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Abstract
Multi-condition single-cell data reveals expres-
sion differences between corresponding cell sub-
populations in different conditions. Here, we pro-
pose to use regression on latent spaces to simul-
taneously account for variance from known and
latent factors. Our approach is built around multi-
variate regression on Grassmann manifolds. We
use the method to analyze a drug treatment ex-
periment on brain tumor biopsies. The method
is a versatile new approach for identifying differ-
entially expressed genes from single-cell data of
heterogeneous cell subpopulations under arbitrary
experimental designs without clustering.

1. Introduction
Compared to bulk RNA-seq, the novelty of single-cell RNA-
seq is that it can disentangle expression changes between
corresponding cells (i.e., the same cell type and state) under
different conditions from those between cell types and states.
This combination of explicitly known and latent covariates
poses a challenge to existing regression approaches. Vari-
ances observed in multi-condition single-cell data can be
decomposed into four sources: (1) the conditions, which are
explicitly known or even set by the experimenter, (2) cell
type or state, which we consider a latent variable that is not
explicitly given but can be inferred from the data with some
degree of confidence, (3) interactions between the two, and
(4) unexplained residual variability.

Currently, the most popular approach is to convert the latent
variation into discrete categories by unsupervised clustering
or supervised classification. In practice, each cell is assigned
to a cluster or group, and expression differences are calcu-
lated across conditions using methods initially developed
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for bulk RNA-seq data (Crowell et al., 2020). This approach
has potential drawbacks: most importantly, while discrete
cell types might serve as a helpful first-line abstraction, they
are insufficient to represent gradual variability, and second,
the optimal group size is unclear.

Here, we present a new statistical model for differential
expression analysis of multi-condition single-cell data that
combines the ideas of linear models and principal compo-
nent analysis (PCA). We call the method Latent Embedding
MUltivariate Regression (LEMUR) and implemented it as
an R package.

LEMUR is built around the idea of regression on Grassmann
manifolds. The Grassmann manifold Gr(G,P ) is the set
of all subspaces of dimension P embedded in a G > P
dimensional space (Edelman et al., 1998; Bendokat et al.,
2020). The elements of Grassmann manifolds can be rep-
resented using orthonormal matrices of size G × P . This
representation is not unique because multiple matrices can
represent the same subspace, but convenient because of its
small memory footprint.

Geodesic regression generalizes regular linear regression to
optimization problems on manifolds (Fletcher, 2011; Rent-
meesters, 2011)

argmin
b,v

1

2

N∑
i=1

d(Expb(xiv), yi)
2 (1)

where x are the known covariates, b ∈ M is a point on the
manifold, and v ∈ TbM is a tangent vector at b. Exp is
the exponential map on the manifold M, and the distance
function d is defined as the norm of the logarithmic map
(d(b1, b2) = ||Logb1(b2)|| ).

Kim et al. (2014) extended model (1) to a multivariate set-
ting

argmin
b,v1,...,vK

1

2

N∑
i=1

d

(
Expb

(
K∑

k=1

Xikvk

)
, yi

)2

(2)

where instead of just optimizing a single coefficient, we op-
timize over K coefficients matching the number of columns
in a design matrix X ∈ RN×K . The additional flexibility is
helpful, for example, to model known confounders.
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Figure 1. A conceptual overview of latent embedding multivariate regression (LEMUR). (A) Graphical depiction of the matrix factorization
at the core of LEMUR. (B) The function R(x) returns latent spaces and is parameterized by parameters vk acting as high-dimensional
rotations. (C) The function S(x) does not affect the approximation of Y but changes the latent positions of the conditions relative to each
other and can bring corresponding subpopulations closer. (D) Contrasting the predicted expression level from two conditions for each cell
produces a differential expression (DE) value (∆) for each gene and cell.

Fletcher and Rentmeesters optimized equation (1) using
Jacobi fields, but this approach does not work for eq. (2).
Instead, Kim et al. suggested working in the tangent space of
the base point b to approximate the solution. They optimized

argmin
v1,...,vK

1

2

N∑
i=1

||
K∑

k=1

Xikvk − y≀i||2 (3)

where y≀i = Logb(yi) and which can be solved using regular
linear regression.

Performing regression on Grassmann manifolds has been
used before, for example, to analyze images or predict do-
main adaption, however the existing work is not directly
applicable because it is either limited to a single covariate
(Batzies et al., 2015; Hong et al., 2016) or built around
kernel regression (Lui, 2012; Yang & Hospedales, 2016).

2. Results
Our method LEMUR disentangles the four sources of vari-
ance in multi-condition single-cell data by performing mul-
tivariate regression on Grassmann manifolds.

LEMUR takes as input a data matrix Y ∈ RG×C , where G
is the number of genes and C is the number of cells. The
method assumes that appropriate preprocessing, including
size factor normalization and variance stabilization, was
performed (Ahlmann-Eltze & Huber, 2023). In addition, it
expects specification of the design matrix X ∈ RC×K . It
produces several outputs:

• a low-dimensional representation of all cells,

• explicitly parameterized, bijective transformations that
map the latent spaces into a joint space, and

• the predicted expression changes between any pair of
conditions for each gene and cell.

2.1. Regression on Latent Spaces

LEMUR is both a regression and a matrix factorization
algorithm (Fig. 1A). The simplest matrix factorization is
PCA (and similarly SVD) which can be used to approximate
a data matrix Y by a product of two simpler matrices

Y ≈ RZ + γoffset. (4)

Here, R ∈ RG×P is called principal vectors (or sometimes
rotation or loadings matrix). The columns of R are or-
thonormal (RTR = I). The embedding matrix Z ∈ RP×C

contains the P -dimensional coordinates of each cell in the
latent space. If P < min(G,C), PCA reduces the dimen-
sion of the data. γoffset is a vector with G rows and centers
the observations1.

LEMUR combines these ideas with regression analysis in
the presence of covariates for the cells encoded in a design
matrix X . Instead of R being fixed, we treat it as a function
of the covariates,

R : RK → {A ∈ RG×P | ATA = IP } (5)

where the function arguments are rows of the design matrix
and the output is the set of orthonormal G×P matrices. We

1We overload the sum operator (+) for a matrix and a con-
formable column vector to produce another matrix: Cij = Aij+bi
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parameterize R using the exponential map of a Grassmann
manifold

R(x) = Expb

(
K∑

k=1

xkvk

)
. (6)

Thus our model is

Y:c ≈ R(Xc:) Z:c + γ(Xc:), (7)

where we use the notation : to indicate extracting row or
column vectors from a matrix (e.g., Z:c is a vector of length
P that contains the latent space representation of cell c). We
allow the offset γ to depend on the covariates, too.

R(x) is the latent space for all cells in condition x, i.e., all
cells whose corresponding row in the design matrix equals
x. Since R is defined on all of RK , the model can interpo-
late or extrapolate conditions that were not even measured.
Informally, we think of the function R in analogy to link
functions in generalized linear models, which map linear
predictors to statistical distributions from which observa-
tions are drawn. In our model, R maps the linear predictor
for a cell to a linear subspace of the full gene expression
space, in which we believe this cell’s gene expression should
lie (Fig. 1B).

Model (7) addresses the variance decomposition challenge
posed in the introduction: known sources of variation are
encoded in the design matrix X and act through the function
R(X); the latent variation (cell types or states) takes place
in the linear space spanned by R(X) and is parameterized
by each cell’s coordinates in Z. Interactions between the
two are represented by condition-dependent changes in R(x)
that can differ in different directions of the embedding space
Z, and unexplained variability is absorbed in the residuals
of the approximation (Fig. 1B).

To optimize the coefficients in model (7), we first fit
γ(x) = Γx using linear regression. Then, we optimize
the coefficients v1, . . . , vK for Y − γ(X) using the approx-
imation of Kim et al. (2014). For each condition (i.e., set
of cells with the same row x in the design matrix), we find
the corresponding point y≀ ∈ Gr(G,P ) on the Grassmann
manifold by calculating the principal vectors via PCA for
the cells in that condition. As the base point b, we use the
principal vectors from PCA on all cells (details in Appendix
A).

2.1.1. FINE-TUNING THE EMBEDDING

Model (7) assumes that corresponding cell subpopulations
from different conditions can be matched just by aligning
their respective latent spaces through a high-dimensional
rotation. Sometimes, this is not flexible enough, e.g., if a
treatment drastically affects some, but not all, cell subpopu-
lations, and thus the relative distances between subpopula-
tions change. To model such localized changes (Fig. 1C),

we extend eq. (7) by a condition-dependent linear alignment
matrix S:

Y:c ≈ R(Xc:) S(Xc:) Z
′
:c + γ(Xc:). (8)

The P × P matrix S(x) is invertible, and we define Z ′
:c :=

S−1(Xc:)Z:c. This ensures that S only influences which
subpopulations are considered “corresponding” and does
not affect the approximation of Y . The analyst can provide
cell-type labels or use tools like Harmony (Korsunsky et al.,
2019) to find those labels automatically; alternatively, we
set S ≡ I to skip the alignment.

We parameterize S as

S(x) =

(
I +

K∑
k=1

xkwk

)−1

, (9)

where w1, . . . , wK are the coefficients of S. For a given
vector of labels u = {1, . . . , Q}C that assigns each cell to a
group q, we find the coefficients w1, . . . , wK by optimizing

argmin
w1,...,wK

C∑
c=1

||Muc−S−1(Xc:)Z:c||2+λ

K∑
k=1

||wk||2 (10)

where Mq = 1
#(u=q)

∑
c∈{u=q} Z:c is the mean of the

latent positions of the cells in that group. The parameter
λ controls the strength of the ridge penalty, and for a large
enough λ the matrix S(x) will be invertible.

2.1.2. DIFFERENTIAL EXPRESSION ANALYSIS

Model (8) predicts gene expression given a value of the
covariates x and a position in the embedding space z. We
calculate the differential expression for each gene and cell
by comparing the predictions for any contrast (e.g., between
two conditions x(A) and x(B)) for all Z ′ (Fig 1E).

We use the matrix of differential expression values ∆
(G × C) to visualize the differential expression patterns
for selected genes as a function of the latent space (in prac-
tice, we use for this a convenient 2D embedding of it, such
as UMAP (McInnes et al., 2018)) to see how the differential
expression possibly changes across that space.

2.2. Analysis of a Drug Perturbation in Glioblastoma

The glioblastoma study by Zhao et al. (2021) reported single-
cell RNA-seq data of glioblastoma biopsies from five pa-
tients, each in two conditions: control and panobinostat, a
non-selective histone deacetylase (HDAC) inhibitor. Fig. 2A
shows the paired experimental design. In total, there are
C = 47 900 cells, and we considered the G = 6000 most
variable genes.

A two-dimensional visualization of the cells by applying
UMAP to the normalized matrix Y showed patterns most
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Figure 2. Results from applying LEMUR to a glioblastoma dataset. (A) A schematic of the experimental design. (B-D) UMAP plots
colored by condition on the input data (top row) or the cell type (bottom row): UMAP of (B) Y , (C) the inferred latent position Z with
S(x) = I , and (D) Z′ after adjustment using maximum diversity clustering. (E) The differential expression inferred by LEMUR for five
genes, with cells laid out by UMAP of Z′.

distinctively associated with the known covariates patient ID
and treatment condition (Fig. 2B). We used LEMUR to ab-
sorb patient and treatment effects into R, using a P = 15 di-
mensional latent space and fixing S(x) = I . Fig. 2C shows
a UMAP of the matrix Z of latent coordinates for each cell.
As a result, cells from different samples were more inter-
mixed, and the visualization reflected more within-sample
cellular heterogeneity. This picture became even clearer af-
ter we used S to encode an alignment between cell subpopu-
lations across samples using Harmony’s maximum diversity
clustering. Here, a large tumor subpopulation (classified by
Zhao et al. (2021) based on chromosome 7 amplification
and chromosome 10 deletion) and two non-tumor subpopu-
lations became apparent (Fig. 2D).

We plotted the predicted expression change between panobi-
nostat treatment and the control condition for five genes
on the UMAP visualization of Z ′ (Fig. 2E). We found that
the differential expression patterns correspond well with the
manually assigned cell types.

3. Discussion
We have introduced a method for analyzing single-cell ex-
pression data of heterogeneous tissues under multiple con-
ditions with arbitrary experimental designs. LEMUR uses

regression on latent spaces to enable cluster-free differential
expression analysis. We have shown how it can harmonize
data using linear transformations. We demonstrated its util-
ity for finding differentially expressed genes and subsets
of affected cells. Applied to the glioblastoma dataset by
Zhao et al. (2021), LEMUR identified biologically relevant
expression patterns.

Some aspects of the current implementation leave room for
improvement: we only approximately solve the optimiza-
tion of model (7), which could be improved with gradient
descent (but calculating the gradient is non-trivial). Second,
the optimization of S is a regression-based version of the
generalized Procrustes problem. This might allow us to
use a variant of Bai and Bartolis’s (2022) eigenvalue-based
approach to find the targets Mq instead of simple averaging.

Overall, we believe that LEMUR is an exciting application
of geometric machine learning to single-cell data analysis.
Compared to approaches that require clustering before dif-
ferential expression analysis, the representation of cells in a
continuous latent space may be a better fit for the underly-
ing biology. Compared to deep-learning-based latent space
approaches, LEMUR’s interpretable, simple, and easy-to-
inspect model should facilitate follow-up investigation of
its discoveries.
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Software and Data
The single-cell glioblastoma data is publicly available on
the GEO database with the identifier GSE148842. An im-
plementation of the method is available as an R package on
github.com/const-ae/lemur.
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A. Appendix
To illustrate LEMUR’s algorithm, we provide a simplified implementation of the core functions in R (minimum version 4.1).
The multicondition pca function optimizes model (7) with S(x) = I .
g r a s s m a n n l o g <− f u n c t i o n ( p , q ){

n <− nrow ( p )
k <− n c o l ( p )
z <− t ( q ) %*% p
At <− t ( q ) − z %*% t ( p )
Bt <− lm . f i t ( z , At ) $ c o e f f i c i e n t s
svd <− svd ( t ( Bt ) , k , k )
svd $u %*% d i a g ( a t a n ( svd $d ) , nrow = k ) %*% t ( svd $v )

}

grassmann map <− f u n c t i o n ( x , b a s e p o i n t ){
svd <− svd ( x )
b a s e p o i n t %*% svd $v %*% d i a g ( cos ( svd $d ) , nrow = l e n g t h ( svd $d ) ) %*% t ( svd $v ) +

svd $u %*% d i a g ( s i n ( svd $d ) , nrow = l e n g t h ( svd $d ) ) %*% t ( svd $v )
}

# ’ @param Y i s a m a t r i x wi th f e a t u r e s i n t h e rows and o b s e r v a t i o n s i n t h e columns
# ’ @param d e s i g n m a t r i x a m a t r i x wi th one row p e r o b s e r v a t i o n cod in g t h e c o v a r i a t e s
# ’
# ’ @return a l i s t w i th t h e embedding , t h e b a s e p o i n t , t h e c o e f f i c i e n t s f o r t h e
# ’ Grassmann e x p o n e n t i a l map , and t h e c o e f f i c i e n t s f o r t h e l i n e a r r e g r e s s i o n .
m u l t i c o n d i t i o n p c a <− f u n c t i o n (Y, d e s i g n m a t r i x , n embedding = 15){

# C e n t e r o b s e r v a t i o n s wi th l i n e a r r e g r e s s i o n g
f i t <− lm . f i t ( d e s i g n m a t r i x , t ( a s . m a t r i x (Y ) ) )

Y <− t ( r e s i d u a l s ( f i t ) )

# Find base p o i n t w i th PCA ove r a l l d a t a p o i n t s
b a s e p o i n t <− i r l b a : : p r c o m p i r l b a ( t (Y) , n = n embedding , c e n t e r = FALSE) $ r o t a t i o n

# Find t h e s u b s p a c e o f each c o n d i t i o n
r e d d e s i g n <− u n i qu e ( d e s i g n m a t r i x )
c o n d i d s <− v c t r s : : v e c g r o u p i d ( d e s i g n m a t r i x )
c o n d w e i g h t s <− c ( t a b l e ( c o n d i d s ) )
c o n d s u b s p a c e s <− l a p p l y ( s e q l e n ( nrow ( r e d d e s i g n ) ) , \( cond ){

i r l b a : : p r c o m p i r l b a ( t (Y[ , c o n d i d s == cond , drop =FALSE ] ) ,
n = n embedding , c e n t e r = FALSE) $ r o t a t i o n

})

# Find c o e f f i c i e n t s o f Grassmann e x p o n e n t i a l map
l o g p o i n t s <− do . c a l l ( cb ind , l a p p l y ( c o n d s u b s p a c e s , \( s u b s p a c e ){

as . v e c t o r ( g r a s s m a n n l o g ( b a s e p o i n t , s u b s p a c e ) )
} ) )
c o e f f i c i e n t s <− t ( lm . w f i t ( r e d d e s i g n , t ( l o g p o i n t s ) , w = c o n d w e i g h t s ) $ c o e f f i c i e n t s )
c o e f f i c i e n t s <− a r r a y ( c o e f f i c i e n t s , dim = c ( nrow (Y) , n embedding , n c o l ( d e s i g n m a t r i x ) ) )

# P r o j e c t t h e p o i n t s on t h e embedding
embedding <− m a t r i x (NA, nrow = n embedding , n c o l = n c o l (Y) )
f o r ( cond i n s e q l e n ( nrow ( r e d d e s i g n ) ) ){

t a n g v e c <− m a t r i x ( 0 , nrow = nrow (Y) , n c o l = n embedding )
f o r ( k i n s e q l e n ( n c o l ( r e d d e s i g n ) ) ){

t a n g v e c <− t a n g v e c + r e d d e s i g n [ cond , k ] * c o e f f i c i e n t s [ , , k ]
}
embedding [ , c o n d i d s == cond ] <− t ( grassmann map ( t a n g v e c , b a s e p o i n t ) ) %*% Y[ , c o n d i d s == cond ]

}

# Order axes by v a r i a n c e
svd emb <− svd ( embedding )
b a s e p o i n t <− b a s e p o i n t %*% svd emb $u
f o r ( k i n s e q l e n ( n c o l ( d e s i g n m a t r i x ) ) ){

c o e f f i c i e n t s [ , , k ] <− c o e f f i c i e n t s [ , , k ] %*% svd emb $u
}
embedding <− t ( svd emb $v ) * svd emb $d

# R e t u r n v a l u e s
l i s t ( embedding = embedding , b a s e p o i n t = b a s e p o i n t ,

c o e f f i c i e n t s = c o e f f i c i e n t s , l i n e a r c o e f f i c i e n t s = t ( f i t $ c o e f f i c i e n t s ) )
}

The align function optimizes the parameters of S(x) and combined with multicondition pca the functions solve
model (8).
r i d g e r e g r e s s i o n <− f u n c t i o n (Y, X, r i d g e p e n a l t y = 0 , w e i g h t s = r e p ( 1 , nrow (X) ) ){

r i d g e p e n a l t y <− d i a g ( r i d g e p e n a l t y , nrow = n c o l (X) )
w e i g h t s s q r t <− s q r t ( w e i g h t s )
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X extended <− r b i n d (X * w e i g h t s s q r t , s q r t ( sum ( w e i g h t s ) ) * ( t ( r i d g e p e n a l t y ) %*% r i d g e p e n a l t y ) )
Y ex tended <− c b i n d ( t ( t (Y) * w e i g h t s s q r t ) , m a t r i x ( 0 , nrow = nrow (Y) , n c o l = n c o l (X ) ) )
q r <− qr ( X ex tended )
t ( s o l v e ( qr , t ( Y ex tended ) ) )

}

a l i g n <− f u n c t i o n ( embedding , de s ign , groups , r i d g e p e n a l t y ){
g r ou ps <− as . i n t e g e r ( a s . f a c t o r ( g r oup s ) )
# C a l c u l a t e t a r g e t shape u s i n g mean p e r group
means <− l a p p l y ( s e q l e n ( max ( g ro up s ) ) , \( g r ) m a t r i x S t a t s : : rowMeans2 ( embedding , c o l s = g r ou ps == gr ) )
M <− do . c a l l ( cb ind , means [ g r oup s ] )
# So lve o p t i m i z a t i o n o f eq . ( 1 0 ) wi th r i d g e r e g r e s s i o n
i n t e r a c t d e s i g n m a t r i x <− ( d e s i g n %x% m a t r i x ( 1 , n c o l = nrow ( embedding ) ) ) *

( m a t r i x ( 1 , n c o l = n c o l ( d e s i g n ) ) %x% t ( embedding ) )
a l i g n m e n t c o e f s <− r i d g e r e g r e s s i o n (M − embedding , i n t e r a c t d e s i g n m a t r i x , r i d g e p e n a l t y )
a l i g n m e n t c o e f s <− a r r a y ( a l i g n m e n t c o e f s , dim = c ( nrow ( embedding ) , nrow ( embedding ) , n c o l ( d e s i g n ) ) )
# Apply a l i g n m e n t t o embedding
c o n d i d s <− v c t r s : : v e c g r o u p i d ( d e s i g n )
f o r ( i d i n u n iq ue ( c o n d i d s ) ){

t a n g v e c <− m a t r i x ( 0 , nrow = nrow ( embedding ) , n c o l = nrow ( embedding ) )
f o r ( k i n s e q l e n ( n c o l ( d e s i g n ) ) ){

t a n g v e c <− t a n g v e c + d e s i g n [ which ( c o n d i d s == i d ) [ 1 ] , k ] * a l i g n m e n t c o e f s [ , , k ]
}
embedding [ , c o n d i d s == i d ] <− ( d i a g ( nrow = nrow ( embedding ) ) + t a n g v e c ) %*% embedding [ , c o n d i d s == i d ]

}
# R e t u r n r e s u l t
l i s t ( a l i g n m e n t c o e f s = a l i g n m e n t c o e f s , embedding = embedding )

}
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