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Abstract

Polynomial Neural Networks (PNNs) possess a rich algebraic and geometric struc-
ture. However, their identifiability—a key property for ensuring interpretability—
remains poorly understood. In this work, we present a comprehensive analysis
of the identifiability of deep PNNs, including architectures with and without bias
terms. Our results reveal an intricate interplay between activation degrees and layer
widths in achieving identifiability. As special cases, we show that architectures
with non-increasing layer widths are generically identifiable under mild conditions,
while encoder-decoder networks are identifiable when the decoder widths do not
grow too rapidly compared to the activation degrees. Our proofs are constructive
and center on a connection between deep PNNs and low-rank tensor decomposi-
tions, and Kruskal-type uniqueness theorems. We also settle an open conjecture on
the dimension of PNN’s neurovarieties, and provide new bounds on the activation
degrees required for it to reach the expected dimension.

1 Introduction

Neural network architectures which use polynomials as activation functions—polynomial neural
networks (PNN)—have emerged as architectures that combine competitive experimental performance
(capturing high-order interactions between input features) while allowing a fine grained theoretical
analysis. On the one hand, PNNs have been employed in many problems in computer vision [1–3],
image representation [4], physics [5] and finance [6], to name a few. On the other hand, the geometry
of function spaces associated with PNNs, called neuromanifolds, can be analyzed using tools from
algebraic geometry. Properties of such spaces, such as their dimension, shed light on the impact
of a PNN architecture (layer widths and activation degrees) on the expressivity of feedforward,
convolutional and self-attention PNN architectures [7–11]. They also determine the landscape of
their loss function and the dynamics of their training process [7, 12, 13].

Moreover, PNNs are also closely linked to low-rank tensor decompositions [14–18], which play a
fundamental role in the study of latent variable models due to their identifiability properties [19]. In
fact, single-output 2-layer PNNs are equivalent to low-rank symmetric tensors [7]. Identifiability—
whether the parameters and, consequently, the hidden representations of a NN can be determined
from its response up to some equivalence class of trivial ambiguities such as permutations of its
neurons—is a key question in NN theory [20–32]. Identifiability is critical to ensure interpretability
in representation learning [33–35], to provably obtain disentangled representations [36], and in
the study of causal models [37]. It is also critical to understand how the architecture affects the
inference process and to support manipulation or “stitching” of pretrained models and representations
[35, 38, 39]. Moreover, it has important links to learning and optimization of PNNs [40, 9, 13].
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Identifiability of deep PNNs is intimately linked to the dimension of their so-called neurovarieties:
when this dimension reaches the effective parameter count, the number of possible parametrizations
is finite, which means the model is finitely identifiable and the neurovariety is said to be non-defective.
In addition, many PNN architectures admit only a single parametrization (i.e., they are globally
identifiable).This has been investigated for specific types of self-attention [9] and convolutional [8]
layers, and feedforward PNNs without bias [11]. However, current results for feedforward networks
only show that finite identifiability holds for very high activation degrees, or for networks with the
same widths in every layer [11]. A standing conjecture is that this holds for any PNN with degrees at
least quadratic and non-increasing layer widths [11], which parallels identifiability results of ReLU
networks [29]. However, a general theory of identifiability of deep PNNs is still missing.

1.1 Our contribution

We provide a comprehensive analysis of the identifiability of deep PNNs considering monomial
activation functions. We prove that an L-layer PNN is finitely identifiable if every 2-layer block
composed by a pair of two successive layers is finitely identifiable for some subset of their inputs.
This surprising result tightly links the identifiability of shallow and deep polynomial networks, which
is a key challenge in the general theory of NNs. Moreover, our results reveal an intricate interplay
between activation degrees and layer widths in achieving identifiability.

As special cases, we show that architectures with non-increasing layer widths (i.e., pyramidal nets)
are generically identifiable, while encoder-decoder (bottleneck) networks are identifiable when the
decoder widths do not grow too rapidly compared to the activation degrees. We also show that the
minimal activation degrees required to render a PNN identifiable (which is equivalent to its activation
thresholds) is only linear in the layer widths, compared to the quadratic bound in [11, Theorem 18].
These results not only settle but generalize conjectures stated in [11]. Moreover, we also address the
case of PNNs with biases (which was overlooked in previous theoretical studies) by leveraging a
homogenization procedure.

Our proofs are constructive and are based on a connection between deep PNNs and partially symmetric
canonical polyadic tensor decompositions (CPD). This allows us to leverage Kruskal-type uniqueness
theorems for tensors to obtain identifiability results for 2-layer networks, which serve as the building
block in the proof of the finite identifiability of deep nets, which is performed by induction. Our
results also shed light on the geometry of the neurovarieties, as they lead to conditions under which
its dimension reaches the expected (maximum) value.

1.2 Related works

Polynomial NNs: Several works studied PNNs from the lens of algebraic geometry using their asso-
ciated neuromanifolds and neurovarieties [7] (in the emerging field of neuroalgebraic geometry [41])
and their close connection to tensor decompositions. Kileel et al. [7] studied the expressivity or feed-
forward PNNs in terms of the dimension of their neurovarieties. An analysis of the neuromanifolds
for several architectures was presented in [10]. Conditions under which training losses do not exhibit
bad local minima or spurious valleys were also investigated [13, 12, 42]. The links between training
2-layer PNNs and low-rank tensor approximation [13] as well as the biases of gradient descent [43]
have been established.

Recent work computed the dimensions of neuromanifolds associated with special types of self-
attention [9] and convolutional [8] architectures, and also include identifiability results. For feed-
forward PNNs, finite identifiability was demonstrated for networks with the same widths in every
layer [11], while stronger results are available for the 2-layer case with more general polynomial
activations [44]. Finite identifiability also holds when the activation degrees are larger than a so-called
activation degree threshold [11]. Recent work studied the singularities of PNNs with activations
consisting of the sum of monomials with very high activation degrees [45]. PNNs are also linked to
factorization machines [46]; this led to the development of efficient tensor-based learning algorithms
[47, 48]. Note that other types of non-monomial polynomial-type activations [49, 50, 5, 51] have
shown excellent performance; however, the geometry of these models is not well known.

NN identifiability: Many studies focused on the identifiability of 2-layer NNs with tanh, odd, and
ReLU activation functions [20–23]. Moreover, algorithms to learn 2-layer NNs with unique parameter
recovery guarantees have been proposed (see, e.g., [52, 53]), however, their extension to NNs with 3
or more layers is challenging and currently uses heuristics [54]. Identifiability of deep NNs under
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weak genericity assumptions was first studied in the pioneering work of Fefferman [24] for the case
of the tanh activation function through the study of its singularities. Recent work extended this result
to more general sigmoidal activations [25, 26]. Various works focused on deep ReLU nets, which are
piecewise linear [28]; they have been shown to be generically identifiable if the number of neurons
per layer is non-increasing [29]. Recent work studied the local identifiability of ReLU nets [30–32].
Identifiability has also been studied for latent variable/causal modeling, leveraging different types of
assumptions (e.g., sparsity, statistical independence, etc.) [55–60]. Note that although some of these
works tackle deep NNs, their proof techniques are completely different from our approach and do not
apply to the case of polynomial activation functions.

Tensors and NNs: Low-rank tensor decompositions had widespread practical impact in the com-
pression of NN weights [61–65]. Moreover, their properties also played a key role in the theory of
NNs [18]. This includes the study of the expressivity of convolutional [66] and recurrent [67, 68]
NNs, and the sample complexity of reinforcement learning parametrized by low-rank transition and
reward tensors [69, 70]. The decomposability of low-rank symmetric tensors was also paramount in
establishing conditions under which 2-layer NNs can (or cannot [71]) be learned in polynomial time
and in the development of algorithms with identifiability guarantees [52, 72, 73]. It was also used to
study identifiability of some deep linear networks [74]. However, the use of tensor decompositions
in the studying the identifiability of deep nonlinear networks has not yet been investigated.

2 Setup and background

2.1 Polynomial neural networks: with and without bias

Polynomial neural networks are functions Rd0 → RdL represented as feedforward networks with
bias terms and activation functions of the form ρr(·) = (·)r. Our results hold for both the real and
complex valued case (F = R,C), thus, and we prefer to keep the real notation for simplicity. Note
that we allow the activation functions to have a different degree rℓ for each layer.
Definition 1 (PNN). A polynomial neural network (PNN) with biases and architecture (d =
(d0, d1, . . . , dL), r = (r1, . . . , rL−1)) is a map Rd0 → RdL given by a feedforward neural network

PNNd,r[θ] = PNNr[θ] := fL ◦ ρrL−1
◦ fL−1 ◦ ρrL−2

◦ · · · ◦ ρr1 ◦ f1 , (1)

where fi(x) = W ix + bi are affine maps, with W i ∈ Rdi×di−1 being the weight matrices and
bi ∈ Rdi the biases, and the activation functions ρr : Rd → Rd, defined as ρr(z) := (zr1 , . . . , z

r
d)

are monomial. The parameters θ are given by the entries of the weights W i and biases bi, i.e.,

θ = (w, b), w = (W 1,W 2, . . . ,WL), b = (b1, b2, . . . , bL). (2)

The vector of degrees r is called the activation degree of PNNr[θ] (we often omit the subscript d if it
is clear from the context).

PNNs are algebraic maps and are polynomial vectors, where the total degree is rtotal = r1 · · · rL−1,
that is, they belong to the polynomial space (Pd,rtotal)

×dL , where Pd,r denotes the space of d-
variate polynomials of degree ≤ r. Most previous works analyzed the simpler case of PNNs without
bias, which we refer to as homogeneous. Due to its importance, we consider it explicitly.
Definition 2 (hPNN). A PNN is said to be a homogenous PNN (hPNN) when it has no biases (bℓ = 0
for all ℓ = 1, . . . , L), and is denoted as

hPNNd,r[w] = hPNNr[w] := WL ◦ ρrL−1
◦WL−1 ◦ ρrL−2

◦ · · · ◦ ρr1 ◦W 1. (3)

Its parameter set is given by w = (W 1,W 2, . . . ,WL).

It is well known that such PNNs are in fact homogeneous polynomial vectors and belong to the
polynomial space (Hd0,rtotal)

×dL , where Hd,r ⊂Pd,r denotes the space of homogeneous d-variate
polynomials of degree r. hPNNs are also naturally linked to tensors and tensor decompositions,
whose properties can be used in their theoretical analysis.
Example 3 (Running example). Consider an hPNN with L = 2, r = (2) and d = (3, 2, 2). In such
a case the parameter matrices are given as

W 2 =

[
b11 b12
b21 b22

]
, W 1 =

[
a11 a12 a13
a21 a22 a23

]
,
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and the hPNN p = hPNNr[w] is a vector polynomial that admits the expression

p(x) = W 2ρ2(W 1x) =

[
b11
b21

]
(a11x1 + a12x2 + a13x3)

2 +

[
b12
b22

]
(a21x1 + a22x2 + a23x3)

2.

the only monomials that can appear are of the form xi1x
j
2x
k
3 with i+ j + k = 2 thus p is a vector of

degree-2 homogeneous polynomials in 3 variables (in our notation, p ∈ (H3,2)
2).

2.2 Equivalent PNN representations

It is known that the PNNs admit equivalent representations (i.e., several parameters θ leading to
the same function). Indeed, for each hidden layer we can (a) permute the hidden neurons, and
(b) rescale the input and output to each activation function since for any a ̸= 0, (at)r = artr.
These transformations lead to different sets of parameters that leave the PNN unchanged. We can
characterize all such equivalent representations in the following lemma (provided in [7] for the case
without biases).
Lemma 4. Let PNNd,r[θ] be a PNN with θ as in (2). Let also Dℓ ∈ Rdℓ×dℓ be any invertible
diagonal matrices and P ℓ ∈ Zdℓ×dℓ (ℓ = 1, . . . , L − 1) be permutation matrices, and define the
transformed parameters as

W ′
ℓ ← P ℓDℓW ℓD

−rℓ−1

ℓ−1 P T
ℓ−1 , b′ℓ ← P ℓDℓbℓ ,

with P 0 = D0 = I and PL = DL = I by convention. Then the modified parameters W ′
ℓ, b

′
ℓ

define exactly the same network, i.e. PNNd,r[θ] = PNNd,r[θ
′] for the parameter vector

θ′ = ((W ′
1,W

′
2, . . . ,W

′
L), (b

′
1, b

′
2, . . . , b

′
L)).

If θ and θ′ are linked with such a transformation, they are called equivalent (denoted θ ∼ θ′).
Example 5 (Example 3, continued). In Example 3 we can take any α, β ̸= 0 to get

hPNNd,r[w] =

[
α−2b11
α−2b21

]
(αa11x1+αa12x2+αa13x3)

2+

[
β−2b12
β−2b22

]
(βa21x1+βa22x2+βa23x3)

2.

which correspond to rescaling rows of W 1 and corresponding columns of W 2. If we additionally
permute them, we get W ′

1 = PDW 1,W
′
2 = W 2D

−2P T with D =
[
α 0
0 β

]
and P = [ 0 1

1 0 ].

This characterization of equivalent representations allows us to define when a PNN is unique.
Definition 6 (Unique and finite-to-one representation). The PNN p = PNNd,r[θ] (resp. hPNN
p = hPNNd,r[w]) with parameters θ (resp. w) is said have a unique representation if every other
representation satisfying p = PNNd,r[θ

′] (resp. p = hPNNd,r[w
′]) is given by an equivalent set of

parameters, i.e., θ′ ∼ θ (resp. w′ ∼ w) in the sense of Lemma 4 (i.e., they can be obtained from the
permutations and elementwise scalings in Lemma 4).

Similarly, a PNN p = PNNd,r[θ] (resp. hPNN p = hPNNd,r[w]) is called finite-to-one if it admits
only finitely many non-equivalent representations, that is, the set {θ′ : PNNd,r[θ

′] = p} (resp.
{w′ : hPNNd,r[w

′] = p}) contains finitely many non-equivalent parameters.
Example 7 (Example 5, continued). Thanks to links with tensor decompositions and their uniqueness,
it is known that the hPNN in Example 3 has unique representation if W 2 is invertible and W 1 full
row rank (rank 2), see Proposition 35 in Section 4.2.

2.3 Identifiability and link to neurovarieties

An immediate question is which PNN/hPNN architectures are expected to admit only a single (or
finitely many) non-equivalent representations? This question can be formalized using the notions of
global and finite identifiability, which considers a general set of parameters.
Definition 8 (Global and finite identifiability). The PNN (resp. hPNN) with architecture (d, r)
is said to be globally identifiable if for a general choice of θ = (w, b) ∈ R

∑
dℓ(dℓ−1+1), (resp.

w ∈ R
∑
dℓdℓ−1) (i.e., for all choices of parameters except for a set of Lebesgue measure zero), the

network PNNd,r[θ] (resp. hPNNd,r[w]) has a unique representation.

Similarly, the PNN (resp. hPNN) with architecture (d, r) is said to be finitely identifiable if for a
general choice of θ, (resp. w) the network PNNd,r[θ] (resp. hPNNd,r[w]) is finite-to-one (i.e., it
admits only finitely many non-equivalent representations).
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In the following, we use the term “identifiable” to refer to finite identifiability unless stated otherwise.
Note also that the notion of finite identifiability is much stronger than the related notion of local
identifiability (i.e., a model being identifiable only in a neighborhood of a parameterization).
Example 9 (Example 7, continued). From Example 7, we see that the hPNN architecture with
d = (3, 2, 2), r = (2) is identifiable due to the fact that generic matrices W 1 and W 2 are full rank.

Note that Definition 8 excludes a set of parameters of Lebesgue measure zero. Thus, for an identifiable
architecture such as the one mentioned in Example 9, there exists rare sets of pathological parameters
for which the hPNN is non-unique (e.g., weight matrices containing collinear rows).

With some abuse of notation, let hPNNd,r[·] be the map taking w to hPNNd,r[w]. Then the image
of hPNNd,r[·] is called a neuromanifold, and the neurovariety Vd,r is defined as its closure in the
Zariski topology3. The study of neurovarieties and their properties is a topic of recent interest
[7, 41, 11, 10]. More details are given in Appendix A. An important property for our case is the link
between identifiability of an hPNN, the dimension of its neurovariety, and the rank of its Jacobian.
Proposition 10. The architecture hPNNd,r[·] is finitely identifiable if and only if the dimension
of Vd,r is equal to the effective number of parameters, i.e., dimVd,r =

∑L
ℓ=1 dℓdℓ−1 −

∑L−1
ℓ=1 dℓ.

In such case, Vd,r is said to be nondefective. Equivalently, the rank of the Jacobian of the map

hPNNd,r[·] is maximal and equal to
∑L
ℓ=1 dℓdℓ−1 −

∑L−1
ℓ=1 dℓ at a general parameter w.

3 Main results

3.1 Main results on the identifiability of deep hPNNs

Although several works have studied the identifiability of 2-layer NNs, tackling the case of deep
networks is significantly harder. However, when we consider the opposite statement, i.e., the non-
identifiability of a network, it is much easier to show such connection: in a deep network with L > 2
layers, the lack of identifiability of any 2-layer subnetwork (formed by two consecutive layers) clearly
implies that the full network is not identifiable. What our main result shows is that, surprisingly,
under mild additional conditions the converse is also true for hPNNs: if the every 2-layer subnetwork
is identifiable for some subset of their inputs, then the full network is identifiable as well. This is
formalized in the following theorem.
Theorem 11 (Localization theorem). Let ((d0, . . . , dL), (r1, . . . , rL−1)) be the hPNN format. For
ℓ = 0, . . . , L − 2 denote d̃ℓ := min{d0, . . . , dℓ}. Then the following holds true: if for all ℓ =
1, . . . , L − 1 the two-layer architecture hPNN(d̃ℓ−1,dℓ,dℓ+1),rℓ

[·] is finitely identifiable, then the
L-layer architecture hPNNd,r[·] is finitely identifiable as well.

The technical proofs are relegated to the appendices. This key result shows a strong relation between
the finite identifiability of shallow and deep hPNNs. However, as we move into the deeper layers,
the identifiability conditions required by Theorem 11 are stricter than in the shallow case, since the
number of inputs is reduced to d̃ℓ. This can lead to a requirement of larger activation degrees to
guarantee identifiability compared to the shallow case.

Theorem 11 allows us to derive identifiability conditions for hPNNs using the link between 2-layer
hPNNs and partially symmetric tensor decompositions and their generic uniqueness based on classical
Kruskal-type conditions. We use the following sufficient condition for the identifiability of shallow
networks.
Proposition 12 (Sufficient condition for identifiability of 2-layer hPNN). Let d0, d1 ≥ 2, d2 ≥ 1 be
the layer widths and r ≥ 2 such that

r ≥ 2d1 −min(d2, d1)

min(d1, d0)− 1
. (4)

Then the 2-layer hPNN with architecture ((d0, d1, d2), r) is globally identifiable.

Remark 13. If the above condition is satisfied for every 2-layer architecture ((d̃ℓ−1, dℓ, dℓ+1), rℓ),
ℓ = 1, . . . , L − 1, then Theorem 11 implies that the L-layer hPNN is finitely identifiable for the
L-layer architecture (d, r).

3i.e., the smallest algebraic variety that contains the image of the map hPNNd,r[·].

5



Remark 14. Note that for the single output case dL = 1, Equation (4) means the activation degree
in the last layer must satisfy rL−1 ≥ 3, in contrast to rℓ ≥ 2 for ℓ < L− 1.
Remark 15 (Our bounds are constructive). We note that the condition (4) for identifiability is not
the best possible (and can be further improved using much stronger results on generic uniqueness of
decompositions, see e.g., [75, Corollary 37]). However, the bound (4) is constructive, and we can use
standard polynomial-time tensor algorithms to recover the parameters of the 2-layer hPNN.

3.2 Implications for specific architectures

Proposition 12 has direct implications for the finite identifiability of several architectures of practical
interest, including pyramidal and bottleneck networks, and for the activation thresholds of hPNNs, as
shown in the following corollaries.
Corollary 16 (Pyramidal hPNNs are always identifiable). The hPNNs with architectures containing
non-increasing layer widths (except possibly the last layer), i.e., d0 ≥ d1 ≥ · · · dL−1 ≥ 2 and
dL ≥ 1, are finitely identifiable for any degrees satisfying

(i) r1, . . . , rL−1 ≥ 2 if dL ≥ 2; or (ii) r1, . . . , rL−2 ≥ 2, rL−1 ≥ 3 if dL = 1.

Note that, due to the connection between the identifiability of hPNNs and the neurovarieties presented
in Proposition 10, a direct consequence of Corollary 16 is that the neurovariety Vd,r has expected
dimension. This settles a recent conjecture presented in [11, Section 4]. This implication is explained
in detail in Appendix A.

Instead of seeking conditions on the layer widths for a fixed (or minimal) degree, a complementary
perspective is to determine what are the smallest degrees rℓ such that a given architecture d is finitely
identifiable. Following the terminology introduced in [11], we refer to those values as the activation
degree thresholds for identifiability of an hPNN. An upper bound is given in the following corollary:
Corollary 17 (Activation degree thresholds for identifiability). For fixed layer widths d =
(d0, . . . , dL) with dℓ ≥ 2, ℓ = 0, . . . , L − 1, the hPNNs with architectures (d, (r1, . . . , rL−1))
are finitely identifiable for any degrees satisfying

rℓ ≥ 2dℓ − 1 .

Note that due to Proposition 10, the result in this corollary implies that the neurovariety Vd,r has
expected dimension. This means that (2dℓ − 1) is also a universal upper bound to the so-called
activation thresholds for hPNN expressiveness introduced in [11]. The existence of such activation
degree thresholds was conjectured in [7] and recently proved in [11, Theorem 18], but the for a
quadratic in dℓ bound (the bound in Corollary 17 is linear).
Remark 18 (Admissible layer sizes). The possible layer sizes in a deep network are tightly linked with
the degree of the activation. For example, for rℓ = 2, identifiability is impossible if dℓ >

dℓ−1(dℓ−1+1)
2

(for general rℓ, a similar bound O(drℓℓ−1) follows from a link with tensor decompositions [76]).
Therefore, to allow for larger layer widths, we need to have higher-degree activations.

It is enlightening to consider the admissible layer widths when taking into account the joint effect
of layer widths and degrees. By doing this, Proposition 12 can be leveraged to yield identifiability
conditions for the case of bottleneck networks, as illustrated in the following corollary.
Corollary 19 (Identifiability of bottleneck hPNNs). Consider the “bottleneck” architecture with

d0 ≥ d1 ≥ · · · ≥ db ≤ db+1 ≤ . . . ≤ dL
and db ≥ 2. Suppose that r1, . . . , rb ≥ 2 and that the decoder part satisfies dℓ

rℓ
≤ db − 1 for

ℓ ∈ {b+ 1, . . . , L− 1}. Then the bottleneck hPNN is finitely identifiable.

This shows that encoder-decoder hPNNs architectures are identifiable under mild conditions on the
layer widths and decoder degrees, providing a polynomial networks-based counterpart to previous
studies that analyzed linear autoencoders [77, 78].

Note that the width of the bottleneck layer db constrains the entire decoder part of the architecture: the
degrees rℓ, ℓ ≥ b are constrained according to the width db. The presence of bottlenecks has also been
shown to affect the expressivity of hPNNs in [7, Theorem 19]: for db = 2d0−2 there exists a number
of layers L such that for rℓ ≥ 2 and d0 ≥ 2, the hPNN neurovariety is non-filling (i.e., its dimension
never reaches that of the ambient space) for any choice of widths d1, . . . , db−1, db+1, . . . , dL.
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3.3 PNNs with biases

The identifiability of general PNNs (with biases) can be studied via the properties of hPNNs. The
simplest idea is truncation (i.e., taking only higher-order terms of the polynomials), which eliminates
biases from PNNs. Such an approach was already taken in [44] for shallow PNNs with general
polynomial activation, and is described in Appendix D.3. We will follow a different approach based
on the well-known idea of homogenization: we transform a PNN to an equivalent hPNN with
structured parameters keeping the information about biases at the expense of increasing the layer
widths. Our key result is to show how this can be used to study the identifiability of PNNs with bias
terms. The following correspondence is well-known.
Definition 20 (Homogenization). There is a one-to-one mapping between polynomials in d variables
of degree r and homogeneous polynomials of the same degree in d + 1 variables. We denote this
mapping Pd,r → Hd+1,r by homog(·), and it acts as follows: for every polynomial p ∈ Pd,r,
p̃ = homog(p) ∈ Hd+1,r (that is p̃(x1, . . . , xd, xd+1)) is the unique homogeneous polynomial in
d+ 1 variables such that

p̃(x1, . . . , xd, 1) = p(x1, . . . , xd).

Example 21. For the polynomial p ∈P2,2 in variables (x1, x2) given by

p(x1, x2) = ax21 + bx1x2 + cx22 + ex1 + fx2 + g,

its homogenization p̃ = homog(p) ∈H3,2 in 3 variables (x1, x2, x3) is

p̃(x1, x2, x3) = ax21 + bx1x2 + cx22 + ex1x3 + fx2x3 + gx23,

and we can verify that p̃(1, x1, x2) = p(x1, x2).

Similarly, we extend homogenization to polynomial vectors, which gives the following.
Example 22. Let f(x) = W 2ρr1(W 1x+ b1) + b2, and define extended matrices as

W̃ 1 =

[
W 1 b1
0 1

]
∈ R(d1+1)×(d0+1), W̃ 2 = [W 2 b2] ∈ Rd2×(d1+1)

Then its homogenization f̃ = homog(f) is an hPNN of format (d0 + 1, d1 + 1, d2)

f̃(x̃) = W̃ 2ρr1

(
W̃ 1x̃

)
where x̃ = [x0, x1, . . . , xd0 , xd0+1]

T, so that f̃(x1, . . . , xd0 , 1) = f(x1, . . . , xd0).

The construction in Example 22 similar to the well-known idea of augmenting the network with an
artificial (constant) input. The following proposition generalizes this example to the case of multiple
layers, by “propagating” the constant input.
Proposition 23. Fix the architecture r = (r1, . . . , rL−1) and d = (d0, . . . , dL). Then a polynomial
vector p ∈ (Pd0,rtotal)

×dL admits a PNN representation p = PNNd,r[(w, b)] with (w, b) as
in (2) if and only if its homogenization p̃ = homog(p) admits an hPNN decomposition for the
same activation degrees r and extended d̃ = (d0 + 1, . . . , dL−1 + 1, dL), p̃ = hPNNd̃,r[w̃],

w̃ = (W̃ 1, . . . , W̃L), with matrices given as

W̃ ℓ =


[
W ℓ bℓ
0 1

]
∈ R(dℓ+1)×(dℓ−1+1), ℓ < L,[

WL bL
]
∈ R(dL)×(dL−1+1), ℓ = L.

That is, PNNs are in one-to-one correspondence to hPNNs with increased number of inputs and
structured weight matrices.

Uniqueness of PNNs from homogenization: An important consequence of homogenization is
that the uniqueness of the homogenized hPNN implies the uniqueness of the original PNN with bias
terms, which is a key result to support the application of our identifiability results to general PNNs.
Proposition 24. If hPNNr[w̃] from Proposition 23 is unique (resp. finite-to-one) as an hPNN
(without taking into account the structure), then the original PNN representation PNNr[(w, b)] is
unique (resp. finite-to-one).
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The proposition follows from the fact that we can always fix the permutation ambiguity for the
“artificial” input.
Remark 25. Despite the one-to-one correspondence, for generic properties (e.g., finite identifiability)
we cannot immediately apply the results from the homogeneous case, because the matrices W̃ ℓ are
structured (they form a set of measure zero inside R(dℓ+1)×(dℓ−1+1)).

However, we can prove that the identifiability of the hPNN implies the identifiability of the PNN.
Lemma 26. Let the 2-layer hPNN architecture be finitely (resp. globally) identifiable for ((d0 +
1, d1 + 1, d2), r1). Then the PNN architecture with widths (d0, d1, d2) and degree r1 is also finitely
(resp. globally) identifiable.

Using Lemma 26 and specializing the proof of Theorem 11, we obtain the following result:
Proposition 27. Let ((d0, . . . , dL), (r1, . . . , rL−1)) be the PNN format. For ℓ = 0, . . . , L − 2

denote d̃ℓ = min{d0, . . . , dℓ}. Then the following holds true: If for all ℓ = 1, . . . , L − 1 each
two-layer architecture hPNN(d̃ℓ−1+1,dℓ+1,dℓ+1),rℓ

[·] is finitely identifiable, then the L-layer PNN
with architecture (d, r) is finitely identifiable as well.

In particular, we have the following bounds for generic uniqueness.
Corollary 28. Let ((d0, . . . , dL), (r1, . . . , rL−1)) be such that dℓ ≥ 1, and rℓ ≥ 2 satisfy

rℓ ≥
2(dℓ + 1)−min(dℓ + 1, dℓ+1)

min(dℓ, d̃ℓ−1)
,

then the L-layer PNN with architecture (d, r) is finitely identifiable (and globally identifiable if
L = 2).
Remark 29. For general PNNs with bias, similar conclusions hold to the ones in the hPNN case.
In particular, for fixed layer widths dℓ ≥ 1, the activation threshold for a PNN architecture (d, r)
becomes rℓ ≥ 2dℓ + 1. Also, pyramidal PNNs are identifiable in degree 2.

A distinctive feature of PNNs with bias is that they can be identifiable even for architectures with
layers containing a single hidden neuron: for dℓ = 1 and dℓ+1 ≥ 2 and/or d̃ℓ−1 = 1, the condition
in Corollary 28 is still satisfied when rℓ ≥ 2.

4 Proofs and main tools

Our main results in Theorem 11 translates the identifiability conditions of deep hPNNs into those
of shallow hPNNs. Our results are strongly related to the decomposition of partially symmetric
tensors (we review basic facts about tensors and tensors decompositions and recall their connection
between to hPNNs in later subsections). More details are provided in the appendices, and we list key
components of the proof below.

4.1 Identifiability of deep PNNs: necessary conditions
Increasing hidden layers breaks uniqueness. The key insight is that if we add to any architecture
a neuron in any hidden layer, then the uniqueness of the hPNN is not possible, which is formalized as
following lemma (whose proof is based, in its turn, on tensor decompositions).
Lemma 30. Let p = hPNNr[w] be an hPNN of format (d0, . . . , dℓ, . . . , dL). Then for any ℓ
there exists an infinite number of representations of hPNNs p = hPNNr[w] with architecture
(d0, . . . , dℓ + 1, . . . , dL). In particular, the augmented hPNN is not unique (and is not finite-to-one).

Internal features of a unique hPNN are linearly independent. This is an easy consequence of
Lemma 30 (as linear dependence would allow for pruning neurons).
Lemma 31. For d = (d0, . . . , dL), let p = hPNNr[w] have a unique (or finite-to-one) L-layers
decomposition. Consider the output at any ℓ-th internal level ℓ < L after the activations

qℓ(x) = ρrℓ ◦W ℓ ◦ · · · ◦ ρr1 ◦W 1(x). (5)

Then the elements of qℓ(x) = [qℓ,1(x) · · · qℓ,dℓ(x)]
T are linearly independent polynomials.
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Identifiability for hPNNs and Kruskal rank. Identifiability of 2-layer hPNNs, or equivalently
uniqueness of CPD is strongly related to the concept of Kruskal rank of a matrix that we define below.
Definition 32. The Kruskal rank of a matrix A (denoted krank{A}) is the maximal number k such
that any k columns of A are linearly independent.

This is in contrast with the usual rank, which is the maximal k such that there exist k linearly
independent columns. Therefore krank{A} ≤ rank{A}. Note that krank{A} ≥ 2 means that none
of the pairs of columns of A are linearly dependent (no columns are pairwise collinear). Using the
notion of Kruskal rank, we can state a necessary condition on weight matrices for identifiability of
hPNNs, which is a generalization of the well-known necessary condition for the uniqueness of CPD
tensor decompositions (6) (i.e., shallow networks), and is a corollary of Lemma 30 and Lemma 31.
Proposition 33. As in Lemma 31, let the widths be d = (d0, . . . , dL), and p = hPNNr[w] have a
unique (or finite-to-one) L-layers decomposition. Then we have that for all ℓ = 1, . . . , L− 1

krank{W T
ℓ } ≥ 2, krank{W ℓ+1} ≥ 1,

where krank{W ℓ+1} ≥ 1 simply means that W ℓ+1 does not have zero columns.

4.2 Shallow hPNNs and tensor decompositions

An order-s tensor T ∈ Rm1×···×ms is an s-way multidimensional array (more details are provided
in Appendix B.2 and more background on tensors can be found in [14–16]). It is said to have a
d-term CPD (canonical polyadic decomposition) if it admits a decomposition into d rank-1 terms
T =

∑d
j=1 a1,j ⊗ · · · ⊗ as,j for ai,j ∈ Rmi , with ⊗ being the tensor (outer) product. The CPD is

also written compactly as T = [[A1,A2, · · · ,As]] for matrices Ai = [ai,1, · · · ,ai,d] ∈ Rmi×d. T
is said to be (partially) symmetric if it is invariant to any permutation of (a subset) of its indices [79].
Concretely, we will consider tensors T partially symmetric on dimensions i ∈ {2, . . . , s}, with CPD
that is also partially symmetric, i.e., with Ai, i ≥ 2 satisfying A2 = A3 = · · · = As. Our main
proofs strongly rely on results of [7] on the connection between hPNN and tensors decomposition in
the shallow (i.e., 2-layer) case (see also [79]).
Proposition 34. There is a one-to-one mapping between partially symmetric tensors F ∈
Rd2×d0×···×d0 and polynomial vectors f ∈ (Hd0,r)

×d2 , which can be written as

F 7→ f(x) = F (1)x⊗r,

with F (1) ∈ Rd2×dr0 the first unfolding of F . Under this mapping, the partially symmetric CPD

F = [[W 2,W
T
1 , · · · ,W

T
1 ]] (6)

is mapped to hPNN W 2ρr(W 1x). Thus, uniqueness of hPNN(d0,d1,d2),r[(W 1,W 2)] is equivalent
to uniqueness of the partially symmetric CPD of F .

Thanks to the link with the partially symmetric CPD, we prove the following Kruskal-based sufficient
condition for uniqueness (which is a counterpart of Proposition 33).
Proposition 35. Let pw(x) = W 2ρr1(W 1x) be a 2-layer hPNN with layer sizes (d0, d1, d2)

satisfying d0, d1 ≥ 2, d2 ≥ 1. Assume that r ≥ 2, krank{W 2} ≥ 1, krank{W T
1 } ≥ 2 and that:

r ≥ 2d1 − krank{W 2}
krank{W T

1 } − 1
,

then the 2-layer hPNN pw(x) is unique (or equivalently, the CPD of F in (6) is unique).
Remark 36. For 2-layer hPNNs (L = 2), when the activation degree r is high enough Proposition 33
gives both necessary and sufficient conditions for uniqueness due to Proposition 35.
Remark 37. Proposition 35 forms the basis of the proof of Proposition 12, which comes from the
fact that the Kruskal rank of a generic matrix is equal to its smallest dimension.
Remark 38. Proposition 35 is based on basic (Kruskal) uniqueness conditions [80–82]. As mentioned
in Remark 15, by using more powerful results on generic uniqueness [83, 84], we can obtain better
bounds for identifiability of 2-layer PNNs. For example, for “bottleneck” architectures (as in
Corollary 19), the results of [83, Thm 1.11-12] imply that for degrees rℓ = 2, identifiability holds for
decoder layer sizes satisfying a weaker condition dℓ ≤ (db−1)db

2 (instead of dℓrℓ ≤ db − 1).
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4.3 Proof of the main result

The proof of Theorem 11 proceeds by induction over the layers ℓ = 1, . . . , L. The key idea is based
on a procedure that allows us to prove finite identifiability of the L-th layer given the assumption that
the previous layers are identifiable. For this, we introduce a map (last layer map)

ψ[q,WL] := WLρrL−1
(q(x1, . . . , xd0)), (7)

where q is the vector polynomial of degree R = r1 · · · rL−2, representing the output of the (L−1)-th
linear layer. Then the L-layer hPNN is a composition:

hPNNr[θ,WL] = ψ[hPNN(r1,...,rL−2)[θ],WL], for θ = (W 1, . . . ,WL−1).

To obtain finite identifiability, we look at the Jacobian of the composite map. The key to this recursion
is to show that the Jacobian Jψ(q,WL) (Jacobian of ψ with respect to the input polynomial vector
and WL) is of maximal possible rank. For this, we construct a “certificate” of finite identifiability q̂

realized by hPNN(r1,...,rL−2)[θ̂], but of simpler structure which inherits identifiability of a shallow
hPNN.
Remark 39. For dL = 1, maximality of the rank for Jψ(q,WL) is closely related to nondefectivity
of the variety of sums of powers of forms, which is often proved by establishing Hilbert genericity of
an ideal generated by the elements of q (a question raised in Fröberg conjecture, see e.g., [85]).

A key limitation of our techniques is that they only allow for establishing finite identifiability for
deep PNNs. There exist recent results linking finite and global identifiability, [75, 86] but only for
additive decompositions (shallow case). We state, however, the following conjecture.
Conjecture 40. Under the assumptions of Theorem 11, the L-layer hPNN is globally identifiable.

Note that the conjecture may be valid only for global identifiability (i.e., for a generic choice of
parameters) and not for uniqueness, since it is not true that the composition of unique shallow hPNNs
yield a unique deep hPNNs, as shown by the following example.

Example 41. Consider two polynomials: p(x1, x2) =
[
(x21 + x22)

2 (x21 − x22)2
]T

. We see that this
polynomial vector admits two different representations

p(x) = Iρ2(W 2ρ2(Ix)) = W 3ρ2

(
1

2
W 2ρ2(W 2x)

)
,

with

W 2 =

[
1 1
1 −1

]
, W 3 =

[
1 0
1 −1

]
,

which are not equivalent. However, each 2-layer subnetwork is unique (see Example 7).

5 Discussion

In this paper, we presented a comprehensive analysis of the identifiability of deep feedforward
PNNs by using their connections to tensor decompositions. Our main result is the localization of
identifiability, showing that deep PNNs are finitely identifiable if every 2-layer subnetwork is also
finitely identifiable for a subset of their inputs. Our results can be also useful for compression
(pruning) neural networks as they give an indication about the architectures that are not reducible. An
important perspective is also to understand when two different identifiable PNN architectures can
represent the same function, as the identifiable representations can potentially occur for different
non-compatible formats (e.g., a PNN in format d = (2, 4, 4, 2) could be potentially pruned to two
different identifiable representations, say, d = (2, 3, 4, 2) and d = (2, 4, 3, 2)).

While our results focus on the case of monomial activations, we believe that this approach can be ex-
tended for establishing theoretical guarantees for other types of architectures and activation functions.
In fact, the monomial case constitutes as a key first step in addressing general polynomial activations
(see, e.g., [45]) which, in turn, can approximate most commonly used activations on compact sets.
Moreover, the close connection between PNNs and partially symmetric tensor decompositions (which
benefit from efficient computational algorithms based on linear algebra [87]) can also serve as support
for the development of computational algorithms based on tensor decompositions for training deep
PNNs. In fact, tensor decompositions have been combined with the method of moments to learn
small NN architectures (see, e.g., [52, 88]), extending such approaches for training deep PNNs with
finite datasets is an important direction for future work.
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A roadmap to the appendices4

The appendices of the paper contain background on tensor decompositions and neurovarieties, the
proofs of the technical results, as well as a discussion on the changes between the originally submitted
and final version of the paper. They are organized as follows:

• Appendix A presents background on neurovarieties for homogeneous PNNs. This is a crucial
part for understanding the link between finite identifiability of an hPNN, the dimension of
its neurovariety and the rank of the Jacobian of its parametrization map.

• Appendix B contains the main technical tools used in the proof the localization theorem and
follows the structure of Section 4. In particular, it presents the proofs of necessary conditions
for uniqueness (Section 4.1), background on tensor decompositions and Kruskal-based
sufficient conditions for the identifiability of 2-layer hPNNs (Section 4.2).

• Appendix C presents the proof of the localization theorem (Theorem 11) and its conse-
quences for several hPNN architectures, as well as some supporting technical results.

• Appendix D presents the proofs for the case of PNNs with biases. Appendix D.3 discusses
the idea of truncation, an alternative approach to tackle the PNNs with biases.

• Appendix E discusses necessary and sufficient conditions for the identifiability of hPNNs,
as well as changes between the originally submitted and the final version of the paper which
were done to correct a mistake in the proof of one of the main results.

A Homogeneous PNNs and neurovarieties

hPNNs are often studied through the prism of neurovarieties, using their algebraic structure. Our
results have direct implications on the expected dimension of the neurovarieties, as explained in this
appendix.

A.1 Neurovarieties and dimension

An hPNN architecture (d, r) defines a map hPNNd,r[·] from the weight tuple w = (W 1, . . . ,WL)
to a (polynomial) function space H :

hPNNd,r[·] : w 7→ hPNNd,r[w]
R
∑
ℓ dℓdℓ−1 →H .

The space H is the space of length-dL vectors of homogeneous polynomials of degree rtotal =
r1r2 . . . rL−1 in d0 variables:

H := (Hd0,rtotal)
×dL ;

thus H is a finite-dimensional vector space of dimension

N = dim(H ) = dL

(
d0 + rtotal − 1

rtotal

)
,

which follows from the fact that dim(Hd,r) =
(
d+r−1
r

)
.

The key observation is that hPNNd,r[·] is a polynomial-in-the-parameters map, which has important
implication on the space of networks with a given architecture. The image Im(hPNNd,r[·]), called a
neuromanifold, is a semi-algebraic set5. The properties of Im(hPNNd,r[·]) are tightly linked to the
properties of the neurovariety Vd,r defined as the closure of Im(hPNNd,r[·]) in the Zariski topology,
i.e., the smallest algebraic variety ( algebraic set6) containing Im(hPNNd,r[·]). The key property
is the dimension of the neurovariety7 which is equal to the dimension of the neurovariety [89, Prop.
2.8.2].

4The appendices have been reorganized and reworked for better readability.
5[89, Def. 2.1.1]: a set cut out by polynomial equations and inequalities.
6[89, Def. 2.1.4]: a set cut out by polynomial equations.
7roughly defined as the dimension of the tangent space at general point, see [89, §2.8] for more details.
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The properties of neurovarieties depend on the field (i.e., results can differ between R or C), and we
focus on the real case. However, most of the results can be translated to the complex case as well. We
mostly follow [90, Section 4], and an overview on semialgebraic sets can be also found in [91] (see
[89] for a detailed account).

The following upper bound on dimVd,r the bound was presented in [7]:

dimVd,r ≤ min

( L∑
ℓ=1

dℓdℓ−1 −
L−1∑
ℓ=1

dℓ︸ ︷︷ ︸
degrees of freedom

, dimH︸ ︷︷ ︸
output space dimension

)
. (8)

If there is an equality in the bound (8), we say that the neurovariety has expected dimension. There
are two fundamentally different cases when the expected dimension is reached.

Expressive case. If the right bound is reached, i.e., the neurovariety:

dimVd,r = dim
(
H ) = dL

(
d0 + rtotal − 1

rtotal

)
,

the hPNN is expressive, and the neurovariety Vd,r is said to be thick [7], as it fills the whole function
space H (and thus the neuromanifold is of positive Lebesgue measure). In particular, this implies
that (see [7, Proposition 5]) any homogeneous polynomial vector from H (i.e., of degree rtotal with
d0 inputs and dL outputs, with degrees fixed as r1 = r2 = · · · = rL−1) can be represented as an
hPNN with layer widths (d0, 2d1, . . . , 2dL−1, dL) and the same activation degrees.

Identifiable case. The left bound (
∑L
ℓ=1 dℓdℓ−1 −

∑L−1
ℓ=1 dℓ) follows from the presence of equiva-

lences defined in Lemma 4 (i.e., the size of the vector w minus the number of independent rescalings)
and defines the number of effective parameters of the representation (this is explained in the following
subsections). Moreover, the left bound is reached if and only if the hPNN architecture is finitely
identifiable:

Proposition 10 The architecture hPNNd,r[·] is finitely identifiable if and only if the dimension of Vd,r

is equal to the effective number of parameters, i.e., dimVd,r =
∑L
ℓ=1 dℓdℓ−1 −

∑L−1
ℓ=1 dℓ. In such

case, Vd,r is said to be nondefective. Equivalently, the rank of the Jacobian of the map hPNNd,r[·]
is maximal and equal to

∑L
ℓ=1 dℓdℓ−1 −

∑L−1
ℓ=1 dℓ at a general parameter w.

Proposition 10 is central to the proof of the main results of paper. The proof of Proposition 10 relies
on properties of fibers of polynomial maps and is reviewed in the next subsection, together with the
Jacobian of the parameterization.

A.2 Polynomial maps and fiber dimension

We recall some key facts on the polynomial maps and their images. We begin by highlighting the link
between dimensions of semialgebraic sets and the Jacobian of the polynomial maps.
Lemma A.1. Let φ : Rm → Rn be a polynomial map, and denote by Jφ(θ) the n ×m Jacobian
matrix. Let

r0 := max
θ

rank{Jφ(θ)}.

Then we have that:

1. rank{Jφ(θ)} = r0 for generic θ (i.e., for all θ ∈ Rm except a set of Lebesgue measure
zero, where the rank of the Jacobian is strictly less than r0).

2. r0 is equal to the dimension of Im(φ) and its (Zariski) closure:

r0 = dim
(
Im(φ)

)
= dim

(
Im(φ)

)
.

The proof of Lemma A.1 is given in [90, Theorem 4.7] and the preceding paragraph (in [90], the
number r0 is called generic rank of the parameterization φ). It mainly follows from semicontinuity
of the rank of a matrix.
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Remark A.2 (On genericity). Due to the algebraic structure of φ, the genericity statement in
Lemma A.1 is much stronger: in fact, the set of points θ where rank{Jφ(θ)} ≠ r0 is a semialgebraic
subset of Rm of dimension strictly less than m. The same holds for all generic statements and
definitions in the paper (such as finite identifiability, global identifiability, etc.), see the definition of
genericity in [90, Definition 4.1].
Remark A.3. The right bound for neurovariety dimension in (8) follows essentially from Lemma A.1:
indeed, in the case φ(·) = hPNNd,r[·], rank{Jφ} does not exceed the dimension of the ambient
space of φ (equal to dim(H )).

The following lemma is key for linking finite identifiability to the dimension of the neurovariety.
Lemma A.4 (Fiber dimension). Let φ : Rm → Rn be a polynomial map, so that r0 = dim(Im(φ)).
Then the dimension of its generic fiber is equal to m− r0, that is, for generic θ ∈ Rm, the preimage
φ−1(φ(θ)) is a semialgebraic set with

dimφ−1
(
φ(θ)

)
= m− r0.

Lemma A.4 is well known to specialists, but in the literature it is mostly formulated for the complex
case (see [90, Theorem 4.7]). For the real field it is a special case of [90, Theorem 4.9].

A particular case is when r0 = m, in which case Lemma A.4 implies finiteness of the fiber:
Corollary A.5. The following two statements are equivalent:

• For general θ ∈ Rm, rank{Jφ(θ)} = m;

• For general θ ∈ Rm, the fiber (i.e., the preimage φ−1(φ(θ))) consists of a finite number of
points.

Proof. The statement follows from Lemma A.4 specialized to (r0 = m) and from the fact that
0-dimensional semialgebraic sets are collections of a finite number of points.

Finally we make the following remark that is very commonly used.
Corollary A.6. If rank{Jφ(θ0)} = m for some θ0 ∈ Rm, then rank{Jφ(θ)} = m for generic θ.

Proof. This directly follows from Lemma A.1, since r0 in Lemma A.1 is equal to m.

Remark A.7. Corollary A.6 implies that finding a single point with full column rank Jacobian implies
finitieness of the generic fiber.

A.2.1 The case of neurovarieties

The first implication of Lemma A.4 is the left upper bound in (8). It is based on the following lemma
from [7], for which we provide a short proof for completeness.
Lemma A.8 ([7, Lemma 13]). For a general parameter w = (W 1, . . . ,WL), the set of equivalent
hPNN representations in Lemma 4 is semialgebraic and of dimension

∑L−1
ℓ=1 dℓ.

Proof. First, note that the set of equivalent representations is of dimension at most
∑L−1
ℓ=1 dℓ (by the

number of parameters). Consider a general w = (W 1, . . . ,WL), so that the first column of each
W ℓ, for ℓ = 1, . . . , L− 1, equal to vℓ ∈ Rdℓ , does not have zero elements. Now take any collection
of vectors ṽ1 ∈ Rd1 , . . . , ṽL−1 ∈ RdL−1 having elementwise the same signs as vℓ. Then there exist
matrices Dℓ so that the equivalent weight matrices W̃ ℓ = D̃ℓW ℓD̃

−rℓ−1

ℓ−1 have ṽℓ exactly as their
first columns. Thus the set of equivalent representations is exactly of dimension

∑L−1
ℓ=1 dℓ.

Remark A.9. The left upper bound in (8) simply follows from Lemma A.8 (as written in [7,
Lemma 13]): indeed, the dimension of the fiber of hPNNd,r[·] must be at least

∑L−1
ℓ=1 dℓ. This

implies, by Lemma A.4,

rank{Jφ(θ)} ≤
L∑
ℓ=1

dℓ−1dℓ −
L−1∑
ℓ=1

dℓ, (9)

which is exactly the right dimension bound in (8) by Lemma A.1.
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Note that Proposition 10 will exactly consider the case when the equality is reached in (9) for
generic θ. Similarly to Corollary A.6, the following corollary of Lemma A.1 implies that for the
case of neurovarieties it suffices to find a single set of parameters w where the Jacobian of the
parameterization is of maximal rank to guarantee finite identifiability of hPNN architecture. This will
be used in the proofs to give a certificate of finite idenitifiability.
Corollary A.10. If there exists a particular point θ0 such that equality is achieved in (9), then the
equality in (9) is achieved for generic θ.

Proof. Since there exists such a θ0, then the r0 defined in Lemma A.1 satisfies

r0 ≥
L∑
ℓ=1

dℓ−1dℓ −
L−1∑
ℓ=1

dℓ. (10)

But from (9), r0 must be bounded from above by the same number. Therefore the equality for r0 is
achieved in (10).

A.3 Proof of the proposition

Proof of Proposition 10. We denote φ(·) = hPNNd,r[·] for simplicity (so that m =
∑L
ℓ=1 dℓdℓ−1

and n = dimH ) and consider separately the “only if” ( ⇒ ) and “if” ( ⇐ ) parts.

⇒ Assume that for a generic w the fiber φ−1(φ(w)) consists of finite number of equivalence
classes, thus it is a finite union of non-intersecting semialgebraic subsets of dimension

∑L−1
ℓ=1 dℓ.

Therefore, by [89, Theorem 2.8.5] the whole fiber φ−1(φ(w)) has the dimension equal to
∑L−1
ℓ=1 dℓ

as well, hence dimVd,r =
∑L
ℓ=1 dℓdℓ−1 −

∑L−1
ℓ=1 dℓ.

⇐ The proof follows a similar argument as in the proof of [90, Theorem 4.9]. We consider a
(Zariski open) subset of parameters without zero values U = (R \ {0})m. It can be shown that
the preimage of the image of its complement Z := φ−1(φ(Rm \ U )) is a (semialgebraic) set of
measure zero. Therefore for the set U ′ := U \Z the preimage of the image is contained in U :

φ−1(φ(U ′)) ⊂ U .

Note that any w ∈ U can be brought (by diagonal scaling and permutation) to an equivalent form:

W ℓ =

[
1 ··· 1

W ℓ

]
, W ℓ ∈ R(dℓ−1)×dℓ−1 (11)

for all ℓ = 2, . . . , L where the reduced W ℓ parameterize the classes of equivalent parameters in U
up to permutation. Now denote w = (W 1,W 2, . . . ,WL) and define w(w) = (W 1, . . . ,WL)
with W ℓ as in (11). Consider the following map

ψ : w 7→ hPNNd,r[w(w)] .

Then if the generic fiber of ψ is finite, this will imply that on U ′, the fiber of the map φ contains
finitely many equivalence classes. For this, note that the Jacobian of ψ is just a submatrix of the
Jacobian of φ with exactly m−

∑L−1
ℓ=1 dℓ columns. We will show that it is full rank at a generic point

w.

Consider the following map

ξ : (W 1,W 2, . . . ,WL,D1, . . . ,D2) 7→ (W 1, W̃ 2, . . . , W̃L)

defined as

W̃ ℓ = Dℓ

[
1 ··· 1

W ℓ

]
D

−rℓ−1

ℓ

for ℓ = 2, . . . , L (with the convention that DL = IdL .

Consider a particular w0 constructed as above (by normalization of a w ∈ U ). Then for a neighbor-
hood U of w0 and a neighbourhood V of (Id1 , . . . , IdL−1

), the map ξ is a diffeomorphism from
U × V to an open neigbourhood of the corresponding w0 = w(w0).
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Consider the composition φ ◦ ξ. Then at the point (W 1,W 2, . . . ,WL, Id1 , . . . , IdL−1
), we have

that (i) the derivatives with respect to Dℓ at identity matrices are zero and (ii) the Jacobian of
φ ◦ ξ with respect to w coincides with the Jacobian of ψ, hence it must have full column rank
(m−

∑L−1
ℓ=1 dℓ) which is equal to the dimension of the neurovariety. Hence, the fiber of ψ is finite,

which implies finite identifiability of φ.

B Main tools for the proof

This appendix contains the main technical tools used in the proof the localization theorem. It is
organized in three subsections, following the same structure as in Section 4:

• Appendix B.1 presents the proofs of necessary conditions for uniqueness corresponding to
Section 4.1 in the main body of the paper;

• Appendix B.2 presents background on tensor decompositions and the proof of Proposition 34
from the main body of the paper, which shows the link between 2-layer hPNNs and partially
symmetric tensors;

• Appendix B.3 presents Kruskal-based sufficient conditions for the identifiability of 2-layer
hPNNs (Propositions 35 and 12 in the main paper).

B.1 Necessary conditions for uniqueness

In this subsection we prove the key lemmas stated in Section 4.1 (Lemma 30 and Lemma 31). These
results give necessary conditions for the uniqueness of an hPNN in terms of the minimality of an
unique architectures and the independence (non-redundancy) of its internal representations.

Lemma 30. Let p = hPNNr[w] be an hPNN of format (d0, . . . , dℓ, . . . , dL). Then for any ℓ
there exists an infinite number of representations of hPNNs p = hPNNr[w] with architecture
(d0, . . . , dℓ + 1, . . . , dL). In particular, the augmented hPNN is not unique (and is not finite-to-one).

Proof of Lemma 30. Let (W 0, · · · ,WL) the weight matrices associated with the representation of
format (d0, . . . , dℓ, . . . , dL) of the hPNN p = hPNNr[w]. By assumptions on the dimensions, the
two matrices W ℓ ∈ Rdℓ×dℓ−1 and W ℓ+1 ∈ Rdℓ+1×dℓ read

W ℓ+1 = [w1 · · · wdℓ ] , where, for each i, wi ∈ Rdℓ+1 ,

W ℓ = [v1 · · · vdℓ ]
T
, where, for each i, vi ∈ Rdℓ−1 .

Without loss of generality, let us assume none of the wi is a zero vector8, and set

W̃ ℓ = [0 v1 · · · vdℓ ]
T ∈ R(dℓ+1)×dℓ−1 ,

in which we add a row of zeroes to W ℓ. In this case, we can take the following family of matrices
defined for any u ∈ Rdℓ+1 :

W̃
(u)

ℓ+1 = [u w1 · · · wdℓ ] ∈ Rdℓ+1×(dℓ+1) .

Then, we have that for any choice of u and for any z,

W̃
(u)

ℓ+1ρrℓ(W̃ ℓz) = W ℓ+1ρrℓ(W ℓz) .

The matrices W̃
(0)

ℓ+1 and W̃
(u)

ℓ+1 for u ̸= 0 have a different number of zero columns and cannot be a
permutation/rescaling of each other, constituting different representations of the same hPNN p. In fact,
every choice of u′ that is not collinear to u and wi, i = 1, . . . , dℓ leads to a different non-equivalent
representation of p. Thus, we have an infinite number of non-equivalent representations

(W 0, . . . ,W ℓ−1, W̃ ℓ, W̃
(u)

ℓ+1, . . . ,WL)

of format (d0, . . . , dℓ + 1, . . . , dL) for the hPNN p = hPNNr[w].

8otherwise, we can replace a zero vector wi with a randomly chosen non-zero vector and set the corresponding
vi = 0
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Lemma 30 can be seen as a form of minimality or irreducibility of unique hPNNs, as it shows that a
unique hPNN does not admit a smaller (i.e., with a lower number of neurons) representation.

Lemma 31. For the widths d = (d0, . . . , dL), let p = hPNNr[w] be a unique L-layers decomposi-
tion. Consider the vector output at any ℓ-th internal level ℓ < L after the activations

qℓ(x) = ρrℓ ◦W ℓ ◦ · · · ◦ ρr1 ◦W 1(x).

Then the elements qℓ(x) = [qℓ,1(x) · · · qℓ,dℓ(x)]
T are linearly independent polynomials.

Proof of Lemma 31. By contradiction, suppose that the polynomials qℓ,1(x), . . . , qℓ,dℓ(x) are lin-
early dependent. Assume without loss of generality that, e.g., the last polynomial qℓ,dℓ(x) can
expressed as a linear combination of the others. Then, there exists a matrix B ∈ Rdℓ×(dℓ−1) so that

p = WL ◦ ρrL−1
◦ · · · ◦ ρrℓ+1

◦W ℓ+1B

 qℓ,1(x)
...

qℓ,dℓ−1(x)

 ,
i.e., the hPNN p admits a representation of size d = (d0, . . . , dℓ − 1, . . . , dL) with parameters
(W 1, . . . ,W ℓ+1B, . . . ,WL). Therefore, by Lemma 30 its original representation is not unique,
which is a contradiction.

Using Lemma 30 and Lemma 31, we can prove the conditions on the Kruskal ranks of weight matrices
that are necessary for uniqueness. These conditions are based on the notion of Kruskal rank which
we recall from [15].

Definition 32. The Kruskal rank of a matrix A (denoted krank{A}) is the maximal number k such
that any k columns of A are linearly independent.

Note that the following two cases of particular interest also have simple equivalent interpretations:

• krank{A} ≥ 1 is equivalent to saying that matrix A has no zero columns;

• krank{A} ≥ 2 is equivalent to saying that no pair of the columns of matrix A are collinear.

Proposition 33. As in Lemma 31, let the widths be d = (d0, . . . , dL), and p = hPNNr[w] have a
unique (or finite-to-one) L-layers decomposition. Then we have that for all ℓ = 1, . . . , L− 1

krank{W T
ℓ } ≥ 2, krank{W ℓ+1} ≥ 1,

where krank{W ℓ+1} ≥ 1 simply means that W ℓ+1 does not have zero columns.

Proof of Proposition 33. Suppose that krank{W T
ℓ } < 2. Then we have that at level ℓ, the vector

qℓ(x) of internal features defined in (5) contains linearly dependent or zero polynomials, which
violates Lemma 31.

Similarly if krank{W ℓ+1} = 0, then the neuron corresponding to the zero column can be pruned to
obtain a representation with (dℓ − 1) neurons at the ℓ-th level, which implies loss of uniqueness by
Lemma 30 and thus leads to a contradiction.

B.2 Background on tensors

In this appendix, we first present a background on tensors and the CP tensor decomposition, and
demonstrate the link between hPNNs and the partially symmetric CPD (Proposition 34 in the main
paper).

B.2.1 Basics on tensors and tensor decompositions

Notation. The order of a tensor is the number of dimensions, also known as ways or modes. Vectors
(tensors of order one) are denoted by boldface lowercase letters, e.g., a. Matrices (tensors of order
two) are denoted by boldface capital letters, e.g., A. Higher-order tensors (order three or higher) are
denoted by boldface Euler script letters, e.g., X .
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Unfolding of tensors. The p-th unfolding (also called mode-p unfolding) of a tensor of order s,
T ∈ Rm1×···×ms is the matrix T (p) of size mp × (m1m2 · · ·mp−1mp+1 · · ·ms) defined as[

T (p)
]
ip,j

= T i1,...,ip,...,is , where j = 1 +

s∑
n=1
n̸=p

(in − 1)

n−1∏
ℓ=1
ℓ ̸=p

mℓ .

We give an example of unfolding extracted from [14]. Let the frontal slices of X ∈ R3×4×2 be

X1 =

(
1 4 7 10
2 5 8 11
3 6 9 12

)
, X2 =

(
13 16 19 22
14 17 20 23
15 18 21 24

)
.

Then the three mode-n unfoldings of X are

X(1) =

(
1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

)

X(2) =

 1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24


X(3) =

(
1 2 3 4 5 6 · · · 10 11 12
13 14 15 16 17 18 · · · 22 23 24

)
Symmetric and partially symmetric tensors. A tensor of order s, T ∈ Rm1×···×ms is said to be
symmetric if m1 = · · · = ms and for every permutation σ of {1, . . . , s}:

T i1,i2,··· ,is = T iσ(1),iσ(2),...,iσ(s) .

The tensor T ∈ Rm1×···×ms is said to be partially symmetric along the modes (p + 1, . . . , s) for
p < s if mp+1 = · · · = ms and for every permutation σ of {p+ 1, . . . , s}

T i1,i2,...,ip,ip+1,··· ,is = T i1,...,ip,iσ(p+1),...,iσ(s) .

Mode products. The p-mode (matrix) product of T ∈ Rm1×m2×···×ms with a matrix A ∈ RJ×mp
is denoted by T •p A and is of size m1 × · · · ×mp−1 × J ×mp+1 × · · · ×ms. It is defined as[

T •p A
]
i1,...,ip−1,j,ip+1,...,is

=

mp∑
ip=1

T i1,...,isAj,ip .

R-term decomposition. An R-term9 canonical polyadic decomposition (CPD) of a tensor T is a
decomposition of a tensor as a sum of R rank-1 tensors [14, 15], that is

T =

R∑
i=1

a
(1)
i ⊗ · · · ⊗ a

(s)
i ,

where, for each p ∈ {1, . . . , s}, a(p)
i ∈ Rmp , and ⊗ denotes the tensor (outer) product operation.

Alternatively, we denote A(p) =
[
a
(p)
1 · · ·a

(p)
R

]
∈ Rmp×R and the corresponding CPD as

T = [[A(1),A(2), . . . ,A(s)]].

When T is partially symmetric along the modes (p + 1, . . . , s), for p < s, its CPD satisfying
A(p+1) = A(p+2) = · · · = A(s) is called partially symmetric CPD. The case of fully symmetric
tensors (i.e., tensors which are symmetric along all their dimensions) deserves special attention [79].
The symmetric CPD of a fully symmetric tensor T ∈ Rm×m×···×m is defined as

T =

R∑
i=1

ui ai ⊗ · · · ⊗ ai ,

where ui ∈ R are real-valued coefficients. With a slight abuse of notation, we represent it compactly
using the same notation as an order-(n+ 1) tensor of size 1×m× · · · ×m, as

T = [[u,A, · · · ,A]],

where u ∈ R1×m is a 1×m matrix (i.e., a row vector) containing the coefficients ui, that is, ui = ui,
i = 1, . . . , R.

9In the definition of CPD, we do not require R to be minimal (thus R is not necessarily equal to tensor rank).
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B.2.2 Link between hPNNs and partially symmetric tensors

Recall that Hd0,r denotes the space of d0-variate homogeneous polynomials of degree ≤ r. The
following proposition, originally presented in Section 4 of the main body of the paper, formalizes the
link between polynomial vectors and partially symmetric tensors.

Proposition 34. There is a one-to-one mapping between partially symmetric tensors F ∈
Rd2×d0×···×d0 and polynomial vectors f ∈ (Hd0,r)

×d2 , which can be written as10

F 7→ f(x) = F (1)x⊗r,

with F (1) ∈ Rd2×dr0 the first unfolding of F . Under this mapping, the partially symmetric CPD

F = [[W 2,W
T
1 , · · · ,W

T
1 ]]

is mapped to hPNN W 2ρr(W 1x). Thus, uniqueness of hPNN(d0,d1,d2),r[(W 1,W 2)] is equivalent
to uniqueness of the partially symmetric CPD of F .

Proof. We distinguish the two cases, d2 = 1 and d2 ≥ 2. We begin the proof by the more general
case d2 ≥ 2.

Case d2 ≥ 2. Denoting by ui ∈ Rd2 the i-th column of W 2 and vi ∈ Rd0 the i-th row of W 1, the
relationship between the 2-layer hPNN and tensor F can be written explicitly as

f(x) = W 2ρr(W 1x)

=

d1∑
i=1

ui(v
T
i x)

r

=

d1∑
i=1

ui(v
⊗r
i )Tx⊗r

= W 2

(
W T

1 ⊙ · · · ⊙W T
1

)T︸ ︷︷ ︸
=F (1)

x⊗r ,

where⊙ denotes the Khatri-Rao product. The equivalence of the last expression and the first unfolding
of the order-(r + 1) tensor F can be found in [14].

The special case d2 = 1. When d2 = 1, the columns of W 2 ∈ R1×d1 are scalars values ui ∈ R,
i = 1, . . . , d1. In this case,

(
W T

1 ⊙ · · · ⊙W T
1

)
W T

2 becomes equivalent to the vectorization
of F , which is a fully symmetric tensor of order r with factors W T

1 and coefficients [W 2]1,i,
i = 1, . . . , d1.

B.3 Kruskal-based conditions for the uniqueness and identifiability of 2-layer networks

B.3.1 Sufficient conditions for uniqueness

The direct links between 2-layer (L = 2) hPNNs and partially symmetric CPDs in Proposition 34
allows us to obtain sufficient conditions for their uniqueness by means of Kruskal-based uniqueness
results for the CPD, which we recall in the following lemma.

Lemma B.1 (Kruskal’s theorem, s-way version [82], Thm. 3). Let T = [[A(1),A(2), · · · ,A(s)]] the
R-term CPD with A(i) ∈ Rmi×R, such that

s∑
i=1

krank{A(i)} ≥ 2R+ (s− 1) . (12)

Then the CP decomposition of T is unique up to permutation and scaling ambiguities, that is, for any

alternative CPD T = [[Ã
(1)
, Ã

(2)
, · · · , Ã

(s)
]], there exist a permutation matrix Π and invertible

diagonal matrices Λ1,Λ2, . . . ,Λs such that

Ã
(i)

= A(i)ΠΛi ,

for i = 1, . . . , s.
10In the definition of f , the tensor x⊗r is viewed as a dr0 vector when multiplied by F (1).
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Now we prove Proposition 35 giving sufficient conditions for uniqueness in the case L = 2.

Proposition 35. Let pw(x) = W 2ρr1(W 1x) be a 2-layer hPNN with W 1 ∈ Rd1×d0 and W 2 ∈
Rd2×d1 and layer sizes (d0, d1, d2) satisfying d0, d1 ≥ 2, d2 ≥ 1. Assume that r ≥ 2, krank{W 2} ≥
1, krank{W T

1 } ≥ 2 and that:

r ≥ 2d1 − krank{W 2}
krank{W T

1 } − 1
,

then the 2-layer hPNN pw(x) is unique (or equivalently, the CPD of F in (6) is unique).

Proof of Proposition 35. One can apply Proposition 34 to show that the 2-layer hPNN pw(x) is in
one-to-one correspondence with the order r + 1 partially symmetric tensor

F = [[W 2,W
T
1 , · · · ,W

T
1 ]] , (13)

thus, the uniqueness of hPNNr[W 1,W 2] is equivalent to that of the CP-decomposition of F in (13).
By Lemma B.1, the d1-tem CP decomposition of T is unique provided that

krank{W 2}+ r krank{W T
1 } ≥ 2d1 + r .

By noting that krank{W T
1 } > 1 and rearranging the terms, we obtain the desired result.

Note that for the case of d0 ≥ 2 (i.e., hPNNs with at least two outputs), Proposition 35 gives
conditions that may hold for quadratic activation degrees r ≥ 2. On the other hand, for networks
with a single output (i.e., d2 = 1), it requires r ≥ 3.

B.3.2 Sufficient conditions for identifiability

Equipped with the sufficient conditions for the uniqueness of 2-layer hPNNs obtained in Proposi-
tion 35, we can now prove the generic identifiability result stated in Proposition 12.

Proposition 12. Let d0, d1 ≥ 2, d2 ≥ 1 be the layer widths and r ≥ 2 such that

r ≥ 2d1 −min(d1, d2)

min(d1, d0)− 1
.

Then the 2-layer hPNN with architecture ((d0, d1, d2), (r)) is globally identifiable.

Proof of Proposition 12. For general matrices W 1 ∈ Rd1×d0 and W 2 ∈ Rd2×d1 , we have

krank{W T
1 } =min(d0, d1) ,

krank{W 2} =min(d2, d1) .

Moreover, d0, d1 ≥ 2, d2 ≥ 1 implies that generically krank{W T
1 } ≥ 2 and krank{W 2} ≥ 1.

This along with (4) means that the assumptions in Proposition 35 are satisfied generically (for
all parameters except for a set of Lebesgue measure zero). Thus, the hPNN with architecture
((d0, d1, d2), (r)) is globally identifiable.

C Proof of the localization theorem

This appendix contains the main proofs of the localization theorem (Theorem 11) for deep hPNNs, as
well as supporting lemmas and auxiliary technical results. We also provide proofs of the corollaries
that specialize this result for several choices of architectures (e.g., pyramidal, bottleneck) and to the
activation thresholds, discussed in Section 3.2 of the main paper.

Results from the main paper: Theorem 11, Corollaries 16, 19, and 17.
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Roadmap of the proof: The proof of the localization theorem requires some setup. The main idea,
as briefly sketched in Section 4.3 of the main paper, is to construct a recursion for Jacobian of the
parameter map, and to certify that it has maximal rank (generically). This relies crucially on the
properties of the neurovarieties associated to an hPNN as explained in Appendix A, in particular
on Proposition 10 and Lemma A.4, which link the the finite identifiability of the hPNN to the rank
of its Jacobian. The proof of the main result is presented towards the end of this appendix, in
Appendix C.7, and proceeds by induction. However, it requires several technical tools which are
build in the subsections that precede it.

• Appendix C.1 starts with some preparatory results on the rank of the Jacobian of a 2-layer
hPNN, setting the base case.

• Appendix C.2 defines the so-called last layer map (i.e., the map that composes a d0-variate
polynomial with one hPNN layer) and illustrates the structure of its Jacobian by means of a
detailed example.

• Appendix C.3 presents a key proposition which establishes a certificate to show that the
Jacobian of the last layer map has maximal rank, and before proceeding to the proof,
illustrates the result with an example.

• Appendix C.4 introduces some additional notation and setup which will be used in the proof
of the key proposition.

• Appendix C.5 presents the proof of the key proposition for the special case when the number
of input variables d0 is equal to the number of variables used in the certificate (equal to the
smallest bottleneck in the network).

• Appendix C.6 gives the proof of the key proposition in the general case when the number of
input neurons d0 can be larger than the number of variables the certificate.

• Appendix C.7 contains the proof of the localization theorem.
• Finally, Appendix C.8 presents the proofs for the results concerning the implications of the

localization theorem to different hPNN architectures.

Simplifying the notation: In Appendices C.1 to C.4, we denote the number of input neurons by m,
the number of hidden neurons in the second-to-last layer by d, and the number of output neurons
as n. For two-layer networks, we denote the first- and second-layer weight matrices by V and W ,
respectively.

C.1 Preparatory lemmas - rank of Jacobian of a 2-layer PNN

Lemma C.1. Let (m, d, n) and r be such that the 2-layer hPNN with architecture ((m, d, n), r)
is finitely identifiable (resp. the partially symmetric d-term CPD is generically unique). Then for
general matrices V ,W the Jacobian of the map φ(V ,W ) = hPNNr[(V ,W )], given by

Jφ = Jφ(V ,W ) =
[
J
(V )
φ J

(W )
φ

]
,

has maximal possible rank:
rank{Jφ} = (m+ n− 1)d, (14)

and also its submatrix containing the derivatives with respect to elements of V is full column rank:

rank{J (V )
φ } = md. (15)

Proof. The first statement follows from dimension of the neurovariety (that is, (m+ n− 1)d), and
the second statement follows from the fact that the subset of pairs (V ,W ) with W given as

W =

[
1 ··· 1

W

]
, W ∈ R(n−1)×d

parameterizes an open subset of the neurovariety (i.e., due to the scaling ambiguity, almost any pair
of V and W can be reduced to such a form). As shown in the proof of Proposition 10 (specialized to
(W 1,W 2) = (V ,W )), the reduced Jacobian is full column rank:

rank{
[
J
(V )
φ J

(W )
φ

]
} = md+ (n− 1)d,
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where J (W )
φ denotes the Jacobian with respect to W . Note tnis implies that all the submatrices are

full column rank and, as therefore J (V )
φ is full column rank.

Remark C.2. The conditions in Lemma C.1 are satisfied, for example, if the Kruskal-based generic
uniqueness conditions are satisfied (see Proposition 12).

Before giving the elements of the main proof, we provide an example of explicit Jacobian computation
for the map hPNNd,r[·] which will be the guiding example for the proof of identifiability.
Example C.3 (Simplest architecture). Consider example (m, d, n) = (2, 2, 2), r = 2, and denote
the elements of V and W as

V =

[
α1 β1
α2 β2

]
, W =

[
W1,1 W1,2

W2,1 W2,2

]
.

so the hPNN map φ(V ,W ) = hPNNd,r[V ,W ] is given by

φ(V ,W ) = w1(α1x1 + β1x2)
2 +w2(α2x1 + β2x2)

2,

where w1,w2 denote the columns of the matrix W :

w1 =

[
W1,1

W2,1

]
, w2 =

[
W1,2

W2,2

]
.

The image of φ lives in the space of vector polynomials (H2,2)
×2 (of dimension 6), therefore, the

blocks of the Jacobian J (V )
φ and J (W )

φ are of sizes 6 × 4. The matrix J (V )
φ has as its columns

derivatives with respect to αj and βj , for j ∈ {1, 2} which are, respectively:
∂φ

∂αj
= 2wjx1(αjx1 + β1x2),

∂φ

∂βj
= 2wjx2(αjx1 + β1x2). (16)

Let us choose the canonical basis of (H2,2)
×2 as eix2−ℓ1 xℓ2, i ∈ {1, 2}, ℓ ∈ {0, 1, 2}, where ei are

unit vectors. Then the block J (V )
φ is represented in the matrix form as:

J (V )
φ = (2) ·



∂φ
∂α1

∂φ
∂β1

∂φ
∂α2

∂φ
∂β2

e1x
2
1 W1,1α1 0 W1,2α2 0

e1x1x2 W1,1β1 W1,1α1 W1,2β2 W1,2α2

e1x
2
2 0 W1,1β1 0 W1,2β2

e2x
2
1 W2,1α1 0 W2,2α2 0

e2x1x2 W2,1β1 W2,1α1 W2,2β2 W2,2α2

e2x
2
2 0 W2,1β1 0 W2,2β2


The block J (W )

φ contains the derivatives with respect to Wi,j , for i, j ∈ {1, 2}, which are:
∂φ

∂Wi,j
= ei(αjx1 + βjx2)

2. (17)

In the same monomial basis, the matrix can be expressed as

J (W )
φ =



∂φ
∂W1,1

∂φ
∂W2,1

∂φ
∂α2

∂φ
∂β2

e1x
2
1 α2

1 0 α2
2 0

e1x1x2 2α1β1 0 2α1β2 0
e1x

2
2 β2

1 0 β2
2 0

e2x
2
1 0 α2

1 0 α2
2

e2x1x2 0 2α1β1 0 2α1β2
e2x

2
2 0 β2

1 0 β2
2


Remark C.4. It is easy to show why (14) and (15) are satistfied for the architecture in Example C.3.
For this example, we choose particular V and W to be identity matrices, which gives us

[
J
(V )
φ J

(W )
φ

]
=


2 0 0 0 1 0 0 0
0 2 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 1

 .
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It is easy to see that the left block (matrix J (V )
φ ) has rank 4, and the total matrix has rank 6 =

(2 + 2− 1)2 . Therefore, by Corollaries A.6 and A.10, (14) and (15) are satisfied generically.

We will also need an explicit form of the Jacobian in the general case, which is a generalization of
the expression in Example C.3.
Remark C.5. Let (m, d, n), r, V and W be as in Lemma C.1. With some abuse of notation we
denote vj ∈ Rm and wj ∈ Rn

V T = [v1 · · · vd] , W = [w1 · · · wd] ,

and let z = [z1 · · · zm]
T be the input variables. Then the hPNN φ[·] = hPNNd,r[·] has the form

φ[V ,W ](z) =

d∑
j=1

wj(v
T
j z)

r. (18)

Therefore, we have that derivatives with respect to the elements of the matrix W can be expressed as

∂φ

∂Wi,j
=

∂φ

∂(wj)i
= ei(v

T
j z)

r, (19)

where ei is the i-th unit vector in Rn, and, with respect to elements of V , we have

∂φ

∂Vj,ℓ
=

∂φ

∂(vj)ℓ
= rzℓ ·wj(v

T
j z)

r−1. (20)

Note that Lemma C.1 concerns the dimensions of linear spaces spanned by the sets of polynomials in
(19)–(20). Also, (20) and (19) are generalizations of (16) and (17), respectively.

C.2 Jacobian of composition of polynomial maps

The goal of this subsection, is to exhibit the structure of the composition of polynomial NN-like maps
and their Jacobians. Consider an outer layer of an hPNN, which is denoted as

W ρr(q1, ..., qd).

In order to see what happens when we substitute variables q1, . . . , qd by d0-variate polynomials
q(x1, . . . , xd0) ∈ (Hd0,R)

×d, we introduce the following definition (which corresponds to (7)):

Definition C.6 (Last layer map). Let W ∈ Rn×d be n× d matrix r ∈ N. We define the map ψ that
transforms a vector of R-degree d0-variate polynomial as follows:

ψ : (Hd0,R)
×d × Rn×d → (Hd0,Rr)

×n

(q(x1, . . . , xd0),W ) 7→ ψ[q,W ] := W ρr(q(x1, . . . , xd0)),

and denote the Jacobian with respect to the parameters (and its blocks) as

Jψ(q,W ) =
[
J
(q)
ψ J

(W )
ψ

]
,

where J (q)
ψ has d

(
R+d0−1

R

)
columns and J (W )

ψ has nd columns.

Example C.7. Similarly to Example C.3, we take the case n = 2, d = 2, r = 2, and denote
W = [w1 w2]. Then the last layer map becomes

ψ(q1, q2) = w1q
2
1 +w2q

2
2 .

Consider a special case d0 = 2, R = 2 so that ψ maps (q1, q2) ∈ (H2,2)
×2 to a vector polynomial

in (H2,4)
×2, and let the input polynomials be parameterized as

qj(x1, x2) = q
(2,0)
j x21 + 2q

(1,1)
j x1x2 + q

(0,2)
j x22, j ∈ {1, 2},

where q(i1,i2)j , (i1, i2) ∈ {(2, 0), (1, 1), (0, 2)} are the coefficient of qj next to monomials xi11 x
i2
2 .

Then the Jacobian Jψ(q,W ) is a 10× 10 matrix11, whose blocks are described below.

11since dim(H2,4) = 5.
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The block J (q)
ψ is a 10× 6 matrix, whose columns are the 6 polynomials (similarly to (16)):

∂ψ

∂q
(i1,i2)
j

= 2wjx
i1
1 x

i2
2

(
qj(x1, x2)

)
, j ∈ {1, 2}, (i1, i2) ∈ {(2, 0), (1, 1), (0, 2)}. (21)

In the canonical basis is given as J (q)
ψ =

(2) ·



∂ψ

∂q
(2,0)
1

∂ψ

∂q
(1,1)
1

∂ψ

∂q
(0,2)
1

∂ψ

∂q
(2,0)
2

∂ψ

∂q
(1,1)
2

∂ψ

∂q
(0,2)
2

e1x
4
1 W1,1q

(2,0)
1 0 0 W1,2q

(2,0)
2 0 0

e1x
3
1x2 W1,1q

(1,1)
1 W1,1q

(2,0)
1 0 W1,2q

(1,1)
2 W1,2q

(2,0)
2 0

e1x
2
1x

2
2 W1,1q

(0,2)
1 W1,1q

(1,1)
1 W1,1q

(2,0)
1 W1,2q

(0,2)
2 W1,2q

(1,1)
2 W1,2q

(2,0)
2

e1x1x
3
2 0 W1,1q

(0,2)
1 W1,1q

(1,1)
1 0 W1,2q

(0,2)
2 W1,2q

(1,1)
2

e1x
4
2 0 0 W1,1q

(0,2)
1 0 0 W1,2q

(0,2)
2

e2x
4
1 W2,1q

(2,0)
1 0 0 W2,2q

(2,0)
2 0 0

e2x
3
1x2 W2,1q

(1,1)
1 W2,1q

(2,0)
1 0 W2,2q

(1,1)
2 W2,2q

(2,0)
2 0

e2x
2
1x

2
2 W2,1q

(0,2)
1 W2,1q

(1,1)
1 W2,1q

(2,0)
1 W2,2q

(0,2)
2 W2,2q

(1,1)
2 W2,2q

(2,0)
2

e2x1x
3
2 0 W2,1q

(0,2)
1 W2,1q

(1,1)
1 0 W2,2q

(0,2)
2 W2,2q

(1,1)
2

e2x
4
2 0 0 W2,1q

(0,2)
1 0 0 W2,2q

(0,2)
2


The second block, similarly to (17), is a 10× 4 matrix whose columns are

∂ψ

∂Wi,j
= ei

(
qj(x1, x2)

)2
, i, j ∈ {1, 2}, (22)

and has similar structure to that J (W )
φ in Example C.3 (it will be explicitly shown in the next example).

C.3 A certificate of maximal rank for the Jacobian of the last layer

The following proposition gives a condition for when the Jacobian of the last layer map has maximal
rank, based on constructing a certificate.
Proposition C.8 (Certificate of last layer map). Let m,d, n and r ≥ 2 be fixed, and the matrices
V ∈ Rd×m and W ∈ Rn×d be such that the equalities (14)–(15) are satisfied. Fix d0 ≥ m, R ≥ 2,
and consider the polynomial vector q̂(x1, . . . , xm) ∈ (Hm,R)

×d ⊆ (Hd0,R)
×d defined as

q̂(x) := V


xR1
xR2
...
xRm

 . (23)

Then we have that the evaluation of the Jacobian of the last layer map ψ (see Definition C.6) at the
point (q̂,W ) is of maximal possible rank:

rank{Jψ(q̂,W )} = d(n− 1) + d

(
d0 +R− 1

R

)
(24)

and its submatrix containing derivatives with respect to q is full column rank

rank{J (q)
ψ (q̂,W )} = d

(
d0 +R− 1

R

)
. (25)

Before proving Proposition C.8, we give an illustrative example of the Jacobian of the last layer map
evaluated at the certificate q̂.
Example C.9 (Example C.3, continued). We continue Examples C.3 and C.7. In this case, the vector
polynomial q̂ from Proposition C.8 reads

q̂(x1, x2) =

[
q̂1(x1, x2)
q̂2(x1, x2)

]
=

[
(α1x

2
1 + β1x

2
2)

(α2x
2
1 + β2x

2
2)

]
,
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i.e., using the notation of Example C.3, the coefficients of the polynomials are

(q̂
(2,0)
1 , q̂

(1,1)
1 , q̂

(0,2)
1 ) = (α1, 0, β1),

(q̂
(2,0)
2 , q̂

(1,1)
2 , q̂

(0,2)
2 ) = (α2, 0, β2).

Specializing Example C.7 (and removing factor 2 for simlicity), we get

1

2
J
(q)
ψ (q̂,W ) =



∂ψ

∂q
(2,0)
1

∂ψ

∂q
(1,1)
1

∂ψ

∂q
(0,2)
1

∂ψ

∂q
(2,0)
2

∂ψ

∂q
(1,1)
2

∂ψ

∂q
(0,2)
2

e1x
4
1 W1,1α1 0 0 W1,2α2 0 0

e1x
3
1x2 0 W1,1α1 0 0 W1,2α2 0

e1x
2
1x

2
2 W1,1β11 0 W1,1α1 W1,2β2 0 W1,2α2

e1x1x
3
2 0 W1,1β1 0 0 W1,2β2 0

e1x
4
2 0 0 W1,1β1 0 0 W1,2β2

e2x
4
1 W2,1α1 0 0 W2,2α2 0 0

e2x
3
1x2 0 W2,1α1 0 0 W2,2α2 0

e2x
2
1x

2
2 W2,1β1 0 W2,1α1 W2,2β2 0 W2,2α2

e2x1x
3
2 0 W2,1β1 0 0 W2,2β2 0

e2x
4
2 0 0 W2,1β1 0 0 W2,2β2


.

The matrix J (W )
ψ then, according to (22), becomes

J
(W )
ψ (q̂,W ) =



∂ψ
∂W1,1

∂ψ
∂W2,1

∂ψ
∂W1,2

∂ψ
∂W1,2

e1x
4
1 α2

1 0 α2
2 0

e1x
3
1x2 0 0 0 0

e1x
2
1x

2
2 2α1β1 0 2α2β2 0

e1x1x
3
2 0 0 0 0

e1x
4
2 β2

1 0 β2
2 0

e1x
4
1 0 α2

1 0 α2
2

e1x
3
1x2 0 0 0 0

e1x
2
1x

2
2 0 2α1β1 0 2α2β2

e1x1x
3
2 0 0 0 0

e1x
4
2 0 β2

1 0 β2
2


.

The crux of the proof of Proposition C.8 is the following observation. If we stack together matrices
J =

[
1
2J

(q)
ψ J

(W )
ψ

]
and permute the rows and columns as follows, we get the block-diagonal

matrix

J =



∂ψ

∂q
(2,0)
1

∂ψ

∂q
(0,2)
1

∂ψ

∂q
(2,0)
2

∂ψ

∂q
(0,2)
2

∂ψ
∂W1,1

∂ψ
∂W2,1

∂ψ
∂W1,2

∂ψ
∂W1,2

∂ψ

∂q
(1,1)
1

∂ψ

∂q
(1,1)
2

e1x
4
1

e1x
2
1x

2
2

e1x
4
2

e2x
4
1

e2x
2
1x

2
2

e2x
4
2

W1,1α1 0 W1,2α2 0 α2
1 0 α2

2 0

W1,1β1 W1,1α1 W1,2β2 W1,2α2 2α1β1 0 2α1β2 0

0 W1,1β1 0 W1,2β2 β2
1 0 β2

2 0

W2,1α1 0 W2,2α2 0 0 α2
1 0 α2

2

W2,1β1 W2,1α1 W2,2β2 W2,2α2 0 2α1β1 0 2α1β2

0 W2,1β1 0 W2,2β2 0 β2
1 0 β2

2

0

e1x
3
1x2

e1x1x
3
2

e2x
3
1x2

e2x1x
3
2

0

W1,1α1 W1,2α2

W1,1β1 W1,2β2

W2,1α1 W2,2α2

W2,1β1 W2,2β2


.

We see that the top-left block of the matrix J is nothing but the matrix[
1
2J

(V )
φ J

(W )
φ

]
,

where φ is as in Example C.3, thus it has rank 6, and its left 4 columns are linearly independent.
Moreover, its bottom-right block can be viewed as submatrix 1

2J
(V )
φ (taking first and third columns,

for instance), and therefore has full column rank 2.

Thus matrix Jψ has rank 8 = 6 + 2 and J (q)
ψ has rank 6 = 4 + 2.
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C.4 Extra notation for the proof of the proposition

In order to prove Proposition C.8 we introduce extra notation for the columns of Jψ. We first let
W = [w1 · · · wd] as in Remark C.5, so we can express

ψ[q,W ] =

d∑
j=1

wj(qj)
r.

Already this, similarly to (19) gives us
∂

∂Wi,j
ψ =

∂

∂(wj)i
ψ = ei(qj)

r,

and we denote the linear space spanned by these polynomials (i.e., the range of J (W )
ψ ) as

L(W ) = span
{ ∂

∂Wi,j
ψ
}n,d
i,j=1

= range{J (W )
ψ }.

Now we look into details of the structure of the matrix J
(q)
ψ . Let i = (i1, . . . , id0) ∈ I be a

multi-index that runs over
I = {i := (i1, . . . , id0) : i1, . . . , id0 ≥ 0 and i1 + · · ·+ id0 = R}

so that the coefficients of a polynomial q ∈Hd0,r can be numbered by the elements in I as

q(x1, . . . , xd0) =
∑
i∈I

q(i)xi11 . . . x
id0
d0
.

Then, the columns of J (q)
ψ for q(x) = [q1(x) · · · qd(x)]

T are given by the polynomials

f j,i(x) :=
∂ψ

∂q
(i)
j

(q,W ) = (rxi11 · · ·x
id0
d0

)wj(qj)
r−1, j = 1, . . . , d, i ∈ I, (26)

which are precisely generalizations of (21). We denote the spaces spanned by such polynomials as

L(q,i) := span{f j,i(x)}dj=1,

and their span (the range of J (q)
ψ ) as

L(q) = span{L(q,i)}i∈I = range{J (q)
ψ }.

Example C.10. In notation of Example C.7, I = {(2, 0), (1, 1), (0, 2)}. In this case, we have

L(q,(2,0)) = span

{
∂ψ

∂q
(2,0)
1

,
∂ψ

∂q
(2,0)
2

}
,

L(q,(1,1)) = span

{
∂ψ

∂q
(1,1)
1

,
∂ψ

∂q
(1,1)
2

}
,

L(q,(0,2)) = span

{
∂ψ

∂q
(0,2)
1

,
∂ψ

∂q
(0,2)
2

}
,

which correspond to the columns {1, 4}, {2, 5}, {3, 6}, respectively, of the matrix J (q)
ψ .

Remark C.11. Proving Proposition C.8 (i.e., proving that (24)–(25) hold) is equivalent to showing
that

dim span{L(q),L(W )} = d(n− 1) + d

(
d0 +R− 1

R

)
, (27)

dimL(q) = d

(
d0 +R− 1

R

)
, (28)

respectively.

The strategy of proving that the dimensions of these subspaces are maximal is to show that the
individual subspaces L(q,i) are orthogonal under some conditions (which is similar to bringing J
into the block-diagonal form in Example C.9).
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C.5 Proof of the proposition on certificate: case m = d0

We first prove the proposition for the case when the number of input variables d0 is equal to the
number of variables m used in the certificate.

Proof of Proposition C.8 (case m = d0). Recall that in the notation of the previous subsection we
need to calculate

dim span
(
L(W ), span{L(q,i)}i∈I

)
.

Now let us consider these subspaces for a particular choice of q = q̂ of the form (23). We have that
f j,i from (26) have the form

fj,(i1,...,im)(x1, . . . , xm) = ( · · · )︸ ︷︷ ︸
polynomial in xR1 , . . . , x

R
m

x
i1( mod R)
1 . . . xim( mod R)

m .

Therefore we get that L(q,i)⊥L(q,ℓ) unless one of the following conditions holds:

i = ℓ or {i, ℓ} ⊂ I0
with I0 := {(R, 0, . . . , 0), (0, R, 0, . . . , 0), . . . , (0, 0, . . . , R)}. For the same reasons we get

L(W )⊥L(q,i) for all i ∈ I \ I0 .

Therefore, we get

rank{Jψ} = dim span
(
L(W ), span{L(q,i)}i∈I0

)
+

∑
i∈I\I0

dim(L(q,i)).

Let us look at those dimensions separately. Denote z = [z1 · · · zm]
T, with

z1 = xR1 , . . . , zm = xRm

so that for q̂ of the form (23) it holds
q̂j = vT

j z .

Then, for i ∈ I \ I0 it is easy to see that

dim(L(q,i)) = dim span
(
{wj(q̂j)

r−1}dj=1

)
= d,

where the last equality follows from Lemma C.1 and (20).

By doing the same substitution, we obtain that

span
(
L(W ), span{L(q,i)}i∈I0

)
= span

({
ei(v

T
j z)

r
}n,d
i,j=1

,
{
wjzℓ(v

T
j z)

r−1
}d,m
j,ℓ=1

)
,

which is exactly the set of vectors in (19)–(20). Therefore, by Lemma C.1, we have

dim span
(
L(W ), {L(q,ℓ)}ℓ∈I0

)
= (n− 1)d+md, and (29)

dim span{L(q,ℓ)}ℓ∈I0
= md . (30)

Taking into account that

#(I0) = m and #(I) =
(
R+m− 1

R

)
,

this proves (27) for d0 = m. Equality (28) (for d0 = m) can be proved similarly using the fact that

rank{J (q)
ψ (q̂,W )} = dim span{L(q,ℓ)}ℓ∈I0 +

∑
i∈I\I0

dim(L(q,i))

= md+ d(#(I)−#(I0)) = d(#(I)).
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C.6 Proof of the proposition: extending to the case of more variables

Proof of Proposition C.8 (case m < d0). We denote by Im (with some abuse of notation) the multi-
indices that correspond to the monomials that depend only on x1, . . . , xm:

Im = {i ∈ I : im+1, . . . , id0 = 0}

and we define
L(q)
m := span{L(q,i)}i∈Im , Lext := span{L(q,i)}i∈I\Im .

From the first part of the proof (case m = d0), we have already proved that

dim span
(
L(q)
m ,L(W )

)
= d(n− 1) + d

(
R+m− 1

R

)
. (31)

and

dimL(q)
m = d

(
R+m− 1

R

)
. (32)

What is left to show is that adding Lext to these subspaces does not drop the rank.

Since the particular choice of q = q̂(x1, . . . , xm) depends only on the m variables, thanks to (26)
we have

fj,(i1,...,id0 )(x1, . . . , xd0) = ( · · · )︸ ︷︷ ︸
polynomial in x1, . . . , xm

x
im+1

m+1 . . . x
id0
d0
.

This immediately implies that L(q,i)⊥L(q,ℓ) if (im+1, . . . , id0) ̸= (ℓm+1, . . . , ℓd0), as well as
L(q,i)⊥L(W ) if (im+1, . . . , id0) ̸= 0. Therefore, we get

L(q) = L(q)
m ⊕ Lext and span

(
L(q),L(W )

)
= span

(
L(q)
m ,L(W )

)
⊕ Lext ,

and, consequently, we just need to show that Lext is of maximal dimension. To show this, we split
I \ Im into a direct sum according to the degrees of the last d0 −m variables:

dimLext =
∑

im+1,...,id0≥0
1≤im+1+...+id0≤R

dimL(q,(∗,im+1,...,id0 ))

where
L(q,(∗,im+1,...,id0 )) := span{L(q,(i1,...,im,im+1,...,id0 ))}(i1,...,im):ik≥0,

i1+...+id0=R

.

But then, for a fixed (im+1, . . . , id0) such that im+1 + . . .+ id0 = R0 ≤ R, the dimension of this
subspace is equal to

dimL(q,(∗,im+1,...,id0 )) = dim span{xi11 · · ·x
id0
d0

wj(q̂j)
r−1} j=1,...,d,

i1,...,im≥0
i1+...+im=R−R0

= dim span{xi11 · · ·ximm wj(q̂j)
r−1} j=1,...,d,

i1,...,im≥0
i1+...+im=R−R0

= dim span{xR0+i1
1 · · ·ximm wj(q̂j)

r−1} j=1,...,d,
i1,...,im≥0

i1+...+im=R−R0

,

but the latter set of polynomials is linearly independent because it is a subset of the basis vectors
of L(q)

m , which are linearly independent by (32). Therefore we get Lext is of maximal possible
dimension (the spanning columns are linearly independent).

C.7 Localization theorem

Theorem 11 (Localization theorem) Let ((d0, . . . , dL), (r1, . . . , rL−1)) be the hPNN format. For
ℓ = 0, . . . , L − 2 denote d̃ℓ = min{d0, . . . , dℓ}. Then the following holds true: if for all ℓ =
1, . . . , L − 1 the two-layer architecture hPNN(d̃ℓ−1,dℓ,dℓ+1),rℓ

[·] is finitely identifiable, then the
L-layer architecture hPNNd,r[·] is finitely identifiable as well.
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Proof. (Proof of Theorem 11) We prove the theorem by induction.

• Base: L = 2 The base of the induction is trivial since the case L = 2 the full hPNN
consists in a 2-layer network.

• Induction step: (L = k − 1)→ (L = k) Assume that the statement holds for L = k − 1.
Now consider the case L = k.

With some abuse of notation, let θ = (W 1, . . . ,WL−1), so that w = (θ,WL) and denote
R = r1 · · · rL−2.

Let ψ be as the one defined in Proposition C.8, but given for the last subnetwork, so that
n = dL, d = dL−1, r = rL−1, W = WL. Then we have that

p[w] := hPNN(r1,...,rL−1)[(θ,WL)] = ψ[h(θ),WL]

where h(θ) = hPNN(r1,...,rL−2)[θ].

Therefore, by the chain rule

Jp(w) =


(
J

(q)
ψ

∣∣∣
q=h(θ)

)
· Jh(θ)︸ ︷︷ ︸

=J1(w)

J
(W )
ψ

∣∣∣
q=h(θ)︸ ︷︷ ︸

=J2(θ)

 ,
Now we are going to show that the matrices have necessary rank for generic θ. For this,
note by the induction assumption, for generic θ, we have

rank{Jh(θ)} =
L−2∑
ℓ=0

dℓdℓ+1 −
L−2∑
ℓ=1

dℓ .

Now we show the ranks for other matrices. Observe that

rank{
[(

J
(q)
ψ

∣∣∣
q=h(θ)

)
J

(W )
ψ

∣∣∣
q=h(θ)

]
} ≤ dL−1

(
R+ d0 − 1

R

)
+ (dL − 1)dL−1 (33)

due to the essential ambiguities. But then if we find a particular point θ̂, where rank is
maximal for q̂ = h(θ̂), then the rank in (33) will be maximal for generic θ.

But then, let m = d̃L−1 = min{d0, . . . , dL−1} and consider the following matrices:

Ŵ 1 =

[
Im 0
0 0

]
, . . . , ŴL−2 =

[
Im 0
0 0

]
,

and
ŴL−1 = [V 0] ,

for V ∈ RdL−1×m generic. Then we get that for θ̂ = (Ŵ 1, . . . , ŴL−2)

h(θ̂) = V

x
R
1
...
xRm

 ,
so exactly as in Proposition C.8 (whose conditions are satisfied by the assumption on finite
identifiability of hPNN(d̃L−2,dL−1,dL),rL−1

[·]). Therefore, rank in (33) will be maximal for
generic (θ,WL) and also

rank{
(
J
(q)
ψ

∣∣∣
q=h(θ)

)
} = dL−1

(
R+ d0 − 1

R

)
for generic θ (i.e., the matrix is full rank).
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This leads to rank{J1(w)} = Jh(θ) for generic θ. Finally, we have that

rank{Jp(w)} = rank{J1(θ)}+ rank{ΠspanJ1(θ)⊥
J2(θ)}

≥ rank{J1(θ)}+ rank{Π
span

(
J

(q)
ψ

∣∣∣
q=h(θ)

)
⊥

J2(θ)}

=

L−2∑
ℓ=0

dℓdℓ+1 −
L−2∑
ℓ=1

dℓ + (dL − 1)dL−1

=

L−1∑
ℓ=0

dℓdℓ+1 −
L−1∑
ℓ=1

dℓ ,

where ΠU denotes the orthogonal projection onto a subspace U . On the other hand,

rank{Jpw
(w)} ≤

L−1∑
ℓ=0

dℓdℓ+1 −
L−1∑
ℓ=1

dℓ

due to presence of ambiguities (bound (8)). Hence, an equality holds and therefore the
neurovariety has expected dimension.

C.8 Implications of the localization theorem

Corollary 16 (Pyramidal hPNNs are always identifiable) The hPNNs with architectures containing
non-increasing layer widths (except possibly the last layer), i.e., d0 ≥ d1 ≥ · · · dL−1 ≥ 2 and
dL ≥ 1, are finitely identifiable for any degrees satisfying (i) r1, . . . , rL−1 ≥ 2 if dL ≥ 2; or (ii)
r1, . . . , rL−2 ≥ 2, rL−1 ≥ 3 if dL = 1.

Proof. (Proof of Corollary 16) This follows from Theorem 11 and the following facts:

• For such a choice of dℓ, d̃ℓ = dℓ for all ℓ = 0, . . . , L− 1;

• Network (dℓ−1, dℓ, dℓ+1) with dℓ−1 ≥ dℓ is identifiable (by Proposition 12) for:

– rℓ ≥ 2, in case dℓ+1 ≥ 2;
– rℓ ≥ 3, in case dℓ+1 = 1.

Corollary 17 (Activation degree thresholds for identifiability) For fixed layer widths d =
(d0, . . . , dL) with dℓ ≥ 2, ℓ = 0, . . . , L − 1, the hPNNs with architectures (d, (r1, . . . , rL−1))
are identifiable for any degrees satisfying

rℓ ≥ 2dℓ − 1 .

Proof of Corollary 17. Note that the assumptions guarantee that d̃ℓ ≥ 2. Then the Kruskal bound (in
Proposition 12) for identifiability of (d̃ℓ−1, dℓ, dℓ+1) can be bounded as

2dℓ −min(dℓ, dℓ+1)

min(dℓ, d̃ℓ−1)− 1
≤ 2dℓ − 1.

therefore, for rℓ ≥ 2dℓ − 1 the hPNN (d̃ℓ−1, dℓ, dℓ+1), rℓ is identifiable, which implies the identifia-
bility of the L-layer architecture by Theorem 11.

Corollary 19 (Identifiability of bottleneck hPNNs) Consider the “bottleneck” architecture with

d0 ≥ d1 ≥ · · · ≥ db ≤ db+1 ≤ . . . ≤ dL
and db ≥ 2. Suppose that r1, . . . , rb ≥ 2 and that the decoder part satisfies dℓ

rℓ
≤ db − 1 for

ℓ ∈ {b+ 1, . . . , L− 1}. Then the bottleneck hPNN is finitely identifiable.
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Proof of Corollary 19. This follows from Theorem 11 and the following facts:

• For layers ℓ ∈ {1, . . . , b} (the encoder part), we have d̃ℓ = dℓ and thus identifiability of
(d̃ℓ−1, dℓ, dℓ+1) holds for rℓ ≥ 2 (the same argument as in the pyramidal case).

• For layers ℓ ∈ {b+ 1, . . . , L} (the decoder part), we have d̃ℓ = db and thus identifiability
of (d̃ℓ−1, dℓ, dℓ+1) holds for

rℓ ≥
dℓ

db − 1
,

which, after rearranging, gives the desired result.

D Analyzing case of PNNs with biases

This appendix contains the proofs and supporting technical results for the identifiability results of
PNNs with bias terms presented in Section 3.3 of the main paper. We start by establishing the
relationship between PNNs and hPNNs and their uniqueness by means of homogeneization. We then
prove our main finite identifiability results showing that finite identifiability of 2-layer subnetworks
of the homogeneized PNNs is sufficient to guarantee the finite identifiability of the original PNN.

Results from the main paper: Definition 20, Propositions 23, 24, 27, Lemma 26, and Corollary 28.

D.1 The homogeneization procedure: the hPNN associated to a PNN

Our homogeneization procedure is based on the following lemma:

Definition 20. There is a one-to-one mapping between (possibly inhomogeneous) polynomials in d
variables of degree r and homogeneous polynomials of the same degree in d+1 variables. We denote
this mapping Pd,r →Hd+1,r by homog(·), and it acts as follows: for every polynomial p ∈Pd,r,
p̃ = homog(p) ∈Hd+1,r is the unique homogeneous polynomial in d+ 1 variables such that

p̃(x1, . . . , xd, 1) = p(x1, . . . , xd).

Proof of Definition 20. Let p be a possibly inhomogeneous polynomial in d variables, which reads

p(x1, . . . , xd) =
∑

α, |α|≤r
bα x

α1
1 · · ·x

αd
d ,

for α = (α1, . . . , αd). One sets

p̃(x1, . . . , xd, z) =
∑

α, |α|≤r
bαx

α1
1 · · ·x

αd
d zr−α1−···−αd

which satisfies the required properties.

Associating an hPNN to a given PNN: Now we prove that for each polynomial p admitting a PNN
representation, its associated homogeneous polynomial admits an hPNN representation. This is
formalized in the following result.

Proposition 23. Fix the architecture r = (r1, . . . , rL−1) and d = (d0, . . . , dL). Then a polynomial
vector p ∈ (Pd0,rtotal)

×dL admits a PNN representation p = PNNd,r[(w, b)] with (w, b) as
in (2) if and only if its homogenization p̃ = homog(p) admits an hPNN decomposition for the
same activation degrees r and extended d̃ = (d0 + 1, . . . , dL−1 + 1, dL), p̃ = hPNNd̃,r[w̃],

w̃ = (W̃ 1, . . . , W̃L), with matrices given as

W̃ ℓ =


[
W ℓ bℓ
0 1

]
∈ R(dℓ+1)×(dℓ−1+1), ℓ < L,[

WL bL
]
∈ R(dL)×(dL−1+1), ℓ = L.
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Proof of Proposition 23. Denote p1(x) = ρr1(W 1x + b1). Let x̃ =

[
x
z

]
∈ Rd0+1. Observe first

that

ρr1(W̃ 1x̃) =

[
p̃1(x̃)
zr1

]
.

We proceed then by induction on L ≥ 1.

The case L = 1 is trivial. Assume that L = 2. Then

W̃ 2ρr1(W̃ 1x̃) = W̃ 2

[
p̃1(x̃)
zr1

]
= W 2p̃1(x̃) + zr1b2.

Specializing at z = 1, we recover
W 2p1(x) + b2 = p(x) = p̃(x, 1) ,

hence
W̃ 2ρr1(W̃ 1x̃) = p̃(x̃).

For the induction step, assume that q̃ = hPNN(d1+1,...,dL−1+1,dL),r[(W̃ 2, . . . , W̃L)] is the homo-
geneization of q = PNN(d1,...,dL),r[((W 2, . . . ,WL), (b2, . . . , bL))]. By assumption,

p̃(x, 1) = q̃

([
p̃1(x, 1)

1

])
= q(p̃1(x, 1)) = q(p1(x)) = p(x),

which completes the proof.

Proposition 24. If hPNNr[w̃] from Proposition 23 is unique as an hPNN (without taking into account
the structure), then the original PNN representation PNNr[(w, b)] is unique.

Proof of Proposition 24. Suppose hPNNr[w̃] is unique (or finite-to-one), where w̃ is structured as
in Proposition 23. Note that any equivalent (in the sense of Lemma 4 specialized for hPNNr[w̃])
parameter vector w̃′ = (W̃

′
1, . . . , W̃

′
L) realizing the same hPNN must satisfy

W̃
′
ℓ =

{
P̃ ℓD̃ℓW̃ ℓD̃

−rℓ−1

ℓ−1 P̃
T

ℓ−1, ℓ < L,

W̃LD̃
−rL−1

L−1 P̃
T

L−1, ℓ = L.
(34)

for permutation matrices P̃ ℓ and invertible diagonal matrices D̃ℓ, with P̃ 0 = D̃0 = I . We are going
to show that bringing W̃

′
ℓ to the form

W̃
′
ℓ =


[
W ′

ℓ b′ℓ
0 1

]
, ℓ < L,[

W ′
L b′L

]
, ℓ = L.

(35)

that does not introduce extra ambiguities besides the ones for PNN (given in Lemma 4).

By Proposition 33, for ℓ = 1, . . . , L− 1 the extended matrices satisfy krank{(W̃ ℓ)
T} ≥ 2 (as well

as for any equivalent krank{(W̃
′
ℓ)

T} ≥ 2). This implies that the matrix W̃ ℓ contains only a single
row of the form [0 · · · 0α] (which is its last row). Therefore in order for W̃

′
1 to be of the form (35),

the matrices P̃ 1, D̃1 must be of the form

P̃ 1 =

[
∗ 0
0 1

]
, D̃1 =

[
∗ 0
0 1

]
.

Iterating this process for ℓ = 2, . . . , L− 1, we impose constraints of the form

P̃ ℓ =

[
∗ 0
0 1

]
, D̃ℓ =

[
∗ 0
0 1

]
.

This implies that (W ′
ℓ, b

′
ℓ) and (W ℓ, bℓ) must be linked as in Lemma 4.

Now suppose that hPNNr[w̃] is finite-to-one. Then the same reasoning applies to all alternative
(non-equivalent) parameters w̃ that are realized by a PNN, because Proposition 23 holds for every
solution. Since there are finitely many equivalence classes, the corresponding PNN representation is
also finite-to-one.
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D.2 Generic identifiability conditions for PNNs with bias terms

Lemma 26 Let the 2-layer hPNN architecture ((d0 + 1, d1 + 1, d2), (r1)) be finitely (resp. globally)
identifiable. Then the PNN architecture with widths (d0, d1, d2) and degree r1 is also finitely (resp.
globally) identifiable.

Proof of Lemma 26. By Proposition 24 we just need to show that for general (W 2, b2,W 1, b1), the
following hPNN is unique (finite-to-one)

p(x̃) = [W 2 b2] ρr1(W̃ 1x̃) (36)

with W̃ 1 given as

W̃ 1 =

[
W 1 b1
0 1

]
.

We see that W̃ 1 lies in a subspace of (d1 + 1)× (d0 + 1) matrices.

We use the following fact: by multilinearity, both uniqueness and finite-to-one properties of an hPNN
are invariant under multiplication of W̃ 1 on the right by any nonsingular (d0 + 1)× (d0 + 1) matrix
Q. We note that the image of the polynomial map

R(d0+1)×(d0+1) × Rd1×d0 × Rd0 → R(d1+1)×(d0+1)

(Q,W 1, b1) 7→ W̃ 1Q,

which is surjective, and its image is dense.

Therefore, identifiability (resp. finite identifiability) holds except some set of measure zero in
R(d1+1)×(d0+1), then it also hold for W̃ 1 constructed from almost all (W 1, b1) pairs. For example,
for finite identifiability this is explained by the fact that there is a smooth point of the hPNN
neurovariety corresponding to the parameters ([W 2 b2] , W̃ 1).

Proposition 27 Let ((d0, . . . , dL), (r1, . . . , rL−1)) be the PNN format. For ℓ = 0, . . . , L− 2 denote
d̃ℓ = min{d0, . . . , dℓ}. Then the following holds true: If for all ℓ = 1, . . . , L − 1 each two-
layer architecture hPNN(d̃ℓ−1+1,dℓ+1,dℓ+1),rℓ

[·] is finitely identifiable, then the L-layer PNN with
architecture (d, r) is finitely identifiable as well.

For the proof of the main proposition, we need the following lemma.
Lemma D.1. Global (resp. finite) identifiability of an hPNN of format ((m, d, n), r) implies (resp.
finite) identifiability of the hPNN in format ((m, d, n+ k), r) for any k > 0.

Proof. Let the parameters of the larger hPNN be such that

W 2 =

[
A
B

]
, A ∈ Rn×d, B ∈ Rk×d, W 1,

so that

hPNN(m,d,n+k),r[W 1,W 2] =

[
hPNN(m,d,n),r[W 1,A]
hPNN(m,d,k),r[W 1,B]

]
=

[
Aσr(W 1x)
Bσr(W 1x)

]
.

But then assume that hPNN(m,d,n),r[W 1,A] is finite-to-one. Then by Lemma 31 we have that the
elements of q1(x) = σr(W 1x) are linearly independent, hence the linear system

hPNN(m,d,k),r[W 1,B] = Bq1(x)

has the unique solution, equal to B. Note that for (W 1,W 2), the subset of parameters (W 1,A) is
also generic, hence global (resp. finite) identifiability for widths (m, d, n) implies global (resp. finite)
identifiability for widths (m, d, n+ k).

Proof of Proposition 27. We are going to prove that under the condition of the theorem, two hPNN
architectures for degrees r and widths

(d0 + 1, . . . , dL−1 + 1, dL) and (d0 + 1, . . . , dL−1 + 1, dL + 1)

are finitely identifiable.

We proceed by induction, similarly as in Theorem 11.
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• Base: L = 2 The base of the induction follows is trivial since it is the 2-layer network,
and from Lemma D.1 for the architecture (dℓ−1 + 1, dℓ + 1, dℓ+1 + 1).

• Induction step: (L = k − 1)→ (L = k) Assume that the statement holds for L =

k − 1. Now consider the case L = k. As in the proof of Theorem 11, we set
θ̃ = (W̃ 1, . . . , W̃L−1), so that w̃ = (θ̃, W̃L), where W̃ ℓ is as in Proposition 23, and
denote R = r1 · · · rL−2. The difference is that the parameters are now θ̃ := θ̃(θ), where

θ = (W 1, . . . ,WL−1, b1, . . . , bL−1) .

Let ψ be as the one defined in Proposition C.8, but given for the last subnetwork, so that
n = dL, d = dL−1 + 1, r = rL−1, W̃ = W̃L. Then we have that

p[θ, W̃ ] := hPNNr[w̃] = ψ[h(θ̃(θ)), W̃ ] ,

where h(θ̃) = hPNN(r1,...,rL−2)[θ̃].

Again, by the chain rule

Jp(θ, W̃ ) =


(
J

(q)
ψ

∣∣∣
q=h(θ̃(θ))

)
· Jh(θ̃(θ))︸ ︷︷ ︸

=J1(w̃)

J
(W̃ )
ψ

∣∣∣
q=h(θ̃(θ))︸ ︷︷ ︸

=J2(θ)

[J θ̃(θ)
I

]
,

where the matrix in the right hand side is full column rank. Therefore, we just need to show
that the left hand side matrix is full column rank for a particular θ̃ = θ̃(θ). But, for this,
remark that we can use almost the same construction example Proposition C.8, but choosing
slightly different matrices: θ̃

′
= (Ŵ

′
1, . . . , Ŵ

′
L−1) with

Ŵ
′
1 =

[
0 0
0 Im

]
, . . . , ŴL−2 =

[
0 0
0 Im

]
and

Ŵ
′
L−1 =

[
0 V ′] ,

where in Lemma C.1 we can choose generic V ′ structured as

V ′ =

[
W (V ′) b(V

′)

0 1

]
.

Indeed, we need this to be a smooth point (i.e., full rank Jacobian of W ρrL−1
(V ′x)), which

is full rank for generic W (V ′), b(V
′), by the same argument as in the proof of Lemma 26.

But such θ̃
′

indeed belongs to the image of θ̃(θ) as they share the needed structure, which
completes the proof.

Corollary 28. Let ((d0, . . . , dL), (r1, . . . , rL−1)) be such that dℓ ≥ 1, and rℓ ≥ 2 satisfy

rℓ ≥
2(dℓ + 1)−min(dℓ + 1, dℓ+1)

min(dℓ, d̃ℓ−1)
,

then the L-layer PNN with architecture (d, r) is finitely identifiable (and globally identifiable when
L = 2).

Proof of Corollary 28. This directly follows from combining Lemma 26, Proposition 12 and Propo-
sition 27.
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D.3 Truncation of PNNs with bias terms

In this appendix, we describe an alternative (to homogenization) approach to prove the identifiability
of the weights W ℓ of PNNd,r[(w, b)] based on truncation. The key idea is that the truncation of a
PNN is an hPNN, which allow one to leverage the uniqueness results for hPNNs. However, we note
that unlike homogeneization, truncation does not by itself guarantees the identifiability of the bias
terms bℓ.

For truncation, we use leading terms of polynomials, i.e. for p ∈Pd,r we define lt{p} ∈Hd,r the
homogeneous polynomial consisting of degree-r terms of p:
Example D.2. For a bivariate polynomial p ∈P2,2 given by

p(x1, x2) = ax21 + bx1x2 + cx22 + ex1 + fx2 + g, .

its truncation q = lt{p} ∈H2,2 becomes

q(x1, x2) = ax21 + bx1x2 + cx22 .

In fact lt{·} is an orthogonal projection Pd,r → Hd,r; we also apply lt{·} to vector polynomials
coordinate-wise. Then, PNNs with biases can be treated using the following lemma.
Lemma D.3. Let p = PNNd,r[(w, b)] be a PNN with bias terms. Then its truncation is the hPNN
with the same weight matrices

lt{p} = hPNNd,r[w].

Proof. The statement follows from the fact that lt{(q(x))r} = lt{(q(x))}r. Indeed, this implies
lt{(⟨v,x⟩+ c)r} = (⟨v,x⟩)r, which can be applied recursively to PNNd,r[(w, b)].

Example D.4. Consider a 2-layer PNN

f(x) = W 2ρr1(W 1x+ b1) + b2. (37)

Then its truncation is given by
lt{f}(x) = W 2ρr1(W 1x).

This idea is well-known and in fact was used in [44] to analyze identifiability of a 2-layer network
with arbitrary polynomial activations.
Remark D.5. Thanks to Lemma D.3, the identifiability results obtained for hPNNs can be directly
applied. Indeed, we obtain identifiability of weights, under the same assumptions as listed for the
hPNN case. However, this does not guarantee identifiability of biases, which was achieved using
homogeneization.

E Localization theorem: necessary and sufficient conditions for identifiability

This appendix has been added to the camera ready version on the request of the program committee.
It explains the changes between the original submission and the camera-ready version.

Our main technical result in Theorem 11 gives sufficient conditions for finite identifiability of deep
hPNNs based on identifiability of two-layer subnetworks. In an earlier (submitted) version of the
paper, the following results were claimed.
Claim (A, specific uniqueness). Let hPNNr[w], w = (W 1, . . . ,WL) be an L-layer hPNN with
architecture (d, r) satisfying d0, ..., dL−1 ≥ 2, dL ≥ 1 and r1, . . . , rL−1 ≥ 2. Then, hPNNr[w] is
unique according to Definition 6 if and only if for every ℓ = 1, . . . , L − 1 the 2-layer subnetwork
hPNN(rℓ)[(W ℓ,W ℓ+1)] is unique as well.

This strong claim implied another claim on identifiability of hPNN architectures, which can be seen
as a counterpart of the current Theorem 11.
Claim (B, identifiability). The L-layer hPNN with architecture (d, r) satisfying d0, . . . , dL−1 ≥ 2,
dL ≥ 1 and r1, . . . , rL ≥ 2 is identifiable according to Definition 8 if and only if for every
ℓ = 1, . . . , L− 1 the 2-layer subnetwork with architecture ((dℓ−1, dℓ, dℓ+1), (rℓ)) is identifiable as
well.
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Figure 1: (from NeurIPS poster) Necessary and sufficient conditions for identifiability of an
L-layer PNN. Blue: necessary conditions, i.e., “only if” part of claim B (identifiability of the
((dℓ−1, dℓ, dℓ+1), (rℓ)) subnetwork). Red: sufficient condition as given by Theorem 11 (identifiabil-
ity of the ((d̃ℓ−1, dℓ, dℓ+1), (rℓ)) subnetwork).

We note that the “only if” part always holds (as argued in the beginning of Section 3.1), as non-
uniqueness of any 2-layer subnetwork implies non-uniqueness of the overall network. The relation
between necessary and sufficient conditions for identifiability is illustrated in Fig. 1.

Thus, both claims (A) and (B) were in fact aiming to answer the following questions:

(A) Does uniqueness of all 2-layer subnetworks hPNN(rℓ)[(W ℓ,W ℓ+1)] imply uniqueness of
the overall network hPNN(r1,...,rL−1)[(W 1, . . . ,WL)]?

(B) Does identifiability of all ((dℓ−1, dℓ, dℓ+1), (rℓ)) 2-layer architectures imply the identifiabil-
ity of the overall architecture ((d0, . . . , dL), (r1, . . . , rL−1))?

We show below that the answer to these questions is negative, both for specific uniqueness (uniqueness
of a particular choice of parameters) and generic uniqueness (identifiability of a given architecture),
which motivated the update of the paper.

E.1 Supporting examples

Absence of specific uniqueness (counterexample to claim (A)). Consider the simplest archi-
tecture with d = (2, 2, 2), r = (2, 2), for which the conditions of Theorem 11 are verified due
to Proposition 12. Example 41 from the last section of the paper provides an example of specific
network of the format (d, r) violating claim (A). We provide below an expanded version of this
example.

Example 41 (No specific uniqueness). Consider two polynomials:

p(x1, x2) =

[
(x21 + x22)

2

(x21 − x22)2
]
.

Note that
[
x21 x22

]T
= ρ2(x1, x2), therefore this polynomial vector can be written as

p(x) = ρ2
(
W 2ρ2(x)

)
for the following choice of weight matrix:

W 2 =

[
1 1
1 −1

]
,

so that we have
p(x) = I2ρ2

(
W 2I2ρ2(x)

)
= hPNN(2,2)[(I2,W 2, I2)] ,

where I2 is the identity matrix. On the other hand, we can use the expansions

x21 + x22 =
(x1 + x2)

2 + (x1 − x2)2

2

2x1x2 =
(x1 + x2)

2 − (x1 − x2)2

2
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and the fact that
(x21 − x22) = (x21 + x22)

2 − (2x1x2)
2

to show that there exists an alternative hPNN expansion of p(x), summarized as

p(x) = W 3ρ2

(
1

2
W 2ρ2(W 2x)

)
= hPNN(2,2)[(W 2,

1

2
W 2,W 3)],

where

W 3 =

[
1 0
1 −1

]
.

We see that the two representations are not equivalent: (I2,W 2, I2) ̸∼ (W 2,
1
2W 2,W 3), as W 2

cannot be obtained from scaling and permutations of rows of I2.

On the other hand, all the matrices in the expansions (I2,W 2,W 3) are 2× 2 invertible and thus, for
example, the networks hPNN(2)[(I2,W 2)] and hPNN(2)[(W 2, I2)] have unique representations
(similarly to Example 7). More precisely, all the matrices (I2,W 2,W 3) as well as their transposes
have their rank and Kruskal rank both equal to 2, and therefore the conditions of Lemma B.1 are
satisfied.

Absense of generic uniqueness (counterexample to claim (B)). Example 41 is not just an isolated
example that can be circumvented by looking at a generic parameter set, as shown in the following
example.

Example E.1 (No generic identifiability without further assumptions). We provide a counterexample
to the conjecture that localization holds in full generality in the generic sense based on the count of
dimension. Consider the following architecture:

d = (2, 3, 3, 1) and r = (3, 3).

It is easy to see that the subnetworks ((d0, d1, d2), r1) and ((d1, d2, d3), r2) both satisfy the Kruskal-
based criterion in Proposition 12 as

3 ≥ 2d1 −min(d2, d1)

min(d1, d0)− 1
= 3, 3 ≥ 2d2 −min(d3, d2)

min(d2, d1)− 1
=

5

2
,

so both subnetworks are identifiable. However, due to Proposition 10, for the global network (d, r)
to be identifiable the dimension of its associated neurovariety must be equal to

d0d1 + d1d2 + d2d3 − d1 − d2 = 12.

However, the image of hPNN(d,r)[·] is in the space of degree-9 homogeneous bivariate polynomials,
and therefore the neuromanifold (and the neurovariety) lies in H2,9. But H2,9 has dimension 10,
thus we arrive at a contradiction with the identifiability of the 3-layer network.

E.2 Statement of changes

In the camera-ready version, the claims (A) and (B) have been replaced with Theorem 11 which
uses a stricter condition. This replacement preserves the main conclusions and contributions of the
original paper, notably:

1. The localization of identifiability: identifiability of 2-layer subnetworks (composed by two
consecutive layers) is sufficient to guarantee identifiability of a deep L-layer polynomial
network;

2. As a consequence, uniqueness theorems for tensors can be leveraged to prove identifiability
of deep PNNs; for example, well-known Kruskal theorems imply:

a) that pyramidal networks (and their generalizations) are identifiable in degrees ≥ 2;
b) linear bounds on the so-called activation degree thresholds (i.e., identifiability holds

for degrees linear in the layer widths);

3. Identifiability of networks with biases is implied by identifiability of (augmented) bias-free
PNN architectures.
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Drawbacks: Despite the fact that our main conclusions still hold, the amended version of the
localization theorem lead to the following changes:

• The theorem and the corresponding corollaries for deep architectures concern generic
properties (and not specific) and finite identifiability (instead of global identifiability).

• Theorem 11 requires a stronger assumption on 2-layer subnetworks: not only each 2-layer
block needs to be identifiable, but also with a possibly smaller number of inputs.

• This stronger condition weakened the result for networks with a bottleneck layer, but keeps
the same conclusion (that is, a decoder network needs to have higher degrees compared to
the encoder in order to allow for increasing the layer widths).

In the following, we explain the mistake in the original proof of Theorem 11 and discuss the current
challenges to extending the amended proof to the localization of global identifiability.

E.3 Remark on the mistake in the original proof and related problems

The mistake in the original proof of Theorem 11 concerned equations (11)–(13) in the original paper
(Section A.2.2 of the original supplementary materials), in the induction step of the theorem (going
from L − 1 to L layers). The original argument is based on constructing the polynomial vector
p′
w(z) using the flattening operation x⊗r′ 7→ z, Hd0,r′ → R(d0)

r′

. The issue is that the equation
(12, original paper) is only valid on a subset of z (z structured as a tensor power) and thus does
not imply (13, original paper) as we originally claimed. The absence of this implication broke the
inductive argument, requiring the proof to be amended.

An interpretation of this issue is that the flattening destroys the structure from lower layers. In fact,
the flattening mapping corresponds to a projection appearing in the computation of the decomposition
of polynomials as sums of powers of forms (see the commutative diagram in [92, Section 4]), which
makes such a computation (decomposition as a sum of powers of polynomials) very difficult and
currently an open problem in general, unless additional knowledge can be used [93].

Our new proof still proceeds similarly by induction (going fromL−1 toL layers), where the induction
step is related to showing non-defectivity (finite identifiability) of a subvariety of variety of powers
of forms, thus connecting to subtle questions in algebraic geometry, such as Fröberg’s conjecture
[92] (the latter not solved in full generality, see [85] for an account of recent progress). Extending
finite identifiability to identifiability seems challenging, at least with the techniques we are aware of;
very recent work in algebraic geometry [75, 86] shows that this transition (i.e., finite identifiability
implies global identifiability) is possible for the so-called X-rank decompositions, but this result is
only applicable to shallow polynomial networks. We are not aware of any systematic progress in the
direction of non-additive structures, of which deep PNNs is a special case. Thus, the transition from
finite to global identifiability of deep PNNs was left as an open conjecture (Conjecture 40) in the
camera-ready version of the paper. We hope that future progress in the field of algebraic geometry
will provide the adequate tools to settle this challenging problem12.

12While preparing the update of the camera-ready version of the paper, we became aware of a recent preprint
[94] that claims to prove a much stronger (in many cases) result than Theorem 11 and claims global identifiability
as well.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: Our paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

45



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Our paper is theoretical and does not include experiments, thus it does not
require data or code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: Our paper is theoretical and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our paper is theoretical and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: Our paper is theoretical and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research adhered to every aspect of the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper is theoretical in nature (we study the identifiability/uniqueness of
neural networks). Thus, our results advance the understanding of the behavior of neural
networks. We highlighted the potential positive impacts of our identifiability results on the
interpretability of neural networks in the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in our research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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