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ABSTRACT

Geometric spatial reasoning forms the foundation of many applications in artificial
intelligence, yet the ability of large language models (LLMs) to operate over geo-
metric spatial information expressed in procedural code remains underexplored.
In this paper, we address this gap by formalizing the Program-to-Geometry
task, which challenges models to translate programmatic drawing code into ac-
curate and abstract geometric reasoning. To evaluate this capability, we present
GeoGramBench, a benchmark of 500 carefully refined problems organized by
a tailored three-level taxonomy that considers geometric complexity rather than
traditional mathematical reasoning complexity. Our comprehensive evaluation of
17 frontier LLMs reveals consistent and pronounced deficiencies: even the most
advanced models achieve less than 50% accuracy at the highest abstraction level.
By systematically analyzing model behaviors, our study exposes key limitations in
program-driven spatial reasoning and positions GeoGramBench as an important re-
source for benchmarking and advancing behavioral research in symbolic-to-spatial
geometric reasoning.

1 INTRODUCTION

Spatial reasoning is fundamental to both human cognition and artificial intelligence, supporting
applications ranging from robotics and autonomous navigation to automated design (Davis et al.,
2011). With the rise of large language models (LLMs), interest has grown in evaluating their ability
to interpret geometric transformations and spatial relations in complex environments (Yang et al.,
2024b; Tang et al., 2025).

Mathematical geometric spatial reasoning is a specialized subdomain of spatial reasoning, requiring
models to comprehend intricate geometric relationships and perform deep spatial reasoning. Re-
searchers have recently developed multiple benchmarks including Mathverse (Zhang et al., 2024b),
GeoSense (Xu et al., 2025), and Euclid (Zhang et al., 2024a) to assess LLMs’ capabilities in visual
geometry comprehension. Another emerging direction leverages procedural geometric code, such as
Asymptote code, as a symbolic and structured interface for expressing geometry problems and probing
spatial reasoning. While some existing benchmarks (e.g., AIME24 (MAA, 2025), MATH-500 (Zhang
et al., 2024b)) include subsets containing Asymptote code, there is a lack of systematic, dedicated
benchmarks specifically designed to evaluate LLMs’ ability to perform program-driven spatial geo-
metric reasoning. In this work, we formalize this unique setting as the Program-to-Geometry
task, referring to the translation and abstraction process from procedural code to internal spatial
representations.

Preliminary studies (Muennighoff et al., 2025) have shown that current LLMs struggle to bridge
procedural geometry code to spatial reasoning. We expanded these investigations on a broader range of
models further corroborate these observations, confirming this pronounced deficiency. For example, as
shown in Figure 1, advanced models such as DeepSeek-R1 (Guo et al., 2025) suffer substantial drops
in accuracy: 23.5% in AIME24 and 10.9% in MATH-500, when transitioning from text-only problems
(PT ) to those with embedded procedural code (PTC ). Similar trends are observed for models such as
GPT-o1 (Jaech et al., 2024) and QwQ-32B (Team, 2025a), collectively indicating critical limitations
in their ability to construct reliable spatial representations from symbolic code. Furthermore, recent
work (Albalak et al., 2025) has highlighted the need to explore Program-to-Geometry spatial
abstraction as a promising and under-investigated research direction.
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Motivated by these findings, we introduce GeoGramBench, a dataset of 500 curated problems
incorporating programmatic drawing code, designed to systematically assess both spatial-geometric
abstraction capabilities and mathematical reasoning in LLMs. Our proposed taxonomy organizes
problems into three categories: Primitive Recognition, Local Relation Composition, and Global
Abstract Integration, based on the geometric complexity encoded in procedural code rather than
traditional reasoning difficulty. Evaluation of 17 frontier LLMs reveals that even models such
as the reasoning-oriented GPT-o1 achieve less than 50% accuracy on the most challenging level,
underscoring the unique difficulty of this task and the urgent need for advances in spatial-reasoning
model design.

This work makes the following contributions:

• We formalize the Program-to-Geometry translation task as a critical and underex-
plored capability for LLMs, encompassing not only the interpretation of procedural drawing
code but also the downstream geometric reasoning it enables.

• We present GeoGramBench, a rigorously curated benchmark of 500 geometry problems
with explicit procedural code, organized by a three-level taxonomy that enables comprehen-
sive and fine-grained assessment of Program-to-Geometry competence.

• We conduct an extensive evaluation of 17 models, providing accuracy metrics and detailed
behavior analyses aligned with our research questions. Our results highlight persistent
weaknesses in geometric program reasoning, establishing GeoGramBench as a novel evalua-
tion axis and fostering future advancements in spatially-grounded, symbolically-rich model
training and analysis.

Problem: The area of ∆ABC is 6 square centimeters. 𝐴𝐵 ∥ 𝐷𝐸. 
𝐵𝐷 = 4𝐵𝐶. What is the number of square centimeters in  the 
area of ∆𝐶𝐷𝐸 ?
[asy] 

draw((-.3,-3)--(.1,1)--(-1,0) \
--(3,0)--cycle);
label("$A$",(.1,1),N);
label("$B$",(-1,0),W);
label("$C$",(0,0),NE);
label("$D$",(3,0),E);
label("$E$",(-.3,-3),S);

[/asy]

Answer: 54

visualize

(a) Example of a problem from
PTC in MATH-500.
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(c) Accuracy comparison of models on
PT vs. PTC in MATH-500.

Figure 1: Overview and performance analysis on text-only (PT ) and text+code (PTC) geometry
problems. (a) The procedural code is wrapped with [asy][/asy] and its geometric figure is
visualized to facilitate understanding. (b) and (c) show accuracy comparisons of models on PT

and PTC subsets in AIME24 (|PTC | = 5, |PT | = 25) and MATH-500 (|PTC | = 42, |PT | = 458),
respectively. In both benchmarks, accuracy consistently drops for problems with procedural code.

2 RELATED WORKS

Visual Geometric Perception To study visual geometric reasoning, several benchmarks such
as Euclid (Zhang et al., 2024a), MM-Math (Sun et al., 2024), GeoSense (Xu et al., 2025), Math-
Verse (Zhang et al., 2024b), and MathVista (Lu et al., 2023) have been introduced, each incorporating
visual geometric content. These datasets measure large multi-modal models’ comprehension of visual
geometric concepts and their handling of mathematical problems with visual components. Their
focus is mainly on diagram interpretation rather than procedural geometric code understanding, which
represents a different but equally important aspect of geometric spatial reasoning.

Mathematical Reasoning Benchmarks A diverse array of benchmarks has been developed to
evaluate the mathematical reasoning abilities of large language models (LLMs). Datasets such as
GSM8K (Cobbe et al., 2021), MATH-500 (Lightman et al., 2023), OlympiadBench (He et al.,
2024), Minerva-MATH (Lewkowycz et al., 2022), CollegeMath (Tang et al., 2024), MMLU-
STEM (Hendrycks et al., 2020), and AIME24 (MAA, 2025) primarily focus on algebraic, arithmetic,
and word-problem reasoning. Many of these benchmarks target complex multi-step solutions, ranging
from advanced high school mathematics to the level of international mathematical olympiads.
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3 PROGRAM-TO-GEOMETRY

3.1 TASK DEFINITION

We define Program-to-Geometry as the task in which a model interprets procedural code to
construct mathematical geometric representations, and subsequently reasons over these represen-
tations to solve geometry problems. This paradigm provides a comprehensive assessment of two
fundamental capabilities: (a) the ability to accurately construct mathematical geometric diagrams
from symbolic instructions, and (b) the ability to perform spatial reasoning and mathematical problem
solving based on these constructed diagrams.

3.2 TAXONOMY

An effective taxonomy is critical for evaluating benchmark quality and pinpointing capability bot-
tlenecks in the Program-to-Geometry task, which requires translating procedural geometric
code into diagrammatic understanding. Traditional taxonomies, such as those based on topological
complexity (Zhou et al., 2025), logical intricacy (Lin et al., 2025), or reasoning difficulty (e.g., high
school to olympiad levels) (MAA, 2025; Sun et al., 2025; Hendrycks et al., 2021), focus on reasoning
steps rather than the geometric structures central to this task. To address this, we propose a new
taxonomy tailored to the Program-to-Geometry task, defined by the geometric complexity of
diagrams derived from procedural code. This three-level hierarchy reflects the types and number of
geometric elements:

• Primitive Recognition (Primitive): Problems involving procedural code that specify only
one or two geometric primitives (e.g., points, lines, arcs, circles, polygons), focusing on
basic mathematical properties such as length, area, or angle.

• Local Relation Composition (Compositional): Problems with multiple local geometric
elements, requiring the recognition, integration, and composition of spatial relationships
among subcomponents of the diagram.

• Global Abstract Integration (Abstract): Items demanding spatial direction, parameterization,
recursion, 3D objects, composite structures, or advanced geometric operations (e.g., rotation,
folding, projection), thus requiring not only the construction of complex diagrams but also
global and stepwise spatial reasoning across the entire configuration.
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Figure 2: Effect of reasoning and geometric complexity.

To validate this taxonomy, we analyzed
the QwQ-32B (Team, 2025a) perfor-
mance on the MATH-500 (Lightman
et al., 2023) dataset, comparing accu-
racy across reasoning complexity (per
MATH-500 annotations) and geome-
try complexity for text-only (PT ) and
text+code (PTC) problems (see Fig-
ure 2). For PT , accuracy decreases with
increasing reasoning complexity, consis-
tent with existing benchmarks. In con-
trast, for PTC , accuracy is largely independent of reasoning complexity, with significant drops tied to
geometric intricacy. This trend, validated by a clear accuracy decline on MATH-500 as geometric
complexity increases, confirms that geometric complexity, rather than reasoning steps, is the pri-
mary challenge in this task. Thus, our taxonomy provides a robust framework for evaluating model
capabilities in Program-to-Geometry task.

3.3 RESEARCH QUESTIONS

Understanding the capabilities of large language models (LLMs) in the Program-to-Geometry
task requires a systematic investigation into their ability to process and reason over procedural
geometric code. This task demands a sequence of essential, hierarchically related skills: from
recognizing basic geometric elements to composing complex spatial configurations and leveraging
chain-of-thought (CoT) reasoning to enhance problem-solving. Investigating these capabilities is
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motivated by the need to identify specific bottlenecks in LLMs performance, guiding the development
of models better equipped for spatial reasoning applications. Based on this task definition and
taxonomy, we articulate the following research questions to structure our analysis of LLMs’ behavior
in the Program-to-Geometry task:

RQ1: Is there evidence that LLMs can understand and represent basic geometric elements from
program code?

RQ2: How effectively can LLMs compose and abstract geometric elements into coherent spatial
configurations as specified by program code?

RQ3: How does CoT reasoning influence LLMs’ spatial geometric reasoning abilities with program
code?

These research questions are fundamental to evaluating the progression of LLMs capabilities in
this domain, and their investigation is critical for advancing our understanding of how to enhance
symbolic-to-spatial reasoning in future models.

Problem: In ∆𝐴𝐵𝐶, suppose ∠𝐶 = 3∠𝐴, 𝑎 = 27,
and 𝑐 = 48. What is the value of 𝑏? 
[asy] 
pair A=origin, B=(14,0),
C=(10,6);

draw(A--B--C--cycle);
label("$A$ ", A, SW);
label(" $B$ ", B, SE);
label(" $C$ ", C, N);
...

[/asy]

Answer: 35
visualize

Problem: Square 𝐴𝐵𝐶𝐷 has side length 4, and 𝑀
is the midpoint of 𝐶𝐷	... What is the distance 
from 𝑃 to 𝐴𝐷?
[asy] 

draw(Circle((2,0),2));
draw(Circle((0,4),4));
filldraw(Circle((2,0),
0.07));
...
label(" $M$ ",(2,0),S);
label(" $P$ ",(3.6,1.4),N);

[/asy]

Answer: !"
#

visualize

Problem: Older television screens have an aspect 
ratio of 4 ∶ 3	, meaning the width is to the height 
as 4 is to 3	...
[asy] 

filldraw((0,0)--(8,0)
--(8,1)--(0,1)
--cycle,grey,black);
filldraw((0,5)
--(8,5)--(8,1)
--(8,5)
....

[/asy]

Answer: 2.7
visualize

Problem: Let ∆𝐴𝐵𝐶	have area 240	. Points 𝑋	, 𝑌	, 
and 𝑍 ...such that $%&% = 3	, &'(' = 4	and ()$) = 5	. 
Find the area of ∠𝑋𝑌𝑍	. 
[asy] 

pair A=(0,15),B=(0,-
5),C=(25,0.5),X=origin,
...
label(" $A$ ",A,N);
label(" $B$ ",B,S);
label(" $C$ ",C,E);
...

[/asy]

Answer: 122
visualize

Problem: The pattern in the figure below 
continues inward infinitely. The base of the largest 
triangle is 1	, ...Find the total shaded area.
[asy] 

pen blu = rgb(0,112,191);
real r=sqrt(3);
fill((8,0)--(0,8r)--(-8,0)
--cycle, blu);
fill((0,0)--(4,4r)--(-4,4r)
--cycle, white);
...

[/asy]

Answer: *
#

visualize

Problem: The centers of the faces of the right 
rectangular prism shown below are connected to 
form an octahedron. What is the volume of this 
octahedron? 
[asy] 

draw((0,0,0)--(0,0,3),
dashed);
draw((0,0,0)--(0,4,0),
dashed); 
draw((0,0,0)--(5,0,0),
...

[/asy]

Answer: 10
visualize

Primitive Recognition Local Relation Composition Global Abstract Integration

Figure 3: Representative examples from GeoGramBench illustrating the three ascending
Program-to-Geometry difficulty levels: Primitive Recognition, Local Relation Composition,
and Global Abstract Integration. Each category is exemplified by two sampled problems, highlighting
the increasing spatial complexity and abstraction across levels.

4 BENCHMARK CONSTRUCTION

In this section, we present the systematic construction process of GeoGramBench, a dedicated
benchmark for Program-to-Geometry reasoning. We first introduce a critical challenge inherent
to this task domain, namely answer leakage, before detailing our comprehensive data construction
pipeline that forms the foundation of our benchmark (more details in Appendix C).

4.1 ANSWER LEAKAGE CHALLENGES

In the Program-to-Geometry task, a significant challenge arises from the potential for answer
leakage within the code itself. The program code that generates geometric figures often contains
precise numerical specifications that directly or indirectly reveal the answers sought. Benchmark
like Math-500 (Lightman et al., 2023), we discovered numerous instances where answers were
directly embedded in the Asymptote code. Similar issues persist across various open-source geometry

4
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Problem: ...What is the height, in inches, of each black bar?

visualize

Problem: ...Calculate the area of the bounding rectangle.

visualize

[asy] 
...
(21.6,2.7)--(0,2.7)
...
draw((0,2.7)...)

[/asy]

Answer: 2.7

[asy] 
...
(8,1)--(0,1)
...
draw((0, 1)...)

[/asy]

Answer: 2.7

[asy] 
real r = 1;
...
pair C = (2r, -r - sqrt(4*r^2 - r^2));
draw(box((0,0),(w, C.y - r))

[/asy]

Answer:

[asy] 
real r = 3;
...
pair C = (2r, -8.2);
draw(box((0,0),(w, C.y - r))

[/asy]

Answer: 8 + 4 38+ 4 3

Figure 4: Illustration of two types of answer leakage in procedural code, highlighted in red. On the
left is direct leakage, where the answer is explicitly given by a coordinate value in the Asymptote
code; in this case, we rescale the coordinates to preserve the geometric shape. On the right is indirect
leakage, where the answer can be computed from code parameters; here, we modify the procedural
code to mask such critical information.

problem collections we collected. As illustrated in Figure 4, we categorize two types of answer
leakage in the procedural code. Direct leakage occurs when the answer is explicitly encoded as a
coordinate value in the Asymptote code (e.g., a circle’s radius or segment’s length). Indirect leakage
occurs when the answer can be computed from code parameters or formulas.

4.2 COLLECTION AND PREPROCESSING

We first aggregated approximately 905K candidate problems from three open-source mathemat-
ics datasets, including NuminaMath-1.5 (Li et al., 2024), HARP (Yue et al., 2024), and Omni-
MATH (Gao et al., 2024), with a focus on sources rich in geometry content. We filtered for problems
containing embedded Asymptote code by searching for [asy] and [/asy] tags, resulting in a
subset comprising about 1% (9,260 problems). We then deduplicated this subset using an n-gram
(n = 8) similarity approach (Muennighoff et al., 2025), reducing the set to 1,782 unique items.
Finally, by following the schema from s1 (Muennighoff et al., 2025) and leveraging GPT-4o (Hurst
et al., 2024) for prompt-based classification, we selected only geometry problems, yielding 1,247
geometry-focused items for subsequent curation.

4.3 HUMAN REFINEMENT AND VERIFICATION

To ensure data quality and suitability for geometry code understanding tasks, we implemented a
two-stage manual verification process, conducted by a team of four experts (each holding a master’s
degree or higher in mathematics or related fields). The first round aimed to standardize problem types
and formats, while the second round focused on enhancing overall problem quality.

In the first round, we performed initial screening and format normalization: (a) non-relevant
questions (such as hyperlink chains, multi-part items, and proofs) were filtered out according to
best practices from BigMath (Albalak et al., 2025); (b) convertible multiple-choice questions were
transformed into open-form computation problems by removing options, while those not amenable to
conversion were discarded entirely; and (c) answers were standardized into consistent LATEX format.
At the end of this screening, 547 candidate problems remained.

In the second round, we implemented a rigorous three-pronged refinement process to improve
problem quality:

• Decontamination: To minimize community-sourced contamination, we systematically re-
vised problem statements by removing redundant descriptive information that might enable
direct textual inference. Additionally, we adjusted problem conditions and modified cor-
responding answers to maintain mathematical consistency. Furthermore, we adjusted the
answer requirements (such as replacing queries about lengths with those about area, volume,
or ratios) to further reduce the risk of leakage and promote authentic geometric reasoning.

• Answer Leakage Prevention: As detailed in Section 4.1, to address this task-specific vul-
nerability, we implemented two targeted strategies: systematically rescaling coordinates
while preserving geometric relationships for direct leakage, and modifying or masking code
parameters for indirect leakage. These interventions ensure that answers cannot be derived
through mere code inspection (see Figure 4).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Accuracy Verification: Each answer was manually checked for correctness; items with
ambiguous, unverifiable, or doubtful solutions were removed.

Through this thorough process, we ultimately obtained 392 high-quality, contamination-free geometry
problems for augmentation and evaluation.

4.4 BENCHMARK AUGMENTATION

To enhance difficulty balance and problem diversity, we supplemented GeoGramBench with addi-
tional items: 5 geometry problems from AIME24 (MAA, 2025), 42 from MATH-500 (Lightman
et al., 2023), and 61 geometric problems adapted from Mathverse (Zhang et al., 2024b). For the
Mathverse subset, we selected representative solid geometry problems and manually transcribed
diagrams into matplotlib code to diversify the procedural drawing code within the dataset. Our
experiments indicate minimal impact from the choice of drawing language (see Appendix A). Alto-
gether, GeoGramBench comprises 500 geometry problems, supporting robust evaluation across a
variety of geometric phenomena.

4.5 DIFFICULTY AND SUBTYPE CATEGORIZATION

Building on our theoretical and empirical insights in Section 3.2, we categorize all 500 GeoGram-
Bench problems into three ascending difficulty levels: Primitive Recognition, Local Relation Com-
position, and Global Abstract Integration, based on the type and number of geometric elements
and the spatial relationships involved (see Figure 3). The categorization is implemented through a
combination of GPT-4o (Hurst et al., 2024) assisted classification and thorough human expert review.
The resulting distribution, detailed in Figure 5, establishes GeoGramBench as the largest and most
diverse benchmark for the Program-to-Geometry task to date.
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Figure 5: Statistics of GeoGramBench.

To facilitate a deeper analysis of LLMs perfor-
mance and failure modes, we further categorize
these problems based on problem-solving ob-
jectives, identifying common challenges across
geometric properties. This subtype classifica-
tion divides the three levels into six task types:
angle, length, area, volume, ratio, and count, de-
termined via manual annotation. Figure 5 illus-
trates the distribution of GeoGramBench’s 500
problems, highlighting the diverse representa-
tion of multiple task types within each category,
including the introduction of volume tasks in
the most complex level, enabling targeted in-
vestigation into specific reasoning difficulties
(e.g., 3D structures or angle computations) to
guide future model improvements. Detailed sub-
type statistics and definitions are provided in
Appendix C.6, underscoring GeoGramBench’s value as a diagnostic tool for evaluating LLMs
capabilities across this varied range of problem types.

5 EXPERIMENT

We benchmark 17 popular LLMs on GeoGramBench, providing a broad comparative analysis in this
section. Section 5.1 details our evaluation framework and prompt engineering strategies. Section 5.2
introduces the tested models, followed by quantitative comparisons in Section 5.3.

5.1 EVALUATION PROTOCOLS

For open-source models, we adopt the Luo et al. (2025) framework for evaluation, while for closed-
source models, we utilize official APIs with identical prompt templates (Let’s think step by step and
output the final answer within \boxed{}.). All result parsing is standardized using Luo et al. (2025),

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

with assistance from GPT-4o when necessary. Each problem is evaluated in a zero-shot setting: the
model input consists strictly of the problem text and the procedural geometry drawing code. For
each problem instance, we sample 8 responses using temperature 0.6, and report final accuracy as the
mean over these 8 outputs, which balances model stochasticity and answer reliability.

5.2 EVALUATION MODELS

We evaluate a total of 17 mainstream LLMs, including both proprietary APIs and leading open-source
systems. The closed-source models include GPT-4o (Hurst et al., 2024), GPT-o3-mini (Pfister & Jud,
2025), the GPT-o1 series (Jaech et al., 2024), and Gemini-Pro-1.5 (Team et al., 2023). The open-
source models cover a wide range of scales, including DeepSeek-R1 (Guo et al., 2025), DeepSeek-
v3-0324 (Liu et al., 2024), Qwen3-235B-A22B-Thinking-2507 (Team, 2025b) and QwQ-32B (Team,
2025a), as well as other prominent models from 32B down to 1.5B parameters: DeepSeek-R1-Distill
variants (Guo et al., 2025), Bespoke-Stratos-32B (Labs, 2025), s1.1-32B (Muennighoff et al., 2025),
Sky-T1-mini-7B (Li et al., 2025), and DeepScaleR-1.5B-preview (Luo et al., 2025).

5.3 MAIN RESULTS

Table 1 shows that Qwen3-235B-Thinking-2507 consistently achieves the highest accuracy across
nearly all subtypes at each difficulty level, followed by GPT-o1. For instance, Qwen3-235B-Thinking-
2507 attains 89.09% accuracy at the Primitive level and 79.12% at the Compositional level, while
GPT-o1 scores 85.92% and 76.12% respectively on these levels. However, these figures decline
even further to 49.05% and 44.67% under the Abstract category, reflecting the increased geometric
complexity. Similar patterns are observed for other models, with none surpassing 50% accuracy on
the most complex Abstract tasks. This pronounced decline suggests that LLMs struggle to build
robust internal geometric representations, which limits their ability to reason about intricate spatial
relations and solve challenging compositional geometry problems.

Most challenging subtypes: angle and volume. At both the Primitive and Compositional levels,
the angle subtype consistently has the lowest accuracy across nearly all models. For example, GPT-o1
achieves 71.15% accuracy on angle tasks at the Primitive level, while its accuracy on area and count
subtypes is 92.67% and 90.13%, respectively. At the Compositional level, this trend persists. In
contrast, at the Abstract level, the most challenging subtypes shift to area and especially volume. For
instance, Qwen3-235B-Thinking-2507 achieves only 31.48% accuracy on the volume subtype, and
all models demonstrate similarly low scores on area and volume tasks. These results indicate that
LLMs are particularly limited in geometric reasoning about angles at lower complexity levels and
struggle greatly with area and volume tasks as spatial abstraction increases.

Model Primitive Compositional Abstract ALL
Avg. Angle Length Area Ratio Count Avg. Angle Length Area Ratio Count Avg. Angle Length Area Volume Ratio Count

Closed-source Models

GPT-o3-mini 83.49 69.57 87.50 92.24 76.47 89.47 76.10 51.96 78.91 77.37 75.42 79.55 42.67 55.36 59.56 30.14 30.60 59.38 71.32 70.00
GPT-o1 85.92 71.15 88.39 92.67 88.23 90.13 76.12 50.00 80.63 79.60 69.07 79.55 44.67 64.28 58.15 35.30 36.20 62.50 57.78 70.92
GPT-o1-preview 73.95 57.21 84.82 80.17 70.59 74.34 55.87 36.41 56.68 57.08 58.69 57.58 25.33 48.21 29.89 15.17 23.71 53.13 37.5 53.15
GPT-o1-mini 78.89 68.30 86.16 84.91 74.26 77.63 63.31 43.48 65.89 68.68 59.66 57.20 27.14 34.14 43.48 15.44 20.69 31.25 49.26 58.94
GPT-4o 40.02 25.48 46.43 47.84 38.23 40.13 21.36 9.78 23.00 21.93 22.03 20.45 4.51 14.29 6.52 0.70 2.10 25.00 8.82 21.40
Gemini-Pro-1.5 48.77 54.81 49.50 54.81 47.32 53.33 31.41 20.00 29.97 32.30 34.07 35.89 14.39 19.64 23.13 9.78 4.17 28.13 29.17 31.64

Open-source Models

Qwen3-235B-Thinking-2507 89.09 84.10 88.00 90.38 91.07 94.17 79.12 68.75 81.68 83.71 68.38 83.06 49.05 60.71 63.75 44.84 31.48 50.00 68.33 74.00
DeepSeek-R1 84.68 73.86 87.50 87.98 89.29 85.83 75.13 66.80 76.85 78.93 70.10 72.98 40.86 60.71 53.75 34.78 24.07 59.38 58.33 69.17
DeepSeek-v3-0324 79.73 66.35 87.50 81.90 80.89 82.23 68.71 52.72 71.85 73.58 64.19 60.98 28.29 51.79 45.65 16.51 18.53 56.25 41.91 62.05

QwQ-32B 85.17 75.57 86.50 82.21 90.18 90.83 73.12 51.88 77.70 79.63 65.93 69.35 37.92 44.64 53.23 31.25 25.46 46.88 59.17 67.12
DeepSeek-Distill-Qwen-32B 79.78 67.61 83.50 77.88 83.93 90.00 67.83 51.88 69.03 75.28 59.07 67.34 35.92 50.00 48.13 26.90 21.76 53.13 60.00 62.68
Bespoke-Stratos-32B 62.50 40.34 72.50 62.50 71.43 70.00 42.56 33.13 42.05 46.35 43.38 37.90 17.02 28.57 26.25 8.97 15.28 46.88 19.17 40.55
s1.1-32B 75.37 50.57 84.00 77.40 80.00 80.00 58.96 39.38 61.65 62.50 57.11 56.88 26.58 33.93 40.00 16.58 18.52 43.75 45.83 54.60

DeepSeek-Distill-Qwen-7B 72.79 60.80 82.50 67.79 75.00 80.83 58.74 40.62 58.10 67.56 53.68 55.24 24.16 33.93 40.62 11.68 18.52 31.25 44.17 53.38
Sky-T1-mini-7B 71.45 57.95 79.50 64.42 75.89 85.83 57.75 40.00 58.81 64.61 51.23 57.26 24.79 35.71 38.75 13.32 18.06 34.38 45.83 52.70

DeepSeek-Distill-Qwen-1.5B 60.29 48.86 76.50 55.29 62.5 56.67 39.02 21.25 41.19 46.49 32.11 34.27 11.03 7.14 19.38 4.62 9.26 21.88 21.67 36.70
DeepScaleR-1.5B-preview 65.44 52.27 80.50 57.21 69.64 70.00 47.89 30.63 51.14 53.09 42.16 44.35 15.76 12.50 16.25 9.78 16.67 21.88 31.67 43.83

Table 1: Accuracy (%) of selected closed-source and open-source LLMs on GeoGramBench across
three difficulty levels. For each model, the lowest-performing subtype within each level is highlighted
with a background color ( ), and for each subtype, the highest accuracy among all models is shown
in bold.
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6 BEHAVIOR ANALYSIS OF LLMS

We address our RQs through both quantitative and qualitative analyses based on benchmarking results
and model responses. Furthermore, we summarize several common failure patterns observed across
different models.

RQ1: Is there evidence that LLMs can understand and represent basic geometric elements from
program code?

RQ1 investigates the fundamental ability of LLMs to recognize basic geometry elements, which
can be quantitatively measured by the evaluation results of Primitive Recognition. As shown in
Table 1, most of the models achieve 60% accuracy on the Primitive Recognition level, suggesting
that they can effectively parse and build basic geometric scenes from procedural codes. Qualitatively,
some of the model responses explicitly reveal the capability to interpret and reconstruct geometric
information. As shown in Figure 6, models frequently examine the procedural code for geometry
understanding: “Now, looking at the Asymptote code”, “Let me parse the Asymptote code a bit”,
and “maybe I should try to visualize this”. They can also identify simple geometric relationships
according to the procedural code. For example, “c is (2,0), so c/2 is (1,0). So the inner arc is between
points a/2 and c/2”, and “path inner = arc(d, a/2, c/2, CW);...path outer = arc(d, c, a, CCW);”. These
behavior demonstrate that LLMs are intent and capable to map procedural code into internal geometric
structures. In conclusion, modern LLMs are able to construct basic geometric representations from
procedural code.

RQ2: How effectively can LLMs compose and abstract geometric elements into coherent spatial
configurations as specified by program code?

RQ2 investigates LLMs’ capability of the geometry composition and global representation abstraction.
According to the results in Table 1, all models experience a significant drop in accuracy from
Compositional problems to Global Abstract Integration. For example, GPT-o1 drops from 76.02%
to 43.35%, and DeepSeek-R1 drops from 75.27% to 40.38%. These results indicate that current
LLMs may lack of compositional and spatial abstraction ability to solve complex geometry problems.
Qualitatively, while models can often parse and assemble some local structures, small errors in
local constructions frequently appear, preventing LLMs to construct a complete and coherent global
representation. As illustrated in Figure 6, a model may read a piece of code like “path inner = arc(d,
a/2, c/2, CW)” and reason about directions (“which would be the other direction compared to the
inner counterclockwise path before”), but a single mistake in local spatial assignment may generate
downstream confusion: “maybe I got the direction of the angle wrong?... the actual angle between
the points is \theta, so the area calculations still hold.”. This phenomena suggests that modern
LLMs may not good at capturing complex compositional geometry relationships for high level spatial
reasoning. In summary, although LLMs have made progress in local geometric parsing, their ability
to synthesize and reason over globally consistent spatial structures in Program-to-Geometry
tasks remains limited.

RQ3: How does CoT reasoning influence LLMs’ spatial geometric reasoning abilities with program
code?

Qualitatively, while models frequently perform iterative self-reflection and verification of code (“Let
me check again”), and repeatedly parse diagram instructions, their CoT trajectories rarely correct
or update internal geometric understanding, as shown in Figure 6. For instance, the model may
cycle through algebraic steps and verbalize uncertainty (“Hmm, this is a bit confusing without seeing
the actual diagram. Since I can’t see the diagram, maybe I should proceed with the information
given.”), yet consistently fails to resolve spatial relationships or integrate local shapes into a whole.
This observation illustrates that CoT may lead LLMs fall into repetitive symbolic reasoning. Such
repetitiveness does not beneficial for LLMs to construct high level spatial representations as a whole,
even leading to confusion about complex geometry relationships.

Quantitatively, our experimental results show a downward trend in accuracy as geometric complexity
increases, consistent with our benchmark taxonomy’s emphasis on geometric intricacy rather than
reasoning steps. This suggests that most LLMs exhibit weak internal geometric representation capabil-
ities, and long CoT reasoning provides limited benefit for improving this aspect. To further investigate

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Question: In the diagram, two 
circles ... How many degree s are in 
the measure of (the smaller) ∆𝐴𝐷𝐶 ?
[asy]
...
guide region1 = (a--
a/2)..inner..(c/2--c)..outer..cycle;
guide region2 = arc(d, a/2, 
c/2,CCW).. (c/2--d--a/2)..cycle;
fill(region1, gray(0.75));
fill(region2, gray(0.75));
...
[/asy]

Answer: 120

Response:Okay, so I need to find the measure of angle ADC in degrees,... Hmm, let‘s start by understanding the problem step by
step. First, the larger circle has a radius of 2, ... Now, looking at the Asymptote code, it seems like the shaded regions are two
parts... Wait, actually, looking at the Asymptote code... Let me parse the Asymptote code a bit...between the two arcs? Wait,
maybe I should try to visualize this. Since both circles are centered at D,... Since both circles are centered at D, the inner circle
has radius 1, and the outer has radius 2. Points A and C are on the outer circle..., then along the outer arc back to C and then to
A? Wait, maybe I'm getting confused here. Let me think again.... Since a is a point on the outer circle (radius 2), a/2 would be
the same direction but radius 1. Similarly, c is (2,0), so c/2 is (1,0)
, path inner = arc(d, a/2, c/2, CW);... path outer = arc(d, c, a, CCW); going counterclockwise.....So that's an arc from a/2 to
c/2 going (which would be the other direction compared to the inner counterclockwise path before), and then connecting back to
D and forming a triangle? ...Hmm, this is a bit confusing without seeing the actual diagram. Since I can't see the diagram,
maybe I should proceed with the information give...Alternatively, maybe the shaded area is the area of the larger sector minus
the area of the smaller sector, plus some other regions? Hmm, perhaps I need to break it down. Maybe I should approach it
mathematically. Wait, perhaps it's the area of the larger segment minus the smaller segment? ...Alternatively, let me try to
compute the area step by step. First, Hmm, not sure...So starting at a/2, going counterclockwise ...Wait, but then why is it
shaded? Maybe region2 is actually the triangle? Wait, no, because the path is the arc and then the two radii, so it's a sector.
Hmm. Wait, but is that correct?..,Wait, but maybe I miscomputed region1. according to the Asymptote code, region1 is (a--
a/2)..inner..(c/2--c)..outer..cycle. So that path starts at A, goes to a/2 (midpoint?), ... maybe I made a mistake in calculating the
area of region1. Let me recast the problem... follows the inner arc to c/2, then to c, then follows the outer arc back to A. So that
area is like a closed loop that goes from A down to the inner circle
Let me check again.... Essentially, it's the area of the larger sector ( from C to A counterclockwise) minus the area of the smaller
sector (from C' to A' clockwise). Hmm, but let me check again ...Let me see the Asymptote code again: region2 is arc(d, a/2,
c/2, CCW)..(c/2--d--a/2)..cycle. Hmm, that seems straightforward, but let me check again... Alternatively , maybe I got the
direction of the angle wrong? Let me think: ...Thus, the measure of ( \angle ADC ) is ( \boxed{150}).

It exemplifies the model’s motivation to 
move from code parsing to spatial 

interpretation.

Although the model repeatedly attempted 
to reason, engaging in multiple rounds of 
self-questioning and re-examination of the 
Asymptote code, it was ultimately unable 

to arrive at the correct approach.

RQ2: Compositional Completeness

RQ3: CoT Reasoning

visualize

RQ1: Construction Evidence

The model demonstrates a clear weakness 
in mapping code to spatial imagery, 

struggling to correctly interpret directions 
such as counterclockwise (CCW).

Figure 6: Illustrative solution process generated by the QwQ-32B model on a Local Relation
Composition problem. The model initially attempts to construct spatial representations from the
provided code, then interprets geometric elements such as direction and region, exhibiting behavior
aligned with all three research questions (RQ1–RQ3): local construction, compositional integration,
and chain-of-thought-based refinement. Multiple rounds of reflection and verification are observed,
although these iterative steps do not consistently yield correct or fully integrated solutions.

this, we conducted an quantitative experiment using Token Budget Forcing (BF) (Muennighoff et al.,
2025), detailed in Appendix E, which extends CoT reasoning and provides a robust validation of
its limitations. These findings highlight a critical bottleneck: while CoT enhances mathematical
reasoning in other domains, its effectiveness in Program-to-Geometry tasks is constrained by
LLMs’ weak spatial abstraction capabilities.

Common Failure Patterns Through extensive qualitative analysis of model responses, conducted
by manually reviewing a substantial number of failure cases, we distilled several prevalent failure
patterns that are shared across multiple LLMs. Due to the current lack of accurate automated
assessment methods for this process, our analysis is based on representative examples rather than
exhaustive annotation. Nevertheless, these patterns foreground critical limitations in current model
behavior. (1) The models exhibit a pronounced preference for algebraic methods, frequently relying
on coordinate calculations rather than leveraging geometric constructions, even when the latter would
be significantly more efficient. This algebraic bias often results in the neglect of essential geometric
heuristics. (2) LLMs rarely introduce auxiliary lines or points, a classic strategy in geometry that
can simplify complex problems, indicating limited flexibility in exploring alternative geometric
solutions. (3) Models consistently struggle with instructions that involve spatial orientation, such
as distinguishing between clockwise and counterclockwise directions or interpreting vertical and
horizontal references. These difficulties often lead to misinterpretation or incorrect reasoning steps.
(4) A common issue is the confusion in mapping symbolic relationships (e.g., angle or vertex labels)
to their corresponding geometric elements in the diagram, reflecting an insufficient internal spatial
representation and a lack of robust grounding for abstract symbols.

Overall, our behavior analysis offers an in-depth diagnosis of how contemporary LLMs process
programmatic geometric information and where their reasoning strategies fall short. By system-
atically linking model behaviors to distinct task attributes, we not only clarify the boundaries of
current capabilities, but also map out the critical obstacles restricting progress in symbolic-to-spatial
reasoning.

7 CONCLUSION

In this work, we present GeoGramBench, the first large-scale benchmark for evaluating LLMs on
the challenging Program-to-Geometry task, which connects procedural code with geometric
reasoning. Our experiments on 17 leading models show that even the strongest models achieve less
than 50% accuracy on complex problems, revealing critical gaps in symbolic to spatial understanding.
Through a new taxonomy and comprehensive analysis, we identify major shortcomings and establish
GeoGramBench as an important resource for advancing this research direction. We hope this
benchmark will encourage further progress toward models with better spatial abstraction and symbolic
reasoning, pushing forward the development of AI with stronger spatial intelligence.
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ETHICS STATEMENT

This work introduces a mathematical reasoning benchmark and does not involve human subjects,
personal data, sensitive information, or real-world deployments. The dataset is constructed purely
from publicly available mathematical problem sources and procedural code, with rigorous data
cleaning and verification to ensure research integrity. We are not aware of any ethical risks or
concerns related to privacy, fairness, safety, discrimination, or legal compliance in this study.

REPRODUCIBILITY STATEMENT

The complete details of GeoGramBench dataset construction are provided in Section 4 and Ap-
pendix C. We include all evaluation code in the supplementary materials, along with detailed
instructions for running experiments. For model evaluation, we access closed-source models via their
official APIs, and open-source models are obtained from Hugging Face (https://huggingface.co/),
complying with their respective terms of use.
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A EFFECT OF DRAWING LANGUAGE ON PROGRAM-TO-GEOMETRY
PERFORMANCE

A key motivation for our investigation is to determine to what extent challenges in
Program-to-Geometry reasoning arise from the logic of geometric construction itself, rather
than from surface-level code syntax or unfamiliarity with specific drawing languages. To test this, we
translated 5 geometry questions containing Asymptote code from AIME24 and 42 questions from
MATH-500 into equivalent Python matplotlib code, holding geometric content constant while
varying only the programmatic language. As shown in Figure 7, QwQ-32B exhibits less than 1% differ-
ence in absolute accuracy between the Asymptote and Matplotlib versions on both benchmarks. This
minimal gap provides strong evidence that the principal bottleneck in Program-to-Geometry
task performance is not due to the choice of drawing language, but rather stems from deeper difficul-
ties in spatial abstraction and geometric reasoning from code. This result reinforces our conclusion
that surface syntax is not the main limiting factor for LLMs in this domain.
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Figure 7: Comparison of QwQ-32B accuracy on equivalent geometry problems expressed in Asymp-
tote versus Matplotlib code (AIME24 and MATH-500). The negligible performance gap demonstrates
that Program-to-Geometry capability is independent of drawing language syntax.

Example

Problem Statement:
Rectangles ABCD and EFGH are drawn such that D,E,C, F are collinear. Also, A,D,H,G all
lie on a circle. If BC = 16, AB = 107, FG = 17, and EF = 184, what is the length of CE?

Figure 8: Visualization generated from the drawing code

Drawing Code (Asymptote):

import graph;
unitsize(0.1cm);
pair A = (0,0);
pair B = (70,0);
pair C = (70,16);
pair D = (0,16);

13
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pair E = (3,16);
pair F = (90,16);
pair G = (90,33);
pair H = (3,33);
dot(A^^B^^C^^D^^E^^F^^G^^H);
label("\$A\$", A, S);
label("\$B\$", B, S);
label("\$C\$", C, N);
label("\$D\$", D, N);
label("\$E\$", E, S);
label("\$F\$", F, S);
label("\$G\$", G, N);
label("\$H\$", H, N);
draw(E--D--A--B--C--E--H--G--F--C);

Drawing Code (Matplotlib):

import matplotlib.pyplot as plt

A = (0, 0)
B = (70, 0)
C = (70, 16)
D = (0, 16)
E = (3, 16)
F = (90, 16)
G = (90, 33)
H = (3, 33)

for pt in [A, B, C, D, E, F, G, H]:
plt.plot(pt[0], pt[1], ’ko’)

plt.text(A[0], A[1]-1, "\$A\$", ha=’center’, va=’top’, fontsize
=13)

plt.text(B[0], B[1]-1, "\$B\$", ha=’center’, va=’top’, fontsize
=13)

plt.text(C[0], C[1]+1, "\$C\$", ha=’center’, va=’bottom’,
fontsize=13)

plt.text(D[0], D[1]+1, "\$D\$", ha=’center’, va=’bottom’,
fontsize=13)

plt.text(E[0], E[1]-1, "\$E\$", ha=’center’, va=’top’, fontsize
=13)

plt.text(F[0], F[1]-1, "\$F\$", ha=’center’, va=’top’, fontsize
=13)

plt.text(G[0], G[1]+1, "\$G\$", ha=’center’, va=’bottom’,
fontsize=13)

plt.text(H[0], H[1]+1, "\$H\$", ha=’center’, va=’bottom’,
fontsize=13)

plt.plot([E[0], D[0], A[0], B[0], C[0], E[0]], [E[1], D[1], A
[1], B[1],

C[1], E[1]], color=’black’)
plt.plot([E[0], H[0], G[0], F[0], C[0]], [E[1], H[1], G[1], F

[1], C[1]], color=’black’)

plt.xlim(-5, 95)
plt.ylim(-5, 38)
plt.gca().set_aspect(’equal’)

plt.axis(’off’)
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plt.tight_layout()
plt.show()

B PREVENTING INFORMATION LEAKAGE IN PROCEDURAL GEOMETRY CODE

A critical aspect of dataset curation for Program-to-Geometry evaluation is the prevention of
information leakage through the procedural drawing code. In this context, information leakage refers
to situations where the answer to a geometry problem is either explicitly or implicitly encoded in the
program, enabling a model (or human) to bypass genuine geometric reasoning and instead extract the
solution directly from code inspection.

We identify two primary forms of leakage:

• Direct leakage: The answer appears explicitly in the code, for example as a coordinate,
length, or parameter value (e.g., a circle radius or segment described directly in the Asymp-
tote code).

• Indirect leakage: The answer can be inferred by performing simple calculations or extract-
ing formula results from the parameters or structure of the code, even though it is not written
verbatim.

To mitigate these risks, we systematically reviewed all procedural code in the dataset. For direct
leakage, critical coordinates and parameters are rescaled or randomized while preserving the diagram’s
structure. For indirect leakage, problem variables and code formulas are modified or masked to
preclude simple reverse engineering of the answer.

Below we present concrete examples comparing original and mitigated code for selected problems.
Each example includes its problem statement and paired Asymptote code, annotated as “before” and
“after” modification.

Example 1:

Problem Statement:
In △ABC, point F divides side AC in the ratio 1 : 2. Let E be the point of intersection of side BC
and AG where G is the midpoint of BF . The length of EC divided by the length of BE is ?

Answer: 3

Before modification (Leakage present):

size(2.5inch);
pair A, B, C, E, F, G;
A = (0,3);
B = (-1,0);
C = (3,0);
E = (0,0);
F = (1,2);
G = intersectionpoint(B--F,A--E

);
draw(A--B--C--cycle);
draw(A--E); draw(B--F);
label(\"$A$\",A,N);
label(\"$B$\",B,W);
label(\"$C$\",C,dir(0));
label(\"$E$\",E,S);
label(\"$F$\",F,NE);
label(\"$G$\",G,SE);

After modification (Leakage mitigated):
size(2.5inch);
pair A, B, C, E, F, G;
A = (0,3);
B = (-1,0);
C = (4,0);
E = (0,0);
F = (1.14, 2.14);
G = intersectionpoint(B--F,A--E);
draw(A--B--C--cycle);
draw(A--E); draw(B--F);
label(\"$A$\",A,N);
label(\"$B$\",B,W);
label(\"$C$\",C,dir(0));
label(\"$E$\",E,S);
label(\"$F$\",F,NE);
label(\"$G$\",G,SE);

Figure 9: Side-by-side comparison of Asymptote code: before (left) and after (right) information
leakage mitigation.
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Example 2:

Problem Statement:
In rectangle ABCD, point M is the midpoint of AD. The area of △AMC is 12, and AD

AB = 3
2 . Find

the length of side AD.

Answer: 8

Before modification (Leakage present):

size(4cm);
draw((0,4)-(0,0)-(6,0)-(6,8)
-(0,8)-(0,4)-(6,8)-(0,0));
label(\"$A$\", (0,0), SW);
label(\"$B$\", (6, 0), SE);
label(\"$C$\", (6,8), NE);
label(\"$D$\", (0, 8), NW);
label(\"$M$\", (0, 4), W);

After modification (Leakage mitigated):
size(4cm);
draw((0,2)--(0,0)--(3,0)--(3,4)
--(0,4)--(0,2)--(3,4)--(0,0));
label("$A$", (0,0), SW);
label(\"$B$\", (3, 0), SE);
label(\"$C$\", (3,4), NE);
label(\"$D$\", (0, 4), NW);
label(\"$M$\", (0, 2), W);

Figure 10: Side-by-side comparison of Asymptote code: before (left) and after (right) information
leakage mitigation.

C DETAILED BENCHMARK CURATION

We assemble a team of four experts (each holding a Master’s degree or higher in mathematics or
related fields) to ensure data quality. Our team manually verifies and refines samples from three
aspects: question reformulation and standardization, decontamination, answer verification and leakage
prevention.

C.1 QUESTION REFORMULATION AND ANSWER STANDARDIZATION

Question reformulation The formulation of each sample in GeoGramBench should be simple QA
pairs for convenient evaluation. To achieve this, we start to deal with multiple choice questions, proof-
based questions and multi-part problems, which are not in QA format. Multiple choice questions
can be transformed into open-ended computation problems by preserving the correct choice as the
answer and removing all other choices. Some of the proof-based questions can be transformed
into computation problems (like "Prove that PA = 4PB" can be rewrite to "Compute the ratio
between PA and PB"), whereas others are not suitable for such transformation (like "Prove that
AB ≥ 3PR). Multi-part problem always consists of several sub-problems, which can be simplified
into a single question format by retaining one of the computable sub-questions. Questions amenable
to conversion can be retained and reformulated into new QA samples, while others may be excluded
from the benchmark. According to the aforementioned rules, our team members carefully assess the
formulation of each question and perform corresponding modifications and deletion.

Answer standardization Considering the diversity and complexity of mathematical expressions,
answer standardization is crucial for accurately evaluating model-generated responses. Our team
manually modify the answer of each question by removing arithmetic operators (like +,−), letters
and characters that irrelevant for computation and evaluation (like \text{cm^2}), and standardize
each answer into LATEX format as simple as possible (like simplify \frac{28}{\sqrt{7}}} to
4\sqrt{7}). The above operations successfully ensure the consistency of question formulation
and answer standardization, which benefits subsequent data processing and contributes reliable
benchmarking. The resulting subset contains 547 candidate samples.

C.2 DECONTAMINATION

Most of the samples we collected originates from public datasets and internet resources, which
indicates a high possibility that these data has already been included in the LLMs’ pre-training
corpora. Besides, current data samples contains a certain degree of redundancy and unnecessary
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information, which may introduce unexpected bias to benchmarking. To mitigate the above influences
as much as possible, our team manually perform data decontamination for all the 547 samples from
three aspects:

Extraneous information removal We believe hyperlinks and code comments are not only un-
necessary information for mathematic geometry spatial reasoning, but also introduce text bias for
mathematic geometry problem reasoning. As a result, each member in our team carefully examine
and delete all these contents in each question;

Problem statement rephrasing To prevent samples from being solved solely based on question
statement, encourage LLMs focus on mathematic geometry spatial reasoning, we reduce some
comprehensive and specific mathematical expressions in question text. To minimize the overlap
between LLMs’ pre-training corpora and benchmarking samples, our team modifies the given
condition and question objective of some samples;

Coordinate modification In some samples, the coordinates used to generate pictures are identical to
the given conditions in the problem statement, which may enable LLMs to derive answer through
algebraic geometry reasoning based on text solely. Such problem solving approach cannot effectively
evaluate the mathematic geometry spatial reasoning ability of LLMs. To decrease the possibility of
LLMs using algebraic geometry problem solving approach, we adjust the coordinates in each samples
program code, which maintains the geometric shape and relationship of the original picture. The
above decontamination methods ensures each item in GeoGramBench is a completely new sample,
contributing to valuable and reliable mathematic geometry spatial reasoning benchmarking.

C.3 ANSWER VERIFICATION AND LEAKAGE PREVENTION

Answer verification We observe that some of the original answers are wrong to the corresponding
questions after decontamination. To avoid such circumstances, we carefully verify the answer of each
sample one by one by both referencing the original question from the Internet and calculate answer
by ourselves. The QA pairs that cannot be searched on the Internet are removed.

Answer leakage prevention We find some of the correct answers are already leaked in the code
of samples during verification. As shown in Figure 9, 10, the answer can explicitly equals to the
answer, or implicitly computed according to the code for generating image. This situation may allow
LLMs access the answer in advance, which harm to the evaluation of mathematic geometry spatial
reasoning. To prevent answer leakage, our team manually revised the code for all samples once
again by rescaling coordinates and masking codes with numbers. Answer verification and leakage
prevention guarantee the correctness of all the samples and the fairness of benchmarking.

After human verification and refinement, we ultimately obtained 392 high-quality, contamination-free
geometry problems for later augmentation and evaluation.

C.4 AUGMENTATION

We introduce additional samples to enhance difficulty and diversity of GeoGramBench: 5 geometry
problems from AIME24 MAA (2025), 42 from MATH-500 Lightman et al. (2023), and 61 geometric
problems adapted from Mathverse Zhang et al. (2024b). The 47 samples from AIME24 and MATH-
500 are retained without modification dur to their high quality. For the Mathverse subset, we first
filter 119 samples with two key words: Vision Intensive and Solid Geometry. These samples focus
on solid geometry questions, with the majority of problem solving information presented in image.
This advantages makes them highly suitable for mathematic geometry spatial reasoning evaluation.
However, Mathverse only provides the original images without the plotting code for reproducing
the picture. Thus, our team decide to write python matplotlib code with our own to construct new
evaluation samples in GemGramBench. Notably, we do not ask for multimodal models (like GPT-4o)
for help because such models performs poorly when transforming solid geometry picture to matplotlib
code.

Altogether, GeoGramBench comprises 500 hand-crafted geometry problems, which contributes to
valuable and reliable mathematic geometry spatial reasoning evaluation.
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C.5 TAXONOMY CLASSIFICATION PROMPT DETAILS

In constructing the GeoGramBench taxonomy, we categorized all 500 problems into three ascending
difficulty levels: Primitive Recognition, Local Relation Composition, and Global Abstract Integration,
based primarily on the geometric and spatial complexity of each problem. This classification process
was conducted through a combination of large language model (GPT-4o) assisted clustering and
meticulous human expert correction. The initial clustering enabled an efficient, scalable filtering of
geometry problems, while human review ensured rigor, consistency, and alignment with the intended
definitions of each difficulty level.

To ensure reproducibility and transparency, we provide below the actual prompt used in the taxonomy
assignment stage:

Given a geometry problem and its drawing code of diagram:
There are three categories of geometry problems:

1. Primitive Recognition
- The asy diagram/code contains very few geometric elements (e.g., one or two basic shapes,
or minimal labeled points/lines).
- The solution can be reached with direct observation or a single basic calculation; no
significant composition, auxiliary constructions, or synthesis are required.
- Tests only elementary recognition or reading from the diagram.
2. Local Relation Composition
- The asy diagram/code includes multiple geometric elements (points, lines, circles, polygons,
etc.) combined in a finite and explicitly described way. - The solution requires synthesizing,
coordinating, or combining several local relationships, auxiliary constructions, or properties.
The process involves several steps, but remains within standard 2D geometry.
- The primary challenge is combining and reasoning locally among elements shown in the
diagram.
3. Global Abstract Integration
- The asy diagram/code may be complex, recursive, or defined by folding, projection, 3D
arrangement, or abstract/global spatial processes.
- The solution needs global synthesis: either full configuration analysis, recursive processes,
or 3D/limit/extreme configuration reasoning.
- Tests the model’s ability to reconstruct and reason about a highly integrated or abstract
global geometric structure.

Instructions:
1. Classify the problem into one category: Primitive Recognition, Local Relation Composi-
tion, or Global Abstract Integration.
2. For geometric elements, consider only what is explicit in the asy code.
3. Judge the solution/reasoning requirement based on the problem’s actual goal and what
conceptual/computational effort is needed to reach the answer.
4. Briefly justify your classification: refer to relevant features in the diagram and in the
problem’s required reasoning process.
Output format:
- Category: [Primitive Recognition / Local Relation Composition / Global Abstract
Integration]
- Justification: [A short explanation, citing relevant diagram elements and the level of
reasoning/effort required.]

C.6 SUBTYPE DISTRIBUTION AND DEFINITION

To provide a more granular analysis of geometry problem-solving, GeoGramBench includes six
distinct task subtypes: Angle, Length, Area, Volume, Ratio, and Count. Each subtype captures
different aspects of mathematical reasoning:

• Angle: Problems that require determining unknown angles.
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• Length: Problems involving the calculation or comparison of lengths of line segments,
perimeters, or distances between points.

• Area: Tasks focused on finding the area of various geometric shapes or regions (triangles,
circles, polygons, composite shapes).

• Volume: Problems dedicated to computing the volume of three-dimensional objects such as
cubes, spheres, prisms, or their composites.

• Ratio: Questions centered on the proportional relationships among lengths, areas, or other
geometric quantities, often requiring understanding of similarity, scale, or division.

• Count: Problems that entail counting geometric objects or features, such as the number of
sides, vertices, faces, or qualifying structures within a diagram.

Table 2 presents the detailed distribution of these subtypes across the three levels of GeoGramBench:
Primitive, Compositional, and Abstract. This diverse coverage facilitates diagnostic evaluation of
LLMs’ performance across a wide range of geometric reasoning skills.

Table 2: Distribution of GeoGramBench problems by subtype within each complexity category.

Subtype Primitive Compositional Abstract
Angle 22 20 7
Length 25 88 20
Area 26 89 46
Ratio 14 51 4
Count 15 31 15
Volume 0 0 27

Total 102 279 119

D IMPACT OF DOMAIN-SPECIFIC DATA ON LLMS’ PERFORMANCE

To address the potential influence of data scarcity on LLMs’ performance in the
Program-to-Geometry task, we conducted data ablation experiments to systematically evaluate
the impact of adding domain-specific examples from GeoGramBench. These experiments aim to
clarify whether the observed performance gaps are primarily due to a lack of training data or inher-
ent modeling limitations, while also assessing the benchmark’s effectiveness in enhancing spatial
reasoning capabilities.

Experimental Setup The baseline model is s1.1-32B (Muennighoff et al., 2025), fine-tuned via
supervised learning on the s1k dataset (a collection of 1,000 general reasoning examples designed
to enhance long chain-of-thought (CoT) capabilities). Given the limited availability of high-quality
programmatic geometry data, we partitioned GeoGramBench into a test set of 200 problems (spanning
the Primitive, Compositional, and Abstract levels) and a training set of 300 problems. The training set
was enriched with detailed reasoning chains distilled from DeepSeek-R1 (Guo et al., 2025), creating
a high-quality distillation dataset for fine-tuning. We performed ablation studies by incrementally
adding 50, 100, 150, and 300 code-based geometry training samples from the GeoGramBench
training set to the original s1k data. The combined dataset was used for fine-tuning, following the
protocol from (Muennighoff et al., 2025).

Experimental Analysis Adding domain-specific data from GeoGramBench leads to a clear im-
provement in accuracy. Comparing Exp. 3 (100 samples) to the baseline (Exp. 1), the average accu-
racy increases by 3.02 percentage points, with notable gains across all levels—Primitive (+1.84%),
Compositional (+3.66%), and Abstract (+2.82%). This demonstrates that exposure to task-specific
examples enhances the model’s ability to resolve ambiguities in geometric code, improving both
logical reasoning and internal geometric representations. However, the gains plateau with further
data increases. Tripling the added samples from 100 (Exp. 3) to 300 (Exp. 5) yields only a marginal
additional improvement of 0.59 percentage points (3.60% vs. 3.02%), with Abstract accuracy even
declining slightly from 18.62% to 17.83%. This suggests that while initial data exposure mitigates
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Table 3: Data ablation results on s1.1-32B fine-tuned with increasing GeoGramBench samples added
to s1k. Accuracies (%) are reported on a 200-problem test subset. ∆ denotes improvement over the
baseline (Exp. 1). Bold highlights the best per level.

Exp. # Added Samples Primitive Compositional Abstract Avg. ∆
1 0 59.38 46.00 15.80 38.18 —
2 50 57.99 49.61 16.18 39.80 +1.62
3 100 61.22 49.66 18.62 41.20 +3.02
4 150 61.11 50.90 18.38 41.73 +3.55
5 300 61.11 51.42 17.83 41.79 +3.60

unfamiliarity, the model’s performance is ultimately constrained by intrinsic weaknesses in geometric
spatial representation, which additional data alone cannot fully address.

Implications These results validate GeoGramBench’s effectiveness as a resource for improving
LLMs’ performance on Program-to-Geometry tasks, with as few as 100 in-domain examples
yielding significant benefits. The benchmark’s potential generalizability to other spatial reasoning
tasks is also suggested, given the diverse geometric properties (e.g., angle, volume) it encompasses.
However, the plateau effect highlights the need for architectural or training advancements beyond
data augmentation to enhance spatial abstraction, positioning GeoGramBench as a valuable testbed
for future research in this area.

E TOKEN BUDGET FORCING EXPERIMENT

To deepen our understanding of CoT’s influence on symbolic-to-spatial geometric reasoning, we
conducted a quantitative experiment using Token Budget Forcing (BF) (Muennighoff et al., 2025),
a technique that extends CoT by appending "Wait" tokens (N-Ignore) to delay conclusion. This
method has previously improved the s1 model’s performance on AIME24 (MAA, 2025) from 50.0%
to 56.7%, prompting its application to the Program-to-Geometry task. We implemented BF
on the s1.1-32B model (Muennighoff et al., 2025), a variant of Qwen2.5-32B-Instruct (Yang et al.,
2024a) optimized for long CoT reasoning, evaluated across GeoGramBench.

Table 4 presents the results, showing accuracy and token counts with N-Ignore values of 0 (baseline),
1, 2, 4, and 6. The experiment extended the CoT length significantly. For example, setting N-Ignore
to 6 increased the token count by 77.4% to 18,710, yet yielded only marginal accuracy gains, peaking
at 54.90% with N-Ignore values of 1, 2, and 4. This represents only a 0.30% improvement over
the baseline of 54.60%, before accuracy declined slightly at N=6. Per-level analysis reveals modest
improvements (e.g., +0.53% in Compositional at N=4), with Abstract showing minimal change
(+0.31% at N=1). This suggests that while BF expands reasoning capacity, it does not substantially
enhance the model’s ability to construct accurate spatial representations from code.

Table 4: Performance of s1.1-32B with Token Budget Forcing (BF) on GeoGramBench. Accuracies
(%) are averaged over 8 samples per problem, with token counts reflecting CoT length.

BF N-Ignore Token Count Primitive Compositional Abstract Avg.
No 0 10,544 75.37 58.96 26.58 54.60
Yes 1 11,336 76.47 58.78 26.89 54.90
Yes 2 12,319 76.47 58.78 26.89 54.90
Yes 4 15,245 75.49 59.49 26.89 54.90
Yes 6 18,710 74.50 59.13 26.89 54.40

The plateau in performance despite increased token counts indicates that the limitation lies not in the
length of reasoning but in the model’s ability to update internal geometric models. This reinforces
the qualitative observation that CoT’s symbolic focus hinders effective spatial abstraction.
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F MORE BEHAVIOR ANALYSIS OF LLMS

Problem statement:
In quadrilateral ABCD, angle BAD and angle CDA are trisected as shown. What is the degree
measure of angle AFD?
Answer: 80

Geometric Code:

size(150);
pair A , B, C, D;
A = (0,0); B = (2, 4); C = (7,4); D = (7, -2);
draw( (0,0)--(2,4) -- (7,4) -- (7, -2)-- cycle);
label("$A$", A, SW);
label("$B$", B, NW);
label("$C$", C, NE);
label("$D$", D, SE);
pair E, F;
E = (4.5-.2,1-.2);
F = (5, 3);
draw(A--E--D);
draw(A--F--D);
label("$E$", E, N);
label("$F$", F, NW);
dot(A);dot(B);dot(C);dot(D);dot(E);dot(F);
label("$x$", (1, 1.5), S);
label("$x$", (2, 1), S+W);
label("$x$", (2, -1), N+N+N+W);
label("$y$", (5.5+.3, .5-.3), S); label("$y$", (6.5+.3, 0));
label("$y$", (5+.5, -1.5+.3));
label("$110^{\\circ}$",(2.5,3.5)); label("$100^{\\circ}$

",(6.5-.2,3.5));

A

B C

D

E

F

x
x

x y y

y

110◦ 100◦

Figure 11: Visualization generated from the drawing code
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Response from QwQ-32B

<think> Okay, so I need to find the measure of angle AFD in this quadrilateral ABCD where
angles BAD and CDA are trisected ...... First, let me note down the coordinates again to
get a better idea: - A: (0,0) - B: (2,4) - C: (7,4) - D: (7,-2) . So quadrilateral ABCD has
vertices at these points.Let me sketch this mentally. Starting at A (0,0), going to B (2,4),
then to C (7,4), then to D (7,-2), and back to A. So AB is a line going up to the right, BC
is a horizontal line to the right, CD goes down to the right, and DA goes straight left down
to A. Wait, actually, D is at (7,-2), so DA would go from (7,-2) back to (0,0). Hmm, so DA
is a line from the lower right back to the origin. Angles BAD and CDA are being trisected
...... Alternatively, since both E and F are connected from A to D, but through different
paths? Maybe E is on one trisection and F on another? Hmm, this is getting a bit confusing
without seeing the actual figure. Let me try to reconstruct based on coordinates. First, let’s
compute angles BAD and CDA to see their measures, which can then be trisected. Starting
with angle BAD. This is the angle at vertex A between points B, A, and D.Coordinates: -
Point B: (2,4) - Point A: (0,0) - Point D: (7,-2) So vectors AB and AD can be calculated
...... Now, arccos(0.1592). Let me use a calculator for better precision. Using a calculator,
arccos(0.1592): cos(80 u00b0) u2248 0.1736 cos(81 u00b0) u2248 0.1564 So 0.1592 is
between 80 and 81 degrees. Let me compute the difference: At 80 u00b0: 0.1736 At 81
u00b0: 0.1564 Difference between 80 and 81 u00b0 is 1 u00b0, and the difference in cos is
-0.0172 per degree... Alternatively, maybe angle at B is 110 u00b0, angle at C is 100 u00b0,
then angles at A and D would need to be 360 - 210 = 150 u00b0, so angle BAD + angle
CDA = 150 u00b0, so if angle BAD is trisected into 3x and angle CDA into 3y, then 3x +
3y = 150 u00b0, so x + y = 50 u00b0, then angle AFD would be 180 - x - y = 130 u00b0?
Wait, no, in triangle AFD, angles at A and D would be x and y, so angle AFD = 180 - (x +
y) = 180 -50=130 u00b0, but that contradicts coordinate. Alternatively, maybe angle at B is
110 u00b0, angle at C is 100 u00b0, then angles at A and D would need to be 360 - 210 =
150 u00b0, so angle BAD + angle CDA = 150 u00b0, so if angle BAD is trisected into 3x
and angle CDA into 3y, then 3x + 3y = 150 u00b0, so x + y = 50 u00b0, then angle AFD
would be 180 - x - y = 130 u00b0? Wait, no, in triangle AFD, angles at A and D would be x
and y, so angle AFD = 180 - (x + y) = 180 -50=130 u00b0, but that contradicts coordinate.
Alternatively, maybe angle AFD is an external angle or something else ...... which is 80.8
u00b0, so the closest integer is 81 u00b0. Since the problem likely expects an integer, I’ll
go with 81 as the answer. **Final Answer** 81 To find the degree measure of angle
∠AFD in quadrilateral ABCD where angles ∠BAD and ∠CDA are trisected, we start
by analyzing the given coordinates and using vector calculations. The coordinates of the
points are: - A = (0, 0) - B = (2, 4) - C = (7, 4) - D = (7,−2) - F = (5, 3) We need to
determine the angle at point F between points A, F , and D. This angle is formed by the
vectors

−→
FA and

−−→
FD. 1. **Calculate vectors:** -

−→
FA = A−F = (0− 5, 0− 3) = (−5,−3)

-
−−→
FD = D − F = (7− 5,−2− 3) = (2,−5) 2. **Compute the dot product:**

−→
FA ·

−−→
FD = (−5)(2) + (−3)(−5) = −10 + 15 = 5

3. **Compute the magnitudes of the vectors:** - |
−→
FA| =

√
(−5)2 + (−3)2 =

√
25 + 9 =√

34 - |
−−→
FD| =

√
22 + (−5)2 =

√
4 + 25 =

√
29 4. **Calculate the cosine of the angle:**

cos(θ) =

−→
FA ·

−−→
FD

|
−→
FA||

−−→
FD|

=
5√

34
√
29

=
5√
986

5. **Determine the angle using the arccosine function:**

θ = arccos

(
5√
986

)
Using a calculator, we find that:

θ ≈ 80.8◦

Rounding to the nearest degree, the measure of angle ∠AFD is approximately 81◦. Thus,
the final answer is 81 .

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Problem Statement: In the figure below, quadrilateral CDEG is a square with CD = 3, and
quadrilateral BEFH is a rectangle. If BE = 5, how many units is BH? Express your answer as a
mixed number.

Answer: 1 4
5

Geometric Code:

unitsize(5mm);
defaultpen(linewidth(.7pt)+fontsize(8pt));
pair A=(0,0), B=(3,0), C=(6,0), D=(9,0), Ep=(9,3), G=(6,3);
pair F0=bisectorpoint(B,2*Ep-B), H0=bisectorpoint(Ep,2*B-Ep);
pair H=extension(B,H0,A,G);
pair F=extension(Ep,F0,A,G);
draw(H--B--Ep--F--A--D--Ep--G--C);
label("$A$",A,S);
label("$B$",B,S);
label("$C$",C,S);
label("$D$",D,S);
label("$E$",Ep,E);
label("$F$",F,N);
label("$G$",G,NW);
label("$H$",H,NW);

A B C D

E

F

G

H

Figure 12: Visualization generated from the drawing code
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Response from QwQ-32B

Okay, let’s see. I need to find the length of BH in the figure provided...Hmm, I should start by
trying to understand the coordinates of the points based on the Asymptote code given. First,
looking at the Asymptote code, they define point A at (0,0), B at (3,0), C at (6,0), D at (9,0),
E is labeled as Ep which is (9,3), and G is at (6,3). So, let me note down these coordinates:
- A: (0, 0)
- B: (3, 0)
- C: (6, 0)
- D: (9, 0)
- E: (9, 3)
- G: (6, 3)
... Alternatively, maybe the square is oriented differently? But since the problem didn’t
specify orientation, but the Asymptote code had coordinates with C at (6,0), D at (9,0),
E at (9,3), G at (6,3). Wait, but maybe it’s better to compute coordinates step by step....
Alternatively, since BEFH is a rectangle, then H must be such that BH is equal and parallel to
EF, and FH is equal and parallel to BE. Alternatively, since BE is from B to E, then to get to
F from E, we move in the direction perpendicular to BE ... Alternatively, perhaps I chose the
direction incorrectly. Let me try with the other perpendicular direction. If instead of (3,4),
we take (-3,-4). Then vector EF would be (-3,-4). Then point F would be E(3,3) + (-3,-4)
= (0,-1). Then vector FH would be equal to BE? Wait, no. Wait, in a rectangle, opposite
sides are equal. So FH should be equal and parallel to BE. Hmm, perhaps I need to think
differently. Alternatively, since BE is one side, and EF is another side, then FH should be
equal and parallel to BE, and HB should be equal and parallel to EF.
So if vector BE is (-4,3), then vector FH should also be (-4,3). Starting from F, adding vector
BE gives H = F + BE. Wait, but maybe I need to think of the rectangle as B -> E -> F -> H ->
B ... In the Asymptote figure, points are: A(0,0), B(3,0), C(6,0), D(9,0), E(9,3), G(6,3) We
need to find H’s coordinates.H is extension(B, H0, A, G). Let’s try to compute H0 and then
the line. Which is point B. So line BH0 is the line from B(3,0) to H0(3,0), which is a point.
Not helpful... Vector Ep - B = (9-3, 3-0)=(6,3) Vector Ep - (2*B - Ep) = Ep - (-3,-3) = (9 -
(-3), 3 - (-3)) = (12,6) So the two vectors are (6,3) and (12,6), which are in the same direction
(since (12,6)=2*(6,3)). So the angle between them is zero, so the bisector is the same line.
Hence, the angle bisector is undefined, or the line itself. So H0 is along that line. ... Ah, yes!
Because vector BE is (6,3), and vector HB is (3/5, -6/5). Their dot product is indeed zero. So
the calculation is correct. Therefore, the answer is 1 .
**Final Answer** 1 Given quadrilateral (CDEG) is a square with (CD = 3) and quadrilateral
(BEFH) is a rectangle with (BE = 5), we need to find the length of (BH).
1. **Coordinates and Setup**: - In the Asymptote code, points (C), (D), (E), and (G) form
a square with (CD = 3). The coordinates are (C(6,0)), (D(9,0)), (E(9,3)), and (G(6,3)).
- The problem states (BE = 5), but in the Asymptote coordinates, (BE) is calculated as
(
√
(9− 3)2 + (3− 0)2 =

√
45 = 3

√
5). To scale this to (BE = 5), the scaling factor is

( 5
3
√
5
=

√
5
3 ).

2. **Finding Coordinates of (H)**: - In the Asymptote figure, line (AG) is from (A(0,0)) to
(G(6,3)). The parametric form of (AG) is ((6t, 3t)). - Point (F) on (AG) is found by ensuring
(EF) is perpendicular to (BE). Solving, (F) is at (

(
42
5 , 21

5

)
). - Point (H) is determined by the

rectangle properties, resulting in (
(
12
5 , 6

5

)
).

3. **Calculating (BH) in Asymptote Coordinates**: - Coordinates of (B(3,0)) and (
(
12
5 , 6

5

)
).

- Distance (BH) is (
√(

3− 12
5

)2
+
(
0− 6

5

)2
=

√(
3
5

)2
+

(
− 6

5

)2
= 3

√
5

5 ).

4. **Scaling to Problem’s Coordinates**: - Scaling factor (
√
5
3 ) is applied to the Asymptote

length of (BH), resulting in ( 3
√
5

5 ×
√
5
3 = 1).

Thus, the length of (BH) is ( 1 ).
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G A HYPOTHESIS ON INTERNAL GEOMETRIC REPRESENTATIONS IN LLMS

Drawing on both quantitative results and behavior analyses, we hypothesize that large language
models confronted with procedural geometry code engage in a multi-stage internal reasoning process
closely aligned with the pipeline illustrated in Figure 13.

The process begins with the extraction of local geometric features or substructures ({z1, z2, . . . })
from the input text and code ({T, C}), corresponding to the abilities probed in RQ1. Our evidence
shows that models are generally able to parse and represent these local primitives with high accuracy
in simpler cases.

The next critical stage involves integrating these local elements into a coherent, global representation
(Z1), reflecting the compositional reasoning explored in RQ2. This is where we observe a pronounced
bottleneck: small errors or ambiguities in local geometry can disrupt subsequent steps, making it
difficult for models to build a structurally correct and complete diagram as complexity increases.

Subsequently, models iteratively attempt to update and refine their global geometric understanding,
often through chain-of-thought (CoT) reasoning or self-reflective steps, in hopes of reconciling
inconsistencies and clarifying spatial relationships. Despite such iterative efforts, our analysis of
model outputs indicates that most fail to achieve robust global integration, as highlighted by the
continued drop in accuracy and recurring spatial confusion on the most complex tasks (RQ3).

Finally, the model produces an answer (A), leveraging whatever spatial structure has been suc-
cessfully constructed and refined. Our overall findings suggest that while LLMs can recognize
and extract local geometric information, and to some extent initiate the integration process, there
remain significant limitations in aggregating and refining these components into a globally consistent
geometric representation for accurate problem solving. Overcoming these integration and synthesis
difficulties is likely to be a key research frontier for closing the gap in Program-to-Geometry
spatial reasoning.

These findings point to the need for future research on more robust scene composition and iterative
spatial integration mechanisms in LLMs, as well as the development of benchmarks and training
strategies tailored to these specific bottlenecks.

{T, C} {z1, z2, . . . } Z1 Z2 A
↑

RQ1
↑

RQ2
↑

RQ3

Figure 13: Illustration of the hypothesized multi-stage internal geometry representations process in
LLMs for Program-to-Geometry tasks. The model first extracts local geometric substructures
({z1, z2, . . .}) from the problem statement ({T, C}), then integrates these into a coherent global
structure (Z1), which is further iteratively refined and updated (Z2, . . .), before finally predicting
the answer (A). Each stage corresponds to a core research question: RQ1 (local construction), RQ2
(compositional integration), and RQ3 (global abstraction and reasoning). Dashed arrows indicate
how both input information and intermediate representations propagate throughout the process.

H LIMITATION AND FUTURE WORK

While GeoGramBench provides a rigorous assessment of LLMs’ abilities on mathematical geometry
problems described by procedural code, it does not address reasoning in real-world 3D scenarios.
In addition, our analysis of failure patterns remains largely qualitative due to the lack of robust
automated tools for systematic error diagnosis. Current approaches to failure mode analysis often
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rely on LLM-based evaluation, but their reliability is questionable—these methods require LLMs
with very high reasoning capabilities, and the faithfulness of their chain-of-thought processes is still
an open research problem. Moreover, although our supervised fine-tuning experiments indicate that
GeoGramBench can improve LLM performance on Program-to-Geometry tasks, the evaluation
of its effectiveness on a broader range of spatial reasoning challenges is still preliminary and warrants
more thorough investigation.

In future work, we plan to extend GeoGramBench to include real-world 3D scenarios. We also
intend to explore the potential of this benchmark for guiding model training on more diverse spatial
tasks, such as those encountered in robotics and other applied domains. We encourage further
research to build on GeoGramBench, develop more advanced evaluation and probing techniques, and
systematically investigate model behavior in a variety of procedural and spatial contexts, ultimately
advancing our understanding of spatial reasoning in large language models.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, GPT-4o was utilized as a general-purpose aid for polishing writing, specifically for
grammar correction and refining sentence expression. No content was generated by LLMs for
research ideation, experimental design, data analysis, or substantive scientific contribution. We take
full responsibility for the final content.
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