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Abstract
Conformal prediction (CP) can convert any
model’s output into prediction sets guaranteed to
include the true label with any user-specified prob-
ability. However, same as the model itself, CP is
vulnerable to adversarial test examples (evasion)
and perturbed calibration data (poisoning). We
derive provably robust sets by bounding the worst-
case change in conformity scores. Our tighter
bounds lead to more efficient sets. We cover both
continuous and discrete (sparse) data and our guar-
antees work both for evasion and poisoning at-
tacks (on both features and labels).

1. Introduction
Uncertainty quantification (UQ) is crucial for deploying
models, especially in safety-critical domains. The predicted
probability is not a reliable source for UQ as it is often un-
calibrated (Guo et al., 2017). Most methods do not provide
any guarantees and require retraining or modifications in the
model architecture (Abdar et al., 2021). Instead, conformal
prediction (CP) returns prediction sets with a distribution-
free guarantee to cover the true label. It only requires black-
box access to the model and assumes exchangeable data
(a weaker assumption than i.i.d.). This makes CP flexible –
we can apply it to image classification, segmentation (An-
gelopoulos et al., 2023), question answering (Angelopoulos
et al., 2022), and node classification (Huang et al., 2023).

Most models suffer a significant performance drop when
fed noisy or manipulated data, even for indistinguishable
(label-preserving) perturbations (Silva & Najafirad, 2020).
Adversaries can exploit this vulnerability by perturbing the
training data (poisoning) or the test data (evasion). CP’s per-
formance is also sensitive to the same attacks. One goal of
the adversary is to break the guarantee – reducing the prob-
ability to cover the true label by perturbing the test inputs
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(evasion) or poisoning the calibration data. In all settings,
the perturbations are limited according to a threat model,
e.g. a ball of a given radius around the clean input (see § 2).
Unlike heuristic defenses which are easily overcome by new
attacks (Athalye et al., 2018; Mujkanovic et al., 2022), cer-
tificates provide worst-case guarantees that the prediction
does not change. How can we extend robustness certificates
to conformal prediction sets?

Given calibration data and a score function s : X ×Y 7→ R
capturing conformity (agreement) between inputs and all
potential labels, CP finds a calibrated threshold qα, and
defines prediction sets Cα(x) = {y : s(x, y) ≥ qα} that
include all labels with scores above it. CP guarantees that
Pr [ytrue ∈ Cα(x)] ≥ 1 − α for a clean x, exchangeable
with the calibration data, and any user-specfied α. To certify
robustness, we can define conservative sets that ensure the
coverage remains above 1− α even under perturbation.

To this end, Gendler et al. (2021) leverage the fact that
the randomly smoothed scores Eδ∼N (0,σ2I)[s(x + δ, y)]
change slowly around the input to compute an upper
bound on the worst-case score. Their randomly smoothed
conformal prediction (RSCP) method has 4 limitations: (i) It
considers only the mean of randomized scores resulting
in a looser bound and thus larger sets; (ii) It only certi-
fies evasion but not poisoning attacks; (iii) It only supports
L2-bounded perturbations of continuous data, ignoring dis-
crete and sparse data such as graphs; (iv) It does not correct
for finite-sample approximation errors. We address all of
these limitations.

Our key insight is that we can use the cumulative distribu-
tion (CDF) of smooth scores to obtain tighter upper bounds.
The resulting CDF-aware sets are smaller while maintaining
the same robustness guarantee. For continuous data we
reuse Kumar et al. (2020)’s bound developed to certify
confidence, while for discrete/graph data we extend the
bounds of Bojchevski et al. (2020).1 We then propose an ap-
proach for finite sample correction. Different from Yan et al.
(2024), we bound calibration points instead of test points.
In addition to being significantly faster (especially for large
datasets like ImageNet), our calibration-time algorithm also
leads to smaller sets when correcting for finite samples.

1Both of these methods do not provide sets or CP guarantees.
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Currently, there are no CP methods designed to handle
poisoning. To fill this gap, we further derive provably ro-
bust sets that maintain worst-case coverage when either
the features or the labels of the calibration set can be per-
turbed. Moreover, the poisoning guarantee is independent of
how the bound on conformity scores is derived. Hence, our
poisoning-aware and evasion-aware methods can be com-
bined to provide robustness to both attacks simultaneously.

In short, we introduce CDF-Aware smoothed prediction Sets
(CAS) that provably cover the true label under adversarial
attacks. For evasion, we show a consistent improvement
on all metrics and datasets compared to RSCP. Moreover,
for the first time, we additionally provide guarantees for
poisoning, as well as discrete and sparse data.

2. Background
Conformal prediction. Given a holdout calibration set
Dcal = {(xi, yi)}ni=1 exchangeably sampled from the data
distribution (or a finite dataset) with labels unseen by the
model (during training), and a user-specified coverage prob-
ability 1−α, for any test point xn+1, CP defines a prediction
set Cα(xn+1) ⊆ Y that is guaranteed to cover the true label
yn+1 with the predetermined probability.

Theorem 2.1 (Vovk et al. (2005)). If Dcal = {(xi, yi)}ni=1,
and (xn+1, yn+1) are exchangeable, for any continuous
score function s : X × Y 7→ R capturing the agreement
between x, and y, and user-specified α ∈ (0, 1), the pre-
diction set defined as Cα(xn+1) = {y : s(xn+1, y) ≥ qα}
has coverage probability

Pr [yn+1 ∈ Cα(xn+1)] ≥ 1− α (1)

where qα := Quant (α; {s(xi, yi)}ni=1) is the α-quantile
of the true scores in the calibration set.

This theorem was extended to graphs (Zargarbashi et al.,
2023; Huang et al., 2023) showing that the same guarantee
holds for node classification. Although the coverage is guar-
anteed regardless of the choice of score function, a good
choice is reflected in the size of the prediction sets (also
called efficiency), the proportion of singleton sets covering
the true label, and other metrics. A simple score function
known as threshold prediction sets (TPS) directly consid-
ers the model’s output s(x, y) = π(x, y) where π are the
class probability (softmax) estimates (Sadinle et al., 2018).
TPS tends to over-cover easy examples and under-cover
hard ones (Angelopoulos & Bates, 2021). This is reme-
died by the commonly used adaptive prediction sets (APS)
score defined as s(x, y) := − (ρ(x, y) + u · π(x)y). Here
ρ(x, y) :=

∑K
c=1 π(x)c1 [π(x)c > π(x)y] is the sum of all

classes predicted as more likely than y, and u ∈ [0, 1] is a
uniform random value that breaks the ties between different
scores to allow exact 1− α coverage (Romano et al., 2020).

While we report our results on both scoring functions, our
approach is orthogonal and hence applicable to any other
choice (see § A for an extended introduction to CP).

Adversarial attacks. We define the threat model – the set
of all possible perturbations the adversary can apply – by a
ball centered around a clean input x. For continuous x we
consider the l2 ball of radius r around the input Br(x) =
{x̃ ∈ X : ||x̃− x||2 ≤ r}. For binary data, we define the
ball w.r.t. the number of flipped bits: Bra,rd(x) = {x̃ ∈ X :∑d
i=1 1[x̃i = xi − 1] ≤ rd,

∑d
i=1 1[x̃i = xi + 1] ≤ ra}

where rd and ra are the numbers of deleted and added bits
respectively. This distinction accounts for sparsity as shown
by Bojchevski et al. (2020). We discuss categorical data in
§ C, extensions to other threat models are simple.

Evasion attacks. For a given input x and the model f , the
adversary’s usual goal is to find a perturbed input x̃ such that
f(x̃) ̸= f(x) (Yuan et al., 2019; Madry et al., 2017). In CP,
the goal changes to excluding the true label from the predic-
tion set Cα(x̃) which breaks the guarantee in Eq. 1. Here we
assume that CP is calibrated with clean calibration points.

Poisoning attacks. The adversary can perturb the training
data to e.g. decrease accuracy. However, since CP is model-
agnostic, the guarantee holds regardless of the model’s accu-
racy. Instead, here the goal of the adversary is to perturb the
calibration set in order to decrease the empirical coverage –
breaking the guarantee (see formal definition in § 3.2).

3. Robust Prediction Sets
3.1. Robustness to Evasion Attacks

Definition 3.1 (Robust coverage). The prediction sets
Cα(·) have adversarially robust 1 − α coverage if for any
(xn+1, yn+1) exchangeable with Dcal

Pr [yn+1 ∈ Cα(x̃n+1) | x̃n+1 ∈ B(xn+1)] ≥ 1− α (2)

where B(x) can be the l2 ball Br(x), the binary ball Bra,rd ,
or any other threat model. Gendler et al. (2021) define a
score srscp(x, y) = Φ−1(Eδ∼N (0,σ2I)[s(x+ δ, y)]) based
on Gaussian smoothing (Cohen et al., 2019) where Φ−1(·)
is the inverse CDF of N (0, 1). Since the smooth score is
bounded, srscp(x̃, y) ≤ srscp(x, y) +

r
σ ,∀x̃ ∈ Br(x) they

shift the quantile qα = qα− r
σ to ensure robustness. Instead

of shifting the quantile we directly bound the conformal
scores which is a slight generalization.

Proposition 3.1. Define s(x, y) as the upper bound for
{s(x̃, y) : x̃ ∈ B(x)}. With qα as the α-quantile of the true
(clean) calibration scores, let Cα(x) = {y : s(x, y) ≥ qα}.
For all x̃n+1 ∈ B(xn+1), if (xn+1, yn+1) is exchangeable
with Dcal then we have Pr

[
yn+1 ∈ Cα(x̃n+1)

]
≥ 1− α.

All omitted proofs are in § D.1. We summarize our notation
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in § K. In short, the conservative set for any x̃ ∈ B(x)
includes the labels of the vanilla prediction set for x. Thus,
the coverage guarantee also applies for the perturbed points.

RSCP is a special case with s(x, y) = srscp(x, y) +
r
σ .

We can equivalently rewrite RSCP as an upper bound
on E[s(·, ·)] instead of Φ−1(E[s(·, ·)]) which matches the
bound from Kumar et al. (2020) (see § F.1). In § 4 we signif-
icantly improve the bound using the CDF. Tighter bounds
result in smaller (more efficient) sets.

3.2. Robustness to Feature Poisoning Attacks

We assume that the adversary can modify at most k in-
stances, 0 ≤ k ≤ n = |Dcal|, whose features can be per-
turbed in a (continuous or discrete) ball B around the clean
features. We define the threat model at dataset-level:

Bk,B(D) = {D̃ : D̃ = {(x̃i, yi) : (xi, yi) ∈ D,

x̃i ∈ B(xi),
n∑
j=1

1[x̃j ̸= xj ] ≤ k}}

Let qα be the α-quantile of the clean calibration scores.
To decrease coverage the adversary aims to find a per-
turbed calibration set D̃cal ∈ Bk,B(Dcal) that moves the
quantile q̃α = Quant(α; D̃cal) as right as possible com-
pared to qα.2 This shift increases the probability of reject-
ing true labels, resulting in a lower coverage. Namely, for
α̃ = Quant−1(q̃α;Dcal), the quantile inverse of the poi-
soned threshold q̃ w.r.t. the clean calibration set, the poi-
soned calibration set results in near 1− α̃ coverage where
by definition 1− α̃ ≤ 1− α. Given a potentially poisoned
calibration set D̃cal we certify the prediction sets via the
following optimization problem:

qα = min
zi∈X

Quant (α; {s(zi, yi)}ni=1)

s.t. ∀(x̃i, yi) ∈ D̃cal : zi ∈ B(x̃i)∑
i≤n

1[zi ̸= x̃i] ≤ k

(3)

The problem in Eq. 3 finds the most conservative quantile
qα and it holds that qα ≤ qα since for any perturbed D̃cal

by definition it holds Dcal ∈ Bk,B(D̃cal). We show that the
minimizer of problem Eq. 3 certifies at least 1−α coverage.

Proposition 3.2. Let qα to be the solution to the optimiza-
tion problem in Eq. 3. With the conservative prediction sets

Cα(xn+1) =
{
yi : s(xn+1, yi) ≥ qα

}
(4)

for any (xn+1, yn+1) exchangeable with (clean) Dcal we
have Pr

[
yn+1 ∈ Cα(xn+1)

]
≥ 1− α.

2Our setup works with conformity score capturing the agree-
ment between x and y. With a non-conformity score, the goal is
to equivalently shift the quantile to the left (see § A).

With access to lower and upper bounds on the adversarial
scores we can change the constraint zi ∈ B(x̃i) in Eq. 3 to
zi ∈ [s(x̃i, yi), s(x̃i, yi)] where zi ∈ R is a scalar variable,
and solve the relaxed problem. We describe in § 4 how to
obtain such bounds using randomized smoothing which we
can use in both Prop. 3.1 and Prop. 3.2. Regardless of how
we solve Eq. 3, as long as it finds a qα ≤ qα conditional on
the clean Dcal the guarantee holds.

3.3. Robustness to Label Poisoning Attacks

In the label poisoning setup, the adversary can flip the labels
of at most k datapoints in the calibration set, again aiming
to shift the quantile to the right. As before, we can find the
most conservative quantile by solving the problem:

qα = min
zi∈Y

Quant
(
α;

{
s(xi, zi) : (xi, ỹi) ∈ D̃cal

})
s.t.

∑
i≤n

1[zi ̸= ỹi] ≤ k
(5)

Similar to § 3.2, since qα ≤ qα, prediction sets defined as
in Eq. 4 maintain ≥ 1− α coverage even under worst-case
label perturbation. We can solve both problems (Eq. 3 and
Eq. 5) by writing them as mixed-interger linear programs
(MILPs). We present the technical details in § G.

Interestingly, our evasion-aware sets can easily be combined
with our poisoning-aware threshold to obtain prediction sets
that are robust to both types of attacks. Similarly, we can
easily combine the feature and label poisoning constraints
in a single problem. We discuss these extensions in § H.

4. Randomized Smoothing Bounds
To instantiate the conservative sets Cα(·) defined in § 3 we
need bounds on the worst-case change in conformity scores
under perturbation. There is a rich literature on robustness
certificates for standard classification (Li et al., 2023) that
we can lean on, since they often need to compute similar
bounds as a byproduct. We focus on methods based on
the randomized smoothing framework (Cohen et al., 2019)
given their high flexibility and black-box nature. This cou-
ples well with the flexibility of CP, ensuring that our final
robust CP method can be broadly applied.

Smooth scores. A smoothing scheme ξ : X 7→ X is a
function that maps the input x to a nearby random point.
Given an arbitrary score s(·, ·), we compute the expected
(smooth) conformal scores as ŝ(x, y) := E[s(ξ(x), y)]. Fol-
lowing Cohen et al. (2019) for Gaussian smoothing, we add
isotropic noise where the scale σ2 determines the amount of
smoothing ŝ(x, y) = Eδ∼N (0,σ2I)[s(x+ δ, y)]. For binary
data, we use sparse smoothing (Bojchevski et al., 2020) and
flip zeros and ones with probabilities p0 and p1 respectively:
ŝ(x, y) = E[s(x ⊕ δ, y)], where ⊕ is the XOR and each
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entry δ[i] ∼ Bernoulli (p = px[i]). See § C for more details.
Our approach works with other smoothing schemes such as
uniform noise for l1 threat models (Levine & Feizi, 2021),
but we focus on these two due to their popularity. Gaussian
smoothing preserves exchangeability (Gendler et al., 2021).
Similar argument applies to sparse smoothing and other
methods that are symmetric w.r.t. xn+1 and Dcal.

The goal is to bound the smooth score ŝ(x̃, y) of any adver-
sarial x̃ ∈ B(x). Since the base score function s(·, ·) often
depends on a complex model such as a neural network, even
computing the expected score ŝ(·, ·) is challenging, let alone
finding the worst-case x̃. Therefore, we follow the general
recipe of relaxing the problem by searching over the space
of all possible score functions h(·, ·) ∈ H. We focus on up-
per bounds, but the entire discussion equivalently applies to
lower bounds by switching from max to min. By definition
we have s(·, ·) ∈ H, therefore it holds that:

max
x̃∈B(x)

E[s(ξ(x̃), y)] ≤ max
x̃∈B(x),h∈H

E[h(ξ(x̃), y)] (6)

The solution to Eq. 6 is trivial unless we add additional con-
straints to the functions h(·, ·) ∈ H that capture information
about the actual score function s(·, ·). The tightness of the re-
sulting bound is directly controlled by the constraints. First,
we describe a baseline bound that only captures information
about the mean of s(·, ·). This is exactly the bound used
by RSCP. Then, we describe a second bound that leverages
information about the entire distribution of scores via the
CDF. In both cases, we only need black-box access to the
score function and the underlying classifier, and we assume
that s(·, ·) ∈ [a, b] is bounded (w.l.o.g. a = 0, b = 1).

Canonical view. It turns out that for both Gaussian and
sparse smoothing it is sufficient to derive a so-called point-
wise bound for a given (x, x̃) pair since it can be shown
that the maximum in Eq. 6 is always attained at a canonical
x̃ which is on the sphere of the respective ball. Namely,
for the continuous Br(x) we have the canonical vectors
x = 0, x̃ = [r, 0, 0, . . . ] that completely specify the
problem. For the binary Bra,rd we have the canonical
x = [1, . . . , 1, 0, . . . , 0] and x̃ = 1 − x where ∥x∥0 = rd
and ∥x̃∥0 = ra. Intuitively, the reason is due to the symme-
try of the smoothing distributions and the balls (see § C).

Baseline bound. A straightforward approach only incorpo-
rates the expected smoothed score (mean) for the given input
x. Let p = E[s(ξ(x), y)] for simplicity. With x̃ ∈ B(x) the
baseline upper-bound for ŝ(x̃, y) = E[s(ξ(x̃), y)] is deter-
mined by the following problem:

smean(x, y) = max
h∈H

E[h(ξ(x̃), y)]

s.t. E[h(ξ(x), y)] = p
(7)

This bound discards a lot of information about the distri-
bution of scores around the given x. To remedy this, we

incorporate the information from the CDF of the scores.

CDF-based bound. Let a = b1 < b2 ≤ · · · ≤ bm−1 <
bm = b be m real numbers that partition the output space.
Let pi = Pr [s(ξ(x), y) ≤ bi]. We define the problem:

scdf(x̃, y) = max
h∈H

E[h(ξ(x̃), y)]

s.t. ∀bi : Pr [h(ξ(x), y) ≤ bi] = pi
(8)

The key insight for solving Eq. 8 is to upper bound the mean
of h via the CDF. Intuitively, we compute the probability of
each bin [bj , bj+1] and choose the upper end of the bin to
get an upper bound. This can be rewritten in terms of the
CDF. Let Fh(bj) = Pr [h(x, y) ≤ bj ], for any function h

E[h(x)] ≤
m∑
j=2

bj · [(Fh(bj)− Fh(bj−1)]

= bm −
m−1∑
j=2

Fh(bj) · (bj+1 − bj)

(9)

Next, we show how to solve both problems for the two
different smoothing schemes. For Gaussian smoothing, both
problems in Eq. 7 and Eq. 8 have closed-form solutions as
shown by Kumar et al. (2020). For sparse smoothing, Bo-
jchevski et al. (2020) provides an efficient algorithm to solve
Eq. 7. We extend their approach to also solve Eq. 8 which
is a novel contribution of potentially independent interest,
e.g. to certify graph neural networks with regression tasks.

In practice, scdf is tighter than smean, and the improvement
depends on the distribution of random scores. While we
can easily combine both mean and CDF constraints to get a
provably tighter bound, we focus only on CDF constraints.

Bounds for Gaussian smoothing. For any perturbed x̃
with ||x̃− x||2 ≤ r we have the baseline bound ŝ(x̃, y) ≤
smean(x, y) = Φσ

(
Φ−1
σ (p) + r

)
where Φσ is the CDF of

N (0, σ2) and p = Eδ∼N (0,σ2I)[s(x + δ, y)] is the clean
expected score. We can get the lower bound by flipping the
sign of r. The CDF bound is ŝ(x̃, y) ≤ scdf(x, y) with

scdf = bm −
m−1∑
j=2

Φσ
(
Φ−1
σ (pj)− r

)
(bj+1 − bj) (10)

where pj = Prδ∼N (0,σ2I)[s(x + δ, y) ≤ bj ]. The corre-
sponding lower bound and derivations are in § D.2.

Bounds for sparse smoothing. To solve both optimiza-
tion problems, we apply the same approach as Bo-
jchevski et al. (2020), dividing the input space into re-
gions of constant likelihood ratio X = ∪IiRi where
Ri = {z : Pr [ξ(x) = z] /Pr [ξ(x̃) = z] = ci}. For the
mean variant, we greedily distribute the p mass to each
region (from the highest to the lowest ratio) until the con-
straint is satisfied. For the CDF variant, we instead distribute
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the pj masses in each region and each bin [bj , bj+1]. Techni-
cal details, including the linear programming formulations,
are in § C. The runtime complexity scales linearly with the
number of regions which is I = ra+ rd+1. We provide an
efficient algorithm that runs in less than a few milliseconds.

Clean vs. observed input. In the discussion we refer to a
clean x and a perturbed x̃ ∈ B(x). In practice, we do not
know whether the observed input x′ is clean or perturbed.
However, since the l2-ball is symmetric, if x′ ∈ Br(x) then
also x ∈ Br(x′). Thus, computing an upper bound for any
observed x′ in the threat model yields a valid upper bound
for the clean x, ŝ(x) ≤ s(x′). That is, we do not assume
that the clean input is given at test time. For sparse data x′ ∈
Bra,rd(x) =⇒ x ∈ Brd,ra(x′), so we need to switch ra
and rd when computing the certificate. Similar conclusions
apply for an observed and potentially perturbed D′

cal since
the clean Dcal ∈ Bk,B(D′

cal) for any D′
cal ∈ Bk,B(Dcal).

This detail is not important for standard certificates since
they only certify that the prediction does not change.

5. CAS: CDF-Aware Sets
We use the CDF-based bounds to obtain conservative predic-
tion sets for evasion and conservative thresholds for poison-
ing attacks. We summarize our approach with the pseudo-
code in Algorithm 1 that works with any score function3.

Algorithm 1 CDF-Aware Sets (CAS, Evasion)
qα = Quant (α; {ŝ(x, y))(x,y)∈Dcal

} ▷ Clean quantile
Compute scdf(x, y), e.g. with Eq. 10 ▷ Upper bound
Return Cα = {y : scdf(x, y) ≥ qα} ▷ Conservative set

Calibration-time variant. For evasion we need to compute
s(x, y) via solving Eq. 8 (or Eq. 7) for each test point and
each class. This can be computationally costly if we have
many classes (e.g. ImageNet has 1000) at deployment.
We define an alternative approach that instead needs only a
lower bound s(x, y) for each x ∈ Dcal and the true y. The
key insight is that we can directly compare the smooth test
score ŝ(x̃n+1, y) against a conservative (lower) quantile.
Proposition 5.1. For x̃n+1 ∈ B(xn+1) and (xn+1, yn+1)
exchangeable with Dcal, define

qα = Quant (α; {s(xi, yi) : (xi, yi) ∈ Dcal}) (11)

For prediction sets Cα(x̃n+1) = {y : ŝ(x̃n+1, y) ≥ qα} we
have Pr[yn+1 ∈ Cα(x̃n+1)] ≥ 1−α. Moreover, the vanilla
CP covers the true label with probability ≥ 1− β for

β = Quant−1 (qα; {s(xi, yi) : (xi, yi) ∈ Dcal}) (12)

and Quant−1 (t;A) = min {τ ′ : Quant (τ ′;A) ≥ t}.

3Our code and experiments are in the github repository
soroushzargar/CAS.

With Prop. 5.1 we need only |Dcal| certified bounds as a pre-
processing step. At test time we directly plug in ŝ(x̃n+1, y)
and not its upper bound. Since |Dcal| is often significantly
smaller than the test set the computational savings are sub-
stantial (see Table 3). With Eq. 12 we can compute a lower
bound on the coverage of vanilla (non-robust) CP under
perturbation, where by definition 1− β ≤ 1− α. This is a
generalization of Theorem 2 in Gendler et al. (2021).

Poisoning. For poisoning attacks we simply use the conser-
vative threshold qα from Eq. 3 or Eq. 5 where we use the
CDF-bounds in the constraints (see § 3.2). If the test exam-
ples are assumed clean we return Cα = {y : ŝ(x, y) ≥ qα}.
Since robustness to evasion and poisoning are independent,
we can achieve simultaneous robustness to both evasion and
poisoning via Cα = {y : scdf(x, y) ≥ qα}.

To solve the two poisoning optimization problems we
rewrite them as mixed-integer linear programs and solve
them with an off-the-shelf solver. We only need 2 · |Dcal|
binary variables for Eq. 3 and |Dcal| × |Y| binary variables
for Eq. 5. See § G for technical details. Since the calibration
set is relatively small we can solve the MILPs in just a few
minutes. Thus, our guarantees are practically feasible.

6. Finite Sample Correction
Solving Eq. 7, or Eq. 8 requires the true mean or CDF.
Since exact computation is intractable, we use Monte-Carlo
(MC) samples. To ensure a valid certificate, we bound the
exact statistics via concentration inequalities. The resulting
confidence intervals are valid together with adjustable 1− η
probability. To account for this we calibrate with α′ = α−η
so that the final sets still have 1 − α coverage (see § E).
RSCP did not include such finite-sample correction, and the
resulting sets are only asymptotically valid without it.

Yan et al. (2024) incorporates the correction directly in
the conformity scores, leveraging exchangeability between
MC-estimated calibration scores and clean test scores. We
discuss this in § E and propose another approach built on
Prop. 5.1. Our correction results in smaller sets for CAS with
the same guarantee; and similar results for RSCP (see § 7).

Proposition 6.1. Let scdf+(xi, yi) ≤ scdf(xi, yi) hold
with 1 − η/(2|Dcal|) probability for each (xi, yi) ∈
Dcal, and ŝ+(x̃n+1, yn+1) ≥ ŝ(x̃n+1, yn+1) hold
with 1 − η/(2|Y|) probability. Define the conservative
q
α+

= Quant
(
α− η;

{
scdf+(xi, yi) : (xi, yi) ∈ Dcal

})
and Cα+(xn+1) = {y : ŝ+(xn+1, y) ≥ q

α+
}. Then

Pr[yn+1 ∈ Cα+(x̃n+1)] ≥ 1− α (13)

We compute scdf+(xi, yi) by solving the minimization
variant of Eq. 8 with CDF error correction through the
Dvoretzky–Kiefer–Wolfowitz inequality (Dvoretzky et al.,
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Figure 1. Empirical coverage [left] and average set size [middle] of RSCP and CAS for clean and perturbed data. All sets are certified
robust up to radius r = 0.125. [Right] Empirical coverage for different certified radii (on clean data). All results are for CIFAR-10 with
Gaussian smoothing (σ = 0.25). CAS is less conservative since it is closer to the nominal 1− α, and has smaller sets.

1956). We define ŝ+(x̃n+1, y) =
1
ns

∑ns s(ξ(xn+1), y)+ϵ
where ϵ is the error given by the Bernstein confidence inter-
val. In short, we divide the η budget between |Dcal|+ |Y|
estimates. This divides between all calibration scores (only
for the true class), and |Y| classes for the test input.

The corrected CP in (Yan et al., 2024) compares qα,mc and
s+(xn+1, y) + ϵhoef , where the quantile qα,mc is computed
on the clean scores estimated with MC-sampling without
correction. Instead, ϵhoef is added to account for the differ-
ence between the unseen clean test MC-score (exchangeable
with the MC-calibration scores) and the upper bound which
only bounds the true (non-MC) mean. See § E for details.
In our case, we compare the corrected quantile q

α+
and the

corrected estimate of the input test score ŝ+(xn+1, y). In-
stead of a Hoeffding bound we can use the tighter Bernstein
bound for ŝ+(xn+1, y) since we have access to it. In addi-
tion, to compute q

α+
we use DKW-corrected scores which

introduce less error compared to the Hoeffding bound.

Feature Poisoning. We find the lower bound quantile qα
(Eq. 3) using smooth scores (see § G, Eq. 24). To apply
sample correction, again with an error budget of η we divide
this budget equally between calibration points. For each
calibration point, the CDF bound with correction finds a
probabilistic lower bound on the clean smooth score. Since
the test scores are computed with MC-estimation, we di-
rectly bound the MC-estimated clean calibration scores for
exchangeability. Since we do not have access to the clean
calibration scores, following Yan et al. (2024) we use Ho-
effding’s inequality. The corrected quantile is lower than the
clean quantile for MC-estimated calibration scores.
Proposition 6.2. Let scdf+(x̃i, yi) ≤ scdf(x̃i, yi) hold with
1− η/(2|Dcal|) probability for all (x̃i, yi) ∈ Dcal. Let q

α+
be the solution to Eq. 24 (Eq. 3 with CDF bounds) for
α = α′ − η with si = scdf+(x̃i, yi)− ϵhoef . Then for each
new test point xn+1 exchangeable with Dcal the prediction
set defined as C(xn+1) = {y : smc(xn+1, y) ≥ q

α+
} has

1− α′ coverage.

Here ϵhoef =
√
log(2/η)/2|Dcal| comes from the Hoeffd-

ing inequality. In label poisoning we do not use randomly
smoothed scores, therefore sample correction is not needed.

7. Experiments
For evasion, we compare CAS with RSCP (Gendler et al.,
2021). Even though the original RSCP is not able to handle
sparse or discrete data, we extend it and use it as an addi-
tional baseline (see § C). There are no baselines for poison-
ing. Since both RSCP and CAS have the same guaranteed
coverage we focus on two main metrics: the average size of
prediction sets (or efficiency) and the empirical coverage.
Ideally, we want the coverage to be concentrated around
the nominal 1− α. Higher coverage costs larger prediction
sets. In § J we report additional experiments including the
singleton hits ratio metric. We also consider the maximum
perturbation radius such that robust CP has the same set
size as standard CP (averaged across test points). This size-
preserving r is the largest certified radius which we can get
“for free”. On all metrics CAS outperforms RSCP.

Setup. We evaluate our method on two image datasets:
CIFAR-10 (Krizhevsky, 2009) and ImageNet (Deng
et al., 2009), and one node-classification (graph)
dataset Cora-ML (McCallum et al., 2004). We
used ResNet-110 and ResNet-50 pretrained on
CIFAR-10 and ImageNet with noisy data augmentation
from Cohen et al. (2019). We trained a GCN model (Kipf
& Welling, 2017) for node classification. All models are
trained on data augmented with noise. The GNN is trained
with 20 nodes per class with stratified sampling as the
training set and similarly sampled validation set. The size of
the calibration set is between 100 and 150 (sparsely labeled
setting). We use APS as the main score function.

For each dataset, we pick a number of test points at random
(900 for CIFAR-10, 400 for ImageNet, and 2480 nodes
for Cora). We estimate the expected smooth scores with
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Figure 2. Average set size of CAS and RSCP under evasion for (from left to right) CIFAR-10, ImageNet (with TPS), and Cora-ML.
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Figure 3. [Left] Set size for r = 0.12 with different scores. [Middle] Maximum set size-preserving radius (average over test points). Both
results are on CIFAR-10 dataset and σ = 0.25. [Right] The effect of smoothing parameter σ on the set size across a range of radii for
CIFAR-10 dataset with error correction for 104 samples.

104 Monte-Carlo samples. All results are an average of 100
runs with exchangeable calibration sampling (details in § J).

Evasion Certificate. The conservative robust sets are nec-
essarily larger than non-robust sets. Consequently, on Fig. 1
(left) we observe a higher empirical coverage on clean data
compared to the nominal 1− α. The coverage on perturbed
inputs which we find with a PGD attack (Madry et al., 2017)
is above 1 − α verifying our theory. In Fig. 1 (right) we
see that the empirical coverage increases with the certified
radius r and is 1 − α for r = 0. CAS is less needlessly
conservative (grows slower with r) than RSCP while still
providing the same guarantee. This leads to improved effi-
ciency (smaller sets) as shown in Fig. 1 (middle). The set
size is slightly higher for perturbed inputs.

In Fig. 2 we see that CAS’s results in smaller prediction
sets, across all radii, and all nominal 1− α values, and as
in Fig. 3 (left) all scores. The improvement is substantial
and also grows with r – for larger radii it is doubled or even
tripled, especially on ImageNet and Cora-ML. Similarly,
Fig. 3 (middle) shows that with CAS we can consistently
certify a larger maximum radius ”for free”.

Calibration-time evasion. Following Prop. 5.1 if we use
vanilla (non-robust) CP, in the adversarial setup we can
certify a lower bound 1− β on the worst-case robust cov-

erage. In Fig. 4 (left) we see that the certificate based on
CAS leads to a better (higher) lower bound. At the same
time, Prop. 5.1 implies that we can avoid computing upper
bounds for the test points and instead account for the ef-
fect of the adversary by choosing a conservative conformal
threshold (qα) via the lower bound on the calibration scores.
Fig. 4 (middle) show the set size distribution for test-time
vs. calibration-time evasion. The results for RSCP are com-
parable. CAS shows smaller sets for the calibration-time
certificate. This approach is also computationally faster es-
pecially for datasets with a high number of classes, which
is discussed in § B.

Ablation study. In Fig. 3 (right) we study the effect of
the smoothing strength as controlled by σ in N (0, σ2I).
For all σ values and all radii r we get the same 1 − α
coverage guarantee, however, there is a clear trade-off for
choosing σ. A smaller amount of smoothing results in a
smaller set size in the beginning, but the set sizes grows
rapidly by increasing the certified radius. In all cases, CAS
is better than RSCP. Here for each σ we use the model that
is pretrained on the same noise augmentation.

Finite sample correction. The previous results were with-
out error correction since RSCP did not account for finite-
sample errors when estimating the smooth scores with
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calibration set. [Right] The average set size of the CP robust to feature poisoning for a range of nominal coverages given the clean
calibration data, and r = 0.12. All results are for CIFAR-10 dataset with σ = 0.25.

Monte-Carlo samples. The sets are still asymptotically valid
without correction, as confirmed by Fig. 1 (left); however,
correction is necessary for a valid certificate as argued by
Yan et al. (2024). In Fig. 4 (right) we see that the size
for RSCP quickly explodes, reaching almost all classes
(|Y| = 10) for large radii, while CAS maintains low average
size. Moreover, CAS has smaller standard deviation across
test inputs. CAS uses calibration-time correction (see § E).

Label poisoning. Next, we study label poisoning where
now the attacker can perturb the ground-truth labels of the
calibration points. In Table 1 we see that increasing the bud-
get k leads to predictably larger set size and larger empirical
coverage. The difference to the clean calibration set (k = 0)
is minor, showing that provable label robustness comes al-
most for free for small k. While Einbinder et al. (2022)
show that standard CP is already naturally robust to random
(non-worst case) label noise, Table 1 shows that adversarial
label noise can break the guarantee even for small budget k.

Feature poisoning. Since there are no baselines that provide
robust coverage guarantees under poisoning we can only
study the behaviour of CAS. First, we consider feature poi-

Table 1. Label poisoning for CIFAR-10.

Cov. Vanilla Cov. Robust Cov. Set Size
k (Clean) (Pert) (Pert) (Clean)

0 0.897 0.897 0.897 1.41
1 0.916 0.872 0.900 1.58
2 0.923 0.859 0.901 1.62

soning where the attacker is allowed to change k calibration
points which we refer to as the budget, each of which can be
perturbed in a given ball Br(x) (see Eq. 3). In Fig. 5 (left)
we show that the coverage can slightly decrease via poison-
ing the features with a limited budget. This drop becomes
significant when the adversary can perturb all the calibra-
tion points. To poison the data, we run the PGD attack on
all calibration points and decide which point to perturb by
solving Eq. 3 (specifically Eq. 24) with maximization goal.
Fig. 5 (middle) shows the robustness of CAS even under
an infinite budget which verifies Prop. 3.2. We also show
the set size of robust CP in Fig. 5 (right). We see that as
expected a smaller budget k leads to less conservative sets
which translates to smaller set sizes. Interestingly, for small
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Emp. Coverage Ave. Set Size
r k With Without With Without

0.12 3 94.6 94.5 1.84 1.83

|Dcal| 97.7 96.3 3.17 2.47

0.25 3 94.0 94.0 1.756 1.752

|Dcal| 99.6 98.7 7.32 4.48

Table 2. CAS for feature poisoning with and without finite-sample
correction.

r (e.g. r = 0.12) even with an infinite budget the set size
does not increase drastically. Making CP robust to poisoning
comes at only a small cost. Note that for k = ∞ setting
each calibration score to its lower bound is one solution to
Eq. 3, which equals calibration-time evasion.

Similar to evasion, in Table 2 we show the results of CAS
robust to feature poisoning with and without sample cor-
rection. For sample correction, we use Prop. 6.2. Note that
label-poisoning does not require sample correction.

8. Related Work
Ghosh et al. (2023) introduce the notion of probabilisti-
cally robust CP. Intuitively, their guarantee is w.r.t. the av-
erage adversarial input, while for RSCP and our method
the guarantee is w.r.t. the worst-case input. They produce
more efficient sets via a quantile of quantiles method – one
quantile considers the adversarial examples around a data-
point and the other finds the CP threshold over the first set
of quantiles. This enables a tuneable trade-off between nom-
inal performance and robustness. Our method is orthogonal
since we consider exact coverage, and Ghosh et al. (2023)’s
probabilistic robustness can be applied on top of ours.

Cauchois et al. (2020) propose an approach which returns
prediction sets that are robust to distribution shift between
the calibration and the test distribution. As input, their
method needs an upper bound ρ on the f -divergence be-
tween the two distributions, which they estimate from data.
In principle, for a given radius r one can derive a suitable ρ,
however, the resulting sets can be needlessly too conserva-
tive. We can conclude this from the fact that the optimization
problem with the resulting f -divergence constraint is a relax-
ation as shown by Dvijotham et al. (2020) in a different con-
text (classification certificates). Gendler et al. (2021) exten-
sively discuss the differences between RSCP and Cauchois
et al. (2020)’s approach across various settings (e.g. model
trained with and without noise) and report better or equal
efficiency. With CAS outperforming RSCP, we draw similar
conclusions by transitivity. Further discussion is in § F.2.

Two concurrent works use the same bound as RSCP, but

improve the sets by modifying other aspects of the algorithm.
Yan et al. (2024) adopt robust conformal training (Stutz et al.,
2022) and propose to transform the smooth score (ranking +
sigmoid scaling) using an additional holdout set. Kang et al.
(2024) integrate a reasoning component via probabilistic
circuits. Both are completely orthogonal to our method and
can be directly improved with our CDF bounds.

Angelopoulos et al. (2022) extend conformal prediction to
control the expected value of any monotone loss function,
including adversarial risk (see Proposition 7). However, they
do not propose an algorithm to compute the worst-case
adversarial loss. Einbinder et al. (2022) show that standard
CP is already robust to random label noise, e.g. resulting
from wrong annotation or any other natural source of noise.
Unlike our work, they do not study robustness to adversarial
(worst-case) label perturbations.

9. Conclusion
We provide certified robustness for conformal prediction
both for evasion and poisoning attacks. We propose a CDF-
aware bound on the conformity scores under adversarial
perturbation. Our bound is empirically tighter and leads to
consistent improvements compared to previous certificates.
We further propose novel certificates against feature and/or
label poisoning of the calibration set. We generalize both
results to discrete and binary (sparse) data. Finally, we show
how we can correct for finite-sample error. Our calibration-
time approach for robustness to evasion that reduces the
inflation of set sizes when correcting for finite samples.
Overall, our method CAS yields provably robust yet efficient
(small) prediction sets.

Limitations. We identify three main limitations. First, the
coverage guarantee is marginal, which means that it holds
on average across the entire input domain. Conditional cov-
erage Pr[y ∈ C(x) | x] is impossible to achieve without
strong assumptions (Barber et al., 2019). Achieving near-
conditional coverage is still and open problem. This means
that CP can have over-coverage or under-coverage for dif-
ferent groups which can be unfair. This holds true for both
vanilla CP and robust CP. Lu et al. (2022) consider a group-
conformal variant to equalize coverage across groups, how-
ever, unfairness can still be reflected in the set-size. Studying
the intersection of robustness and fairness is an exciting fu-
ture direction. Second, while randomized smoothing is a
powerful and flexible method, estimating empirical statis-
tics requires a large number of Monte-Carlo samples. This
can be computationally expensive. Finally, we assumed that
the goal of the attacker is to reduce the empirical coverage
and designed our certificate to prevent this. However, the
attacker may have other goals, e.g. to increase the set size,
or to attack only a subset of labels.
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Cramer, J. Fair conformal predictors for applications in
medical imaging. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 12008–12016,
2022.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu,
A. Towards deep learning models resistant to adversarial
attacks. arXiv preprint arXiv:1706.06083, 2017.

McCallum, A., Nigam, K., Rennie, J. D. M., and Seymore,
K. Automating the construction of internet portals with
machine learning. Information Retrieval, 3:127–163,
2004.

Mujkanovic, F., Geisler, S., Günnemann, S., and Bojchevski,
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A. More On Conformal Prediction
Conformity vs. non-conformity scores. As mentioned in § 2, for CP we need to define a score function that quantifies
the agreement between the input and each label. Equivalently, one can define CP with a non-conformity score function
that captures disagreement instead. In this case, the conformal threshold is the 1− α quantile of the calibration true scores.
Similarly, in the test time, labels with score less than the threshold are included in the prediction set. Both approaches are
equivalent up to a change in the sign of the scores. The latter setup is used in (Gendler et al., 2021) and is equivalent to our
implementation that uses conformity scores. Our choice of agreement score is due to simplicity.

Score function. In § 2 we mentioned that conformal prediction returns guaranteed sets regardless of the score function
employed. Specifically, any score function maintaining the exchangeability (between calibration and test) is viable. In brief,
the exchangeability of random variable Z1, . . . , Zn means that the joint distribution of the variables is insensitive to the
order/index. In other words for any permutation function ψ : [n] 7→ [n] we have Pr [Z1, . . . , Zn] = Pr

[
Zψ(1), . . . , Zψ(n)

]
.

Assuming the calibration set to be exchangeably sampled from the data distribution, any permutation equivariant trans-
formation on the data still preserves the exchangeability. Conclusively, the smooth scores from Gendler et al. (2021) and
Bojchevski et al. (2020) are both permutation equivariant (the smoothing applies similarly to all calibration and test points
regardless of their order). Therefore, smoothing scores maintains exchangeability.

While any score function preserving the exchangeability maintains the conformal guarantee, better scores result in better
performance with respect to the metric of interest. For instance, even a function that returns uniform conformity scores at
random provides a valid guarantee, although the prediction sets will be large.

Various score functions are proposed in the literature of conformal classification ranging from simple softmax function on
top of model’s result (Sadinle et al., 2018), to more complex functions leveraging information from embedding spaces of
the model (Teng et al., 2023), or from the confidence of adjacent datapoints within a network structure (Zargarbashi et al.,
2023). The expected score within the smoothing scheme around an input is no exception as it only involves the datapoint
itself and applies symmetrically to all datapoints. Similar conditions hold for any approximation of that expectation e.g. the
mean of Monte-Carlo samples. See §B in Yan et al. (2024) for a longer discussion.

Effect of the calibration set size. With a calibration set exchangeably sampled from the data distribution (infinite samples),
conformal prediction provides a marginal coverage of at least 1 − α (Eq. 1). This probability is also upper bounded by
1− α+ 1/(n+ 1). Precisely, the coverage is distributed as Beta(n+ 1− l, l) with l = ⌊(n+ 1)α⌋.

For a finite set of points and an exchangeably sampled calibration subset, e.g. transductive node-classification, Huang et al.
(2023) show that the coverage probability, Cov(D) = (1/|D|)

∑
(xi,yi)∈D 1[yi ∈ C(xi)] is distributed as

Pr [Cov(D) ≤ t] = 1− ΦHG(⌊α(n+ 1)⌋ − 1;M +N,N, ⌈Mt⌉+ ⌊α(n+ 1)⌋) (14)

Where M = |D|, N = |Dcal| is the size of the calibration set, and ΦHG(P, p,K) is the CDF function of hypergeometric
distribution of population P , sample size p, and K successful samples within the population.

This means that the coverage probability on standard CP is concentrated around 1−α. It also means that the variance around
1− α decrease as the size of Dcal increases. When moving the threshold from qα to any other value q′ within the domain of
the score function (as in poisoning), the new threshold will correspond to another quantile β = Quant−1 (q′;Dcal) and the
coverage will be similarly concentrated around 1− β.

Access to a large calibration set (e.g. 1000 points) is unrealistic. Even with a large set of labeled points, there is an open
question of whether to use a portion of it for training the model toward better accuracy which can help even in the efficiency
of CP. While we ran our experiments with the sparse labeled setting, increasing the size of the calibration set will result in
similar values on average but the results will be more concentrated following the distribution of conformal probability.

Conservative coverage. Both RSCP and CAS result in an empirical coverage higher than 1− α for clean data. This is since
the vanilla prediction set is a subset of their conservative prediction set. The empirical coverage for RSCP is even higher
compared to CAS since it uses looser bounds on the score and the prediction sets are unnecessarily more conservative.
Higher empirical coverage is gained by larger prediction sets; therefore the goal of Robust CP is to find conservative sets
that cover the worst-case perturbed input with higher than 1− α probability but not by increasing the set size significantly.

One-sided robust guarantee. Although CP comes with a two-sided coverage guarantee (upper and lower bound on the
coverage probability), our robust coverage guarantee is one-sided – we only guarantee that the coverage is larger than
1− α. The standard two-sided guarantee relies on exchangeability. However, since the adversary might perturb each point
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differently, i.e. we have a non-symmetric mapping from clean x to perturbed x̃; therefore, the perturbed points are no longer
exchangeable. Another strategy to obtain the second side, would be to compute maxx̃∈B(x) s(x̃, y) which needs access to
the clean test point. Given the difficulty, we leave computing two-sided guarantees for future work.

A.1. Impelementation Details

We based our implementation on PyTorch (Paszke et al., 2019) and Pytorch Geometric (Fey & Lenssen, 2019). We
run all our experiments both on CPU (Intel(R) Xeon(R) Platinum 8368 CPU @ 2.40GHz) and, and on GPU (NVIDIA
A100-SXM4-40GB).

B. Faster Evasion-Robustness via Calibration-time Bound
The evasion-robust CP algorithm (see § 5) requires an estimation of the expected smooth score for (i) the true class for all
calibration points, (ii) and all classes for each test point. Moreover, for the standard evasion-aware robustness, we need
to additionally compute adversarial upper bounds (solutions to Eq. 8) within the threat model for all classes of all test
points. This upper bound has a closed-form for continuous data, and an efficient algorithm for binary/discrete data (see
§ C). Nonetheless, it can be beneficial to reduce the overall runtime. Let tbound be the time complexity for the upper bound
computation for a single (x, y) and tMC be the time complexity of approximating the expected smooth score with M
Monte-Carlo samples. With n calibration points and c classes, we need O(n × tMC) time for calibration, including the
quantile computation. Then, for each test point we need O(c× tMC × tbound) time.

We define a computationally more efficient and robust alternative built upon Prop. 5.1 in which we offload the computational
overhead from the test set to the calibration set. Prop. 5.1 gives a worst-case coverage lower bound for vanilla CP – even if
we evaluate vanilla CP with smooth (but not upper bounded) scores. Alternatively, we can find a conservative quantile that
results in a certified 1− α coverage probability for the worst case input. We call this approach the faster evasion method.

This method of producing prediction sets significantly reduces the computation in two ways: (i) instead of test points (which
are larger in number), we compute the upper bounds on calibration points, (ii) instead of computing the upper bound for all
classes, we only compute it for the true class. Thus, we need O(n× tMC × tbound) for calibration, and O(c× tMC) for each
test point. In practical scenarios where the test set (during deployment) is larger than the calibration set, the computational
savings of the faster approach become significant, especially for tasks with a large number of classes (e.g. ImageNet with
1000 classes). As shown in Table 3 we gain a significant speed up (more than 3X) on CIFAR-10 with 204 calibration points
and just 100 test points. Here we have gains despite using a relatively tiny test set (even smaller than the calibration set)
since we have c = 10 classes. Similar, and even better speed-ups can be achieved for datasets with a larger test set and larger
number of classes.

Table 3. Run-time comparison between test-time (slower) and calibration-time (faster) upper bound computation. The result is for
CIFAR-10 with 104 number of Monte Carlo samples. Here, m is the number of test samples.

Time (seconds) No. Datapoints

Runtime Standard Evasion Robust Sets Faster Evasion Robust Sets

Calibration 0.15 O(n× tMC) 0.79 O(n× tMC × tb) 204
Testing 2.93 O(m× c× tMC × tb) 0.15 O(m× c× tMC) 100

Total 3.08 0.94

C. Technical Details On Randomized Smoothing
RSCP uses the closed-form solution to Eq. 7 as an upperbound on the score function within the L2 perturbation radius
(details are in § F). The same equation can be used to address other perturbation schemes (e.g. perturbations for sparse data).
We use the results from Bojchevski et al. (2020) to find extend RSCP to sparse and discrete data and use it as a baseline.

To apply randomized smoothing we need to define a smoothing scheme ξ(·) – a probabilistic function that adds random
noise to the input. Given any score function s, we define ŝ(x, y) = E[s(ξ(x), y)]. Now Pr [ξ(x) = z] is the probability of
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visiting some z in the domain by smoothing from x. For a continuous data we use Gaussian smoothing where ξ(x) = x+ δ
with δ ∼ N (0, σ2I) coming from an isotropic Gaussian distribution with zero mean and variance σ. We can compute the
adversarial upper bounds using the closed-form expressions from Kumar et al. (2020) (see e.g. Eq. 10 in § 4).

For binary data, following Bojchevski et al. (2020), we use the following smoothing function:

Pr [ξ(x)[i] ̸= x[i]] = px[i] (15)

This means that ξ toggles each 1-bit of x with probability p1 and each 0-bit with p0. This distinction allows us to
preserve sparsity by specifying a lower p0. Setting p1 = p0 = p we have the special case of flipping each bit with the
same probability p. Similarly Bojchevski et al. (2020) generalizes the binary case to the discrete case. Assuming that
x ∈ XK = {0, 1, . . . ,K}d the sparsity aware randomization scheme is defined as

Pr [ξ(x)i = k] =


(

p0
K−1

)(x[i]̸=k)

(1− p0)
(x[i]=k) x[i] = 0(

p1
K−1

)(x[i]̸=k)

(1− p1)
(x[i]=k) x[i] ̸= 0

(16)

that flips any zero bit with probability p0 and any non-zero bit with p1 to any other (K − 1) possible value.

For the baseline bound we can rewrite Eq. 7 as a linear program by partitioning the input space X into regions of constant
likelihood ratio (Lee et al., 2019). Let X =

⋃
iRi and Ri

⋂
Rj = ∅ be a partitioning into disjoint regions of constant

likelihood ratio such that for ever z ∈ Ri it holds Pr[ξ(x)=z]
Pr[ξ(x̃)=z] = ci for some constant ci. Let ti = Pr [ξ(x) ∈ Ri] and

t̃i = Pr [ξ(x̃) ∈ Ri] for for each region Ri. Then Eq. 7 is equivalent to:

max
h

hT t̃ s.t. hT t = p, 0 ≤ h ≤ 1 (17)

where h ∈ [0, 1]I is the vector that we are optimizing over corresponding to the score function h ∈ H, t and t̃ are the
vectors with ti and t̃i as elements, and I = ra + rd + 1 is the number of regions. Note, that by replacing the constraint with
a ≤ h ≤ b we can handle score functions that are bounded in [a, b]. The exact solution to this LP can be easily obtained
with a simple algorithm. We visit each region in increasing order w.r.t. ci where

ci =

[
p0

1− p1

]i−rd [ p1
1− p0

]i−ra
(18)

and assign hi = 1 for all regions Ri until the budget constraint is met, and hi = 0 for the remaining regions, with the
exception of the region in between where hi is a value between 0 and 1 such that the equality constraint is exactly met. Since
the likelihood ratios ci are monotonic in i, the regions are automatically sorted so the solution to the LP can be obtain in
linear O(I) time. See Bojchevski et al. (2020) for more details and the pseudo-code.

For the CDF-based bound we can similarly rewrite Eq. 8 as the following linear program:

max
H

bm −Ht̃d s.t. Ht = p, 0 ≤ H ≤ 1 (19)

where H ∈ [0, 1](m−1)×I is the matrix that we are optimizing over with Hji being the score that we assign to the j-th bin
and the i-th region, d is the vector of bin widths such that dj = bj − bj−1, and p is a vector where pi = Pr [s(ξ(x), y) ≤ bi].
Intuitively, for each bin and each region the worst-case score function h ∈ H assigns the same score to all z in that region
since the likelihood ratio is constant. As before we have a simple algorithm to obtain the exact solution to this LP. Observe
that Eq. 19 can be decomposed into m− 1 separate LPs similar to Eq. 17 which can be solved in parallel using the same
algorithm as above. The reason is that there is no interaction between the different bins (different rows of H) in neither the
constraint nor the objective function. Therefore, the solution can be obtain in O(m× I) with serial computation and O(I)
with parallel computation.

Tightness. All four bounds are tight, i.e. cannot be improved unless we make additional assumption or provide additional
constraints. The reason is that there exists a base score function s such that when relaxing to h ∈ H we get an equality in
Eq. 6. See Kumar et al. (2020) for a discussion of why the two Gaussian bounds are tight when certifying the confidence of
a classifier and observe that their analysis immediately applies to our score functions. Similarly, the two discrete bounds are
tight since there exists an s for which we obtain equality. The s can be constructed using the optimal h∗ from the problem in
Eq. 17 and similarly for Eq. 19.
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D. Supplementary to Theoretical Support
D.1. Proofs

Proof of Prop. 3.1. Given the exchangeability of (xn+1, yn+1) with the calibration set, Eq. 1 holds for the clean point.
Since x̃n+1 ∈ B(xn+1) we have ∀yi : s(x̃n+1, yi) ≥ s(xn+1, yi). By the definition of CP for any label yi we have

yi ∈ C(xn+1) ⇒ s(xn+1, yi) ≥ qα

xn+1 ∈ B(x̃n+1) ⇒ s(x̃n+1, yi) ≥ s(xn+1, yi) ≥ qα ⇒ C(xn+1) ⊆ C(x̃)

Which clearly implies that Pr
[
yn+1 ∈ C(x̃)

]
≥ Pr [yn+1 ∈ C(x)] ≥ 1− α.

Proof of Prop. 3.2. By definition Dcal ∈ Bk,B(Dcal); therefore qα is a feasible solution to Eq. 3 and we have qα ≤
qα. It follows that Cα(x) ⊆ Cα(x) where Cα(x) = {yi : s(x, yi) ≥ qα} and Cα(x) =

{
yi : s(x, yi) ≥ qα

}
. Since

Pr [yn+1 ∈ Cα(x)] ≥ 1− α due to exchangeability it follows that Pr
[
yn+1 ∈ Cα(x)

]
≥ 1− α. In summary the following

chain of inequlities hold:

∀yi : yi ∈ C(xn+1) ⇒ s(xn+1, yi) ≥ qα

qα ≤ qα ⇒ s(xn+1, yi) ≥ qα ≥ qα ⇒ yi ∈ C(xn+1)

Proof of Prop. 5.1. Setting qα = Quant (α; {s(xi, yi) : (xi, yi) ∈ Dcal}) we have:

Pr
[
ŝ(x̃n+1, yn+1) ≥ qα

]
≥ Pr

[
s(xn+1, yn+1) ≥ qα

]
Lower bound within the threat model

≥ 1− α Exchangeability between lower bounds

Alternatively, the vanilla CP is calibrated with quantile qα = Quant (α; {ŝ(xi, yi) : (xi, yi) ∈ Dcal}). The probability of a
given potentially perturbed x̃n+1 being covered is:

Pr [yn+1 ∈ Cα(x̃n+1)] = Pr [ŝ(x̃n+1, yn+1) ≥ qα] Definition of CP
≥ Pr [s(xn+1, yn+1) ≥ qα] Lower bound within the threat model

Let β = Quant−1 (qα; {s(xi, yi) : (xi, yi) ∈ Dcal}). If s is computed symmetrically – indices are invariant to s, then
s(xn+1) and {s(xi, yi) : (xi, yi) ∈ Dcal} are exchangeable. Hence, via quantile lemma we have:

Pr [s(xn+1, yn+1) ≥ qα] ≥ 1− β

Proof of Prop. 6.1. Since for each calibration point scdf+(xi, yi) ≤ scdf(xi, yi) has at most η
2|Dcal| failure probability

following holds with 1− η/2 probability via the union bound:

q
α+

:= Quant
(
α− η;

{
scdf+(xi, yi)

}
(xi,yi)∈Dcal

)
≤ qα := Quant

(
α− η/2; {scdf(xi, yi)}(xi,yi)∈Dcal

)
This is because every element scdf+(xi, yi) in the first set is lower than the corresponding element in the other set. Now
given the new test datapoint x̃n+1, the new calibration scores {scdf(xi, yi) : (xi, yi) ∈ Dcal} and scdf(xn+1, yn+1) are
exchangeable, as a result for the clean corresponding point xn+1 we have Pr

[
scdf(xn+1, yn+1) ≥ qα

]
≥ 1 − α + η.

Therefore we have the following chain of inequalities:

q
α+

≤
1−η/2

qα ≤
1−α+η

scdf(xn+1, yn+1) ≤ ŝ(x̃n+1, yn+1) ≤
1−η/2

ŝ+(xn+1, yn+1)

summing up the probability of each inequality we have Pr
[
yn+1 ∈ Cα+

]
= Pr

[
ŝ+(xn+1, yn+1) ≥ q

α+

]
≥ 1− α
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Proof of Prop. 6.2. Since Eq. 24 (and Eq. 3) is a minimization problem, dropping ai ≤ si does not change the optimal
solution. For each calibration point, we have:

smc(xi, yi) ≥
1−η/2|Dcal|

ŝ(xi, yi)− ϵhoef ≥ scdf(x̃i, yi)− ϵhoef ≥
1−η/2|Dcal|

scdf+(x̃i, yi)− ϵhoef

Thus scdf+(x̃i, yi) − ϵhoef ≤ smc(xi, yi) holds with 1 − η probability for all i via union bound. This follows that
q
α+

≤ qα,mc where qα,mc is the α-quantile of MC scores for clean calibration set. Therefore by exchangeability, we have
Pr [smc(xn+1, yn+1) ≥ qα,mc] ≥ 1− α = 1− α′ + η. Finally

Pr
[
smc(xn+1, yn+1) ≥ q

α+

]
≥
1−η

Pr [smc(xn+1, yn+1) ≥ qα,mc] ≥ 1− α′ + η

Therefore, Pr
[
smc(xn+1, yn+1) ≥ q

α+

]
≥ 1− α′.

D.2. Details on l2 CDF bounds

Rephrase from Kumar et al. (2020). The upper bound in Eq. 10 is a rephrasing of Theorem 2 from Kumar et al. (2020). In
the original version the bins are defined as a < c1 ≤ c2 ≤ · · · ≤ cn < b. For the for a score function s and (clean) input x
the statistics pcj is defined as

pcj = Prδ∼N (0,σ2I)[s(x+ δ, y) ≥ ci]

Here we correct for finite sample estimation via Dvoretzky–Kiefer–Wolfowitz inequality. With the detailed discussion
on Monte-Carlo sample correction in § E, we assume that the statistics are computed with the error correction. For the
adversarial point x̃ ∈ Br(x) we have the following upper bound:

ŝ(x̃, y) ≤ c1 + (b− cn)Φσ
(
Φ−1
σ (pcn) + r

)
+

n−1∑
j=1

(cj+1 − cj)Φσ
(
Φ−1
σ (pcj ) + r

)
(20)

In Eq. 10 we rewrote the same inequality with a simpler notation. Here we show that the two inequalities are the same. Our
bins are indexed as a = b1 < b2 ≤ b3 ≤ · · · ≤ bm−1 < bm = b; therefore for the same number of bins (n = m− 2), there
is an index mapping as ∀1 ≤ i < m : ci−1 = bi. Rewriting Eq. 20 with the new bins, we have:

ŝ(x̃, y) ≤ b2 + (bm − bm−1)Φσ
(
Φ−1
σ (pbm−1) + r

)
+

m−3∑
j=1

(bj+2 − bj+1)Φσ
(
Φ−1
σ (pbj+1) + r

)
= b2 +

m−2∑
j=1

(bj+2 − bj+1)Φσ
(
Φ−1
σ (pbj+1

) + r
)
= b2 +

m−1∑
j=2

(bj+1 − bj)Φσ
(
Φ−1
σ (pbj ) + r

)

We write the upper bound in terms of CDF function where pj = Prδ∼N (0,σ2I)[s(x+ δ, y) ≤ bj ]. We use two properties
from Gaussian distribution (i) for the CDF function it holds that Φσ(−z) = 1− Φσ(z) (ii) for the quantile (inverse CDF)
function it holds that Φ−1

σ (1− z) = −Φ−1
σ (z). Hence, we have

pbj = 1− pj ⇒ Φσ
(
Φ−1
σ (pbj ) + r

)
= Φσ

(
Φ−1
σ (1− pj) + r

)
= Φσ

(
−Φ−1

σ (pj) + r
)

= Φσ
(
−[Φ−1

σ (pj)− r]
)

= 1− Φσ
(
Φ−1
σ (pj)− r

)
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It follows

b2 +

m−1∑
j=2

(bj+1 − bj)Φσ
(
Φ−1
σ (pbj ) + r

)
= b2 +

m−1∑
j=2

(bj+1 − bj)
[
1− Φσ

(
Φ−1
σ (pj)− r

)]
= b2 +

m−1∑
j=2

(bj+1 − bj)−
m−1∑
j=2

(bj+1 − bj)Φσ
(
Φ−1
σ (pj)− r

)
= bm −

m−1∑
j=2

(bj+1 − bj)Φσ
(
Φ−1
σ (pj)− r

)
Intuitively, with a fixed set of bins, the mass of each bin can be bounded within Br(x) independently (the bound for each
bin is similar to the mean bound). Therefore for a discrete empirical CDF of scores around x, first we find a worst-case
upper bound CDF, then we bound the mean via the Anderson inequality (Eq. 9) given the worst-case CDF.

Lower bounds within Br(·). Similar to the mean upper bound from the Anderson inequality (Eq. 9), the mean can be lower
bounded as:

E[h(x)] ≥
m∑
j=2

bj−1 · [Fh(bj)− Fh(bj−1)] = bm−1 −
m−1∑
j=2

Fh(bj) · (bj − bj−1) (21)

The lower and upper bounds are intuitive as they assume every point within each bin [bj−1, bj) is equal to bj−1 for lower
and bj for the upper bound. The rest is just computing the average based on the relative frequency Fh(bj)− Fh(bj−1). With
that the lower bound version of Eq. 8 is

ŝ(x̃, y) ≥ scdf(x, y) = bm−1 −
m−1∑
j=2

Φσ
(
Φ−1
σ (pj) + r

)
· (bj − bj−1) (22)

Here we derive the equality in Eq. 9 – namely the following;

m∑
j=2

bj · [(Fh(bj)− Fh(bj−1)] = bm −
m−1∑
j=2

Fh(bj) · (bj+1 − bj)

The lower bound follows a similar way to derive. We have

m∑
j=2

bj · [(Fh(bj)− Fh(bj−1)]

= b2 · [(Fh(b2)− Fh(b1)] + b3 · [(Fh(b3)− Fh(b2)] + · · ·+ bm · [(Fh(bm)− Fh(bm−1)]

= − b2 · Fh(b1) + [b2 · Fh(b2)− b3 · Fh(b2)] + · · ·+ [bm−1 · Fh(bm−1)− bm · Fh(bm−1)] + bm · Fh(bm)

With Fh(b1) = 0 and Fh(bm) = 1 we have

m∑
j=2

bj · [(Fh(bj)− Fh(bj−1)]

= 0 + [−Fh(b2) · (b3 − b2)] + · · ·+ [−Fh(bm−1)(bm − bm−1)] + bm

= bm −
m−1∑
j=2

Fh(bj) · (bj+1 − bj)

E. Estimating Expectations with Monte-Carlo Sampling
Concentration inequalities. For any random variable z, let z1, . . . , zm be Monte-Carlo samples of z. With Em[z] =
1
m

∑m
i=1 zi, we bound the true expectation around the MC-estimate via Hoeffding’s inequality. The following holds with
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any adjustable 1− η probability;

|E[z]− Em[z]| ≤

√
log( 2η )

2m

This bound only accesses to the empirical mean and not the samples. Therefore, in cases where we want to account for the
distance of empirical mean, and the true expectation for an unknown variable, we can use this bound. An example of this
case is the test-time correction where the upper bound on the mean of the unseen point is computed while the empirical
mean is not computable (since there are no samples).

Let σ2
m be the variance of the MC samples, then empirical Bernstein inequality produces variance-dependent confidence

intervals as following:

|E[z]− Em[z]| ≤

√
2σ2

m

ln( 4η )

m
+

7 ln( 4η )

3(m− 1)

Similar to the mean, the empirical CDF is also bounded between an upper and a lower CDF, via the Dvoret-
zky–Kiefer–Wolfowitz (DKW) inequality (Dvoretzky et al., 1956). Let F (bi) = Pr [z ≤ bi] and Fm(bi) =

∑m
j=1 1[zj ≤ bi],

|F (bi)− Fm(bi)| ≤

√
log( 2η )

2m

The above inequality holds simultaneously for all bi.

For Eq. 7 we use the Bernstein inequality as is has shown a better empirical result compare to Hoeffding’s inequality. For
Eq. 8 we use the DKW inequality to find confidence intervals the empirical CDF.

Error correction in Eq. 7 and Eq. 8. To find the upper (or lower) bound in Eq. 7, we need to estimate the mean of the
smooth score around the input x. We use the mean corrected with the Bernstein confidence interval. For the upper bound
problem, we use the upper end of the interval since it is more conservative. The same logic follows for the lower bound.
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Figure 6. Comparison of CAS and RSCP for faster
(calibration-time) and test-time error correction.

For Eq. 8 we use the Dvoretzky–Kiefer–Wolfowitz inequality
to find an upper (or lower) CDF. Since in the Eq. 9 the CDF is
added with a negative sign, the lower endpoint of the confidence
interval should be used to find a conservative upper bound.

Empirically, Bernstein’s confidence intervals are tighter than
Hoeffding’s intervals. Therefore we only use the Hoeffding
error anytime we need a correction without having access to the
variance.

Test-time correction (Yan et al., 2024). The MC-sampled
smooth score does not break the exchangeability since this
estimation is permutation invariant. This means that given the
clean input xn+1 the estimated scores are exchangeable and
the guarantee is valid without any error correction. However,
given x̃, CAS and RSCP find bounds on the true mean. Given
x̃, we compute s+ via solving either Eq. 7 (RSCP) or Eq. 8
(CAS) with the error corrected estimate. For both methods, the
following holds:

qα,mc ≤
1−α

ŝmc(xn+1, yn+1) ≤
1−η1

ŝ(xn+1, yn+1) + ϵhoef ≤ s(x̃n+1, yn+1) + ϵhoef ≤
1−η2

s+(x̃n+1, yn+1) + ϵhoef

By setting α′ = α+ η1 + η2 we have a valid CP guarantee with certified 1− α probability.

Calibration-time vs test-time correction. As shown in Fig. 6, CAS benefits significantly from calibration-time robustness.
The reason is that the CDF bound (Eq. 8) performs significantly better than the mean bound (Eq. 7) when the score
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distribution is more spread out. For distributions concentrated around each endpoint of the domain, the CDF has a high
slope at the endpoint and is almost flat elsewhere. While using DKW inequality, a large penalty is added to the distribution
resulting in larger CDF intervals. Meanwhile, in these distributions, the mean bound can benefit from Bernstein inequality
which due to the low variance performs even better. In calibration-time robustness, we find the lower bound for true scores
(which are often more spread) while in test-time unlikely classes that have scores concentrated to 0 are bounded by large
value (due to DKW for concentrated scores) which directly affects the set size. In addition, Yan et al. (2024) adds a Hoeffding
error to the unseen clean score, where in our method we bound the estimation of the input which can use the Bernstein error.
Since we are free to choose between test-time and calibration-time correction, and RSCP has equal performance for both,
we argue that we should use calibration-time correction as a default. For Fig. 4 we choose the best performance of each
method in either calibration- or test-time robustness with error correction.

F. Details on RSCP
F.1. Equivalence Between RSCP and our Gaussian Baseline Bound

For a given score function s : X ×Y 7→ [0, 1] on continuous inputs, Gendler et al. (2021) define the new scoring function as
follows:

srscp(x, y) = Φ−1(E[s(ξ(x), y)]) (23)

RSCP computes the α-quantile qα of the new calibration scores (Eq. 23) and compares each score with the modified
threshold4 qα = qα − r/σ , where r is the radius of the l2 ball from the threat model, and σ is the scale of the smoothing
distribution. We can equivalently add an additional r/σ term to test scores instead and compare the augmented score with
unchanged qα. Using Φ−1

σ (p) = σΦ−1(p) as a property of the inverse CDF function of the Gaussian distribution, we have

Φ−1 (E[s(ξσ(x), y)]) ≤ Φ−1 (E[s(ξσ(x̃), y)]) +
r

σ
⇒ Φ−1

σ (E[s(ξσ(x), y)]) ≤ Φ−1
σ (E[s(ξσ(x̃), y)]) + r

Since the CDF is a monotonically increasing function we apply Φσ on both sides of the inequality:

Φσ
(
Φ−1
σ (E[s(ξσ(x), y)])

)
≤ Φσ

(
Φ−1
σ (E[s(ξσ(x̃), y)]) + r

)
⇒ E[s(ξσ(x̃), y) ≤ Φσ

(
Φ−1
σ (E[s(ξσ(x̃), y)]) + r

)
Substituting p = E[s(ξ(x̃), y)] we see that this is equivalent to the Gaussian smean upper-bound defined in § 4.

F.2. Comparison with Cauchois et al. (2020)

Cauchois et al. (2020) derive robust prediction sets when the f -divergence between the test distribution and the calibration
distribution of the non-conformity scores is bounded by a fixed value ρ. We can connect their approach to our definition
of adversarial robustness using the results from Dvijotham et al. (2020). Specifically, we can rewrite the optimization
problem maxx̃∈Br(x) E[s(ξ(x̃, y)] over the ball Br(x) to the optimization problem maxν∈P E[s(ν(x, y)] over the space
of probability measures P = {ξ(x̃) | x ∈ Br(x)}. Since this set is intractable we can relax the problem using the fact
that P ⊆ {Df (ν||ξ) ≤ ρfr} for an appropriately chosen ρfr where Df (ν||ξ) is the f -divergence between the smoothing
distribution ν centered at a perturbed example and the smoothing distribution ξ centered at the clean example. See Dvijotham
et al. (2020) for a derivation of the optimal ρfr for different different divergence functions f and different smoothing
distributions. Thus, for smooth scores there is a direct connection between RSCP, CAS and Cauchois et al. (2020)’s method.

Importantly however, for most choices of f (e.g. the KL divergence) the relaxation results in a looser (though potentially
easier to compute) bound. The analysis in Dvijotham et al. (2020) was developed for classification problems but it also
directly applies to our setting. They show that we need to use the Hockey- Stick divergences with the right parameters to
obtain tight certificates. Specifically, for Gaussian smoothing and an l2 norm the result is equivalent to the tight certificate
from Cohen et al. (2019). Disregarding that Hockey-Stick divergences are harder to estimate in general, it means that in the
best case, the approach by Cauchois et al. (2020) can recover the baseline smean(x̃, y) which we have shown is looser than
our scdf(x̃, y).

4Originally RSCP shifts the quantile forward qα = qα + r/σ since it is defined with the non-conformity setup where scores lower
than the quantile are accepted. Here since we use conformity (agreement) scores and the acceptance criteria is to be larger than qα we
shift the quantile backward. The setups are equivalent via changing the sign of the scores (see § A).
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G. Technical Details on Poisoning Certificate
Feature poisoning. The solution of the optimization problem in Eq. 3 is robust to feature poisoning; however, the problem
is hard to solve since: (i) we need to optimize over each zi in B(x̃i), (ii) it involves a quantile computation, (iii) and it has a
cardinality constraint as the sum of indicator functions. Therefore, we relax the problem to a MILP which can solve with
standard solvers. First, we replace each zi ∈ B(x̃i) constraint with a si ≤ s̃i ≤ si constraint directly over scores si where
the lower and upper bounds are computed as in discussed in § 4. This is a sound relaxation and the optimal qα of the relaxed
problem is smaller or equal than the qα of the original problem. Then, we introduce |Dcal| binary variables to compute the α
quantile, and additional |Dcal| binary variables to enforce the perturbation budget. The resulting MILP is:

qα = min
si,q

q

s.t. ∀s̃i : si ≤ si ≤ si

ti := 1[si ≤ q],

n∑
i=1

zi ≤ ⌊αn⌋, and

n∑
i=1

(1− ti) ≤ ⌈(1− α)n⌉

bi := 1[si ̸= s̃i],

n∑
i=1

bi ≤ k

(24)

In Eq. 24, the zi variables indicate whether the calibration point is below or above the α quantile q, and the bi variables
indicate whether the point is perturbed or not. We use the standard big-M technique to translate this into a canonical form
which we solve with MOSEK.

Label poisoning. We can directly rewrite Eq. 5 as a MILP without any relaxations. Let S be an n = |Dcal| by c matrix of
scores for each class and each calibration point, where c is the number of classes. We have

qα = min
q,C∈{0,1}n×c

q

s.t. C1c×1 = 1n×1

r = (C ⊙ S)× 1c×1∑
i

C[i, yi] ≥ n− k

zi := 1[ri ≤ q],

n∑
i=1

zi ≤ ⌊αn⌋, and

n∑
i=1

(1− zi) ≤ ⌈(1− α)n⌉

(25)

where the binary one-hot matrix C is responsible for selecting one score per calibration point (i.e. one of the c possible
labels), r is the resulting set of chosen scores, and the zi variables implement the quantile as before.

Complexity. Note that while in general, solving MILPs is computationally expensive, since our calibration sets are relatively
small, we can still obtain the exact solution in reasonable wall-clock time. We leave it as future work to derive more efficient
algorithms for the feature and label poisoning problems.

H. Robustness to Poisoning and Evasion Attacks Combined
In § 3.2 we make CP robust to poisonings (in feature or label domain) by finding a conservative q̂ that in the most adverse
case of attack (within the defined budget and threat model) the coverage probability remains above 1−α. Once this threshold
is defined, we can consider the calibrated quantile to safely satisfy the guarantee on the clean test – we can assume that CP
was calibrated on clean calibration data. Formally the solution to Eq. 3, and Eq. 5, is a threshold with which the prediction
sets constructed for clean x has larger than 1− α coverage probability.

While making CP robust to evasion, we only consider the confidence interval of scores for the clean test point given the
potentially perturbed point x̃. This process only involves computing upper bounds on the given test point and hence is
independent of the prior robustness to poisoning. In other words, the resulting conservative prediction set includes the
prediction set of the clean datapoint C(x) ⊆ C(x̃).
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Figure 7. Singleton hit ratio of CAS and RSCP under evasion for (from left to right) CIFAR-10 with APS, ImageNet with TPS, and
Cora with APS.

This shows that we can make CP robust to poisoning and evasion attacks at the same time. However, this combined
robustness comes at the price of comparably larger prediction sets. The robust q is less than qα which allows more labels to
be included in the prediction sets. At the same time, for each test point, the upper-bound scores introduce a higher probability
for a label to be included in the prediction sets again. So there will be two conservative processes each increasing the chance
of accepting a label which increases the expected set size.

I. Time and Space Complexity
Our robust CP approach breaks down into four computations (i) computing the score function, (ii) estimating expectations for
randomized smoothing (in practice the MC sampling and computing the confidence intervals), (iii) computing upper-bounds,
and (iv) standard CP processes including calibration and constructing prediction sets. Here we omit the time complexity
analysis of the model, and with the black-box access, we assume the model’s prediction of logits to take O(1) step. The
computation of the conformity score depends on the choice of this function. TPS takes O(K) (K is the number of classes)
to compute the categorical distribution via softmax function. APS score function takes an additional O(K) steps to sort
the class probabilities and compute the summation of confidences (see § 2 for the definition of the score function). This
additional sort can become time-consuming for datasets with large number of classes (like ImageNet) For simplicity, we
call the score function to take ts steps. Standard CP procedures are calibration and constructing prediction sets. Given n
calibration score finding the 1− α quantile takes O(n) steps (median computation) and the prediction sets take O(C) to be
constructed for each test input. All the time complexities are reported w.r.t. serial computation, while with enough number
of parallel processing cores, all above computations can be done in relatively lower number of steps.

In the randomized smoothing we need to estimate the expected score function within the smoothing scheme. For that, we
use Monte-Carlo sampling which takes O(N ×M) steps to compute the mean of M Monte-Carlo samples and N is the
number of datapoints in total.

With the Monte-Carlo samples each upper- and lower-bound need solving an optimization problem. The optimal value is
found via a closed-form solution for Gaussian smoothing. Given S bins for the binary (and discrete) CDF computing this
bound takes O(S ×R) time where R is the number of regions of similar likelihood and we have R = ra + rd + 1. We refer
to the time computation time of the bound as tb.

As a result, in the evasion setup, we take O(NM) additional steps for calibration on smooth scores and O(MK+K · tb) for
constructing the prediction sets. We also proposed a faster way to provide robust prediction sets in § B. For that we compute
an upperbound per each calibration datapoint but only for the true class. For any given test point we only compute smooth
scores which in total reduces the computation to O(MK) for test time (per test datapoint), and increases the calibration
time complexity to O(N · tb). This procedure decreases the number of steps in total. Table 3 compares the runtime of both
approaches for a limited number of calibration, and test points.

For poisoning in the feature space, we should first compute the upper and lower bounds for each calibration data which
takes O(NM +M · tb) steps. Here we just compute the bounds for the true label. We then solve a mixed integer linear
programming which is computationally hard. We apply tricks like big-M method to make the problem solvable and enable
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the use of standard convex optimization solvers. Similarly for the label poisoning, the problem is hard involving ILP solvers,
but here we do not need to compute bounds on scores as the perturbations are in the label domain.

J. Supplementary To Experiments
J.1. Details on the Experiments in the Manuscript

In our core experiment, we utilized a ResNet-110 model pre-trained on the CIFAR-10 dataset and a ResNet-50
model pre-trained on the ImageNet dataset. Both models were trained using noisy training by Gaussian data augmentation
across various noise variances, as proposed by Lecuyer et al. (2019) and later used by Cohen et al. (2019) for randomized
smoothing. Detailed insights into the model training and augmentation processes are elaborated in Cohen et al. (2019);
Salman et al. (2019).

For evaluation, we employed an l2 norm smoothing paradigm and applied various noise levels, identifying the model
that delivered optimal performance based on findings from Cohen et al. (2019). On CIFAR-10 dataset we used a skip
parameter and ran the experiments on between 1000 to 2000 samples. Similarly, 500 data points are used from the sampling
of every 100-image from the ImageNet dataset. Noise variance settings used were σ = 0.25 for CIFAR-10 and σ = 0.5
for ImageNet. During the Monte Carlo sampling, each datapoint was processed through 104 iterations to calculate the
expected probability or mean.

For our experiments on the Cora-ML dataset. we utilized a two-layer GCN equipped with 64 hidden units. Followed by
Bojchevski et al. (2020), our training procedure incorporated randomized perturbations of the node features. Specifically, we
used a perturbation addition probability (p+) of 0.01 and a deletion probability (p−) of 0.6. For the training process, we
employed 20 node labels per class for training and similar number of nodes for validation. We conducted the training over
1,000 epochs. The remaining portion of the dataset was set aside for evaluation purposes.

In our conformal prediction strategy, the split conformal method was adopted. To account for the effect of randomness in
calibration set sampling, we reported our result in terms of mean and confidence bounds over 100 calibration samplings.

Moreover, results for adversarial cases are discussed. For these attacks, we employed the projected gradient descent (PGD)
attack (Madry et al., 2017), using an alpha value of 0.1 across 40 iterations. The attack outcomes, constrained by L2 norm
distance from the original image, are presented for r = 0.125.

Singleton hits ratio. This metric quantifies the proportion of correct singleton predictions which can be used without any
further post-processing. Similar to the prediction set size, Fig. 7 shows that CAS outperform RSCP on all datasets.

Proportion of Empty, Singleton, and Multi-sets. While we report the average set size (similar to many other studies in
CP), a CP method might misleadingly show to be more efficient by returning more empty sets. That is why an alternative
metric is to only report the average size of non-empty sets. In Fig. 8 we report the proportion of empty, singleton and
multi-prediction sets for various radii. In vanilla CP, as we increase the 1− α guarantee to higher values, CP adds more
elements to prediction sets to satisfy the increased coverage guarantee. Since there are almost no empty prediction sets for
various α, and r, both effective and average set size are the same.

Different Score Functions. As mentioned in § 2 (and in § A extensively), coverage guarantee in vanilla CP, and robustness
methods defined on top (including RSCP, and CAS) are defined agnostic to the score function leaving the freedom of
choosing the score based on the domain of application. Here we empirically support this argument. Fig. 9 compares RSCP
with CAS applied on TPS and APS score functions. In all scores, and all metrics CAS shows an improved result.
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Figure 8. The proportion of singleton, empty and multi-sets for RSCP and CAS across radii (left) r = 0, (middle) r = 0.12, and (right)
r = 0.25.

K. Notations and Definition Guide
For a complete guide to all notations used in the paper see Table 4.
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Figure 9. Comparison of RSCP and CAS for smooth APS and TPS score across various radii for (left column) empirical coverage (middle
column) set size, and (right column) singleton hits. From upper to lower row results are respectively for r = 0, r = 0.12, and r = 0.25.
All results are for CIFAR-10, and smoothing with σ = 0.25
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Notation Desciption

x The clean input
(xi, yi) The clean input alongside its true label.

Dcal Clean calibration set. A set of labeled datapoints which its labels are unseen by the
model during the training. Precisely, the conformity score (e.g. model softmax) is
exchangeable between elements of this set and the test set.

x̃ The input perturbed by the adversary
(xi, ỹi) The clean input alongside a label that is potentially flipped by the adversary.

D̃cal The poisoned calibration set. Here the adversary has returned a set, given clean Dcal,
where under threat model either features are perturbed, or labels are fliped (or both).

B(·) Point-level threat model: The set of all allowed perturbations w.r.t. the clean point; e.g.
all points that are closer than r in l2 distance

Bk,B(D) Set-level threat model: The set of all allowed perturbations changing an input set; e.g.
CP’s calibration set. As an example the set of all perturbed sets where the adversary
has changed at most k points within a point-level threat model.

s(·, ·) Conformity score function originally defined for vanilla CP
srscp(·, ·) Scores defined by Gendler et al. (2021).

s(·, ·), s(·, ·) Upper- and lower-bounds for given score function s(·, ·) within the specified threat
model.

qα Conformal quantile computed by CP on the clean calibration set with nominal coverage
probability 1− α

q̃α Adversarial conformal quantile; this is a quantile of the calibration set that is poisoned
by the adversary. It is expected that this quantile results in lower coverage compared to
qα.

qα Conservative lower-bound for qα; This is computed by the defender to return robustness
prediction sets.

Cα(·) Prediction set of vanilla CP with 1− α nominal coverage.
Cα(·) Prediction set of robust CP with 1 − α nominal coverage. Dependent on the attack

scenario (evasion or poisoning), this set is robust to the perturbations within the threat
model.

ŝ(·, ·) The smooth score for the input x. This score is the expectation of the score under a
predefined randomized smoothing framework.

smean(·, ·) The upperbound score calculated by solving Eq. 7. This problem only has the mean
similarity constraint.

scdf(·, ·) The upperbound score calculated by solving Eq. 8. This problem only has the CDF
similarity constraint.

Table 4. Table of notations used in the paper.
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