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ABSTRACT
Traditional shadow detectors often identify all shadow regions of
static images or video sequences. This work presents the Referring
Video Shadow Detection (RVSD), which is an innovative task that
rejuvenates the classic paradigm by facilitating the segmentation of
particular shadows in videos based on descriptive natural language
prompts. This novel RVSD not only achieves segmentation of arbi-
trary shadow areas of interest based on descriptions (flexibility)
but also allows users to interact with visual content more directly
and naturally by using natural language prompts (interactivity),
paving the way for abundant applications ranging from advanced
video editing to virtual reality experiences. To pioneer the RVSD
research, we curated a well-annotated RVSD dataset, which encom-
passes 86 videos and a rich set of 15,011 paired textual descriptions
with corresponding shadows. To the best of our knowledge, this
dataset is the first one for addressing RVSD. Based on this dataset,
we propose a Referring Shadow-Track Memory Network (RSM-
Net) for addressing the RVSD task. In our RSM-Net, we devise a
Twin-Track Synergistic Memory (TSM) to store intra-clip memory
features and hierarchical inter-clip memory features, and then pass
these memory features into a memory read module to refine fea-
tures of the current video frame for referring shadow detection.
We also develop a Mixed-Prior Shadow Attention (MSA) to utilize
physical priors to obtain a coarse shadow map for learning more
visual features by weighting it with the input video frame. Exper-
imental results show that our RSM-Net achieves state-of-the-art
performance for RVSD with a notable Overall IOU increase of 4.4%.
We shall release our code and dataset for future research.

CCS CONCEPTS
• Computing methodologies→ Video segmentation.

KEYWORDS
Video shadow detection, referring segmentation, dataset

1 INTRODUCTION
As a cornerstone in computer vision, shadow detection has seen
decades of research, and plays a pivotal role in interpreting the
geometry and depth of a scene. Accurate shadow detection can
significantly enhance downstream computer vision tasks, including
object detection, tracking, and scene reconstruction [14, 33, 47].
Previous shadow detection methods mainly focus on discerning
all shadows in static images or video sequences and have achieved
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Figure 1: Comparisons of task settings for video shadow de-
tection, instance shadow detection, and our RVSD. Tradi-
tional shadow detection (a) segments all shadows, current
instance shadow detection (b) detects the foreground objects
and segments the associated shadows, while our RVSD (c)
can flexibly segment any shadow of interest referred by the
text description, including I. those of multiple objects and II.
background shadows (objects are invisible in the figure).

promising results [6, 10, 15, 17, 24, 53]. However, these methods
do not allow for the segmentation of specific shadows described
by users, due to their lack of interactivity and flexibility which is
essential in the era of advanced multimedia interaction.

Therefore, we propose Referring Video ShadowDetection (RVSD)
as a novel task dedicated to meeting this demand by interactively
segmenting the specific shadows in videos based on descriptive nat-
ural language prompts, as illustrated in Fig. 1. The significance of
RVSD can be envisaged in numerous applications. Advanced video
editing tools can benefit from this RVSD task by allowing editors to
precisely manipulate shadows based on verbal instructions [5, 22].
In augmented and virtual reality environments, understanding and
reacting to user-specified shadows can enhance immersion and
realism [1, 31]. Furthermore, remote sensing may also benefit from
this RVSD task to achieve more precise results [29].

In this work, we introduce the first dataset dedicated to the RVSD
task. This dataset collected 86 videos with 15,011 paired rich textual
descriptions and corresponding shadow mask annotations, with
some examples showcased in Fig. 2. It has beenmeticulously curated
to cover a wide array of scenarios, and shadow dynamics, which can
provide a comprehensive benchmark for evaluating future RVSD

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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methods. To the best of our knowledge, our dataset is the first one
for RVSD with high-quality annotation.

Compared to classical referring video object segmentation [2, 39],
achieving an accurate RVSD is more challenging. Firstly, shadows
lack rich appearance features and are easily confused with the dark
regions of the input video [3]. Moreover, shadows are naturally
influenced by ever-changing environmental factors, demonstrat-
ing severe temporal shape transformations. Hence, RVSD requires
richer temporal information and physical prior information to accu-
rately identify the specific shadow referred by users’ descriptions.

Based on our annotated RVSD dataset, we develop a novel Refer-
ring Shadow-Track Memory Network (RSM-Net) for addressing the
RVSD task. In our RSM-Net, we devise a Twin-Track Synergistic
Memory (TSM) to store hierarchical inter-clip features and intra-
clip features, and then propagate these two memory features via a
memory read module to refine the current video frame for video
shadow detection. Moreover, we propose a Mixed-Prior Shadow
Attention (MSA) module that leverages physical knowledge to gen-
erate a preliminary shadow map, guiding the network to focus on
potential shadow regions attentively.

Our main contributions are summarized as follows:

• This work is the first one to explore the RVSD task, which
presents a fresh paradigm for language-driven interac-
tive and flexible shadow detection with potential benefits
for numerous downstream tasks.

• To address the RVSD task, we collect and annotate the first
dataset for RVSD consisting of 86 videos with 15,011 paired
video frames and the corresponding text descriptions. This
is the first dataset dedicated for the RVSD task.

• We propose an RSM-Net for RVSD. Here, we devise a TSM
module to learn intra-clip and inter-clip features and store
both of them in a memory to refine the current video frame
for video shadow detection. Moreover, an MSA module is
developed to generate the coarse shadow map for focusing
on potential shadow areas for RVSD.

• Extensive experimental results show that our RSM-Net clearly
outperforms state-of-the-art methods for the RVSD task.

2 RELATEDWORK
2.1 Shadow detection.
Shadow detection is crucial in computer vision, aiming to generate
binary masks for all shadows [6, 10, 15, 17, 24, 45, 53]. Early tech-
niques employed physical illumination and color models to analyze
spectral and geometrical shadow properties [36, 38, 41]. As the ma-
chine learning development, subsequent approaches built models
using handcrafted attributes like texture [42, 51], color [12, 21], and
edges [18, 21]. These models were then combined with classifiers
like decision trees [21, 51] and support vector machines [12, 18, 42]
to differentiate shadow. However, the limited representational abil-
ity often restricted their effectiveness in various scenarios.

Recent deep-learning methods have made significant strides
in shadow detection by effectively learning from shadow images.
Khan et al. [20] first propose a framework where relevant features
are automatically learned through multiple convolutional deep
neural networks. Shen et al. [40] employ structured CNNs to analyze
shadow edges’ local features. Vicente et al. [43] recommend utilizing

quickly obtained, partially accurate image labels, refining them
automatically for enhanced performance. Hu et al. [17] develop a
network using spatial RNNs for direction-aware context analysis
in shadow detection. Chen et al. [4] propose a semi-supervised,
multi-task model combining consistency loss from unlabeled data
with supervised loss from labeled data.

All the above investigations primarily focus on shadow detection
for images, while there have been recent endeavors in video-based
shadow detection as well. Chen et al. [3] curate a new video shadow
detection dataset and develop a triple-cooperative network for
enhanced accuracy. Liu et al. [27] introduce shadow deformation
attention trajectory, a new video self-attentionmodule meticulously
crafted to tackle substantial shadow deformations within videos.
Differing from conventional video shadow detection that generates
a universal binary shadow mask, we delve into a pioneering realm
of referring video shadow detection. This approach facilitates the
segmentation of each specific shadow through associated language
expressions, enhancing user-friendly and personalized applications.

2.2 Referring segmentation.
The aim of referring segmentation is to precisely outline the partic-
ular object referred to in a natural language expression within an
image. This task combines computer vision and natural language
processing, similar to our RVSD approach. Hu et al. [16] first tackle
the novel challenge of image segmentation guided by natural lan-
guage expressions. They utilize a hybrid recurrent-convolutional
network, encoding expressions with recurrent neural networks and
generating response maps using fully convolutional networks from
images. Liu et al. [26] present a convolutional multimodal LSTM to
encode interactions among words, visual, and spatial information
components, enforcing a more effective word-to-image interaction.

2.3 Instance shadow detection.
Instance shadow detection is a subtask of shadow detection, and
the goal of the current instance shadow detection is to detect the
object and segment the corresponding shadow region. Wang et al.
[46] pioneer instance shadow detection and built an image-based
dataset for finer segmentation. Xing et al. [50] expand the scope of
instance shadow detection from static images to dynamic videos,
introducing a new framework to extract shadow-object associations
in videos with paired tracking.

However, our RVSD stands out from previous approaches in
two distinctions. Firstly, RVSD is a novel interactive technique for
shadow segmentation, which is more user-friendly. RVSD receives
the user’s linguistic description and the corresponding video frames
as input to segment the relevant shadows, whereas instance shadow
detection only inputs image data. Secondly, in contrast with previ-
ous approaches that focus on detecting objects in the foreground
and segmenting their associated shadows separately, RVSD offers
greater flexibility by enabling the segmentation of any shadow of
interest, including those of multiple objects or background shadows
(objects are invisible), as illustrated in Fig. 1.

3 RVSD DATASET
In this section, we introduce the newly established RVSD dataset.
We begin by detailing the video collection, annotation and valida-
tion process in Section 3.1, followed by an examination of dataset
statistics and analysis in Section 3.2.
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Figure 2: Sample frames from the RVSD dataset showcase pixel-level shadow annotations paired with textual descriptions that
guide the corresponding shadow segmentation. These examples demonstrate that our RVSD not only facilitates the flexible
segmentation of a specific shadow but also effectively segments shadows cast by groups of objects.

3.1 Constructing the RVSD dataset
3.1.1 Video Collection. Weperform data collection and re-annotation
using the most extensive publicly available video shadow dataset
to date, which comprises 120 videos, known as ViSha [3]. After
reviewing 120 potential candidates, we carefully exclude shadows
that are blended together (hard to differentiate them through tex-
tual descriptions). We also remove highly fragmented shadows.
Meanwhile, we re-mask the original binary shadow mask to label
the shadows of different instances separately. Eventually, with an
emphasis on quality over quantity, we meticulously select 86 videos
to construct a benchmark dataset that encompasses diversity and
represents a broad spectrum of real-world video scenarios. We also
conduct an analysis of various scenarios where shadows are present
in the video. Further details can be found in Table 1. According
to the tag combinations for different shadow scenarios, we give
reference suggestions for the corresponding language descriptions.
The following section will provide a more detailed explanation of
the language expression annotation and validation process.

3.1.2 Language Description Annotation. The fundamental method-
ology and procedure for language annotation in RVSD are following
previous works [8, 19, 39]. It employs an interactive approach in-
volving multiple annotators taking turns to annotate and validate.
We invited multiple people with no computer vision-related back-
ground to participate in labeling with the guidance in our Table 1.
The annotator is required to select one or multiple shadows from
the video and generate corresponding referring descriptions ac-
cording to the guidance for annotating language expressions. It is
worth noting that our guidance in Table 1 contains three elements,
the recommended , optional ◦, and not required − ones. In this

setup, there is a distinct advantage. While ensuring the accurate
depiction of various shadows, annotators have the freedom to se-
lect the description’s content, thus maximizing the richness and
flexibility of the sentences.

3.1.3 Language Description Validation. After the initial annota-
tion, we conduct validation tasks for all annotations. The validation
process commences by presenting the video along with the cor-
responding expression, prompting the validator to identify the
shadow referred to in the expression. The validator is required to
independently find the target shadow and record it. The shadow
chosen by the validator is subsequently cross-referenced with the
annotations provided by the annotator. If they align, the annotation
passes the validation; otherwise, it undergoes re-labeling and sub-
sequent validation. By implementing the validation procedure, we
strive to ensure the accurate language representation of shadows
within our dataset, while maintaining sentence diversity.

3.2 Analysis and Statistics of the RVSD dataset
3.2.1 Video and Shadow. The selection of video and shadow is
based on diversity, which makes the dataset both comprehensive
and challenging. Firstly, the number of shadows is a factor to con-
sider, since RVSD in a scene with multiple shadows generally is
more challenging than one with a single shadow. Multiple shadows,
often close in location and similar in shape, can lead to confusion
during model interpretation, thereby making precise segmentation
of a specific shadow challenging. In the RVSD dataset, there are 53
videos containing multiple shadows, and 33 videos containing only
one shadow. Next, we consider the type of shadow, namely hard
and soft shadow. A hard shadow has a distinct boundary, whereas a
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Table 1: Scene analysis of video shadows and corresponding linguistic description approaches. represents what we recommend
a description, ◦ represents the optional description, and − represents no description.

Tag combination shadow object motion shape position shadow type

Only shadow

One shadow Stable soft or hard − − ◦ ◦
Moving soft or hard − ◦ ◦

Multiple shadows

Stable soft or hard − − ◦ ◦
soft and hard − − ◦

Moving soft or hard − ◦ ◦
soft and hard − ◦

Stable and Moving soft or hard − ◦ ◦
soft and hard − ◦

Shadow and object

One shadow Stable soft or hard − ◦ ◦
Moving soft or hard ◦ ◦

Multiple shadows

Stable soft or hard − ◦ ◦
soft and hard − ◦

Moving soft or hard ◦ ◦
soft and hard ◦

Stable and Moving soft or hard ◦ ◦
soft and hard ◦

Table 2: Detailed information of the proposed RVSD datasets.

Dataset Paired prompt textual description
Shadow-text pairs Min word count Max word count

RVSD 15,011 pairs 6 words 27 words
Example 1: "the soft shadow is located below"
Example 2: "the hard shadow of a person who is holding an
umbrella and walking is in the upper left corner"

soft shadow’s boundary might be fuzzy or indistinct. Soft shadow is
more challenging to segment than hard shadow. The RVSD dataset
includes 156 hard shadows and 42 soft shadows. Finally, the diver-
sity of scenes is also an important factor, diverse scenes are closer
to the real world, making the dataset more comprehensive. The
RVSD dataset includes 74 daytime videos and 12 nighttime videos,
as well as 24 indoor videos and 62 outdoor videos.

3.2.2 Language Description. One significant characteristic of the
RVSD dataset is assigning language descriptions to each shadow
on a frame-by-frame basis. Firstly, we incorporate language de-
scriptions for shadows based on the ViSha dataset. The preceding
referring object segmentation dataset [39] offered two kinds of lan-
guage annotations: full-video expression and first-frame expression.
The first-frame expression solely relies on the static attributes of
the first frame image, whereas the full-video expression takes into
account the whole video. However, neither of these expressions
can perfectly align with the state of each target in the video (due
to the movements of objects within the video), leading to instances
where certain frames do not correspond with their language de-
scriptions. Therefore, when adding language descriptions, we add
corresponding language descriptions for each shadow target and its
corresponding frames, making the content of the language descrip-
tions match each frame. Meanwhile, we’ve established guidelines
for the method of annotating language description, making the
description more closely reflect the status of the target. In the lan-
guage descriptions, we include the type of shadow, followed by
the static attributes, the position information of the shadow, and

Figure 3: Word cloud of the RVSD dataset. The RVSD dataset
encompasses a vast vocabulary that captures shadows from
various perspectives, encompassing aspects like shadow type,
location, shape, movement, and associated objects.

the action information of the object corresponding to the shadow.
Table 2 presents the basic statistics of our language descriptions.
Fig. 3 displays the word cloud for RVSD, featuring terms associated
with shadow type (e.g., “hard shadow”, “soft shadow”), actions of
the shadow-casting subjects (e.g., “walking”, “skateboarding”), posi-
tion (e.g., “left”, “upper right”), and the objects casting the shadows
(e.g., "person" or "tree").

4 METHODOLOGY
4.1 Overview
Our approach is designed to generate a binary mask of the specified
shadow of the given input video based on the corresponding natural
language expression. Fig. 4 presents a schematic overview of our
RSM-Net, specifically devised for the RVSD task. RSM-Net takes
language descriptions and video frames as input, as depicted in
the "Language and Image Integration" box to the right of Fig. 4. It
reads the previously stored Twin-Track Synergistic Memory and
processes the image through the MSA module to jointly achieve
the accurate segmentation of the target shadow.
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Figure 4: An overview of our approach. The TSM on the left side represents the construction phase of twin-track memory, which
contains both inter-clip and intra-clip tracks of memory. The clip block (intra-clip) in the lower left corner signifies memory
propagation between frames, with each clip in the figure containing three video frames (Language and Image Integration).
Eventually, The hierarchical memory is strategically accessed for processing the current frame, ensuring comprehensive and
context-aware shadow detection.

We first present how the twin-track synergistic memory is con-
structed and the content of our Triple-Entity memory propagation
in Sec. 4.2. Subsequently, Sec. 4.3 is dedicated to a comprehensive
exposition of our language and image integration, encompassing
aspects of hierarchical memory reading and memory propagation.
Lastly, in Sec. 4.4, we describe how our MSA effectively utilizes
prior knowledge to facilitate the RVSD task.

4.2 Twin-Track Synergistic Memory (TSM)
Construction

In response to the dynamic nature of shadows, we incorporate
a twin-track memory structure into our framework. This encom-
passes both past hierarchical inter-clip memory and intra-clip mem-
ory, established before processing the current frame. The inte-
gration of these sequential memories in our network allows for
a nuanced capture of evolving information across the video se-
quence, significantly contributing to the precise segmentation of
the current frame. We emphasize that our hierarchical memory
is dynamically updated. Specifically, when processing the current
frame 𝑐𝑙𝑖𝑝𝑖 , we constructed memory using the preceding five clips
{𝑐𝑙𝑖𝑝𝑖−5, ..., 𝑐𝑙𝑖𝑝𝑖−1}. This dynamic updating and utilization inmem-
ory enhances our network’s flexibility and efficiency while avoid-
ing the disturbances from significant variations in very early video

frames, allowing it to continuously adapt to the varying character-
istics of shadows during the segmentation process.

First, our hierarchical inter-clip memory is generated from multi-
ple clip blocks. The details of the clip block are in the yellow box in
the lower left corner of Fig. 4. It mainly contains triple-entity mem-
ory propagation. In the triple-entity, the 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑏𝑜𝑥 𝑡𝑏𝑜𝑥 ∈ R𝑁𝑞×4

denotes the predicted shadow detection box, 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
𝑡𝑟𝑒𝑝 ∈ R𝑁𝑞×𝑑 refers to the encoded multi-modal features, and
𝑙𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒 𝑞𝑢𝑒𝑟𝑦 𝑡𝑞𝑢𝑒 ∈ R𝑁𝑞×𝑑 signifies the shadow query. Our hi-
erarchical inter-clip memory stores 𝑡𝑟𝑒𝑝𝑠 from three different time
scales {T1,T2,T3}. Meanwhile, we pick up the triple-entity of the
previous frame of the currently pending frame from 𝑐𝑙𝑖𝑝𝑖−1 as the
intra-clip memory. Next, we will elaborate on the processing of the
current frame and the efficient retrieval of information from the
twin-track memory.

4.3 Referring Video Frame Shadow
Segmentation and Memory Read

In line with earlier researches [2, 49, 52], our learnable query-based
referring segmentation largely follows a well-established paradigm,
the Deformable DETR [52]. This involves processing a video frame,
a textual expression, and a set of learnable queries. The output in-
cludes the target bounding box, segmentation mask, and associated
output embeddings that match the input language expression.
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Figure 5: Details of hierarchical memory reading. First, per-
form memory embedding on it and then input it into the
self-attention module together with the Learnable query.

To process a particular 𝑡𝑡ℎ frame image 𝐼𝑡 , our network first
performs attention enhancement of potential shadow regions via
the MSA module, followed by extracting image feature F𝑖 via the
visual encoder. Meanwhile, the associated language description
𝜀 = {𝑒𝑖 }𝑁𝑖=1 with 𝑁 words, where 𝑒𝑖 is the 𝑖𝑡ℎ word is tokenized and
fed into the text encoder, yielding F𝜀 . Next, the visual and linguistic
embeddings are linearly projected to a unified embedding space
with the same dimension and concatenated to form a multi-modal
embedding, denoted as F𝑚 = {F𝑖 , F𝜀 }. This is then input into the
transformer encoder, realizing cross-modal information fusion and
interaction.

In the reading phase, it receives the triple-entity from the pre-
ceding frame along with the hierarchical memory, subsequently
outputting the 𝐸𝑚 ∈ R𝑁𝑞×𝑑 . Initially, we apply memory embed-
ding to the hierarchical memory as shown in Fig. 5, thereby fusing
features across various temporal scales as follows:

ℎmem = Φ
(3)
MLP (𝐶𝑜𝑛𝑐𝑎𝑡 (𝐹𝐶 (T1), 𝐹𝐶 (T2), 𝐹𝐶 (T3))) , (1)

where Φ(3)
MLP represents a three-layer MLP (Multi-Layer Perceptron).

𝐶𝑜𝑛𝑐𝑎𝑡 and 𝐹𝐶 stand for concatenated operations and fully con-
nected layers, respectively. The ℎmem is fed into the Multi-Head
Self-Attention module as both the Key (K) and Value (V), while
the Query (Q) originates from the intra-clip 𝑙𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒 𝑞𝑢𝑒𝑟𝑦 𝑡𝑞𝑢𝑒 .
During the propagation phase, the 𝑡𝑟𝑒𝑝 advances the output as
Φ
(3)
MLP (𝐸𝑚).
To generate the final mask, our segmentation pyramid network

implements a cross-modal FPN (Feature Pyramid Network) [25]
to enable multi-scale fusion between the linguistic features and
visual feature maps (see Sec. 5 for model details). To summarize, the
training objective of our network is to minimize the loss function
as follows:

arg min
𝛼box,𝛽mask

Lrefer = 𝛼boxLbox + 𝛽maskLmask, (2)

whereLbox denotes the loss associated with bounding boxes, which
is a composite of L1 loss and GIoU loss [37]. Lmask signifies the
loss pertaining to masks, aggregating DICE loss [35] and the focal

Figure 6: Illustration of MSA. The image is transformed into
two distinct color spaces, enabling thresholding and mor-
phological operations that result in the creation of a shadow
attention map.

loss for binary masks. The coefficients for the losses are denoted as
𝛼box for Lbox, and 𝛽mask for Lmask.

4.4 Mixed-Prior Shadow Attention (MSA)
The premise and foundation of the RVSD task is that the network
can recognize and pay attention to the shadow region. Therefore,
we design a Mixed-Prior Shadow Attention (MSA) module to utilize
the physical prior knowledge [7, 11] to generate a weight map𝑚𝑎

to help the network focus more on the shadow region. Given the
complexity and variability of the shadow background, our MSA
identifies the shadow region from two different color spaces to
improve robustness and generalization, as illustrated in Fig. 6.

Grayscale Thresholding. For a given image 𝐼𝑡 , the grayscale
representation is obtained by converting the RGB channels into a
single intensity channel 𝐼gray. Mathematically, the binary shadow
mask𝑀gray is obtained as:

𝑀gray =
{
(𝑥,𝑦) |𝑇min ≤ 𝐼gray (𝑥,𝑦) ≤ 𝑇max

}
, (3)

where the thresholds [𝑇min, 𝑇max] specify the acceptable range of
grayscale values for identifying shadow regions.

HSV Thresholding. The input frame 𝐼𝑡 is also converted to the
HSV color space 𝐼HSV. In the HSV color space, shadow regions
typically exhibit lower values in the Saturation (𝑆) and Value (𝑉 )
channels due to color desaturation and reduced brightness caused
by occlusion. Thus, two thresholds 𝑇𝑆 and 𝑇𝑉 are applied on the
Saturation and Value channels respectively to discern the shadow
regions. The binary shadow mask𝑀HSV is obtained as:

𝑀𝐻𝑆𝑉 = {(𝑥,𝑦) |𝑇𝑆min ≤ 𝑆 (𝑥,𝑦) ≤ 𝑇𝑆max ,

𝑇𝑉min ≤ 𝑉 (𝑥,𝑦) ≤ 𝑇𝑉max

}
.

(4)

The thresholds 𝑇𝑆min ,𝑇𝑆max ,𝑇𝑉min , and 𝑇𝑉max specify the acceptable
range for shadow regions in the 𝑆 and 𝑉 channels.

The combined shadow mask is then obtained by:

𝑀combined (𝑥,𝑦) = Ψ𝑚𝑜𝑟 (𝑀HSV (𝑥,𝑦)) ∪ Ψ𝑚𝑜𝑟 (𝑀gray (𝑥,𝑦)). (5)

The morphological operation (Ψ𝑚𝑜𝑟 ) here specifically refers to the
"opening" operation function with a kernel of size 5 × 5. This oper-
ation comprises an erosion followed by a dilation, which helps to
remove noise and small interference while keeping the structure of
the referring shadow. The final combined mask𝑀combined is then
obtained by taking the union (logical OR operation denoted by ∪)
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Table 3: Quantitative comparison of our network and other state-of-the-art methods on the RVSD Dataset.

Precision IoUMethod Pub. P@0.5↑ P@0.6↑ P@0.7↑ P@0.8↑ P@0.9↑ Overall↑ Mean↑ mAP↑

URVOS [39] ECCV 2020 51.2 44.8 37.5 28.6 16.1 58.5 45.9 33.5
CMPC-V [28] TPAMI 2021 51.3 46.8 39.1 30.6 17.3 57.8 46.5 34.6
LBDT [9] CVPR 2022 55.0 50.3 40.6 31.1 17.6 62.6 48.9 36.4
MTTR [2] CVPR 2022 56.5 51.6 41.6 33.3 19.6 61.4 51.3 37.9

ReferFormer [49] CVPR 2022 70.1 64.2 56.5 45.1 26.8 67.2 61.2 49.3
SgMg [34] ICCV 2023 70.3 66.0 57.4 44.5 27.3 68.3 62.2 49.7
R2VOS [23] ICCV 2023 71.2 66.9 58.3 45.0 27.0 69.8 62.4 50.2

OnlineRefer [48] ICCV 2023 71.5 65.7 57.8 46.1 27.9 70.2 62.5 50.5
Our RSM-Net - 73.1 68.0 61.2 46.8 27.1 74.6 64.3 51.8

Gain - ↑1.6 ↑1.1 ↑2.9 ↑0.7 ↑- ↑4.4 ↑1.8 ↑1.3

Table 4: Ablation study of our methods on the RVSD Dataset. IntraC and InterC represent our network with only intra-clip
memory features and only the inter-clip memory features, respectively. The IntraC-S and InC-H denote a single scale (Temporal
scale 1) and a hierarchical scale (Temporal scale 1, 2, and 3), respectively for learning the inter-clip memory features.

TSM Precision IoUMethod MSA IntraC InerC-S InterC-H P@0.5↑ P@0.6↑ P@0.7↑ P@0.8↑ P@0.9↑ Overall↑ Mean↑ mAP↑

Baseline - - - - 68.8 62.3 56.2 42.4 25.5 65.7 60.4 47.7
M1 ✓ - - - 70.0 65.1 57.8 43.1 25.8 68.2 61.3 49.0
M2 ✓ ✓ - - 71.9 66.6 59.5 45.6 27.0 71.8 62.8 50.7
M3 ✓ ✓ ✓ - 72.6 67.1 59.5 45.7 27.2 72.0 63.3 51.0

Our RSM-Net ✓ ✓ ✓ ✓ 73.1 68.0 61.2 46.8 27.1 74.6 64.3 51.8

of these morphologically processed masks. The𝑀combined is then
weighted as attention map𝑚𝑎 on the input frame 𝐼𝑡 .

5 EXPERIMENTS
5.1 Evaluation Metrics and Data Setting.
Following referring segmentation works[2, 9, 44], we employ stan-
dard metrics for quantitative comparisons. These metrics are Pre-
cision@K, Overall IoU, Mean IoU, and mAP (mean Average Preci-
sion) across an IoU (Intersection over Union) range from 0.50 to
0.95 (a step of 0.05). IoU measures the overlap between predicted
and ground truth regions, while precision@K evaluates the pro-
portion of test instances surpassing the IoU threshold of K. The
mAP metric computes the mean precision over varying IoU thresh-
olds. To ensure a rich variety of scenarios in both the training and
testing phases, the dataset is reasonably divided into training and
testing subsets. The training subset encompasses 54 videos paired
with 9,856 sentence-shadow combinations, while the testing subset
contains 32 videos accompanied by 5,155 pairs.

5.2 Implementation and Training Details.
We utilize ResNet50 [13] as the visual backbones for extracting
features. For the text encoding, we employ RoBERTa [30] and freeze
its parameters throughout the training process. Following [48, 52],
the final three-stage features from our visual backbone serve as
inputs for both the Transformer encoder and the FPN [25]. The
encoder and decoder of our Multi-modal Transformer framework
have four layers, operating at a dimensionality of 𝑑 = 256. The

threshold range [𝑇𝑆min ,𝑇𝑆max ], [𝑇𝑉min ,𝑇𝑉max ] were empirically set as
[[0, 155], [6, 130]].

We perform all experiments using PyTorch on anNVIDIAGeForce
RTX 3090 GPU with 24 GB of memory for training. Our model
optimization employs the AdamW optimizer [32] with an initial
learning rate set at 1𝑒 − 5, while the visual backbone is adjusted
at a lower rate of 5𝑒 − 6. The training spans 20 epochs, and the
featuring learning rate reductions by a factor of 0.1 after the 3rd
and 5th epochs. The initial frame’s query number 𝑁𝑞 is set to 5.
Each video frame is resized to ensure a minimum dimension of 320
on the shorter side and a maximum of 576 on the longer side.

5.3 Comparison with State-of-the-art Methods
We compare our network against state-of-the-art methods on the
RVSD dataset. These comparedmethods include URVOS [39], CMPC-
V [28], LBDT [9], MTTR [2], ReferFormer [49], SgMg [34], R2VOS
[23] and OnlineRefer [48]. In Table 3, we report the quantitative
performance of our network and eight referring video segmentation
methods on the RVSD datasets. According to Table 3, we can find
that our RSM-Net clearly outperforms all compared methods, since
our RSM-Net achieves the highest scores across nearly all evalu-
ated metrics. Moreover, the last row ("Gain") in Table 3 highlights
our method’s improvements over competing approaches, and our
network has an Overall IOU increase of 4.4%.

Moreover, Fig. 7 shows the visual comparisons of RVSD results
produced by our network and other state-of-the-art methods. Ap-
parently, with the same text descriptions and input video frames,
our network can better identify the referred shadow regions than
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Figure 7: Visual comparisons of predicted video shadow detection results referring by the text descriptions. Apparently, our
RSM-Net clearly outperforms compared methods and achieves more accurate shadow detection results based on the relevant
text descriptions. Please zoom in for more details.

the compared methods, and our results are more consistent with
the ground truths. For example, the first, second, and third rows
of Fig. 7 show that our method can accurately segment the de-
scribed region when there are multiple shadow regions present,
whereas other methods (MTTR [2] in the second and third rows)
may segment irrelevant shaded regions or may fail to recognize the
corresponding shaded region (ReferFormer [49] and SgMg [34] in
the first row). The fourth and fifth rows illustrate the segmentation
for the shadow of interest through text descriptions when the object
is not entirely visible or absent in the image, a feat not achievable
with current instance shadow segmentation techniques. Our results
can be observed to more closely align with the ground truths.

5.4 Ablation Studies
We further conduct ablation studies to validate the effectiveness
of our MSA and TSM designs. To do so, we construct a baseline
(denoted as "Baseline") by eliminating our MSA and TSM from our
RSM-Net. Subsequently, we incrementally integrate MSA and TSM
into the "Baseline" to formulate four networks, which are denoted as
"M1", "M2", "M3", and our RSM-Net. Table 4 reports the quantitative
results of these networks. Apparently, "M1" outperforms "Baseline",
showcasing the effectiveness of the coarse shadowmask attention in
our MSA for RVSD. The improvement in metrics from "M2" to "M1"

demonstrates the contribution of the intra-clip memory features
in our network. The progression from "M2" to "M3" with greater
metric results further suggests that the incorporation of inter-clip
features at a single temporal scale can bolster RVSD. while the
larger metric results of "M3" than "M2", which further indicates that
the inter-clip features at a single temporal scale can also enhance
RVSD. In the end, our network has a superior performance over
"M3", which demonstrates our hierarchical inter-clip features enable
a better RVSD performance in our network.

6 CONCLUSION
In this study, we pioneer the RVSD task, which integrates linguistic
prompts with video shadow detection, paving the way for new
potential applications, such as interactive video editing. Our first
contribution is the development and annotation of the dataset for
RVSD, comprising 86 videos paired with 15,011 text descriptions
and corresponding shadow masks. Furthermore, we devise a Twin-
Track Synergistic Memory (TSM) module to learn intra-clip and
hierarchical inter-clip memory features to boost segmentation per-
formance and a Mixed-Prior Shadow Attention (MSA) module to
learn a coarse shadow attention map for refining shadow areas for
RVSD. Experimental results demonstrate that our method achieves
better performance than other leading comparative methods.
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