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ABSTRACT

Generative Manifold Networks (GMN) are a new machine learning framework consisting
of a network of linked dynamical systems capturing causal interactions at the core of com-
plex systems. The network is discovered by an interaction function which can focus on
causality, shared information, nonlinearity or other discrimination metric. Network nodes
are interactive low–dimensional data–driven state space generators accommodating mul-
tiscale dynamics. In contrast to many machine learning approaches GMN has no latent or
random variables, operates solely on observed time series and thus provides explainability.
GMN generates short and long term chaotic dynamics on par with echo state networks but
at a remarkably reduced number of dimensions and without sensitive dependence on reser-
voir parameters or random states. As a result of the multiscale representation GMNs are
able to learn the complete dynamics of a complex system based on limited training data.
We demonstrate these features on chaotic dynamics and neural and behavioral recordings
of the fruit fly Drosophila melanogaster.

1 INTRODUCTION

Network structure is a foundation of complex systems as demonstrated in genomic Turner et al. (2014),
metabolic Jeong et al. (2001), physiologic Bashan et al. (2012), social, and neural systems/networks Bae
et al. (2025); Assaf et al. (2020). Networks can enforce a remarkably low–dimensional structure within
a high–dimensional system, consistent with the manifold hypothesis Thibeault et al. (2024) evidenced in
living systems Eckmann & Tlusty (2021) and their neural processing Fontenele et al. (2024). The fact that
fantastically complex structures such as mammalian brains express function and behavior not as single,
ultra high–dimensional objects, but as interacting networks suggests the computational architecture should
encompass low–dimensional, multiscale, interacting networks.

Generative manifold networks (GMN) combine these essential features into a new architecture based on
interactive dynamical manifolds. GMN networks are discovered through an interaction function between
observables defining an adjacency matrix from which a network graph for a desired target observable is
grown. The interaction function can be a metric of causality such as convergent cross mapping (CCM)
Sugihara et al. (2012), mutual information, nonlinearity Pao et al. (2021); Sugihara (1994); Smith (2015) or
other suitable interaction metric. Each node of the network is a multivariate state space manifold leveraging
the power of generalized embedding Deyle & Sugihara (2011). The architecture is therefore simple, low-
dimensional and observable.

We demonstrate GMN applied to chaotic dynamics and Drosophila neural data with results compared to echo
state networks (ESN). A brief review of reservoir computing (RC) and echo state networks with discussion
of their connection to random embeddings and Koopman operators is provided in Appendix A.2.
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1.1 GMN ARCHITECTURE

The GMN architecture is simple: a network of nodes, each node a dynamical system generator operating on
a multivariate generalized embedding of observations where each node corresponds to a system observable.
Here, we use the state space simplex generator defined by Sugihara & May (1990), however, other generators
can be used. The generalized embedding contains multivariate inputs from other nodes while allowing
time delayed versions of observed variables to represent hidden dynamics or unobserved variables Deyle
& Sugihara (2011); Takens (1981). Time delay components are determined by node-specific embedding
dimension E and time delay τ . Thus the network is inherently multiscale according to node embedding
parameters, further, the manifold is entirely data–driven and observable, there are no latent variables as any
delayed components representing an unobserved variable are direct mappings to observations. Additionally,
statistical model constraints such as independence and linearity are not imposed. A schematic of GMN with
comparison to a reservoir computer is shown in figure 1.

Figure 1: Schematic representation of a) generative manifold networks (GMN) and b) reservoir computer
(RC). RC is predicated on an extremely high–dimensional random embedding (reservoir) with sensitive
dependence on reservoir size, distribution and parameters. GMN encapsulates interactive dynamical man-
ifolds, represented in the graphic by an embedding, map or symbol M, each a deterministic, observable,
low–dimensional system in RE .

2 RESULTS

2.1 CHAOTIC DYNAMICS: LORENZ ’63

The Lorenz’63 atmospheric convection model defines a 3–dimensional manifold according to dx
dt = a(y−x),

dy
dt = x(b− z)− y, dz

dt = xy − cz and with parameters a=10, b=28, c=8/3 generates chaotic dynamics. We
generate a test set of V1 = x, V2 = y, V3 = z of 4000 points starting at time 10.0 with ∆t = 0.02.

We define a simple 3 node GMN for V1, V2, V3 where node V1 feeds output to V2 and V3, node V2
feeds output to node V3 as shown in figure 3a. We also create an echo state network with 3 inputs and
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3 outputs for V1, V2, V3, and 1000 reservoir nodes. Implementation details are described in Methods.
Both generators are trained on the first 2000 points of data with free-running generation starting at Time
= 50 (index 2001) with results shown in figure 2 where the 1000 node RC achieves good accuracy for
approximately 2 seconds. Small improvements can be made with a larger reservoir ESN, but 1000 nodes
illustrates reasonable synchronization with the true dynamics. The GMN achieves a comparable but longer
period of approximately 2¾ seconds demonstrating GMN is capable of short term accuracy in the generation
of chaotic dynamics.

Figure 2: Generated dynamics of the Lorenz’63 3D chaotic dynamical system by a 1000 node ESN and 3
node GMN. Generative mode begins at Time = 50.

Next we examine long term generation by training both GMN and ESN on the first 2000 points then gen-
erating 1000 points with results presented in figure 3 where the 3 node GMN generates dynamical behavior
consistent with the known dynamics while the ESN requires 3000 reservoir nodes to achieve similar results.
To compare the properties of the generated time series we calculated the power spectrum of the generated
time series indicating the ESN creates unnatural high frequency components. The power of these compo-
nents decrease with reservoir size but still depart significantly from the spectrum of GMN which is closest
to the original Lorenz dynamics (Fig. 3e).

Figure 4 demonstrates the importance of proper manifold interaction for the Lorenz’63 system. In figure
4a the 3 node network has only two connections supplying interactions from V1 to V3 and V2 to V3, no
interaction between V1 and V2. Adding an interaction from V1 to V2 enables full recovery of the system
dynamics.

2.2 Drosophila

Next we compare GMN and ESN on neural recordings of a fly expressing the calcium indicator GCaMP6f
as a measure of neuronal activity. The fly was imaged walking on a freely rotating Styrofoam ball allowing
recording of forward speed (FWD) and left/right turning speed (Left_Right) as shown in figure 5. Neural
activity was spatially segmented by independent component analysis (ICA) yielding 80 component brain
areas and corresponding time series for a total of 82 observables. Details are provided in Aimon et al.
(2019).
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Figure 3: Long term generated dynamics of the Lorenz’63 3D chaotic dynamical system by a) 3 node GMN,
b) 1000 node, c) 2000 node, and d) 3000 node ESN. e) Power spectral density of variable V1 and generated
versions indicating the examined ESN generate high–frequency components not present in the data.

Figure 4: a) An incomplete GMN network of the Lorenz’63 system fails to generate valid dynamics. b) A
complete network generates full dynamics.

The GMN network is created from an interaction matrix based on a measure of nonlinearity ρ∆(x, y) =
ρ

CM
(x, y)− |ρ

P
(x, y)| where ρ

CM
(x, y) is simplex nonlinear cross map correlation and ρ

P
(x, y) the linear

Pearson correlation between observables x,y. Starting from the forward motion observable (FWD) the net-
work is grown according to the interaction/adjacency matrix as described above and in Methods resulting in
a 67 node network shown in figure 5c.

Comparison of GMN and ESN results are depicted in figure 6 where training data span index 1 - 6000,
generative dynamics start at index 6001. GMN is run with E = 7, τ = −8 for all nodes. The training set
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Figure 5: a) Neural and behavioral measurements of Drosophila walking on a Styrofoam ball. b) Nonlinear
interaction matrix of all time series used to create the GMN network. c) GMN network.

consists of six bouts of forward motion separated by small time intervals and does not include the protracted
pause in forward motion between the sixth and seventh forward movements. Remarkably, GMN generated
dynamics reproduce this pause behavior demonstrating GMN can produce realistic behaviors that are not
explicitly present in the training set. This is possible from interactions of multivariate, multiscale generalized
embeddings that capture system dynamics across scales with multiple variables as well as delays thereof.
Removal of either of these features, node interactions or multiscale embedding, precludes this ability as
verified with autonomous generation of dynamics from a univariate time delay embedding (no network
interactions) and from multivariate embeddings with E = 1 (no multiscale dynamics) that do not generate
the observed pause. We therefore infer GMN are capable of learning the complete dynamics of a system as
long as the observations are sufficiently informative, the network structure sufficiently connected, and time
delays appropriate.

In contrast, ESN generation of Drosophila forward motion fails to reproduce characteristics of the observed
time series in the withheld data. The ESN generated time series start immediately with a fast bout then
producing multiple bouts in a quick succession rather than a long pause and two bouts in the withheld data.
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A direct comparison of GMN & ESN generation is shown in figure 6d where the ESN is observed to generate
unrealistic negative forward motions while GMN generated dynamics better approximate the withheld data.

It should be noted that in principle the ESN result can be improved, perhaps with larger reservoirs, deep
ESN, or next generation ESN (adding explicit nonlinear outputs or internal states) Zhang & Vargas (2023),
however, one is then engaged in a protracted optimization exercise with a reservoir that may be finely tuned to
the specific behavior Zhang & Cornelius (2023), and, one has still not recovered mechanistic insight derived
from observables. As noted earlier. in contrast to most machine learning approaches GMN is based solely
on observables with no latent or random variables facilitating transparency, explainability and hypothesis
testing.

Figure 6: Comparison of Drosophila FWD motion generated by a 3000 node ESN and the 67 node GMN.
Generative mode begins at index 6001. a) Observed forward motion (FWD). b) GMN generated FWD
dynamics. c) ESN generated FWD dynamics. d) Overlay comparison. The fly paused for an extended
period before proceeding with two bouts of forward movement. ESN immediately generates multiple rapid
high speed bouts and negative FWD motion not present in the real data, whereas the GMN generated time
series captures the pause behavior and the two bouts of forward movement. Cumulative absolute error (CAE)
of ESN with respect to FWD is 185.4, GMN 57.4.

3 METHODS

Generative manifold networks are conceptually and operationally simple consisting of a network of inter-
acting dynamical systems generating time series at each node of the network. GMN is data–driven with
the network discovered from an interaction/adjacency matrix, and node generation by a multi-input / single-
output (MISO) function. GMN can therefore be completely configured with the choice of interaction and
generator functions.

The network interaction function can be any comparative or discrimination function such as convergent cross
mapping, nonlinearity or correlation. Several candidate interaction functions are detailed in Appendix A.1.
In the Drosophila example we use a nonlinearity metric ρ∆(x, y) detailed in section 2.2.
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Here, nodes consist of generalized embeddings Deyle & Sugihara (2011) with a simplex state space genera-
tor Sugihara & May (1990) characterized with two parameters, the embedding dimension E and time delay
τ . However, each node can have a distinct generator with node-specific parameters. Values of E and τ can
be determined by assessing optimal simplex predictive skill of the target variable over ranges of E and τ .

Results presented here are computed with the python GMN package Biological Nonlinear Dynamics Data
Science Unit, OIST (2023) and EDM package Sugihara Lab, Scripps Institution of Oceanography (2025).
Code and data to reproduce the results are available at GMN_ESN_Examples.

3.1 ALGORITHM OVERVIEW

Given an N row by M column observation matrix ONM where M corresponds to observables and N time
series observations, an MxM interaction matrix IMM is computed. The associated GMN is implemented in
two steps:

1. Create Network
□ Starting at a desired target node selected from the M observables, add up to ND driver nodes

for the target according to the interaction/adjacency matrix while disallowing network cycles.
□ Repeat at each connected node until no more connections.

2. Generate Dynamics
□ The network state space manifold M is created from a specified time range of observations.
□ Based on the manifold, a forward prediction is made at each node. The set of predictions from

all nodes constitutes the network output at that time step, the one-step ahead manifold M̂.
□ Forward predictions are repeated for a defined number of steps. The previous time step net-

work output defines the state from which the next time step prediction will be made.

3.2 ALGORITHMS

3.2.1 CREATE NETWORK

Given an interaction matrix IMM, target observation node, node functions and number of node drivers (in-
puts) create the network graph G, see algorithm 1.

Algorithm 1 Create Network

Require: IMM,FN(),ND ▷ Interaction matrix, Node function(s), N drivers
nodes← IMM.columns ▷ List of nodes, target first
G← DiGraph() ▷ Instantiate directed graph
while nodes do

node← nodes.pop ▷ Remove node from nodes
topDrivers← IMM[node].sort[: ND] ▷ top ND drivers for node
addedDrivers← [] ▷ Empty list
for driver in topDrivers do

if G.acyclic( node ) then
G.add_node( node ) ▷ node does not add cycle, add to G
addedDrivers.append( node )

for driver in addedDrivers do
nodes.append( driver ) ▷ Add driver for upstream nodes

output G

7
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3.2.2 GENERATE

Given a GMN graph G, observation matrix ONM and training indices, generate dynamics, see algorithm 2.

Algorithm 2 Generate

Require: G,ONM, train, N ▷ GMN, observation matrix, training indices, N generated
M← E(ONM, train) ▷ Manifold library from observations
M̂← ∅ ▷ Generated Manifold, init empty
for t in 1:N do ▷ For all time steps

nodeOut← [] ▷ Array for node outputs
for node in G.nodes.TopologicalSorted do

nodeOut[node]← G[node].Generate(M,M̂) ▷ Generate
M̂[t+ 1]← nodeOut ▷ Next time step state for next generation

output M̂

4 DISCUSSION

Complex systems often express a radical reduction of free parameters/dimensions in functional net-
works/manifolds. Generative manifold networks capture this through a network of interacting manifolds
that assess information flow to a target observable under conditions of interest such as causality, mutual
information or nonlinearity, while each manifold accommodates multivariate, multiscale dynamics through
generalized embedding. Manifold generators can be any suitable multivariate function capturing multiscale
dynamics. If the generators are data–driven the architecture provides an observable, explainable, testable
representation without latent or random variables. It should also be noted that at each generated time step
not only are values produced for the target variable, but for each node in the network providing holistic
generation of all observables.

To corroborate multiscale dynamics in GMN we note that GMN without multiscale temporal information
fails to reproduce the complete dynamics of forward motion observed in fly behavior with a long pause. In
this case inclusion of time delays is essential implying that critical information is either not observed in the
recordings or that additional timescale should be included to capture properties of the system. We also infer
network structure and manifold interactions are required for complete dynamical representation, a single
manifold fails to exhibit the observed behavioral pause.

4.1 GENERALIZED APPLICATION & SCALABILITY

The GMN architecture is data–driven and should be applicable to any multivariate observed system. In
addition to the work reported here GMN has been applied to electrophysical neural recording of rats, neural
dynamics from whole brain calcium imaging of larval zebrafish, fMRI of human brain activity experiencing
a virtual reality simulation, and Antarctic sea ice dynamics. Since GMN generates values for all observables
in the network it can function as a comprehensive simulator of every variable/observable of the system.

Regarding scalability we note GMN computational load scales linearly with the number of nodes and node
dimension, having been successfully applied to neural data with 127,556 variables. Additionally, GMN has
the option to use the Kokkos based kEDM backend for numerical computations enabling GPU accelerated
computations.

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

4.2 ARE GMN UNIVERSAL?

The Johnson-Lindenstrauss lemma ensures that random embeddings of sufficiently high dimension can lin-
earize any function, the basis of Koopmanism and Reservoir Computing Budišić et al. (2012). Indeed, echo
state networks can be universal approximators and Koopman operator approximators Grigoryeva & Ortega
(2018); Gulina & Mauroy (2021). Since a generalized embedding as used in GMN can be an arbitrarily
high–dimensional random embedding, with sufficient dimension or network size GMN can by induction
represent arbitrarily complex systems.

With demonstration that GMN operate on par with ESN in generation of short term synchronized chaotic
dynamics, and can completely represent complex dynamics, we hypothesize that GMNs might also be uni-
versal approximators with a topological constraint. If borne out, this could be significant as GMN are entirely
observable and explainable.

With repsect to the manifold hypothesis we are motivated to seek low–dimensional network and manifold
expressions: Can one ensure a low dimensional network to represent a system of arbitrary complexity can
be found? This question is currently open but empirical evidence of the manifold hypothesis as discussed in
the introduction indicates it can.

4.3 FUTURE AVENUES

The current GMN implementation generates manifold values based on a static manifold M of a training set.
Generated values at each time step are fed back as the starting state for the next generated value, however the
prediction is found within the static manifold M. We expect GMN can be extended to allow online learning
where the manifold M is updated with new states or rules for dynamic, continual learning.

Complex system regulation via cybernetics is a central feature of persistent and homeostatic systems. Work
is underway to adapt GMN with external feedback control to realize generalized model process control for
complex systems.

Leveraging the significant dimensional reduction and transparent, explainable basis of GMN, it should find
broad applicability as a surrogate model in coupled/hybrid model applications where surrogate (embedded)
models of complex dynamics replace computationally intensive numerical model components Pestourie et al.
(2023).
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A APPENDIX

A.1 GMN INTERACTION AND NODE FUNCTIONS

Table 1 lists candidate interaction functions to discover the manifold network.

Table 1: GMN Network interaction functions

Purpose Functions

Nonlinearity ρ∆Pao et al. (2021), MINLSmith (2015), S-map Sugihara (1994)
Shared information Simplex cross map Sugihara & May (1990), Mutual information (MI)
Shared dynamics Convergent cross mapping (CCM) Sugihara et al. (2012)
Separable dynamics CCM with minimum MI
Separability Clustering, PCA
Linear dependence Correlation

Table 2 lists candidate generator functions currently available in the gmn package.

Table 2: GMN Node generator functions

Function Reference

Simplex pyEDM Simplex
S-map pyEDM SMap
k-nearest neighbors sklearn neighbors.KNeighborsRegressor
Support Vector Regression sklearn.svm SVR
Linear sklearn.linear_model LinearRegression

A.2 RESERVOIR COMPUTERS

Reservoir computing (RC) is a vibrant field with recent reviews provided by Zhang & Vargas (2023); Yan
et al. (2024). Recognition of the echo state property Jaeger & Haas (2004) gave rise to echo state networks
(ESN) which were celebrated for their ability to accurately generate short term chaotic dynamics Pathak
et al. (2017); Lu et al. (2018) as well as generating long term dynamics consistent with the underlying
manifold. The reservoir represents a high–dimensional random embedding and as such there is an affinity
to Koopman operators. A central tenant of Koopmanism is that within an infinite dimensional space a linear
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approximation to any nonlinear dynamic may be found, and RC have been shown to be Koopman operator
approximators Gulina & Mauroy (2021).

However, as demonstrated by Pathak et al. (2017) the output is highly sensitive to the reservoir structure and
parameters. Thus one trades ease of construction without reservoir training with optimization of reservoir
structure and parameters. Nonetheless, the ease with which an ESN can be configured and trained (con-
ventionally, only the output layer is trained) coupled with recognition that they are universal approximators
Grigoryeva & Ortega (2018) has fueled their application.

Recent developments focus on expanding the capability and information content of the trainable output
layer to better represent nonlinear dynamics Zhang & Cornelius (2023); Ohkubo & Inubushi (2024) or
reduce reservoir dimensionality Duan et al. (2023). While these approaches are demonstrated to improve
RC performance under specific conditions, conceptually one can question why a universal approximator
needs nonlinear output modulation or storage of dynamical information in the output layer. This is likely to
introduce fragility and it is perhaps better to represent dynamics in the reservoir. Indeed, it is recognized that
RC require substantial warmup (training) to capture attractor dynamics, and even though next generation
reservoir computers (NGRC) address this by adding output nonlinearites, they are critically sensitive to the
choice of readout nonlinearity Zhang & Cornelius (2023).
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