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ABSTRACT

In recent work, we studied the phaseless PCA (low rank
phase retrieval) problem and developed a provably correct
and fast alternating minimization (AltMin) solution for it
called AltMinLowRaP. In this work, we develop a modifi-
cation of AltMinLowRaP, called AltMinLowRaP-Ptych, that
is designed for reducing the sample complexity (number of
measurements required for accurate recovery) for dynamic
Fourier ptychographic imaging. Fourier ptychography is a
computational imaging technique that enables high-resolution
microscopy using multiple low-resolution cameras. Via ex-
haustive experiments on real image sequences with simulated
ptychographic measurements, we show the power of our al-
gorithm for reducing the number of samples required for
accurate recovery.

Index Terms— Phase retrieval, Fourier ptychography,
low rank

1. INTRODUCTION
A common problem in microscopy and long-distance imag-
ing is diffraction blurring. Fourier ptychography [1] is a tech-
nique which mitigates its effects by constructing a large syn-
thetic aperture. Practically, this setup can be implemented
by either spatially moving a single camera [2], or by an ar-
ray of fixed cameras [1], similar to those used in light-field
cameras; each of the cameras measures different parts of the
Fourier spectrum of the desired images. The image formed
at the sensing plane is complex-valued due to phase shifts
induced by the optical lens setup. The sensing apparatus is
incapable of estimating the phase of the complex values, and
only the magnitudes can be measured. From a signal pro-
cessing perspective [3, 4], after some standard pre-processing,
each camera’s measurement can be modeled as the magni-
tude of a different bandpass filtered version of the unknown
high-resolution image. The image reconstruction problem
can thus be posed as one of phase retrieval (PR): recover the
unknown vectorized image x from y := |Ax| where |.| de-
notes element-wise magnitude and A is the (known) matrix
corresponding to the measurement process.

To get enough measurements per image, one either needs
many cameras, or one needs to move a single camera to dif-
ferent locations to acquire the different bands. This can make
the acquisition process expensive or very slow. There has

thus been significant interest in exploiting structural assump-
tions such as sparsity or low-rank (LR) to reduce the num-
ber of cameras (or camera movements) required [4]. When
considering dynamic imaging, e.g., imaging of live biologi-
cal specimens, joint reconstruction of a set of similar images
is needed. In this case, a low rank (LR) assumption on the
matrix formed by arranging the images as its columns is a
more flexible model than sparsity or joint sparsity, since it
does not require knowledge of the sparsifying basis or dictio-
nary. Natural image sequences typically change slowly over
time; hence the matrix formed by the vectorized images as its
columns is well-modeled as being approximately LR. With
imposing an LR assumption, the dynamic Fourier ptycho-
graphic imaging problem becomes one of “Phaseless PCA” or
“low rank PR (LRPR)”; this was explored extensively in our
recent work [5, 6, 7]. We developed a fast AltMin approach
called AltMinLowRaP that, in simulation experiments, sig-
nificantly improved upon our older approach from [5, 4], and
that also comes with stronger theoretical guarantees (all guar-
antees are for i.i.d. random Gaussian Aks).
Contribution: In this work, we develop a modification of
the basic AltMinLowRaP approach, called AltMinLowRaP-
Ptych, and show its advantage our existing approaches
for undersampled dynamic Fourier ptychographic imag-
ing. AltMinLowRaP-Ptych needs a different initialization
approach since the original one was developed for random
Gaussian measurements. It also includes an extra LR model
correction step to deal with the fact that real image sequences
are not exactly LR. We show the significant advantage of
our approach over both our older algorithm from [5, 4] (LR-
Ptych), as well as over other standard PR [3], sparse PR [4]
and block sparse PR based solutions, for recovering multiple
real image sequences from simulated Fourier ptychographic
measurements at different undersampling ratios.
Other Related Work. Other somewhat related work on use
of PR in imaging applications includes [8, 9, 10, 11, 12].

2. PROBLEM FORMULATION
We first give the general problem definition next and then ex-
plain the Fourier ptychographic setting.

2.1. Low Rank PR (Phaseless PCA)

Low Rank PR (LRPR) involves recovering an n × q rank-r
matrix X∗ = [x∗1,x

∗
2, . . . ,x

∗
k, . . . ,x

∗
q ] with r � n, q (LR),
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from different phaseless linear projections of each of its
columns, i.e., from

yk := |Akx
∗
k|

where the Aks are known m× n measurement matrices, and
|v| takes element-wise magnitude of each entry of v.

Observe that our measurements are not global, i.e., no
scalar measurement (one entry of yk) is a function of the en-
tire matrix X∗. The measurements are global for each col-
umn, but not across the different columns. We thus need the
following incoherence assumption to enable correct interpo-
lation across the different columns [6]. This was introduced
in [13] for LR matrix completion (LRMC) which is another
LR problem with non-global measurements.
Right singular vectors’ incoherence: We assume that
maxk ‖x∗k‖2 ≤ µ̃

∑q
k=1 ‖x∗k‖2/q for a constant µ̃ ≥ 1 but

not too large1. This is requiring that the “energy” (squared
2-norm) of the various images, x∗k, is similar so that the max-
imum energy is within a constant factor of its average value.
This is valid for most natural image sequences that changes
slowly over time.

2.2. Approx-LRPR for real image sequences
Real image sequences are only approximately LR. Thus, the
model

yk = |Akz
∗
k|, with z∗k = x∗k + e∗k,

x∗ks forming an LR matrix X∗, and e∗k being the small residual
in this model, is more practically valid one than exact LRPR
described above. In particular we assume that ‖e∗k‖ � ‖x∗k‖.
Here z∗k now is the vectorized unknown image that needs to
be recovered. We use this model in the current work.

2.3. Fourier Ptychography as an approx-LRPR problem
In the description below we use (z)img to refer to the 2D im-
age version of an n-length vector z. As explained in detail in
[15, 3], for an image, (z)img , the imaging model is

yi = |F−1(Pi(F((z)img))|, i = 1, . . . , N

whereF andF−1 represent the 2D discrete Fourier transform
and inverse-DFT operators, Pi is the pupil mask correspond-
ing to the i-th camera (or LED): it models the bandpass filter-
ing operation: selects a region of the Fourier spectrum while
zeroing out the rest of it (different regions are selected for dif-
ferent i). The image obtained by the i-th camera, yi ∈ Cn for
simplicity of notation (although the information content in it
is less than n). The stack of measurements corresponding to
all N cameras y ∈ CnN .

Our undersampling approach consists of using images
from a subset of the cameras. A different subset is used for

1Treating the condition number of X∗ as a constant, this assumption im-
plies incoherence [13, 14] of the right singular vectors of X∗ with incoher-
ence parameter µ̃κ, in the traditional sense. We state it this way, to make its
interpretation easier for the current work.

Ai,k : x F Pi,k F−1 Mi,k ŷi,k

ŷi,k | · | yi,k

A>i,k : ŷi M>i,k F P>i,k F−1 x̂i,k

Fig. 1: OperatorAi,k andA>i,k.M>i,k(.) returns a zero vector
if camera i was not selected, and returns its argument other-
wise. P>i,k(.) zeros out the entries of its input corresponding
to parts of the Fourier spectrum that were turned off.

different images k in the sequence. We model this by using
a mask Mi,k(.) which either returns its argument or zeros
depending on if the camera is selected or not. Thus, for an
image sequence matrix Z∗, for each column k, we measure

yi,k = Mi,k(F−1(Pi,k(F((z∗k)img)))) := Ai,k((z
∗
k)img)), i ∈ [N ]

As above, Pi,k(.) is the pupil mask that models the bandpass
filtering operation. The cameras’ maskMi,k can either select
a subset of cameras or pixels from each camera. The former
is a more practically useful setting and hence we use that in
our current experiments. In either case, the sampling scheme
is such that the central camera (camera corresponding to the
low-pass filtering operation) is always selected. Fig. 1 shows
Ai,k((z)img) and A>i,k(y).

With the above model, yk = [y>1,k,y
>
2,k, . . . ,y

>
N,k]

>, Ak

is a similar concatenation of Ai,k for i ∈ [N ], and m = nN .
We should clarify here that, when linear operators or

transforms are applied on an image, the entire operation
can always be expressed as a matrix-vector multiplication
for the vectorized image. However, computationally, di-
rectly applying the operators/transforms is much faster. Also
it is easier to understand from a practitioner’s perspective.
Thus, in the writing above, yk := |Akz

∗
k| is replaced by

yi,k = |Ai,k((z
∗
k)img)|, i ∈ [N ].

Notice that the above problem setting is different from the
random Gaussian setting where m � n suffices. The reason
is the different entries/pixels of each captured image yi,k are
highly correlated (yi,ks are low-resolution images), whereas
in the random Gaussian case, the different scalar entries of yk

are mutually independent.

3. THE PROPOSED ALGORITHM:
ALTMINLOWRAP-PTYCH

Our proposed approach (Algorithm 1) is inspired by the Alt-
MinLowRaP algorithm from our older work [7]. It expresses
the estimate of the unknown matrix as X = UB where U is
n× r, B is r× q, and considers the squared loss cost function

f(U,B) :=
∑
k

‖yk − |Ak((Ubk)img)|‖22
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AltMinLowRaP uses a spectral initialization approach to ob-
tain the first estimate of U. It then uses AltMin to update B
and U alternatively by minimizing f(U,B) over one keep-
ing the other constant. The update of U is followed by an
orthonormalization step to prevent the norm of one of them
from growing (or decreasing) in an unbounded fashion. The
update of B is clearly decoupled across columns, each is
updated by solving a standard r-dimensional noisy PR prob-
lem with measurement vector yk and measurement operator
Ak((U·)img). We use the AltMinPhase algorithm of [16]
for this standard PR step. This is specified in Algorithm
2. Other methods such Truncated or Reshaped Wirtinger
Flow can also be used instead. The update for U is a non-
standard PR problem but it can be simplified using the fol-
lowing insight: when estimating bk’s by standard PR, we
also obtain an estimate of the measurement phases: if we
use a diagonal matrix Ck to denote these estimates, then
Ck := diag(Ak((Ubk)img)); here diag(v) makes a diago-
nal matrix using the entries of the vector v. Given Ck and bk,
we can minimize

∑
k ‖Ckyk − Ak((Ubk)img)‖22 over U:

this is a standard least squares (LS) problem. For our current
application, we need two changes to the above approach.
Initialization. The spectral initialization step was designed
for i.i.d. Gaussian matrices and does not work in the cur-
rent setting. To address this, we use a simple modification
of the approach we developed in [4]. We compute x̂0

k =√
1
N

∑N
i=1 yi,k.2, where yi,k.

2 means element-wise square,
use this to define that matrix X0, compute its r-SVD (top r
left singular vectors), and use this as an estimate of U0.
Model Error Correction (MEC) step. Second, since the
matrices formed by real image sequences are only approx-
imately LR, we need a model error correction (MEC) step.
First, we estimate the LR matrix X∗ using the measurements
yk as input to the basic AltMinLowRaP algorithm. Next, we
estimate the unstructured small residual e∗k by minimizing

‖yk − |Ak((x
final
k + e)img)|‖22 + τ‖e‖22

using an AltMin approach that minimizes over e and the
phases’ matrix Ck alternatively: it solves mine,C ‖Cyk −
Ak((x

final
k + e)img)|‖22 + τ‖e‖22 by AltMin with a zero

initialization of e as the starting point. This is specified in
Algorithm 3.

The complete algorithm is summarized in Algorithm 1.

4. EXPERIMENTAL RESULTS
We compare our algorithm with existing approaches on syn-
thetically produced measurements of real videos. We used
4 videos: ‘Bacteria” (B),“Fish”(F), and “Mouse”(M), and
“Plane” (P). Videos are of size 180 × 180 × q with different
number of frames q for each video. Number of frames are
q = 105, 112, 88, 90 for videos of “P”,“B”, “F”, and “M” re-
spectively. The camera array consists of Nfull = 81 cameras

Algorithm 1 AltMinLowRaP-Ptych

(Initialization)
1: Input: yk,Ai,k, r

2: x̂0k ←
√

1
N

∑N
i=1 y

2
i,k, k indexes frames, k = 1, . . . , q.

3: [Û0,S0,V0]← ReducedSV D((X
0
), r)

(Low-rank matrix recovery)
4: for t = 1, 2, . . . , T do
5: B̂t ← output of Algorithm 2
6: X̂t = Ût−1Bt

7: Ĉt
k ← diag(phase(Ak(Û

t−1b̂t−1
k ))), k = 1, . . . , q

8: Ûtmp ← argminŨ
∑

k ‖Ĉt
kyk −Ak(Ũb̂t−1

k )‖
2

9: Ût ← QR(Ûtmp)
10: end for

(Modeling-error correction)
11: ẐT ′

MEC ← output of Algorithm 3 using Xfinal = X̂T as
one of its inputs.

Algorithm 2 Update of bk using AltMinPhase [16]

1: Input: yk,Ai,k, Û
t−1, X̂t−1, Tb

2: B̂init = Ût−1>Xt−1

3: for tb = 1, 2, . . . , Tb do
4: for k = 1, . . . , q do
5: Ĉtb

k ← diag(phase(Ak(Ûb̂tb−1
k )))

6: b̂tb
k ← argminb̃k

‖Ĉtb
k yk −Ak(Ûb̃k)‖

2

7: end for
8: end for

Algorithm 3 Model Error Correction (MEC) step

1: Input: yk,Ai,k,X
final, T ′

2: for k = 1, . . . , q do
3: e0k ← 0
4: for t = 1, 2, . . . , T ′ do
5: a) Ĉt

k ← diag(phase(Ak(ẑ
t
k)))

6: b) etk← argmine(‖Ĉt
kyk −Ak(x̂

final
k + e)‖

2

2
+τ‖e‖22)

7: c) ẑt+1
k = xfinal

k + etk
8: end for
9: end for

(9 × 9 array) with aperture size of 40 pixels and overlap of
0.7 between consecutive cameras, similar with [3].

Our undersampling mask is generated as follows. The
central camera (camera corresponding the low-pass filtering
operation) is always selected for each frame. The rest are
chosen as follows.

Mi,k(v) = ui,kv

where Pr(ui,k = 1) = f and Pr(ui,k = 0) = 1 − f . Thus,
on average, we are using a different set of N = fNfull cam-
eras for each image frame.
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Fig. 2: Comparison of AltMinLowRaP-Ptych(Proposed Al-
gorithm) with existing ptychography algorithms on video
“Bacteria”. Running time shown in bracket (seconds)

We use Structural Similarity Index (SSIM) [17] w.r.t. the
ground truth image sequence as the metric for quality of re-
construction; higher SSIM means better recovery. All our
plots display SSIM versus undersamping rate f for the var-
ious compared approaches. We used 4 values of f .

We set T = 10 and T ′ = 10 respectively for both
AltMinLowRaP-Ptych and LR-Ptych. Also the number of
iterations for Algorithm 2 is set to 50.
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P,AltMinLowRaP-Ptych
B,AltMinLowRaP-Ptych
F,AltMinLowRaP-Ptych
M,AltMinLowRaP-Ptych
P,LR-PtychMEC
B,LR-PtychMEC
F,LR-PtychMEC
M,LR-PtychMEC

Fig. 3: Comparison between accuracy of reconstructed
frames by AltMinLowRaP-Ptych and LRPtych for all 4
videos “Plane”(P), “Bacteria”(B), “Fish”(F), “Mouse”(M).

4.1. Proposed method versus other existing algorithms
As the first set of experiments we compare our proposed
method with existing algorithms on the bacteria video. The
result of this experiment can be seen in Fig. 2 for the bacteria
(“B”) video. Basic AltMinPhase for this problem [3] (referred
to as “IERA” in the paper) uses 250 iterations. LR-Ptych and
LR-PtychMEC [15, 4] consider LR structure as well while
the other three algorithms make different types of sparsity
assumptions [18]. Specifically, BSptych considers the whole
video as a large matrix and assumes it is block sparse with
sparsity level of 0.3. SPtych (spatial) and SPtych (Wavelet)
consider the sparsity of each frame on spatial and wavelet
domain correspondingly with sparsity level of 0.3. As it
can be concluded from Fig. 2, sparsity for single frame does
not provide recovery. IERA and BSptych have better results
and BSptych shows slightly better performance than IERA
due to assuming sparse structure. AltMinLowRaP-Ptych (the
proposed method) shows significantly better performance
compared to all existing algorithms in this experiment. Al-
though the original version of AltMinLowRaP-Ptych needs
longer running time, it is possible to reduce it to the same
level of LR-Ptych by using r = 5, but more iterations of
MEC (using T ′ = 20; and by gradually increasing the num-
ber of iterations for AltMinPhase Tb from 7 to 30 in different
iteration of outer loop. With these changes, the error remains
almost the same, but the time taken reduces drastically).

4.2. Comparison with LR-Ptych
Next we compare our proposed method with the second best
approach from Fig. 2 which is LR-Ptych. Here the proposed
algorithm uses r = 5, set Tb gradually increasing from 7
to 30 and T ′ = 20. Thus we can enable it to have roughly
the same time complexity of LR-Ptych. As Fig 3 shows,
AltMinLowRaP-Ptych outperforms LR-Ptych in terms of
SSIM with the modeling error correction step. This is not
as significant with video of “F” as result of LR-Ptych is also
very good for this video. The superiority of our algorithm
is also visible for the under-sampling case as well. This is
specially the case for videos of “P”,“B”, and “M” in compar-
ison with performance of LR-Ptych. The reason behind this
is better recovery of subspace coefficients in our approach.

5. CONCLUSIONS
We developed a modification of our recent AltMin based
solution for Phaseless PCA (Low Rank Phase Retrieval)
to provide a practical solution to undersampled dynamic
Fourier ptychographic imaging. We compared the proposed
algorithm with the state of the art phase retrieval (PR) and
structured PR based solution approaches for this problem
and showed that it outperforms or significantly outperforms
most of them when compared on simulated measurements of
real videos. As part of future work, we will develop a new
and faster gradient-descent based solution to LRPR from our
ongoing work [19] for solving this problem.
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