison of Requirements / Properties Across Methods. RT = Recovery Testing, LT
= Logit-layer Testing. We also include BEYOND Zhiyuan et al. (2024), LID Ma et al. (2018),
Mao Mao et al. (2021), Hu Hu et al. (2019), DkNN Papernot & McDaniel (2018), kNN-Def. Dubey
et al. (2019). A ✓ indicates that the method satisfies the criterion, while a ✗ indicates it does not.

Ours Baseline Methods
Criterion RT LT BEYOND LID Mao Hu DkNN kNN-Def.
Self-Sufficient Data? (No Adversarial Data Needed?) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
Standalone Model? (No Extra Pre-trained Model Dependencies?) ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓
No Heavy kNN Retrieval? (No Nearest-Neighbor Search Overhead?) ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗
No Excessive Augmentations? (No Many Augmentations?) ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
No Extra Optimization? (No Additional Training Needed?) ✗ ✓/✗ ✗ ✗ ✗ ✗ ✗ ✗
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Figure 2: Overview of our layer-wise adversarial detection framework. (Left) Recovery Testing
(RT) trains regressors R(L→k) to reconstruct intermediate features zk from the final embedding
zL; detection is based on the entropy-weighted reconstruction error ∥zk −R(L→k)(zL)∥22. (Right)
Logit-layer Testing (LT) applies perturbations W (g) to compute feature and logit discrepancies,
∆z(g) = ∥zi−z

(g)
i ∥22 and ∆ℓ(g) = ∥o(σ(ℓ))−σ(ℓ(g))∥22, which are combined as H(σ(ℓ))∆ℓ(g)

∆z(g) . Final
RT and LT scores are averaged over g. (Bottom) Recovery and Logit Testing (RLT) integrates RT and
LT scores using a linear combination after quantile normalization.

2 METHODOLOGY
In this section, we introduce our layer-wise adversarial example detection framework (Figure 2),
comprising three measures: RT, LT, and their fusion RLT. RT captures inconsistencies in intermediate-
layer embeddings, while LT measures logit instability under augmented inputs. At test time, pick a
detection measure m ∈ {RT,LT,RLT} and threshold τm. We declare x adversarial iff m(x) > τm,
i.e., â(x) = I{m(x) > τm } ∈ {0, 1}. Details of the selection of each threshold τm are delineated
in Appendix H. The algorithm for calculating each measure is shown in Algorithm 1. Theoretical
assumptions and proofs of our method are shown in Appendix B and Appendix C, respectively.

2.1 DEFINITION AND NOTATIONS

Given a target DNN f(·) = flogit ◦ fL ◦ fL−1 ◦ · · · ◦ f1(·) with L intermediate layers fi and one logit
layer flogit at the end, we compute intermediate representations zi(xj) = fi ◦ · · · ◦ f1(xj) ∈ RDi for
all i ∈ {1, 2, · · · , L}, where Di denotes the dimensionality of the embedding space and xj denotes
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an input sample. We assume the logit layer takes the last intermediate embedding zL to produce
the final logit output ℓ = flogit(zL) ∈ RC , where C is the number of output classes. We denote the
softmax function as σ(x) = exp x

1⊤ exp x
, the Shannon entropy asH(p) = −

∑
pi log pi, and the one-hot

vector of the ground-truth label y as oy ∈ {0, 1}C . Throughout, all auxiliary modules are trained
using only benign samples Dnorm = {x1, x2, · · · , xN} without using labels.

2.2 CORE ASSUMPTION

We begin by formalizing the central structural assumption underlying our detection framework:

Assumption 1 (A Few Large Shifts). Let xadv = x+δ be an adversarial input, and let zk(x) denote
the output of k-th layer fk. We assume there exists a small subset of layers T ⊆ {f1, . . . , fL, flogit}
such that for any fk ∈ T ,

1

Dk+1
∥zk+1(x

adv)− zk+1(x)∥22 ≫
1

Dk
∥zk(xadv)− zk(x)∥22.

For all other layers fj /∈ T , the shift between representations remains small:

1

Dj+1
∥zj+1(x

adv)− zj+1(x)∥22 ≈
1

Dj
∥zj(xadv)− zj(x)∥22.

This assumption formalizes the intuition that adversarial perturbations cause disproportionately
large changes in representation between specific adjacent layers while most other transitions remain
relatively stable—a phenomenon that can be quantified based on Lipschitz continuity, which we
term layer-wise Lipschitz continuity (See Appendix B.1). Specifically, the condition ∥zk+1(x

′)−
zk+1(x)∥2 ≫ ∥zk(x′) − zk(x)∥2 implies a large local Lipschitz constant for the transformation
between layers, indicating a region of high instability. The following sections introduce our proposed
testing measures, which are designed to empirically identify and quantify these localized violations
of layer-wise Lipschitz continuity.

2.3 RECOVERY TESTING MEASURE

For each hidden layer k ∈ { kRT , kRT + 1, . . . , L− 1}, we train an approximate inverse function:
R(L→k) : RDL −→ RDk to reconstruct zk from zL with hyperparameter kRT . Each R(L→k) is
implemented as a lightweight MLP with 3–4 layers and trained by a mean squared error loss:

LRT =
1

N

N∑
n=1

L−1∑
k=kRT

∥ zk(xn)−R(L→k)
(
zL(xn)

)
∥22. (1)

At test time, we define the normalized squared error for each layer k as

ek(x) = ∥ zk(x)−R(L→k)(zL(x))∥22, (k = 1, . . . , L− 1.) (2)

Collecting the vector e(x) = (e1(x), . . . , eL−1(x)), we normalize it with softmax to obtain a
distribution σ(e(x)) across layers. The non-uniformity of this distribution is captured using inverse
entropy log(L − 1) − H(σ(e(x))). The final score is computed by taking the average of the raw
reconstruction errors and weighting it by this information-based term:

RT (x) =
(
log(L− 1)−H(σ(e(x)))

)
log

( 1

L− kRT

L−1∑
k=kRT

ek(x)
)
. (3)

We apply a logarithm to the average of raw errors for numerical stability. Under our assumption,
adversarial samples that target specific layers T ⊆ {f1, . . . , fL−1} will yield higher RT (x) values
due to large reconstruction errors (see Theorem 1) and a sharply peaked error distribution. Intuitively,
the first term of Equation 3 measures how deterministic the error distribution is across layers, while
the second term captures the magnitude of a few large shifts.

2.4 LOGIT-LAYER TESTING MEASURE

Although RT effectively detects perturbations in intermediate layers fi, it cannot be applied to the
final logit layer flogit, since there is no subsequent representation from which to reconstruct the
logits. To address this—and motivated by the intuition that adversarial examples aim to induce
misclassification—we introduce Logit-layer Testing (LT): we quantify uncertainty at flogit, relative to
changes in intermediate features, using data-driven, low-cost input augmentations.
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Let {W (g)}Gg=1 be a small set (e.g., 1 ≤ G ≤ 6) of image transformation matrices. Each matrix
W (g) is initialized as an identity transformation and is then fine-tuned on benign data using gradient
descent. The LT score itself, as defined in Equation 2.4, serves as the loss function for this process,
encouraging the transformations to find augmentations that preserve logit stability for benign inputs,
i.e., σ(f(x)) ≈ σ(f(W (g)x)), while still perturbing intermediate features. This establishes a
consistent baseline against which adversarial instability can be measured.

Given a test input, for each augmentation g, we measure two types of inconsistencies between the
original and augmented inputs: feature-space drift ∆z(g)(x|W (g)) and change in logit decidedness
∆ℓ(g)(x|W (g)). The feature-space drift is measured by averaging the L2 distances across all inter-
mediate outputs: ∆z(g)(x|W (g)) = 1

L−kLT+1

∑L
i=kLT

∥zi(x)− zi(W
(g)x)∥22 with hyperparameter

kLT . The logit decidedness is measured by computing the L2 distance between the predicted one-hot
vector and the softmax output: ∆ℓ(g)(x|W (g)) = ∥oŷ−σ(f(W (g)x))∥22, where ŷ = argmaxc σc(x).

We then combine the two quantities into ∆ℓ(g)(x|W (g))
∆z(g)(x|W (g))

, weight it by the entropy of the logit score
vectorH(σ(ℓ(x))) to emphasize inputs closer to the decision boundary Galil & El-Yaniv (2021), and
finally average over all augmentations as follows:

LT (x) =
1

G

G∑
g=1

logH(σ(ℓ(x)))∆ℓ(g)(x|W (g))− log∆z(g)(x|W (g)). (4)

As before, the logarithm ensures numerical stability. Intuitively, under a successful adversarial attack
the logit shift ∆ℓ(g) becomes disproportionately large compared to the accumulated feature drift
∆z(g), which is precisely what LT is designed to detect (Theorem 3).

To fine-tune the transformation matrices {W (g)}, we directly use LT (x) as the training loss:

LLT =
1

N

N∑
n=1

LT (xn). (5)

2.5 RECOVERY AND LOGIT TESTING COMBINED MEASURE

To capture inconsistencies in both intermediate and logit layers, we introduce a combined score called
Recovery and Logit Testing. This score integrates RT and LT while correcting for differences in their
statistical distributions using quantile normalization. Specifically, we transform each score based on
its empirical cumulative distribution estimated from the benign training set, and map it to the standard
normal distribution.

Let F̂RT and F̂LT be the empirical cumulative distribution functions (CDFs) of RT and LT scores
computed over the benign data. Let Φ−1 denote the quantile function (inverse CDF) of the standard
normal distribution. At test time, each score is transformed as follows:

RTnorm(x) = Φ−1
(
F̂RT (RT (x))

)
, LTnorm(x) = Φ−1

(
F̂LT (LT (x))

)
.

The final RLT score is computed by summing the squared normalized values:

RLT (x) = (RTnorm(x))2 + (LTnorm(x))2. (6)

This quantile-based transformation aligns both RT and LT scores to a common standard normal
distribution, ensuring that the final combined score reflects significant deviations under either test
(Theorem 4), independent of their original scales. This enhances robustness to varied attack types
and scoring dynamics.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on both CIFAR-10 and ImageNet datasets. CIFAR-10 consists
of 60,000 32× 32 images across 10 classes, with standard training (50k) and test (10k) splits. For
ImageNet, we use the official training and validation sets, resizing all images to 256 × 256 and
applying standard normalization. CIFAR-10 is used to validate the generality and scalability of our
detection approach in a lower-resolution setting, while ImageNet serves as a large-scale benchmark.

5
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Table 2: The AUC of Different Adversarial Detection Approaches on CIFAR-10. The results are
the mean and standard deviation of 5 runs. Our methods are included for comparison. Classifier:
ResNet110, FGSM: ϵ = 0.05, PGD: ϵ = 0.02. Note that our methods and BEYOND need no AE for
training, leading to the same value on both seen and unseen settings. The bolded values are the best
performance, and the underlined italicized values are the second-best performance.

Method Unseen (Attacks in training are excluded from tests) Seen (Attacks in training are included in tests)
FGSM PGD AutoAttack Square FGSM PGD CW AutoAttack Square

DkNN Papernot & McDaniel (2018) 61.55 ±0.023 51.22 ±0.026 52.12 ±0.023 59.46 ±0.022 61.55 ±0.023 51.22 ±0.026 61.52 ±0.028 52.12 ±0.023 59.46 ±0.022

kNN Dubey et al. (2019) 61.83 ±0.018 54.52 ±0.022 52.67 ±0.022 73.39 ±0.020 61.83 ±0.018 54.52 ±0.022 62.23 ±0.019 52.67 ±0.022 73.39 ±0.020

LID Ma et al. (2018) 71.08 ±0.024 61.33 ±0.025 55.56 ±0.021 66.18 ±0.025 73.61 ±0.020 67.98 ±0.020 55.68 ±0.021 56.33 ±0.024 85.94 ±0.018

Hu Hu et al. (2019) 84.51 ±0.025 58.59 ±0.028 53.55 ±0.029 95.82 ±0.020 84.51 ±0.025 58.59 ±0.028 91.02 ±0.022 53.55 ±0.029 95.82 ±0.020

Mao Mao et al. (2021) 95.33 ±0.012 82.61 ±0.016 81.95 ±0.020 85.76 ±0.019 95.33 ±0.012 82.61 ±0.016 83.10 ±0.018 81.95 ±0.020 85.76 ±0.019

LNG Abusnaina et al. (2021) 98.51 63.14 58.47 94.71 99.88 91.39 89.74 84.03 98.82
BEYOND Zhiyuan et al. (2024) 98.89 ±0.013 99.28 ±0.020 99.16 ±0.021 99.27 ±0.016 98.89 ±0.013 99.28 ±0.020 99.20 ±0.008 99.16 ±0.021 99.27 ±0.016

Our Approaches
RT 99.93 ±0.005 96.89 ±0.071 99.99 ±0.000 85.38 ±0.344 99.93 ±0.005 96.89 ±0.071 99.99 ±0.002 99.99 ±0.000 85.38 ±0.344

LT 97.50 ±0.038 98.61 ±0.042 99.60 ±0.018 97.47 ±0.036 97.50 ±0.038 98.61 ±0.042 97.08 ±0.027 99.60 ±0.018 97.47 ±0.036

RLT 99.85 ±0.005 99.37 ±0.011 99.99 ±0.000 95.95 ±0.102 99.85 ±0.005 99.37 ±0.011 99.91 ±0.004 99.99 ±0.000 95.95 ±0.102

Backbone Models. For CIFAR-10, we use a ResNet-110 pretrained classifier. For ImageNet, we
employ a pretrained DenseNet-121. In both cases, we extract intermediate features from multiple
layers without fine-tuning the backbone, ensuring a consistent foundation for detection.

Threat Models. We evaluate our detection framework under two standard adversarial settings:
Limited Knowledge and Perfect Knowledge, following the protocol of previous works Apruzzese et al.
(2023); Zhiyuan et al. (2024). In the Limited Knowledge setting, the adversary has full access to the
target classifier but is unaware of the detection mechanism, which remains confidential. In contrast,
the Perfect Knowledge (adaptive attack) setting assumes that the adversary has full knowledge of both
the classifier and the detection strategy, enabling it to craft attacks specifically to evade detection.

Attack Methods. We evaluate robustness and detection performance under a diverse suite of white-
box adversarial attacks, including Fast Gradient Sign Method (FGSM), Projected Gradient Descent
(PGD), and Carlini–Wagner (CW) attacks. We also apply AutoAttack (standard version) and Square
Attack Andriushchenko et al. (2020), both of which are parameter-free (black-box) and ensemble-
based. To assess robustness under this stronger threat model, we incorporate the state-of-the-art
adaptive attack, Orthogonal-PGD Bryniarski et al. (2021), which optimizes adversarial perturbations
not only to fool the classifier but also to minimize detection signals. This provides a rigorous
evaluation of the proposed methods under any conditions.

Implementation Details. All models are implemented in PyTorch and trained on NVIDIA RTX
6000 Ada. We use a batch size of 32, AdamW optimizer with learning rate 1 × 10−4 and weight
decay of 0.01, training the recover modules and augmentation matrices for 50 epochs.

3.2 DETECTION PERFORMANCE UNDER STANDARD ATTACKS

Table 3: The AUC of Different Adversarial Detection Approaches
on ImageNet. To align with baselines, classifier: DenseNet121,
FGSM: ϵ = 0.05, PGD: ϵ = 0.02. Due to memory and resource
constraints, baseline methods are not evaluated against AutoAt-
tack on ImageNet.

Method Unseen Seen
FGSM PGD FGSM PGD CW

DkNN Papernot & McDaniel (2018) 89.16 ±0.038 78.00 ±0.041 89.16 ±0.038 78.00 ±0.041 68.91 ±0.044

kNN Dubey et al. (2019) 51.63 ±0.04 51.14 ±0.039 51.63 ±0.04 51.14 ±0.039 50.73 ±0.04

LID Ma et al. (2018) 90.32 ±0.046 52.56 ±0.038 99.24 ±0.043 98.09 ±0.042 58.83 ±0.041

Hu Hu et al. (2019) 72.56 ±0.037 86.00 ±0.042 72.56 ±0.037 86.00 ±0.042 80.79 ±0.044

LNG Abusnaina et al. (2021) 96.85 89.61 99.53 98.42 86.05
BEYOND Zhiyuan et al. (2024) 97.59 ±0.04 96.26 ±0.045 97.59 ±0.04 96.26 ±0.045 95.46 ±0.047

Our Approaches
RT 94.31 ±0.457 99.99 ±0.000 94.31 ±0.457 99.99 ±0.000 92.18 ±0.135

LT 96.18 ±0.028 97.89 ±0.021 96.18 ±0.028 97.89 ±0.021 94.06 ±0.215

RLT 97.60 ±0.048 99.99 ±0.000 97.60 ±0.048 99.99 ±0.000 91.19 ±0.022

We evaluate the effectiveness of
our proposed detection scores,
namely RT, LT, and RLT, on
CIFAR-10 and ImageNet under
standard adversarial threat mod-
els, including FGSM, PGD, CW,
AutoAttack, and Square Attack.
We benchmark against estab-
lished baselines such as LID Ma
et al. (2018), DkNN Papernot
& McDaniel (2018), LNG Abus-
naina et al. (2021), and the recent
SSL-based BEYOND Zhiyuan
et al. (2024). The Area Under the Receiver Operating Characteristic Curve (RoC-AUC) results, which
measure detection performance on various thresholds, are reported in Table 2 for CIFAR-10 and
Table 3 for ImageNet.

On CIFAR-10, RT achieves exceptionally strong performance across attacks that disrupt internal
representations (e.g., FGSM, CW, AutoAttack), aligning with its role in capturing large, localized
deviations in intermediate layers. LT performs particularly well against attacks like PGD and Square,
which introduce minimal internal distortion but induce instability at the output layer. Notably, the
fused RLT score achieves either the best or second-best AUC across most of the attacks, validating
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the complementary nature of RT and LT. Despite relying solely on the internal signals of the target
classifier and requiring no adversarial examples or external models, RLT matches or outperforms
state-of-the-art methods, including BEYOND, which uses large pre-trained SSL representations.

On ImageNet, we observe similar trends. RT continues to perform well under strong perturbations
such as PGD, while LT maintains robust accuracy under less structured noise like FGSM. The
combined RLT score again leads to superior or competitive detection performance. Unlike several
baselines that degrade substantially in the large-scale setting due to increased model capacity or
overfitting to specific attacks, our method remains stable without requiring additional training
resources or architecture-specific tuning.

3.3 DETECTION PERFORMANCE UNDER ADAPTIVE ATTACKS

Table 4: RA(%) under Orthogonal-PGD Adaptive Attack
using CIFAR-10 and ResNet110.

Defense L∞ = 0.01 L∞ = 8/255

RA@FPR5% RA@FPR50% RA@FPR5% RA@FPR50%
Ours (RLT) 75.40 99.58 33.70 80.77
BEYOND Zhiyuan et al. (2024) 88.38 98.81 13.80 48.20
Trapdoor Shan et al. (2020) 0.00 7.00 0.00 8.00
DLA Sperl et al. (2020) 62.60 83.70 0.00 28.20
SID Tian et al. (2021) 6.90 23.40 0.00 1.60
SPAM Liu et al. (2019) 1.20 46.00 0.00 38.00

To avoid gradient obfuscation and
guarantee end-to-end gradient flow
through our detection framework, we
apply the Backward Pass Differen-
tiable Approximation (BPDA) Atha-
lye et al. (2018) to components that
may otherwise block gradients, such
as the quantile module.

We first evaluate robustness under the Orthogonal-PGD adaptive attack following BEYOND Zhiyuan
et al. (2024), where the adversary has full knowledge of both the classifier and our detection mech-
anism and explicitly optimizes to induce misclassification while suppressing detection. Table 4
reports robust accuracy (RA) at two L∞ budgets (0.01 and 8/255) and operating points (FPR=5%
and FPR=50%). While BEYOND benefits from additional SSL components, our method attains
competitive or superior RA using only model-internal signals and benign calibration, without ad-
versarial data or external encoders. This demonstrates that even when gradients are orthogonalized,
the detection terms themselves impose inherently conflicting objectives, thereby constraining the
attacker’s effectiveness.

We further evaluate fully end-to-end PGD attacks on the fused RLT score to validate the analysis on
objective confliction in Appendix B.5.2, using the untargeted loss −Lcls(x+ δ, y) + λ ·RLT(x+ δ).
Table 5 shows that, although RA decreases under this strong adaptive threat, our method consistently
outperforms baselines’ best performance report at FPR=5%, such as Mao et al. and BEYOND across
all tested λ and FPRs. When combined with an ATC (Table 6), the system remains highly resilient,
achieving over 93.3% RA at FPR=5%, again surpassing the adaptive-attack results of Mao et al. and
BEYOND at FPR=5%. These findings underscore that even under fully end-to-end optimization
with varying attack strengths λ, robustness is maintained through gradient conflicts induced by our
fused detection terms.

To rule out gradient masking completely, we evaluate a query-only, gradient-free attack (SimBA) Guo
et al. (2019) with 1,000 queries. Table 7 shows that although SimBA reduces the undefended
classifier’s RA to 5.54%, our RLT detector restores RA to 97.62% at 5% FPR. This strong performance
against a computationally intensive black-box attack confirms that our defense does not rely on
obfuscated gradients and remains robust beyond first-order threat models.
3.4 EMPIRICAL EVALUATION OF THE PROPOSED ASSUMPTION

Table 7: Evaluation of RA (%) on end-to-end
gradient-free SimBA attack with 1000 steps under
perturbation ϵ = 8/255 (ResNet110, CIFAR10).

Defense RA@FPR5% RA@FPR50%
None 5.54

Ours (RLT) 97.62 97.85

To validate our A Few Large Shifts Assump-
tion, we measured layer-wise reconstruction er-
ror distributions σ(ek) on a ResNet-110 model
trained on CIFAR-10 under various attacks:
FGSM, PGD, CW, AutoAttack, and Square At-
tack. As shown in Figure 3, benign inputs ex-
hibit relatively flat error profiles across layers,

Table 5: RA (%) scores of end-to-end attack with PGD under perturbation ϵ = 8/255 (ResNet110,
CIFAR10). The results are the mean and standard deviation of 5 runs.
λ @FPR5% @FPR10% @FPR15% @FPR20% @FPR25% @FPR30% @FPR35% @FPR40% @FPR45% @FPR50%
1.00 20.72±8.04 25.96±6.88 32.05±5.72 38.23±5.11 44.48±4.52 50.15±4.13 55.15±3.56 60.09±3.10 64.54±2.42 68.53±2.21

0.50 22.64±4.46 30.45±3.25 37.96±2.08 44.78±1.81 51.19±1.30 56.41±0.98 61.21±0.96 65.44±0.96 69.35±0.83 73.00±0.92

0.25 23.39±1.76 32.92±0.49 40.88±1.04 48.04±1.13 54.32±1.58 59.37±1.44 63.90±1.82 67.98±1.82 71.51±1.89 74.83±1.85

Mao Mao et al. (2021) 18.97
BEYOND Zhiyuan et al. (2024) 19.45
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Table 6: RA (%) scores of end-to-end attack with PGD under perturbation ϵ = 8/255 (ResNet110,
CIFAR10) when using an ATC. The results are the mean and standard deviation of 5 runs.
λ @FPR5% @FPR10% @FPR15% @FPR20% @FPR25% @FPR30% @FPR35% @FPR40% @FPR45% @FPR50%
1.00 93.32±0.13 93.38±0.14 93.41±0.11 93.43±0.09 93.97±0.12 94.49±0.15 94.99±0.14 95.50±0.13 95.93±0.14 96.32±0.11

0.50 93.53±0.15 94.17±0.12 94.27±0.11 94.33±0.09 94.86±0.13 95.41±0.09 95.88±0.09 96.27±0.11 96.65±0.14 97.00±0.15

0.25 93.57±0.14 94.46±0.16 94.60±0.13 94.85±0.07 95.40±0.05 95.87±0.08 96.32±0.14 96.71±0.12 97.04±0.12 97.30±0.14

Mao Mao et al. (2021) 75.09
BEYOND Zhiyuan et al. (2024) 93.20
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Figure 3: Empirical validation of the A Few Large Shifts Assumption using CIFAR-10 and
ResNet-110. We plot layer-wise error distributions σ(ek) under different attack methods.

while certain attacks as shown in Figure 3.(a), produce sharp peaks at specific layers—indicating
large indicated as red arrows, localized shifts in internal representations. These peaked patterns align
with high RT detection performance and support the assumption that adversarial perturbations affect
only a subset of layers T ⊆ {f1, f2, · · · , fL}. In contrast, attacks like PGD and Square, which show
stronger LT detection, yield smoother error curves similar to benign inputs but with greater variance
as depicted in Figure 3.(b). This suggests that these attacks primarily affect the logit layer, with
minimal disruption to intermediate features T = {flogit}. These findings empirically confirm that
adversarial manipulations often concentrate at a few layers and further justify the complementary
roles of RT and LT in our detection framework.
3.5 IMPLEMENTATION COSTS

Table 8: Comparison of implementation costs in terms
of FLOPs, parameters, and model size overhead when
the target model is ResNet110 with the CIFAR-10
dataset.

Method FLOPs (G) Params (M) Model Size Overhead (×)
Mao Mao et al. (2021) 5.25 38.12 22.02
LNG Abusnaina et al. (2021) 0.286 8.33 4.81
BEYOND Zhiyuan et al. (2024) 0.715 20.62 11.91
Ours (RLT) 0.491 2.59 1.49

We evaluate the computational efficiency
of our RLT method relative to existing base-
lines under the same configuration as in Ta-
ble 2. As shown in Table 8, RLT introduces
minimal floating-point operations (FLOPs),
parameters, and model size overhead, offer-
ing a lightweight, plug-in solution without
retraining or external models. It is signifi-
cantly more efficient than SSL-based (Mao et al.Mao et al. (2021)) and graph-based (LNGAbusnaina
et al. (2021)) detectors, making it well-suited for real-time and resource-constrained deployments. A
detailed analysis of this detection overhead across various architectures is provided in Appendix G.

4 CONCLUSION
In this work, we introduced a novel framework for adversarial example detection that leverages
layer-wise inconsistencies within deep neural networks. Motivated by our proposed A Few Large
Shifts Assumption—which posits that adversarial perturbations cause large, localized violations
of layer-wise Lipschitz continuity—we developed two complementary detection strategies: RT and
LT. Extensive evaluations on CIFAR-10, CIFAR-100, and ImageNet demonstrate that our combined
approach, RLT, achieves state-of-the-art detection performance against a wide range of threats,
including strong adaptive attacks. Our method operates efficiently without relying on external models
or extensive augmentation, and our system-level analysis provides a practical method for selecting a
detection threshold with a formal lower-bound guarantee on accuracy, highlighting its suitability for
real-world deployment.

Limitations and Future Work. Despite these results, the framework’s effectiveness relies on an
assumption grounded in empirical observations of current attacks and thus cannot guarantee defense
against all possible future attacks. Key directions for future work therefore include deepening the
theoretical understanding of layer-wise Lipschitz continuity to determine if the "A Few Large Shifts"
principle is a fundamental property of adversarial examples, and developing more sophisticated
methods for analyzing the challenging logit space. This exploration could lead to provably robust
defenses.
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APPENDIX

A RELATED WORK AND BACKGROUND

Input Transformation-Based Detectors. A well-established line of work detects adversarial
examples by applying simple input transformations and monitoring the model’s response. For
instance, Xu et al. (2017) proposed feature squeezing, which reduces input precision or applies
spatial smoothing to suppress adversarial noise. Liang et al. (2018) used quantization and denoising
techniques, while other works explore random crops or region replacements. These preprocessing-
based detectors are lightweight and model-agnostic but assuming that perturbations are fragile to such
transformations. Their effectiveness often hinges on tuning a detection threshold, and their robustness
degrades against adaptive attacks that are explicitly trained to remain invariant under the applied
transformations. Coarse transformations may also degrade clean-data performance, increasing false
positives.

Feature Statistics-Based Detectors. Another category of detectors analyzes statistical anomalies
in the network’s hidden representations. Ma et al. (2018) proposed Local Intrinsic Dimensionality
(LID) to measure how local feature neighborhoods expand under adversarial perturbations. Feinman
et al. (2017) leveraged kernel density estimation and uncertainty measures, while Lee et al. (2018)
introduced a Mahalanobis distance-based detector by modeling class-conditional distributions in
intermediate layers. These approaches rely on hand-crafted features from latent activations and
often require storing high-dimensional embeddings or computing pairwise distances, which can be
computationally intensive. Moreover, many methods are vulnerable to adaptive attacks that mimic
the distributional properties of benign inputs.

Model Behavior-Based Detectors. Some methods probe the internal behavior of the model itself
to identify inconsistencies caused by adversarial perturbations. Lu et al. (2017) encoded final-layer
activations into binary vectors for SVM-based detection, while Metzen et al. (2017) appended aux-
iliary classifiers to intermediate layers. Others like Ma & Liu (2019) and Carrara et al. (2018)
focused on monitoring neuron activation paths or ensemble agreement. These methods often require
additional training, architectural modifications, or model ensembles, increasing overhead and compli-
cating deployment. Many also depend on adversarial examples for supervision, which limits their
generalizability to unseen attacks.

Self-Supervised and Consistency-Based Detectors. Recent approaches have explored feature
consistency using self-supervised learning (SSL) models. For example, BEYOND Zhiyuan et al.
(2024) detects adversarial inputs by measuring feature stability across augmentations in a large SSL
encoder. These methods eliminate the need for adversarial examples and external graph structures
but introduce high computational costs due to reliance on large pretrained models, which may be
significantly larger than the target classifier itself (e.g., 22× larger parameters). Additionally, they
often require access to domain-specific SSL models and retraining or fine-tuning of auxiliary heads.

Our Approach. In contrast to the methods above, our framework introduces a fundamentally
different detection paradigm. Conceptualizing the network as a cylinder where each layer is a
horizontal slice, prior work can be seen as performing a “horizontal” analysis: comparing a sample’s
features against a reference set or augmentations within a single layer. We propose a “vertical” analysis
that is entirely self-referential. Our method scrutinizes the consistency of feature transformations
between the network’s own layers for a single input, eliminating the need for the external reference
data, heavy augmentations, or complex data structures common in horizontal methods. This approach
is grounded in our A Few Large Shifts Assumption, which posits that adversarial perturbations
cause large, localized deviations between a few critical layers, making these vertical inconsistencies a
detectable signal.

B THEORETICAL ANALYSIS

We provide formal justification for our proposed detection framework, which includes RT, LT, and
the fused score RLT. For each score, we analyze its behavior under benign and adversarial inputs,
showing that the design of the metric leads to statistically separable score distributions. This justifies
the detection reliability of our method under common threat models.

12
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B.1 CONNECTION TO LIPSCHITZ CONTINUITY

Our detection framework can be formally understood as an empirical method for identifying violations
of Lipschitz continuity across localized layers, we term the violation of layer-wise Lipschitz continuity.
Let fk be the function corresponding to the k-th layer of the network, such that zk = fk(zk−1). The
local Lipschitz constant Lk at an input zk−1 is the smallest value such that:

∥fk(z′k−1)− fk(zk−1)∥ ≤ Lk∥z′k−1 − zk−1∥ (7)

for all z′k−1 in a neighborhood of zk−1. Our A Few Large Shifts Assumption posits that for an

adversarial input xadv, the ratio ∥zk+1(x
adv)−zk+1(x)∥2

∥zk(xadv)−zk(x)∥2
becomes very large for a small subset of

layers T . This ratio serves as an empirical estimate of the local Lipschitz constant for the layer
transformation fk+1.

Our Recovery Testing (RT) score is designed to detect these violations. A large reconstruction
error, ek(x), signals a significant deviation between the expected and actual feature transformations,
which is a manifestation of this high layer-wise Lipschitz constant. By calibrating the expected
error distributions on benign data—where we assume layer-wise Lipschitz constants are small and
stable—RT effectively identifies inputs that cause these localized instabilities.

B.2 JUSTIFICATION FOR LAYER-WISE RECONSTRUCTION ERROR IN RT

This section analyzes why using the reconstruction error of intermediate features—as done in RT—
produces a separable distribution between benign and adversarial inputs. Specifically, we show that
benign inputs produce consistently low recovery residuals, while adversarial perturbations, though
small in input space, induce disproportionately large deviations in the representation space at select
layers, leading to higher RT scores.

Assumption 2 (Approximate Invertibility). For each intermediate layer i ∈ {kRT , . . . , L− 1}, there
exists a well-trained inverse function R(L→i) such that, for benign inputs x,

∥zi(x)−R(L→i)(zL(x))∥ ≤ ε,

for some small constant ε > 0.

Assumption 3 (Flatness of the Inverse Function). The inverse function R(L→i) is Lipschitz-smooth
with constant α≪ 1. That is, for all small perturbations δ,

∥R(L→i)(zL(x+ δ))−R(L→i)(zL(x))∥ ≤ α · ∥zL(x+ δ)− zL(x)∥.

Assumption 4 (Sub-Gaussian Layer Perturbations). Let δ be an adversarial perturbation. Then the
induced change in intermediate features is sub-Gaussian:

∥∇zi(x) · δ∥ ∼ SubG(µ, σ2),

i.e., for all t > 0,

Pr (∥∇zi(x) · δ∥ ≤ µ− t) ≤ exp

(
− t2

2σ2

)
.

Theorem 1 (RT Detects Adversarial Residuals). Under Assumption 1, we assume that T ⊆
{f1, . . . , fL−1} contains one or more intermediate layers where adversarial perturbations induce
disproportionately large shifts. These shifts lead to elevated reconstruction residuals, which RT is
designed to detect. Let xadv = x+ δ be an adversarial example, and suppose Assumption 2, 3, and 4
hold. Then, with probability at least 1− η for small η, the following inequality holds:

∥zi(xadv)−R(L→i)(zL(x
adv))∥2 > ∥zi(x)−R(L→i)(zL(x))∥2.

(Proof: Appendix C.1)

13
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B.3 JUSTIFICATION FOR RATIO-BASED LOGIT-LAYER DEVIATION IN LT

In this section, we justify the use of the LT score, which captures how the logit-layer output changes
under augmentation relative to changes in intermediate-layer features. We show that benign in-
puts maintain logit consistency under mild perturbations, while adversarial examples—particularly
those crafted to flip decisions—exhibit exaggerated logit volatility, causing the LT score to grow
disproportionately.
Assumption 5 (Benign Augmentation Stability). For any benign input x, and a mild transformation
W (g), the resulting features satisfy

∥z(g) − z∥ ≤ η, ∥ℓ(g) − ℓ∥ ≤ α(η),

for small η > 0 and monotonically increasing α(η)≪ 1.
Assumption 6 (Recovery Test Evasion). Let xadv = x + δ be an adversarial input that satisfies
Assumption 1 with T = {flogit}, i.e., the perturbation induces a large shift only at the logit layer,
while intermediate representations remain largely consistent with those of benign inputs.

Then the residuals measured by RT remain low:

∥zi(xadv)−R(L→i)(zL(x
adv))∥2 ≲ ∥zi(x)−R(L→i)(zL(x))∥2,

yet flips the final prediction:
argmax ℓ(xadv) ̸= argmax ℓ(x).

Moreover, augmentations preserve feature drift:

∥z(g),adv − zadv∥ ≈ ∥z(g) − z∥.
Theorem 2 (Logit Instability under Augmentation). Under Assumption 6, the adversarial logit output
is unstable under small augmentation:

∥o(ℓ(xadv))− o(ℓ(x(g),adv))∥ > 0.

(Proof: Appendix C.2)
Theorem 3 (Amplified Logit Sensitivity). Under Assumption 5 and Assumption 6, the logit sensitivity
of adversarial inputs satisfies:

∥ℓ(g),adv − ℓadv∥
∥z(g),adv − zadv∥

>
∥ℓ(g) − ℓ∥
∥z(g) − z∥

.

(Proof: Appendix C.3)

B.4 QUANTILE-NORMALIZED RT + LT PROVIDES JOINTLY SEPARABLE SCORE IN RLT

We now provide a theoretical justification for the fused detection score RLT (x) = RT 2
norm + LT 2

norm.
Since RT and LT each capture different types of adversarial signatures (internal layers misalignment vs.
logit instability), combining them creates a more robust metric. By applying quantile normalization,
we map both scores into a common distributional space, ensuring fair fusion. We then show that
the fused score statistically separates adversarial inputs even when only one metric is significantly
perturbed.
Assumption 7 (Quantile-normalized RT and LT). Let F̂RT , F̂LT be empirical CDFs computed on
benign RT and LT scores. Define:

RTnorm(x) = Φ−1(F̂RT (RT (x))), LTnorm(x) = Φ−1(F̂LT (LT (x))),

where Φ−1 is the standard normal quantile function.
Assumption 8 (Adversarial Score Margin). There exists γ > 0 such that for adversarial x, at least
one normalized score satisfies:

|RTnorm(x)| > γ or |LTnorm(x)| > γ.

Theorem 4 (RLT Separates Adversaries). Define the fused score:
RLT (x) = RTnorm(x)

2 + LTnorm(x)
2.

Then, under Assumption 7 and Assumption 8,
E[RLT (x)] = 2 for benign x, and RLT (xadv) > γ2.

(Proof : Appendix C.4)
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B.5 ROBUSTNESS TO ADAPTIVE ATTACKS

In this section, we provide a theoretical perspective on the robustness of our detection framework
under adaptive adversaries. An adaptive attack refers to a threat model where the adversary has full
knowledge of both the classifier and the detection mechanism, and explicitly optimizes its objective to
evade detection. We show that the design of our RT and LT metrics inherently introduces conflicting
optimization gradients, which hinder the adversary’s ability to jointly suppress both detection scores.

B.5.1 ADAPTIVE ATTACK OBJECTIVE

To simulate a strong white-box adversary, we formulate an adaptive objective that simultaneously
minimizes the classification loss and both detection scores (RT and LT). Specifically, the adversary
solves the following constrained optimization problem:

min
∥δ∥≤ϵ

Lcls(x+ δ, yt) + β1 ·RT (x+ δ) + β2 · LT (x+ δ),

where ϵ is perturbation strength, Lcls is the classification loss (e.g., cross-entropy), yt is a target label
in the case of targeted attacks, and β1, β2 are non-negative coefficients controlling the importance of
detection suppression. While the classification term drives the adversarial objective, the additional
RT and LT terms introduce competing constraints on internal and output-layer consistency. The
optimization becomes increasingly difficult when the gradients corresponding to RT and LT conflict
in direction.

B.5.2 CONFLICTING GRADIENT EFFECTS

The RT score is defined as:

RT (x) ∝ ∥zi(x)−R(L→i)(zL(x))∥2,
which penalizes deviations from the inverse-mapped intermediate representations. Minimizing this
score encourages the adversary to maintain stable internal features consistent with benign patterns. In
contrast, the LT score is defined as:

LT (x) ∝ H(σ(ℓ(x))) ·∆ℓ(g)(x)

∆z(g)(x)
,

where ∆ℓ(g)(x) measures logit deviation across augmentations, and ∆z(g)(x) captures the corre-
sponding feature drift. Minimizing LT encourages logit stability while allowing some augmentation-
induced feature variability. These two goals inherently compete. Enforcing small residuals in
intermediate layers (RT) limits the allowable variation in augmented features, which can inflate LT.
Conversely, promoting augmentation-invariant logits (LT) often introduces instability in internal
features, increasing RT. As a result, gradients of the two terms may partially oppose each other, de-
grading the effectiveness of adversarial optimization. This conflict acts as a built-in regularizer against
adaptive attacks. In practice, we observe that attempting to suppress one score often exacerbates the
other, making it difficult to minimize the fused detection score RLT (x) = RT 2

norm(x) + LT 2
norm(x).

C PROOFS

C.1 THEOREM 1

Proof. For the benign input x, Assumption 2 guarantees:

∥zi(x)−R(L→i)(zL(x))∥ ≤ ε.

Now consider the adversarial input xadv = x+ δ. Using first-order Taylor expansions:

zi(x
adv) = zi(x) +∇zi(x) · δ + o(∥δ∥),

zL(x
adv) = zL(x) +∇zL(x) · δ + o(∥δ∥).

Next, apply the inverse recovery map:

R(L→i)(zL(x
adv)) = R(L→i)(zL(x)) +∇R(L→i)(zL(x)) · (zL(xadv)− zL(x)) + o(∥δ∥).
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Define:
∆z := ∇zi(x) · δ, ∆r := ∇R(L→i)(zL(x)) · ∇zL(x) · δ.

Then:
zi(x

adv)−R(L→i)(zL(x
adv)) ≈ (zi(x)−R(L→i)(zL(x))) + (∆z −∆r).

By reverse triangle inequality:

∥zi(xadv)−R(L→i)(zL(x
adv))∥ ≥ ∥∆z∥ − ∥zi(x)−R(L→i)(zL(x))∥ − ∥∆r∥.

From Assumption 2 and Assumption 3:

∥zi(x)−R(L→i)(zL(x))∥ ≤ ε, ∥∆r∥ ≤ α · ∥∇zL(x) · δ∥.

Assuming µ > 2(ε+ α · ∥∇zL(x) · δ∥), Assumption 4 implies that with probability at least 1− η,

∥∆z∥ ≥ µ > 2ε+ ∥∆r∥,

where η ≤ exp
(
− (µ−2(ε+∥∆r∥))2

2σ2

)
. Then:

∥zi(xadv)−R(L→i)(zL(x
adv))∥ ≥ ε.

Squaring both sides proves the theorem.

C.2 THEOREM 2

Proof. Given the prediction is flipped but the intermediate features remain close to those of x, the
adversarial logit lies near a decision boundary. Thus, even a mild augmentation x(g),adv can shift the
logits across the boundary, changing the predicted class.

C.3 THEOREM 3

Proof. Assume the contrary. Then adversarial sensitivity is less than benign. Given ∥z(g),adv−zadv∥ ≈
∥z(g) − z∥, this implies:

∥ℓ(g),adv − ℓadv∥ ≤ ∥ℓ(g) − ℓ∥ ≤ α(η).

Hence, ℓ(g),adv ≈ ℓadv, contradicting Theorem 2. Thus the adversarial logit must be more sensitive to
benign augmentation than the original.

C.4 THEOREM 4

Proof. Since both normalized scores follow N (0, 1), the expected value of their squared sum under
benign data is:

E[RLT (x)] = E[RT 2
norm] + E[LT 2

norm] = 1 + 1 = 2.

For adversarial inputs, Assumption 8 ensures at least one squared score exceeds γ2. Thus,

RLT (xadv) > γ2.

D ABLATION STUDY

All ablation studies were conducted using the CIFAR-10 dataset with ResNet110. We systemat-
ically vary the key hyperparameters and architectural choices to assess their impact on detection
performance.
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D.1 SIZE OF RECOVER MODULE

We evaluate the impact of varying the depth and dimensionality of the recover modules on RT
detection performance. As we reduce the size of the recover modules in terms of both depth and
dimensionality, we observe slightly improved performance as shown in Table 9. This result aligns well
with Assumption 3, which posits that a flatter or smoother recovery module—achieved by reducing
complexity—results in improved detection due to closer alignment with the assumption of stable
layer-wise reconstruction under benign conditions. However, the overall performance differences are
relatively minor, demonstrating robustness to the choice of recover module size.

Table 9: RT test AUC (%) differences when varying depth and dimensionality of recover modules,
compared to depth = 5 and dimensionality = 512.

Depth FGSM PGD CW AutoAttack Square Avg.
2 +0.55 -2.03 +0.16 0.00 +10.96 +1.93
3 +0.15 +0.15 +0.08 0.00 +4.25 +0.92
4 -0.01 +0.01 +0.04 0.00 -0.50 -0.09
5 0.00 0.00 0.00 0.00 0.00 0.00

Dimensionality FGSM PGD CW AutoAttack Square Avg.
64 -0.50 -0.10 -0.40 0.00 +8.34 +1.47

128 -0.54 -0.04 -0.20 0.00 +4.13 +0.67
256 -0.18 -0.18 -0.03 0.00 +0.65 +0.13
512 0.00 0.00 0.00 0.00 0.00 0.00

D.2 NUMBER OF LEARNABLE AUGMENTATIONS G

We investigate how varying the number of learnable augmentation matrices (G) impacts LT detection
performance. As depicted in Table 10, the detection performance exhibits minimal sensitivity to the
number of augmentations used. Even with a significantly smaller number of augmentations (G < 4),
LT continues to perform robustly. This indicates our LT method effectively quantifies logit-layer
perturbations without relying on extensive augmentation, in contrast to previous methods such as
BEYOND Zhiyuan et al. (2024), which required up to 50 augmentations. The minimal requirement
of augmentations highlights our method’s computational efficiency and practical deployability.

Table 10: LT test AUC (%) differences when varying the number of augmentation matrices (G),
compared to G = 4.

G FGSM PGD CW AutoAttack Square Avg.
1 +0.01 -0.03 -0.02 -0.02 +0.01 -0.01
2 -0.04 +0.08 -0.14 +0.37 +0.03 +0.06
3 0.00 +0.20 -0.05 +0.46 +0.02 +0.12
4 0.00 0.00 0.00 0.00 0.00 0.00

D.3 CHOICE OF kRT AND kLT

We examine how choosing identical values for hyperparameters kRT and kLT affects combined RLT
performance relative to optimal, independent selection of these parameters. Results presented in
Table 11 indicate a maximum performance decrease of only 1.33% when setting k = kRT = kLT

uniformly, as opposed to independently optimizing each hyperparameter. These findings highlight
the practical robustness of our detection framework to hyperparameter selection, emphasizing that
fine-grained tuning of kRT and kLT is unnecessary for achieving high detection accuracy, greatly
simplifying deployment.
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Table 11: RLT test AUC (%) differences for varying values of k = kRT = kLT compared to optimal
separate selection.

k = kRT=kLT FGSM PGD CW AutoAttack Square Avg.
1 -1.59 -3.45 -0.82 -0.03 -0.77 -1.33

10 -1.37 -3.55 -0.49 -0.04 -0.86 -1.26
15 -1.03 -3.41 -0.35 -0.04 -1.02 -1.17
20 -1.25 -3.16 -0.33 -0.04 -0.63 -1.08
25 -1.37 -2.51 -0.37 -0.03 -1.05 -1.06
30 -1.67 -1.33 -0.39 -0.01 -0.77 -0.83

kRT ̸= kLT (Optimal) 0.00 0.00 0.00 0.00 0.00 0.00

D.4 SINGLE OBJECTIVE ADAPTIVE ATTACKS

To highlight the inherent robustness of our framework, we begin with an ablation study under a
simplified setting. Specifically, we consider cases where both the attacker and the defender rely on a
single detection objective—either RT or LT. As shown in Table 12, this restriction leads to substantial
performance degradation compared to the full defense, where both RT and LT are jointly employed
for attack and detection. These results demonstrate that neither component alone is sufficient.

Table 12: Single Objective Orthogonal-PGD Adaptive Attack on L∞ = 8/255 using CIFAR-10 and
ResNet110.

Removed Objective RA@FPR5% RA@FPR50%
None 33.70% 80.77%
RT 17.11% 55.30%
LT 17.20% 56.17%

To provide a more comprehensive analysis, we conducted an additional experiment where the
attacker’s objective may differ from the defender’s measurement score. As shown in Table 13, an
adversary attacking the full RLT objective achieves the lowest average Robust Accuracy (RA) across
all defender configurations (64.85%). This demonstrates that the fused RLT framework poses a
significant challenge for an adversary. The most effective evasion strategy is to target the combined
RLT score directly, as attacking the individual RT or LT components results in a lower expected
attack success rate.

Table 13: RA@FPR50% (%) under mismatched end-to-end PGD attack and defense objectives
(ϵ = 8/255, ResNet110, CIFAR-10).

Measured With ↓ / Attacked Measure→ RLT RT LT
RLT 68.53±2.21 72.06±4.05 73.05±2.99

RT 78.75±1.53 75.56±1.30 81.58±1.73

LT 47.28±4.43 64.49±8.12 46.48±3.67

Average 64.85 70.70 67.04

This outcome empirically substantiates our theoretical analysis: adaptive attacks face inherent diffi-
culties due to conflicting gradient directions induced by RT and LT, which makes attack algorithms
difficult to find T . When an adversary focuses only on evading RT, they tend to create perturbations
that shift the logit layer, which are then caught by LT. Conversely, attacks targeting only LT tend to
disrupt intermediate features, which are then caught by RT. These distinct perturbation strategies con-
firm our assumption that RT and LT effectively impose opposing constraints on adaptive adversaries,
making the combined RLT score a significantly more robust defense.
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Figure 4: Ablation study showing AUC (%) of RT, LT, and RLT under varying perturbation budgets
(ϵ ∈ {0.01, 0.02, · · · , 0.1}) across multiple standard attack types (FGSM, PGD, AutoAttack, Square).
Evaluated on CIFAR-10 using a ResNet-110 classifier and detection models trained with fewer epochs
for efficiency.

D.5 ABLATION ON PERTURBATION BUDGET SENSITIVITY OF EACH TESTING MEASURE

To analyze the contribution of each detection component across adversarial strengths, we conduct
an ablation study varying the perturbation budget ϵ for common standard (non-adaptive) attacks,
including FGSM, PGD, AutoAttack, and Square. We report AUC detection performance for RT, LT,
and RLT. All experiments are performed on the CIFAR-10 dataset using a pretrained ResNet-110
classifier. Detection models are trained with a reduced number of epochs to simulate lightweight
deployment.

As visualized in Figure 4, detection performance consistently improves as the adversary’s perturbation
budget increases. This trend reflects our framework’s strength in leveraging internal inconsisten-
cies that become more pronounced under stronger attacks. Unlike previous methods, such as
BEYOND Zhiyuan et al. (2024), which tend to suffer degraded performance at higher perturbation
levels due to their reliance on final feature stability, our method benefits from capturing the greater
representational disruption induced across the layers by adversaries at higher budgets.

We also observe that as the budget increases, the targeted layers by adversarial perturbations tend to
shift from the logit layer to deeper intermediate layers. This is evidenced by the decline in LT’s AUC
and the concurrent improvement in RT’s performance. We interpret this behavior as a reflection of
the limited perturbation capacity of each layer, under the assumption that each layer contains only
a finite set of vulnerable manifolds. As the perturbation budget grows, the adversary exhausts the
capacity of the logit layer and is forced to exploit deeper, intermediate representations. Despite this
divergence, RLT–which combines both signals–demonstrates a smooth and consistent increase in
performance, validating its robustness and complementary design.

This supports our A Few Large Shifts Assumption, reinforcing that adversarial perturbations
typically cause disproportionately large disruptions in a small subset of layers, which become more
detectable as the attack budget increases. The results further demonstrate that combining RT and LT
provides stable and effective detection across a wide perturbation spectrum.

D.6 CONTRIBUTION OF EACH TERM IN TESTING MEASURES

To better understand the role of each component in our proposed detection metrics, we perform an
ablation study by individually removing key terms from the Logit-layer Testing and Recovery Testing
scores. We evaluate the resulting change in detection performance using AUC scores under five
adversarial attack types–FGSM, PGD, CW, AutoAttack, and Square–on CIFAR-10 with a ResNet-110
classifier. Table 14 summarizes the results along with the average performance drop caused by each
ablation.

We observe that LT is particularly sensitive to the removal of the logit entropy and feature drift terms.
Excluding either leads to a substantial degradation in performance across all attacks, suggesting that
these terms are central to LT’s ability to quantify abnormal sensitivity in the output layer relative
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Figure 5: Empirical distributions of individual terms used in our detection metrics, evaluated
on CIFAR-10 with a ResNet-110 model under FGSM attack (ϵ = 0.05). Scores are squared and
normalized using quantile normalization based on clean test samples.

Table 14: Contribution of each term in the LT and RT metrics. AUC scores (in percentage) are
reported on CIFAR-10 using ResNet-110 under different attacks. The last column indicates the
average drop in performance from the full model.

Removed Term FGSM PGD CW AutoAttack Square Average Drop
Logit-layer Testing (LT)
None (Full LT) 97.50 98.61 97.08 99.60 97.47 98.05 –

– Logit Decidedness 99.51 94.66 82.97 96.42 95.91 93.89 -4.16
– Logit Entropy 97.51 59.37 89.76 57.14 97.20 80.19 -17.86
– Feature Drift 94.62 65.49 99.29 50.01 97.29 81.34 -16.71

Recovery Testing (RT)
None (Full RT) 99.93 96.89 99.90 99.99 85.38 96.42 –

– Inverse Entropy 98.98 94.35 99.09 99.95 84.52 95.38 -1.04
– Log Error 80.34 97.09 88.95 99.95 65.68 86.40 -10.02

to internal representation changes. The entropy term, in particular, governs the calibration of the
detector based on output uncertainty and appears essential for capturing confidence shifts introduced
by adversarial perturbations. The feature drift term complements this by providing a baseline of
expected internal variation under benign augmentations. Removing the logit decidedness term results
in more modest, yet consistent, performance degradation, indicating its auxiliary role in sharpening
the detection boundary.

In the case of RT, the core driver of performance is the reconstruction error between predicted
and actual intermediate features. Its removal yields a pronounced drop in detection accuracy,
reaffirming that adversarial perturbations often manifest as sharp deviations in the internal feature
manifold. In contrast, the inverse entropy term, which weights errors based on the sharpness of their
distribution across layers, contributes more marginally to the overall score. Its absence slightly affects
performance, implying it primarily serves as a regularizer rather than a principal signal.
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These findings underscore that both RT and LT derive their strength from distinct but complementary
cues–internal feature consistency and output–level robustness, respectively. While some components
act as critical discriminators, others enhance calibration and stability. Together, their integration
within the full detection framework leads to robust and generalizable performance across diverse
attack types.

Figure 5 visually complements these results by showing the empirical distributions of each term on
clean and adversarial samples. We observe that each term, when considered independently, introduces
a measurable degree of separation between normal and adversarial inputs. This separation is modest
for individual components but becomes substantially more pronounced when the terms are combined
within LT and RT. The final integration of both methods in RLT leads to the strongest separation,
illustrating the complementary nature of these features.

D.7 EVALUATION AGAINST L2-NORM ATTACKS

To ensure our method’s effectiveness is not limited to a single threat model, we evaluated its
performance against L2-norm attacks, demonstrating that its detection capabilities are largely norm-
agnostic.

First, to establish a challenging and comparable evaluation setting, we identified a worst-case
perturbation budget for an L2-PGD attack. As shown in Table 15, a budget of ϵ = 0.6 was sufficient
to reduce the base classifier’s Robust Accuracy to 0.00%.

Table 15: RA (%) under L2-PGD attack on CIFAR-10 to determine a worst-case budget.
ϵ RA

0.1 39.97
0.2 6.21
0.3 0.74
0.4 0.10
0.5 0.01
0.6 0.00

Using this budget, we then compared our detector’s performance against both L∞ and L2 attacks.
The results in Table 16 show that our combined RLT detector achieved a high AUC of 98.05% against
the strong L2 attack, which is comparable to its performance against the L∞ attack. This confirms
the robustness of our detection framework across different norm-based threat models.

Table 16: AUC (%) scores comparing performance against L∞ and L2 PGD attacks on CIFAR-10.
Norm RA RLT RT LT
L∞ 0.00 99.47 99.49 96.65
L2 0.00 98.05 95.05 97.16

E GENERALIZATION TO CNN-BASED ARCHITECTURES

To assess the generalizability of our detection framework across diverse neural architectures, we eval-
uate RT, LT, and RLT on CIFAR-100 using four distinct backbone models: ResNet-18, MobileNet-V2
x0 5, ShuffleNet-V2 x0 5, and RepVGG-a0. As shown in Table 17, our methods consistently achieve
high AUC scores across all architectures and attack types (FGSM, PGD, and AutoAttack), with RLT
offering the most robust overall performance.

These results demonstrate that our detection strategies—rooted in internal layer inconsistency—are
not only effective on traditional architectures like ResNet and DenseNet, but also extend well to
lightweight and mobile-friendly models such as MobileNet and ShuffleNet, as well as convolutional
variants like RepVGG. Notably, the fused score RLT maintains average AUCs above 97% on all
target models, confirming the adaptability and resilience of our approach.
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Table 17: AUC scores (%) on CIFAR-100 under three white-box attacks (FGSM, ℓ∞-PGD, and
AutoAttack) with the same perturbation budget as the previous evaluations.

ResNet-18 MobileNet-V2 x0 5
Variant FGSM PGD AutoAttack Avg. FGSM PGD AutoAttack Avg.
RT 87.83 99.21 99.98 95.67 99.02 99.31 99.99 99.44
LT 97.83 97.53 99.47 98.28 94.73 87.50 91.74 91.33
RLT 95.61 98.92 99.97 98.17 98.73 98.14 99.98 98.95

ShuffleNet-V2 x0 5 RepVGG a0
RT 98.38 97.35 99.97 98.57 91.77 98.94 99.99 96.90
LT 94.82 90.34 96.81 93.99 90.38 96.57 99.26 95.40
RLT 98.16 96.17 99.94 98.09 93.49 98.46 99.98 97.31

Importantly, the deployment of our detectors requires minimal architectural modification and no
adversarial training, making them easily integrable into a wide range of existing models. This
plug-and-play nature, combined with high detection efficacy, makes our method highly suitable for
practical applications where architectural diversity and efficiency are key considerations.

F GENERALIZATION TO TRANSFORMER-BASED ARCHITECTURE

To evaluate the generality of our detection framework beyond CNNs, we applied it to a pre-trained
Vision Transformer (ViT-B/16) on CIFAR-10 and CIFAR-100. The results are presented in Table 18.

We adapted our framework to the ViT-B/16 architecture by extracting features from its constituent
layers. The output of the final (12th) encoder block was designated as the source embedding (zL),
from which all prior layer representations were reconstructed. For the initial conv_proj layer,
patch embeddings were spatially averaged into 14 vertical strips, with a dedicated recovery module
trained for each. For each of the 11 preceding Transformer encoder blocks, the 197 × 768 token
embedding matrices were partitioned into 6 non-overlapping feature chunks. Each chunk was then
aggregated to create a feature vector for its corresponding recovery module. For LT, we used G = 4
augmentations. In total, this design comprises 80 lightweight recovery modules and incurs a low
model size overhead of just 0.337× relative to the target ViT model in terms of number of model
parameters, demonstrating our approach’s scalability.

As shown in the table, our method consistently outperforms the LID baseline on CIFAR-10. On
CIFAR-100, it matches or exceeds LID’s performance against PGD and CW attacks while remaining
competitive against FGSM. These strong results, achieved with minimal overhead, confirm that our
layer-wise inconsistency-based detection strategy generalizes effectively to modern Transformer
architectures and offers significant potential for further performance tuning.

Table 18: AUC (%) scores for ViT-B/16 on CIFAR-10 and CIFAR-100 against various attacks
(ϵ = 0.03).

Dataset Method FGSM PGD CW

CIFAR-10 LID 92.65 82.89 67.90
Ours (RLT) 95.14 90.68 99.99

CIFAR-100 LID 91.05 81.28 74.37
Ours (RLT) 88.18 84.54 99.99

G DETAILED COMPUTATIONAL COST ANALYSIS

To substantiate our claim of low computational overhead, we provide a detailed analysis comparing
our framework to two common detection paradigms: SSL-based and reference-set-based detectors.
The analysis uses the target models detailed in Table 19.
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First, SSL-based detectors require large, pre-trained models, which introduce a substantial and fixed
overhead. As shown in Table 20, this cost is particularly prohibitive for lightweight target models,
with overheads ranging from 3.21× to over 200× the parameters of the base classifier.

Second, reference-set detectors incur significant memory costs for storing embeddings and, in the
case of graph-based methods, adjacency matrices. As detailed in Table 21, this overhead scales with
the size of the reference set and can be prohibitively large, especially for graph-based approaches.

In contrast, our framework offers a uniquely flexible and tunable overhead, as demonstrated in
Table 22. By adjusting the depth and width of the recovery modules, our method can achieve high
detection performance with minimal cost. For instance, on ResNet110, our detector achieves a 99.57%
AUC with a mere 0.24× overhead—a performance drop of less than 0.3% compared to a much larger
configuration. This analysis confirms that our approach is not only significantly more efficient than
major alternative paradigms but also uniquely flexible, making it well-suited for deployments with
lightweight target classifiers.

Table 19: Target models used in our experiments, along with their parameter counts and the number
of feature blocks (layers) used for applying RT.

Target Model # Parameters # Feature Blocks
MobileNet 815,780 19
ShuffleNet 1,356,104 18
ResNet110 1,730,714 56
RepVGG 7,956,164 23

Table 20: Evaluation of SSL-based approaches’ minimum overhead (×) introduced by pre-trained
SSL models relative to each target model.

SSL Models # Params MobileNet ShuffleNet ResNet110 RepVGG
BYOL 25,557,032 31.33 18.85 14.77 3.21
SimSiam 38,201,408 46.83 28.17 22.07 4.80
MoCo v3 (ViT) 215,678,464 264.38 159.04 124.62 27.11

Table 21: Minimum overhead (×) from detection approaches using a reference set with a 1024-
dimensional embedding space. "Graph Structure" indicates whether the approach constructs an
adjacency matrix.

Graph Structure Reference Set Size # Params MobileNet ShuffleNet ResNet110 RepVGG
No 1,000 1,024,000+ 1.26+ 0.76+ 0.59+ 0.13+

5,000 5,120,000+ 6.28+ 3.78+ 2.96+ 0.64+
40,000 40,960,000+ 50.21+ 30.20+ 23.67+ 5.15+

Yes 1,000 2,024,000+ 2.48+ 1.49+ 1.17+ 0.25+
5,000 30,120,000+ 36.92+ 22.21+ 17.40+ 3.79+

40,000 1,640,960,000+ 2011.52+ 1210.05+ 948.14+ 206.25+

H DETAILED PLUG-IN-PLAY SYSTEM-LEVEL ANALYSIS

In this section, we provide a detailed theoretical and empirical analysis of the system-level per-
formance when our detector is applied as a plug-in module to a standard classifier. We formally
define the evaluation metrics, introduce a novel framework for establishing guaranteed lower bounds
on system accuracy, and demonstrate how this framework can be used to select optimal detection
thresholds in practical scenarios.
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Table 22: Overhead (×) and AUC performance (%) (CIFAR-100 under ℓ∞-PGD attack with ϵ = 0.02)
of our approach across different target models and varying depth and width of the recovery modules.
"Performance Loss" indicates the AUC drop relative to the largest detector configuration for the same
target model.

Target Model Depth Width Detector’s # Params Overhead AUC Performance Loss

MobileNet

2 64 1,540,744 1.89 97.37 0.0000
2 32 776,904 0.95 97.20 -0.1665
2 16 394,984 0.48 96.07 -1.3025
2 8 204,024 0.25 95.12 -2.2492
2 4 108,544 0.13 89.27 -8.0933
2 2 60,804 0.07 87.66 -9.7059

ShuffleNet

2 128 2,788,840 2.06 96.07 0.0000
4 64 1,548,456 1.14 95.46 -0.6154
2 64 1,402,664 1.03 95.96 -0.1152
4 32 747,656 0.55 95.12 -0.9522
2 32 709,576 0.52 95.48 -0.5946
4 16 373,368 0.28 93.88 -2.1923
2 16 363,032 0.27 95.25 -0.8218
4 8 192,752 0.14 93.02 -3.0472
2 8 189,760 0.14 94.56 -1.5079

ResNet110

3 256 5,160,992 2.98 99.84 0.0000
2 256 1,514,272 0.87 99.58 -0.2640
3 64 652,448 0.38 99.71 -0.1259
2 64 416,608 0.24 99.57 -0.2717
3 16 158,912 0.09 99.51 -0.3313
2 16 142,192 0.08 99.41 -0.4252
3 4 75,128 0.04 99.62 -0.2180
2 4 73,588 0.04 99.63 -0.2119

RepVGG

4 256 11,310,992 1.42 98.45 0.0000
3 256 9,852,304 1.24 98.47 0.0144
4 128 4,942,992 0.62 98.38 -0.0721
3 128 4,574,096 0.57 98.41 -0.0386
4 64 2,299,664 0.29 98.34 -0.1092
3 64 2,205,328 0.28 98.36 -0.0969
4 32 1,113,168 0.14 98.23 -0.2185
3 32 1,088,528 0.14 98.32 -0.1341
4 16 553,712 0.07 98.01 -0.4442
3 16 547,024 0.07 98.11 -0.3468

H.1 DEFINITIONS OF METRICS

To formally analyze performance, we define metrics for both the base classifier and the combined
classifier-detector system. Let C(x) be the classifier’s prediction for an input x, y be its true label,
and D(x) be our detector’s output, where D(x) = 1 signifies an adversarial detection.

• Classifier Clean Accuracy (CAcls): The accuracy of the base classifier on benign samples
without any detector. CAcls = P(C(xclean) = y).

• Classifier Robust Accuracy (RAcls): The accuracy of the base classifier on adversarial
samples without any detector. RAcls = P(C(xadv) = y).

• System Clean Accuracy (CAsys): The accuracy of the combined system on benign samples.
A benign sample is handled correctly only if it is both correctly classified and not flagged by
the detector.

CAsys = E[I(C(xclean) = y ∧D(xclean) = 0)]

• System Robust Accuracy (RAsys): The accuracy of the combined system on adversarial
samples. An adversarial sample is successfully defended if it is either detected or correctly
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classified despite the attack.

RAsys = E[I(C(xadv) = y ∨D(xadv) = 1)]

• Overall System Accuracy (Asys): The expected accuracy of the system given a probability
p that an input is adversarial.

Asys = (1− p) · CAsys + p ·RAsys

• False Positive Rate (FPR): The fraction of benign samples incorrectly flagged as adversarial.
FPR = P(D(xclean) = 1).

• True Positive Rate (TPR): The fraction of adversarial samples correctly flagged as adver-
sarial. TPR = P(D(xadv) = 1).

H.2 PERFORMANCE ANALYSIS ACROSS OPERATING POINTS

While AUC provides an aggregate measure, evaluating performance at fixed operating points is
critical for understanding the practical trade-off between clean accuracy and robustness.

First, we establish the baseline performance of the target ResNet-110 classifier without our defense
in Table 23. The results show that while the model achieves high clean accuracy, its robustness is
completely compromised by strong attacks like PGD and AutoAttack, with the RAcls dropping to
0.00%.

Table 23: Baseline CA and RA (%) of the undefended ResNet-110 on CIFAR-10 (ϵ = 8/255).
Attack CAcls RAcls

FGSM 92.49 25.75
PGD 92.49 0.00
CW 92.49 47.17
AutoAttack 92.49 0.00

In contrast, with our RLT detector active, the system’s performance is drastically improved, as
detailed in Table 24. At a modest 5% FPR, the system maintains a high CAsys of 88.70% while
restoring the RAsys against PGD from 0% to 99.27%. The table further illustrates the clear trade-off
available to a practitioner: increasing the FPR boosts the TPR and, consequently, the RAsys, at the
cost of CAsys.

H.3 PLUG-IN ROBUSTNESS GAINS WITH ADVERSARIALLY TRAINED CLASSIFIERS (ATC)

A key advantage of our detection framework is its role as a modular, plug-in defense. Rather than
replacing robust training methods, our detector can be integrated with existing robust models, such
as Adversarially Trained Classifiers (ATCs), to further enhance their performance. The value of a
detector in this context is measured by the robustness improvement it provides to the overall system.

H.3.1 THEORETICAL JUSTIFICATION FOR ROBUSTNESS IMPROVEMENT

The performance of a combined classifier-detector system can be formally analyzed. The expected
end-to-end system robust accuracy, RAsys, is a function of the detector’s TPR and the base classifier’s
own robust accuracy (RAcls). The expected system robustness is given by:

RAsys ≈ TPR+ (1− TPR)×RAcls (8)

This can be rewritten as:

RAsys ≈ RAcls + TPR× (1−RAcls) (9)

This relationship mathematically demonstrates that any detector with a non-zero TPR (TPR > 0) is
expected to improve the system’s robustness over the base classifier alone (RAsys > RAcls).
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Table 24: Measured TPR, System Clean Accuracy (CAsys), and System Robust Accuracy (RAsys)
(%) at varying FPRs for the defended system on CIFAR-10 (ϵ = 8/255).

Attack Metric @FPR5% @FPR10% @FPR25% @FPR50%

FGSM
TPR 84.84 94.13 99.21 99.94
CAsys 88.71 84.52 71.60 48.80
RAsys 90.80 96.57 99.58 99.96

PGD
TPR 99.27 99.68 99.92 99.95
CAsys 88.70 84.73 71.71 48.70
RAsys 99.27 99.68 99.92 99.95

CW
TPR 90.46 96.48 99.48 99.97
CAsys 88.63 84.57 71.79 48.77
RAsys 96.14 98.79 99.91 100.00

AutoAttack
TPR 88.86 89.90 91.88 93.87
CAsys 88.70 84.73 71.71 48.70
RAsys 88.86 89.90 91.88 93.87

H.3.2 EMPIRICAL VALIDATION

To empirically validate this theoretical relationship, we applied our detector to several ATCs with
varying levels of baseline robustness. The results, presented in Table 25, confirm two key points:

• The measured RAsys shows a substantial improvement over the initial RAcls in all cases.
For instance, a classifier with a baseline robustness of 55.88% achieves a final robustness of
83.08% when paired with our detector.

• The measured RAsys values closely correspond to the expected values predicted by our
formula, validating its utility as a model for system performance and confirming the plug-in
value of our detector.

Table 25: Expected vs. Measured System Robust Accuracy (RAsys) (%) when applying our detector
to Adversarially Trained Classifiers with varying baseline robustness (RAcls) under an adaptive
attack.
RAcls (%) Detector TPR (%) Expected RAsys (%) Measured RAsys (%) Improvement ∆ (%)

6.84 72.13 74.03 77.44 +70.6
12.71 63.74 68.34 74.57 +61.86
55.88 73.03 88.10 83.08 +27.2

H.4 FORMAL SYSTEM ACCURACY GUARANTEES WITH LOWER BOUNDS

General Lower Bound. When the attack probability p is unknown, we can establish a general lower
bound on system accuracy.

Theorem 5. Let p, CAsys, RAsys ∈ [0, 1]. Then (1− p)CAsys + p ·RAsys ≥ CAsys ·RAsys.

Proof. Let f(p) = (1− p)CAsys + p ·RAsys − CAsys ·RAsys. As a linear function of p over the
interval [0, 1], its minimum must occur at an endpoint. At p = 0, f(0) = CAsys(1−RAsys) ≥ 0.
At p = 1, f(1) = RAsys(1− CAsys) ≥ 0. Since the function is non-negative at both endpoints, the
inequality holds for all p ∈ [0, 1].

Adaptive Lower Bound. For practical scenarios where we can assume an upper bound on the attack
probability (p ≤ p′), we can derive a tighter lower bound.
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Theorem 6. Let p ∈ [0, p′] and CAsys, RAsys, p
′ ∈ [0, 1]. Then the system accuracy is lower-

bounded by:

(1− p)CAsys + p ·RAsys ≥ CAsys ·RAsys +max(0, (1− p′)(CAsys −RAsys))

Proof. From Theorem 1, for any t ∈ [0, p′], we have (1− t)CAsys + t ·RAsys ≥ CAsys ·RAsys.
Let t = p′ − p. Since p ∈ [0, p′], t is also in [0, p′]. Substituting t = p′ − p yields:

(1− p)CAsys + p ·RAsys ≥ CAsys ·RAsys + (1− p′)(CAsys −RAsys)

This bound is tighter than the general one only when CAsys > RAsys. We therefore take the
maximum of the additional term and zero to ensure the tightest possible bound in all cases.

(1− p)CAsys + p ·RAsys ≥ CAsys ·RAsys +max(0, (1− p′)(CAsys −RAsys))

H.5 EMPIRICAL VALIDATION AND OPTIMAL THRESHOLD SELECTION

This theoretical framework provides a rigorous method for selecting an optimal operating point. We
applied this analysis to our FGSM attack results in Table 26. Maximizing the general lower bound
(CAsys ×RAsys) suggests an FPR of 10% is optimal. However, by maximizing the Adaptive Lower
Bound for a realistic low attack probability (e.g., p′ ≤ 1%), we find that a 1% FPR provides a better
performance guarantee. This confirms that our framework allows for principled configuration of the
defense based on practical deployment assumptions.

Table 26: Analysis of system performance and lower bounds (%) at different FPRs for the FGSM
attack (ϵ = 8/255).

FPR TPR CAsys RAsys Lower Bound Est. Lower Bound Asys for attack prob. p Adaptive Lower Bound for max prob. p′

0.1% 1% 5% 10% 50% 90% 95% 99% 0.1% 1% 5% 10% 50% 90% 95% 99%
1 57.67 91.77 71.43 67.05 65.55 91.75 91.57 90.75 89.74 81.60 73.46 72.45 71.63 85.87 85.69 84.87 83.86 75.72 67.59 66.57 65.75
5 86.79 88.53 91.54 81.59 81.04 88.53 88.56 88.68 88.83 90.04 91.24 91.39 91.51 81.04 81.04 81.04 81.04 81.04 81.04 81.04 81.04

10 95.42 84.60 97.26 82.53 82.28 84.61 84.73 85.23 85.87 90.93 95.99 96.63 97.13 82.28 82.28 82.28 82.28 82.28 82.28 82.28 82.28
15 97.75 80.34 98.64 79.41 79.25 80.36 80.52 81.25 82.17 89.49 96.81 97.73 98.46 79.25 79.25 79.25 79.25 79.25 79.25 79.25 79.25
20 99.00 76.07 99.42 75.64 75.63 76.09 76.30 77.24 78.40 87.74 97.08 98.25 99.19 75.63 75.63 75.63 75.63 75.63 75.63 75.63 75.63
25 99.34 71.66 99.63 71.37 71.39 71.69 71.94 73.06 74.46 85.64 96.83 98.23 99.35 71.39 71.39 71.39 71.39 71.39 71.39 71.39 71.39
30 99.63 67.21 99.80 67.08 67.08 67.24 67.54 68.84 70.47 83.51 96.54 98.17 99.47 67.08 67.08 67.08 67.08 67.08 67.08 67.08 67.08

I ROBUSTNESS TO BENIGN NOISE

To assess our detector’s specificity and ensure it is not merely flagging any large perturbation, we
evaluated its response to significant yet benign noise. We conducted an experiment by applying
random noise of varying magnitudes (ϵ) to the unseen test set. Crucially, to isolate the effect of the
perturbation itself from a label change, we only kept noise instances that were “benign” in their
outcome, meaning they did not alter the classifier’s original prediction. We then measured the new
False Positive Rate (FPR) using thresholds that were originally calibrated on clean, unperturbed data.

The findings, presented in Table 27, provide strong evidence that our detector is not simply flagging
any large perturbation but is specifically sensitive to the structure of adversarial attacks. At low-to-
moderate noise levels (ϵ = 4/255 and 8/255), the detector remained highly stable, with the FPR
remaining nearly unchanged. Even with substantial random noise (ϵ = 32/255), the detector’s
response was moderate; for example, a threshold calibrated for 5% FPR on clean data resulted in
a new FPR of only 17.51%. This suggests that the large latent shifts our method identifies are a
characteristic feature of crafted, adversarial perturbations.

Table 27: Measured False Positive Rate (FPR) (%) on Benign Data with Random Noise. This table
shows the new FPR when applying thresholds that were originally calibrated to give 1%, 5%, 10%,
etc., FPR on clean data. The test is repeated for different magnitudes (ϵ) of benign random noise.
ϵ FPR@1% FPR@5% FPR@10% FPR@15% FPR@20% FPR@25% FPR@30% FPR@35% FPR@40% FPR@45% FPR@50%
4/255 0.93 4.77 9.27 13.60 18.51 23.03 27.61 32.01 36.27 41.20 46.26
8/255 1.05 4.46 8.04 11.79 15.65 19.60 23.52 27.65 32.07 36.61 41.15
32/255 12.38 17.51 22.16 26.71 31.39 35.99 40.34 44.72 49.16 53.54 57.85
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J DETAILED ALGORITHM

Algorithm 1 Layer-wise Adversarial Detection Measures via RT, LT, and RLT
Require: f = flogit ◦ fL ◦ · · · ◦ f1: Target network

1: {R(L→k)}L−1
k=kRT

: Trained inverse regressors
2: {W (g)}Gg=1: Learned augmentation matrices
3: F̂RT , F̂LT : Empirical CDFs of RT and LT (from benign data)
4: Φ−1: Standard normal quantile function
5: x: Test input

6: function RT(x)
7: for k = kRT to L− 1 do
8: ek ← ∥zk(x)−R(L→k)(zL(x))∥22
9: end for

10: e← (e1, . . . , eL−1)

11: return (log(L− 1)−H(σ(e))) · log
(

1
L−1

∑
k ek

)
12: end function

13: function LT(x)
14: for g = 1 to G do
15: ∆z(g) ← 1

L−kLT+1

∑L
i=kLT

∥zi(x)− zi(W
(g)x)∥22

16: ŷ ← argmaxσ(f(x))
17: ∆ℓ(g) ← ∥oŷ − σ(f(W (g)x))∥22
18: s(g) ← log

(
H(σ(f(x))) ·∆ℓ(g)

)
− log∆z(g)

19: end for
20: return 1

G

∑G
g=1 s

(g)

21: end function

22: function RLT(x)
23: r ← RT(x), l← LT(x)
24: rnorm ← Φ−1(F̂RT (r))

25: lnorm ← Φ−1(F̂LT (l))
26: return r2norm + l2norm
27: end function
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