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ABSTRACT

It has been hypothesized that the old brain was compressed into cortical columns
of the neocortex during the evolution of mammalian brains. Computational mod-
eling of hippocampal-cortical interaction inspires us to propose a navigation-based
implicit representation for manifold learning. The key new insight is to trans-
form any explicit function (or geometrically a manifold) to an implicit representa-
tion using design bias for exploiting the concentration of measure (CoM) in high
dimensional spaces. CoM-based blessing of dimensionality enables us to solve
the manifold learning problem by direct-fit or local computation with guaranteed
generalization property and without the need to discover global topology. We
construct a memory encoding model, namely specification-before-generalization
(SbG), and extend it into recursive kernel transformation to mirror the nested
structure of the physical world. The biological plausibility of SbG learning is
supported by its consistency with the wake-sleep cycles of mammalian brains.
Finally, we showcase the application of design bias and recursive kernel transfor-
mation to understanding the phylogenetic continuity of navigation and memory
and the manifold untangling of object recognition by the ventral stream.

1 INTRODUCTION

When Alan Turing first conceived the problem of artificial intelligence (AI), he took a top-down
approach and proposed an imitation game known as the Turing test Turing (2009). Toward passing
the Turing test, optimization-based machine learning, as exemplified by the training of various neu-
ral networks (including the latest transformer architectures Vaswani et al. (2017)), has dominated
over the past decade. Latest advances in the field of AI, such as foundation models Bommasani
et al. (2021) and AgentAI Durante et al. (2024), have further stimulated the interest in pushing for
larger models (e.g., the evolution of OpenAI’s ChatGPT models) trained on more data (e.g., the
combination of vision with language data to support multimodal interaction). Little doubt was cast
regarding their fundamental limitations, such as the notorious bias-variance dilemma Geman et al.
(1992); Friedman (1997), its related curse of dimensionality Bellman (1966), or the sustainability of
existing AI research Van Wynsberghe (2021).

It is time to pause and consider the alternative. The human brain can do marvelous things with
20 watts of power. A bottom-up approach to understanding the mechanism of the brain - e.g.,
sensorimotor knowledge learning in the emerging neuroAI paradigm Zador et al. (2022) might offer
a fresh new perspective on AI or machine learning. As insightfully advocated in Geman et al.
(1992), “the fundamental challenges in neural modeling are about representation rather than learning
per se.” Vernon Mouncastle’s discovery about column organization Mountcastle (1957) in the 1950s
inspired the pursuit of a universal cortical processing algorithm. It has been hypothesized in Hawkins
(2021) that “nature stripped down the hippocampus and entorhinal cortex to a minimal form (cortical
columns)”. The more rapid expansion of the neocortex than the hippocampus during the evolution
of mammalian brains is the key to understanding the adaptive behavior of mammals (the origin of
natural intelligence).

The above hypothesis suggests the possibility of constructing a universal learning representation
based on the modeling of hippocampal-neocortical interaction. It is long known that the neocortex
can detect or predict orderly patterns in the external environment, while the hippocampus plays the
role of the neocortex’s librarian Buzsáki (2006)). Such observation inspired us to draw an anal-
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ogy between cortical columns and the simultaneous localization and mapping (SLAM) model Dis-
sanayake et al. (2001), as shown in Fig. 1. Using estimation theoretical solution to the SLAM
problem as the building block, one can rigorously show that cortical columns, when connected with
sensory and motor systems, become intelligent agents capable of learning local maps by establishing
the association between where (locations) and what (landmarks).

Figure 1: Biological inspiration behind this work: we draw an analogy between cortical columns
(credit: Hawkins (2021)) and the SLAM model (adapted from Dissanayake et al. (2001)).

Based on the above analogy, an important new insight brought by our approach is that deictic codes
Ballard et al. (1997), a kind of pointer mechanism indicating the location on cognitive maps Whit-
tington et al. (2022), can serve as design bias Geman et al. (1992) to facilitate the exploitation of
concentration of measure (CoM) in the latent space. As the CoM theory Talagrand (1995) demon-
strates, the ϵ-ball expansion of any event with a probability ≥ 1

2 can cover almost the entire space.
Such observation implies the feasibility of solving the manifold learning problem locally with good
generalization property (turning extrapolation into interpolation in the high-dimensional space) and
without the knowledge of global topology (a.k.a. intelligence without representation Brooks (1991)
or direct-fit Hasson et al. (2020)). Such a strategy of CoM-based manifold learning can be imple-
mented by introducing spatio-temporal context variables known as design bias Geman et al. (1992)
that mimic the indexing by the hippocampus-entorhinal cortex system. The idea of specification
(i.e., through context induction) before generalization (e.g., context aliasing McCallum (1995)) re-
flects a computational abstraction of the two-stage memory formation and consolidation proposed
by Buzsaki Buzsáki & Moser (2013). From a manifold learning perspective, specification with de-
sign bias linearizes the manifold locally by change of coordinates such that the local geometry in
the latent space (as indexed by the contextual variables) can be discovered by the SLAM agent. The
critical question is what kind of representation can be learned by the SLAM agent as a computational
abstraction of cortical columns.

In this paper, we advocate for the class of implicit representations such as delta measures Sanders
& Yokoyama (2012) as a universal solution to CoM-based biased learning. We first show how to
implicitly represent any function via parameterization so any object X in the sensory space can be
transformed into a probabilistic measure in the latent space. To reach above chance (P (A) ≥ 1

2 ) as
required by CoM, we introduce specification-before-generalization (SbG) as a biologically plausible
memory encoding and consolidation strategy based on the simple fact P (X|C) > P (X,C) (i.e.,
conditioning boosts the CoM). Unlike Markovian processes (e.g., Markov Chain), we consider a new
model that recursively encodes contextual/conditioning variables (design bias) into episodic memory
by specification; the corresponding generalization operator can be implemented by integrating con-
textual variables out (a computational abstraction of semantic memory) Buzsáki & Moser (2013).
Under the framework of CoM-based implicit representation, recursive encoding attempts to mirror
the hierarchical organization of the external environment by multi-scale contextual variables, which
extends the existing deictic codes Ballard et al. (1997) and generalized Hough transform (GHT)
Ballard (1981). To justify the biological plausibility, we briefly discuss the connections of this work
with sensory (visual and haptic) perception during the evolution and development of mammalian
brains. In summary, we make the following contributions in this paper:
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• Navigation-memory analogy. Based on the hypothesis of phylogenetic continuity of nav-
igation and memory, we show how the evolution of mammalian brains can be better under-
stood from the perspective of navigation in the latent space. Cortical columns are compu-
tationally abstracted by SLAM agents for local map making;

• Specification-before-Generalization (SbG) learning. Using spatiotemporal context as
design bias, SbG learning is conceptually simple (conditioning boosts CoM) and biolog-
ically consistent with the sleep-wake cycle in nature. Moreover, we rigorously show that
any nonlinear manifold can be decomposed into the superposition of local maps by condi-
tioning for exploiting CoM or blessing of dimensionality.

• Implicit representation via kernel transformation. Using delta measures as the pivot for
cortical transforms, we show how to obtain implicit representation for an arbitrary content
or context variable by kernel transformation. A side benefit of kernel transformation is that
it simultaneously encodes content and context information as peer variables in the latent
space to support task-dependent representation learning.

• Hierarchical representation via non-Markovian memory encoding. We show how to
hierarchically extend kernel transformation to mirror the external environment’s nested
structure by non-Markovian memory encoding. Such map-in-map hierarchy allows an or-
ganism to develop adaptive behavior by local computation (direct-fit) only without the need
of discovering global topology.

2 TOY PROBLEM AND GEOMETRIC INTUITION

The objective of a general learning problem is to predict the response vector y from the feature/input
vector x. Optimization-based approaches to learning attempt to construct a machine/function f such
that some pre-selected cost functional is minimized Geman et al. (1992). However, as shown in Ge-
man et al. (1992), those approaches suffer from the fundamental tradeoff between bias and variance,
which describes the relationship between a model’s complexity, the accuracy of its predictions, and
how well it can make predictions on previously unseen data that were not used to train the model. It
has been argued in Gigerenzer & Brighton (2009) from a cognitive science perspective that the hu-
man brain resolves this notorious dilemma in the case of the typically sparse, poorly characterized
training sets by adopting high-bias/low-variance heuristics (i.e., “less-is-more” as the justification
of heuristic-based learning). More rigorously, one can argue the only way to overcome this bar-
rier is to “prewire important generalizations” or “purposefully introduce bias” Geman et al. (1992).
Such design bias could allow an organism to discover the nature of the biases “internalized during
the course of evolution. Geometrically, our intuition is to facilitate the task of classification (i.e.,
“understand the world as it is”) but not regression (i.e., “understand the world as it appears”) by
high-bias/low-variance heuristics. To formalize such geometric intuition, we start from the follow-
ing twisted puzzle in computational geometry Minsky & Papert (2017).

Computational Geometry Puzzle: Given xi = (xi
1, x

i
2) ∈ R2 and class label yi ∈ N (i =

1, 2, ..., N ), does there exist a universal and optimal solution to transform folded data manifolds as
shown in Fig. 2 into linearly separable Dirac’s delta functions in the latent space?

A moment of thought shows that the answer is Yes but nontrivial. For example, the kernel trick or
neural network will not work here because there is no generic rule for kernel construction or neural
network that works for data manifolds with arbitrary topology and varying folding strategies (note
that a different way of paper folding will change the definition of geodesic distance in the folded
space). The new attack is to treat class label yi as a contextual variable (induced bias) and solicit
a linear dichotomy in the lifted 4D space (xi

1, x
i
2, x

i
3, yi) ∈ R4. In the case of binary classification,

the hyperplane y = 1
2 can separate two classes regardless of the global topology of data manifolds

or the way of folding into the paper ball. Note that such a lifting-based idea essentially exploits the
blessing of dimensionality by folding the data distribution along an unoccupied dimension.

Context as Design Bias: One can argue that the above lifting-based specification is useless if it does
not generalize. Specification and generalization are two sides of the same coin for memory Brunel
et al. (2009) and learning D’Amour et al. (2022). Design bias can be implemented by conditioning
based on a simple observation P (x|y) > P (x, y) since P (y) < 1. Taking the three-circle manifold
as an example but with another twist of physics-based conditioning - paper folding mimics the
embedding into a higher dimensional space where distortion is inevitable. That is, we assume
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Figure 2: Toy examples of data manifolds in 2D - after folding into 3D (Image credit: adapted
from the Internet), does there exist a universal solution to represent and separate different classes
(data points labeled by different colors) regardless of the folding strategy? In this paper, we provide
affirmative answers and show its connections with universal learning via implicit representations.

(xi
1, x

i
2) are recorded positions of a mouse running in three circular mazes with varying radii (marked

by red, green, and blue in the first example in Fig. 2). However, we can only observe the distorted
trajectory data (i.e., folded into R3) from which low-dimensional manifold constraints cannot be
explicitly enforced. In this thought experiment, the only logical solution to the puzzle is to first
faithfully track the trajectory of data points during the paper folding as a kind of episodic memory
and then generalize the discovery by restoring the manifold constraint.

The above specification-before-generalization (SbG) solution can be connected with the strategies of
direct fit Hasson et al. (2020) through implicit representations Sanders & Yokoyama (2012). Direct
fit reflects a principle of local computation without assuming a global fitting function for optimiza-
tion. Instead, it uses overparameterized models to decompose a manifold into local maps or locally
piecewise linear regions (i.e., folded trajectory in the toy example). One salient feature of direct fit
is that it allows interpolation instead of extrapolation in high-dimensional space (useful for general-
ization). An important new insight this work brings is to facilitate the task of direct fit by design bias
based on the analogy between cortical columns and SLAM agents. By storing the indexes of local
maps (isomorphic to Euclidean space and suitable for SLAM-based learning) in a global atlas, one
can “navigate” on the manifold using local maps only without knowing the global topology (such
view is consistent with “intelligence without representation” Brooks (1991) that uses the world as
its own model). Conceptually similar to GPS-based navigation in the real world, direct-fit counts on
local computation to interpolate among samples for generalization purposes. Specification or over-
fitting introduces a harmless bias for local computation by “remembering” the position/indexing of
local maps within the global atlas (analogous to the interaction between the hippocampus and the
neocortex). The result of SbG is the decomposition of any nonlinear manifold into linearly separable
regions to facilitate representation (instead of optimization) in the latent space.

Implicit representation: SbG with design bias does not solve the problem of representation learn-
ing but facilitates the promotion of CoM by conditioning (contextual variables). Following the
less-is-more principle Gigerenzer & Brighton (2009), we conjecture that the take-the-best heuris-
tics (a.k.a. winner-takes-all Riesenhuber & Poggio (1999)) requires an implicit representation of
content such as delta measures as the computational abstraction of polychronization neural groups
Izhikevich (2006). From matched filters Wehner (1987) to decision-making Gigerenzer & Brighton
(2009), both sensory and motor systems in cognitive systems must adapt to dynamically varying
environments based on the principle of ecological rationality. Despite the structural diversity of
the environment, it will be intellectually appealing if the external environment (both context and
content) can be encoded into a universal representation, as advocated by Mountcastle’s uniformity
principle of cortical columns.

The idea of encoding an arbitrary object into Dirac’s delta function dates back to Hough transform
Duda & Hart (1972). Later, generalized Hough transform (GHT) Ballard (1981) was developed for
detecting arbitrary shapes. An important new insight brought by our approach is that matched filters
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(MF) can implement the voting mechanism adopted by GHT Wehner (1987) or, more generally,
as a tool of CoM in the latent space. When combined with design bias, kernel-based MF can be
interpreted as an implicit representation of episodic memory for encoding sensory signals. Delta
measures naturally become the mathematical abstraction for the ideal response of kernel-based MFs,
which pushes the probability measure of a response function locally concentrated in the latent space
to exploit the benefit of CoM phenomenon. After reaching above the threshold ( 12 ), generalization
can be guaranteed by interpolation (instead of extrapolation) in a high-dimensional space thanks to
CoM.

3 LESS-IS-MORE: DESIGN BIAS FOR VARIANCE REDUCTION

In this section, we develop a theoretical foundation for less-is-more heuristics Gigerenzer &
Brighton (2009). Design bias can improve the accuracy of classification by variance reduction,
which is conceptually connected with the phenomenon of concentration of measure (CoM) Ledoux
(2001). Based on the ecological rationality of heuristics, an organism can adapt to the external en-
vironment by purposefully introducing bias as prewired generalization Geman et al. (1992). If a
greater reduction in variance can offset design bias, such heuristics can result in better inference
with less processing (i.e., less-is-more heuristics). In this section, we first discuss how to design
bias via specification-before-generalization (SbG) and study various variance reduction strategies
for SbG. Then, we present how design bias is consistent with the less-is-more heuristics and CoM
theory. Based on the nearest neighbor classifier Cover & Hart (1967), we will show how to achieve
optimal classification asymptotically without the barrier of bias-variance tradeoff.

a) b)

Figure 3: Design bias via contextual dependency. a) The place cells O’keefe & Nadel (1978) provide
spatial content for navigation (credit: Wikipedia). b) The purposeful introduction of spatial context
via “place cells” can decompose a nonlinear manifold into locally linear segments with CoM.

Design bias via context dependency. Following the toy example, we note that design bias can
be induced by the spatiotemporal context, which varies from task to task. For example, place cells
serve as spatial content for navigation (temporal context is defined by the trajectory passing through
each position), as shown in Fig. 3a. However, the position/location can become the spatial context
when we decompose a nonlinear manifold into the superposition of locally linear segments (refer to
Fig. 3b). We do not need to discover the global topology for a classification (instead of regression)
task because it is irrelevant. By analogy, we store an atlas of n local maps, each of which records
the biased information about spatial context Ni (note that n can be even bigger than N implying
overparameterization) but resort to some indexing/pointing mechanism (e.g., associative memory
Hopfield (1982) and sparse distributed memory Kanerva (1988)) for efficient retrieval. In summary,
design bias represents a strategy of specification-before-generalization (SbG) for linearizing the
learning problem. A direct consequence of linearization is the reduction of variance, which alleviates
the tradeoff between bias and variance.

Variance reduction strategies. Generally speaking, there are three classes of strategies for vari-
ance reduction with design bias: 1) spatial averaging is based on the law of large numbers (i.e.,
V ar( 1

N

∑
i Xi) = 1

N V ar(X)); 2) temporal context helps resolve uncertainty (i.e., P (x|y) =
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P (x,y)
P (y) > P (x, y)); 3) nearest neighbor classifier Cover & Hart (1967) in space or time is known to

contain at least half of the classification information. Exploiting these observations recursively can
effectively reduce variance at an exponential rate.

Instead of learning ϕ : x → y, we formulate supervision signal y as a temporal context variable (a
peer of spatial context variable c) and translate clustering into the problem of navigating on the data
manifold. Without the knowledge about the global topology, we decompose the data manifold into a
finite collection of local maps/neighborhoods (i.e., mixture of Gaussians) Ni = {xk : ∥xk −xi∥ <
ϵ}, i = 1, 2, ..., N , which is similar to the finding of kNN for xi in the first step of locally linear
embedding (LLE) Roweis & Saul (2000). For each neighborhood, we store the k+1 data points by
an associative memory: (xj , yj |cj) where j ∈ Ni, which is called a map. The collection of N maps
forms an atlas corresponding to the knowledge about the global topology. Note that any inference
task only requires local knowledge from a specific map instead of the global knowledge of the entire
atlas. The complete algorithm is summarized into Algorithm 1 below.

Algorithm 1: SbG-based Manifold Learning with an Atlas of Maps
Input: X = {x1, ...,xN} and Y = {y1, ..., yN}

1 Learning: for each xi, find its kNN to generate Ni and associate it with a unique
spatiotemporal context variable ci (map index);

2 -Locally, store N maps (xj , yj)|ci where j ∈ Ni is the kNN of xi for i = 1, ..., N using
associative memory such as Universal Hopfield Network Millidge et al. (2022);

3 -Globally, store N indexing (xi|ci) into another associative memory (the global atlas
containing all local maps);

4 Inference: For an inquiry xnew, first retrieve which map ci in the atlas by associative recall and
save this map’s index I = ci;

5 - Go to local map with the index of I to retrieve the corresponding class label yI,J ;
6 - Output the classification result ynew = yI,J ;

Given a new data point xnew, we first determine which map(s) to use by global associative recall
and then use this index I to retrieve the corresponding class label J from the local map. Such local-
global coordination mimics the interaction between mammalian brains’ neocortex and hippocampus
Buzsáki (2006). To generalize SbG-based learning, we can collapse each local neighborhood Ni

by nonlinear dimensionality reduction, which generalizes the known aliasing operator in cognitive
maps George et al. (2021); Whittington et al. (2022). The basic idea behind the aliasing operator
is to transform context-dependent representation P (x, y|c) into context-independent representation
P (x, y). Algorithm 1 can be easily extended to support bagging or boosting by adopting k-NN
classification when retrieving the local maps from the global atlas. From k best-matching maps, we
can first generate k classification results and then take a majority vote, which can further improve
the generalization performance. Formally, we have the following result.

Proposition 1. (Asymptotically Optimal Classification of SbG-Based Learning.

Under the assumption with sufficient memory capacity for storing local maps and global atlas, the
performance of Algorithm 1 can asymptotically achieve Bayes probability of error as N → ∞.

Sketch of the proof. It has been shown in Cover & Hart (1967) that twice the Bayes probability of
error bounds the error made by NN classifiers. Under ideal circumstances, NN classifiers can achieve
the Bayes probability of error as the size of the training dataset approaches infinity. Similarly, a
linear classifier can achieve the Bayes probability of error when the classes are Gaussian with equal
covariance matrices. Asymptotically, we can double the sample size recursively (parameter N in
Algorithm 1). Selectively sampling the manifold can gradually approximate each local map with
a Gaussian distribution, and the data become linearly separable after specification. As N → ∞,
we observe that Algorithm 1 converges to both NN classifier and linear classifier with an identical
minimum probability of error.

CoM-based interpretation. Algorithm 1 eliminates the bias-variance tradeoff by implicitly sampling
the local neighborhood of important regions and recording their position within the global coordi-
nates as the design bias. Thanks to the phenomenon of CoM Talagrand (1995), any ϵ-ball expansion
of a probabilistic event A with P (A) ≥ 1

2 will cover almost the entire space. Therefore, even an ap-
proximate NN classifier will be sufficient for the classification task with guaranteed approximation
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quality (i.e., large deviation from the true NN is unlikely). Note that we do not attempt to discover
the global topology, which can be computationally demanding and practically unnecessary. Using
GPS-based driving as an analogy, we never need to access the world map (global topology) to reach
our destination; knowing where to make the next turn (local geometry as design bias) is sufficient
for the goal of navigation. Similarly, manifold learning aims not to reconstruct the entire manifold
but to make a good prediction about the new data xnew from the local neighborhood.

4 IMPLICIT REPRESENTATION VIA RECURSIVE KERNEL TRANSFORMATION

Design bias via context dependency alone cannot solve the learning problem; it has to work together
with an ideal representation of both content and context. From a CoM perspective, the delta measure
offers such an optimal (in the sense of robustness) representation that the probability measure con-
centrates on a single location. For sensory systems, Dirac’s delta function often represents an ideal
response of an organism’s matched filter (MF) to the uncertain environment Wehner (1987). Using
MF as the kernel in the latent space, we show in this section that kernel transformation can lead to
the local concentration of probabilistic measure. Similar to the Gibbs measure in thermodynamic
systems, the delta measure in neurodynamic systems can convert any explicitly formulated optimiza-
tion problem into an implicitly defined representation in the latent space with over-parameterization.
Recursive application of kernel transformation can serve as a non-Markovian model for context en-
coding of the working/episodic memory Baddeley (1992).

Implicit Representations via Delta Measures: The basic idea underlying implicit representation is
that SLAM model (Fig. 2b) can implement a cortical transformation (change of coordinates), which
extends Ballard’s idea of generalized Hough transform (GHT) Ballard (1981) for detecting arbitrary
shapes. GHT is a class of generalized matched filters (MFs) whose ideal response approximates
Dirac’s delta function Sanders & Yokoyama (2012). We note that the accumulation of voting results
by GHT asymptotically approaches the delta measure or the path integration result in the latent space
(parameterized by Θ):

Rf (Θ) =

∫
x∈Rn

f(x)δ(S(x;Θ))dx, (1)

where SΘ(x) denotes the kernel (e.g., implicit shape function Leibe et al. (2008)) and f(x) is the
function representing the sensory observation (stimulus). An important benefit of implicit represen-
tations via delta measures is that they can easily incorporate design bias or contextual variables into
the local CoM in the latent space. If we use variable Φ to denote the set of contextual variables, the
path integral transform can be rewritten into:

Rf (Θ,Φ) =

∫
x∈Rn

f(x)δ(Sf (x;Θ,Φ))dx, (2)

where Sf is the generalized kernel, and we note the peer relationship of parameters in the latent
space between content (Θ) and context (Φ).

Separating context from content in representation is conceptually similar to where-and-what sepa-
ration in time-frequency analysis. The fundamental uncertainty principle dictates that one cannot
simultaneously localize an event in paired measurements (e.g., position and momentum, space and
frequency). We believe that kernel transformation in Eq. (2) obeys a similar limit - i.e., the CoM
cannot be simultaneously localized in Θ and Φ. Unlike explicit representations such as Markov
Random Field (MRF) and the corresponding Gibbs measure, implicit representations via delta mea-
sures obey different organizational principles. MRF-based prior is a graphical model focusing on
spatially local interaction among different nodes; the Gibbs potential (a.k.a., partition function) is
simply a global summation of local functions. In complex systems, more is different Anderson
(1972) - neurodynamic systems are characterized by hysteresis or memory-related path dependency.
Macroscopic states of neurodynamic systems such as canonical ensembles have emergent properties,
which are more than the sum of spatially local interactions.

Our understanding of emergent properties is still limited. Nonlinearity and predictability of complex
systems are often at odds. How can the brain state be completely deterministic in its default mode
(i.e., sleep) but complex yet still predictable in its perturbation mode (i.e., wake) Buzsáki (2006).
Our reasoning here is based on two new insights: 1) based on the CoM theory Talagrand (1995),
a set of measure ≥ 1

2 will ensure its ϵ-ball expansion covers almost the entire space. To satisfy
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this condition, delta measures must work together with design bias to characterize the macroscopic
states of mammalian brains. 2) SLAM is known for its capability of establishing the correspondence
between where (positions) and what (landmarks). The conceptual similarity between SLAM (updat-
ing and prediction) and GHT (voting and accumulation) inspired us to reinterpret SLAM as an agent
specialized in kernel transformation that glues content (what) with context (where) into deictic codes
Ballard et al. (1997). Connecting these two lines of reasoning, we conjecture that memory-based
complex systems solve the prediction problem by localizing CoM in bilateral representations such
as content and context. Formally, we have the following result.

Proposition 2. (Bilateral implicit representation exploiting the CoM).

Any explicitly formulated approximation of f(x;Θ) along with contextual variable Φ admits a
bilateral implicit representation by a kernel transformation Rf (Θ,Φ) =

∫
x∈Rn f(x)Rf (Θ,Φ)dx

that pushes the probabilistic measure to concentrate locally in the latent space. To exploit the CoM,
the probability for a conditional event Φ|Θ needs to be above chance (i.e., P (Φ|Θ) ≥ 1

2 ).

The above proposition offers a new framework for the characterization of macroscopic states in com-
plex systems - i.e., based on the mixture of Gaussian as in Algorithm 1. Conditioned on the location
in the latent space parameterized by Θ, the probabilistic measure will be above the chance (so win-
ner takes all). The key new observation is that both content and context of memory in neurodynamic
systems can be implicitly represented by delta measures in the latent space. In mammalian brains,
time-locking based PNGs represent a new class of canonical ensembles characterized by hysteresis
in the phase/latent space (i.e., the broken symmetry of synaptic connections or causality principle
- forward associations are stronger than backward ones Buzsáki (2006)). The complexity arises
from nonlinear interaction among PNGs; while predictability is guaranteed by the reproducibility of
macroscopic states (when the above-chance threshold is reached). Neurodynamic systems exploit
the blessing of dimensionality to encode both content and contextual information into PNG-based
macroscopic states with good generalization properties thanks to the counter-intuitive CoM phe-
nomenon.

Simultaneous encoding of content and contextual information by the delta measures can reduce
the overall complexity of the solution space for SbG learning, effectively localizing the search to
high-probability regions (e.g., to facilitate implicit sampling Morzfeld (2015)). Another computa-
tional benefit of implicit representations is the straightforward calculation of marginal distributions
via aliasing operators McCallum (1995) or more generally integral transforms. Unlike sequential
importance sampling Liu, delta measures can readily separate content from context variables by
integral transforms as following.

Rf (Θ) =

∫
Φ

Rf (Θ,Φ)dΦ, Rf (Φ) =

∫
Θ

Rf (Θ,Φ)dΘ (3)

The above integral transforms could represent a computational abstraction of memory consolidation
procedure during sleep when the hippocampus generalizes episodic memory into semantic memory
and shifts it back to the neocortex Buzsáki & Moser (2013).

Hierarchical Context Encoding via Recursive Kernel Transformation. Complex systems are
known for “carrying their history on their backs.” Prigogine & Stengers (2018). Markov processes,
as characterized by their memoryless properties, often fail to characterize the phenomenon of hys-
teresis in biological systems. Following geometric intuition in the puzzle and less-is-more heuristics,
we have constructed a new non-Markovian sequence model for encoding episodic memory, as shown
in Fig. 4. The key idea behind our construction lies in the following observations: 1) observed states
X encode both sensory and motor information as content (Φ) and context (Θ) variables; 2) unob-
served states recursively encode the memory (content and context) information into z’s. Both X’s
and z’s are macroscopic states of neurodynamic systems; unlike Gibbs measure in thermodynamic
systems, we conjecture that delta measure is a more appropriate characterization of the probability
density in the phase space. As soon as the probability of some event encoded by macroscopic state
(e.g., PNGs Izhikevich (2006)) reaches above the threshold of 1

2 , the CoM phenomenon ensures its
reproducibility in high dimensions or good generalization property for learning.

As advocated in Baldassano et al. (2017), memory formation is a hierarchical process covering mul-
tiple time scales. The recursive kernel transformation introduced here is only the first step toward
modeling this complex system of memory formation - the first 100ms of sensory perception. Such
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a) b)

Figure 4: Sequential modeling of working memory: a) hidden Markov chain; b) non-Markov mem-
ory model recursively encodes contextual variable X induced by motion into the hidden states z.

recursive kernel transformation offers a biologically plausible implementation of the parts-to-whole
model Hinton (2023) by delta measures. At each level zk, cortical columns, as abstracted by SLAM,
accumulate the voting (MFs) results into a delta function, which serves as the landmark/what pointer
to the next level zk+1 (a newly defined latent space). Note that contextual information xk (parameter-
ized by Θ) is simultaneously encoded along with zk (parameterized by (Θ,Φ)). Such map-in-map
hierarchy mirrors the hierarchical organization of the physical world Hawkins (2021).

The key insight underlying recursive kernel transformation is that fractal-like geometry can be a con-
ceptual framework for hierarchical context encoding. Since features (e.g., shape, color, and texture)
are implicitly coded into the kernel of varying dimensions, the delta measure (the ideal response of
MF) becomes the bridge connecting feature representations across different scales. More specifi-
cally, we can generalize Eq. (1) by introducing the scale parameter s (s = 1, 2, ..., n corresponds to
the subscripts in Fig. 4b):

R
(s+1)
f (Θ,Φ) =

∫
x∈Rn

f(x)R
(s)
f (Θ,Φ)dx, (4)

where recursion is defined with respect to the kernel from a local (e.g., simple edges) to a global
(holistic concept) scale. When connected with CoM Talagrand (1995), we note that recursive kernel
transformation in Eq. (4) conceptually extends the diectic codes Ballard et al. (1997) into a fractal-
based pointer framework - i.e., the position of a fine-scale object in the coarse-scale map is the
pointer or contextual variable. The sequential modeling of the working memory model in Fig.
4 can be interpreted as traversing along the multi-scale map-in-map hierarchy, so the conditional
probability (after multi-scale conditioning) can reach above the chance ( 12 ). To conclude this section,
we summarize our findings into the following proposition.

Proposition 3. (Map-in-Map Hierarchy via Multiscale Context).

To mirror the nested structure in the physical world, landmarks in a coarse-scale map can be
implicitly represented by the voting and accumulation of landmarks in a fine-scale map. Such
fractal-like contextual dependency across different scales ensures that the conditional probability
P (Rn

f |R
n−1
f , ..., R1

f ) ≥ 1
2 .

Sketch of the proof. Using the causality principle, we can show that P (Rn
f |R

n−1
f , ..., R1

f ) >

P (Rn−1
f |Rn−2

f , ..., R1
f ) > ... > P (R2

f |R1
f ) > 0. That is, multi-scale conditioning gradually pushes

the CoM toward passing the chance threshold.

5 BIOLOGICAL CONNECTIONS

In this section, we make connections between implicit representations and existing knowledge in
neuroscience. Our perspectives will be based on the well-accepted hypothesis that sensory systems
of animals are adapted to the external environment through both evolutionary and developmental
processes Simoncelli & Olshausen (2001).

Phylogenetic continuity of navigation and memory. The discovery of place cells O’keefe &
Nadel (1978) marked an important milestone in our understanding of the brain mechanism. A clear
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relationship between overt behavior (navigation) and high-level associative structure (gnostic units)
was established for the first time. The construction of cognitive maps Whittington et al. (2022) from
dead reckoning by the hippocampus through motor actions offers a convincing argument for the
importance of temporal context in symmetry breaking. That is, to learn the concept of space (via
spatial maps), an organism has to collect asymmetric episodic memory that is context dependent
first. Then context-dependent memory (e.g., unidirectional place cells) is consolidated into context-
independent memory (e.g., omnidirectional place cells) what has been known as semantic memory.
Such restoration of plane symmetry is a universal strategy of generalization discovered by nature.
With the memory of landmarks (stored by place cells), an organism can solve the navigation problem
more efficiently than dead reckoning. It has been shown in Muller et al. (1996) that the minimization
of the total synaptic resistances along a path in the latent (neural) space solves the shorted path
problem assuming a densely connected network.

Object Recognition by Ventral Stream. An interesting analogy exists between spatial navigation
and object recognition (the identification task) because they can be connected by changing coordi-
nates from egocentric to allocentric Pouget & Sejnowski (1997). The saccadic movement of eyes for
object recognition is conceptually similar to the physical movement of an organism in spatial nav-
igation. Both behaviors are responsible for the generation of episodic memory that simultaneously
encodes context and content information. However, the role of what and where is swapped from
spatial navigation to object recognition. In spatial navigation, location or where is the task objective
(content), and navigation direction is the context, while in object recognition, edge orientation is as-
sociated with content representation because location or where becomes the contextual variable. Just
like the generalization achieved by memory consolidation (from unidirectional to omnidirectional
place cells), a similar mechanism (previously known as the aliasing operator McCallum (1995))
can be responsible for context-invariant object recognition along the ventral stream. The increased
complexity arises from the modeling of cortical transformation Keller & Mrsic-Flogel (2018) by
recursive kernel transformations. Such map-in-map hierarchy is consistent with the local subspace
untangling hypothesis in DiCarlo et al. (2012), which gradually untangles the object manifold along
the ventral stream (V 1 → V 2 → V 4 → IT ).

Figure 5: Computational modeling of the ventral stream for object recognition (100ms) via recursive
kernel transformation. Note that each stage only involves two canonical operations: voting (linear
MF) and accumulation (nonlinear thresholding generates the delta output, which becomes the input
to the next level).

6 CONCLUSIONS

Learning is easy; representation is hard. The evolution of mammalian brains documents valuable
hints about the mechanism of natural intelligence. Navigation-memory analogy inspires us to use
SLAM agent for computationally modeling cortical columns. Hippocampal-cortical coupling im-
plements an efficient indexing system to support the conversion between episodic and semantic
memory. Implicit representation based on design bias and kernel transformation marks the first step
toward unlocking the secret of memory encoding and consolidation. CoM phenomenon, despite
being counter-intuitive, might be the Rosetta stone for discovering a universal cortical processing
algorithm as predicted by V. Mountcastle. Location, location, location - a multi-scale extension of
deictic codes pointing content and context bilaterally and hierarchically in the latent space - might
be the secret for representation learning in nature.

10
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