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ABSTRACT

We present PeFLL, a new personalized federated learning algorithm that improves
over the state-of-the-art in three aspects: 1) it produces more accurate models,
especially in the low-data regime, and not only for clients present during its
training phase, but also for any that may emerge in the future; 2) it reduces the
amount of on-client computation and client-server communication by providing
future clients with ready-to-use personalized models that require no additional
finetuning or optimization; 3) it comes with theoretical guarantees that establish
generalization from the observed clients to future ones.
At the core of PeFLL lies a learning-to-learn approach that jointly trains an
embedding network and a hypernetwork. The embedding network is used to
represent clients in a latent descriptor space in a way that reflects their similarity
to each other. The hypernetwork takes as input such descriptors and outputs the
parameters of fully personalized client models. In combination, both networks
constitute a learning algorithm that achieves state-of-the-art performance in several
personalized federated learning benchmarks.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) has emerged as a de-facto standard for privacy-
preserving machine learning in a distributed setting, where a multitude of clients, e.g., user devices,
collaboratively learn prediction models without sharing their data directly with any other party. In
practice, the clients’ data distributions may differ significantly from each other, which makes learning
a single global model sub-optimal (Li et al., 2020; Kairouz et al., 2021). Personalized federated
learning (pFL) (Smith et al., 2017) is a means of dealing with such statistical heterogeneity, by
allowing clients to learn individual models while still benefiting from each other.

A key challenge of personalized federated learning lies in balancing the benefit of increased data
that is available for joint training with the need to remain faithful to each client’s own distribution.
Most methods achieve this through a combination of global model training and some form of
finetuning or training of a client-specific model. However, such an approach has a number of
shortcomings. Consider, for instance, a federated learning system over millions of mobile devices,
such as Gboard (Hard et al., 2018). Only a fraction of all possible devices are likely to be seen during
training, devices can drop out or in at any time, and it should be possible to produce models also
for devices that enter the system at a later time. Having to train or finetune a new model for each
such new device incurs computational costs. This is particularly unfortunate when the computation
happens on the client devices, which are typically of low computational power. Furthermore, high
communication costs emerge when model parameters or updates have to be communicated repeatedly
between the server and the client. The summary effect is a high latency before the personalized model
is ready for use. Additionally, the quality of the personalized model is unreliable, as it depends on the
amount of data available on the client, which in personalized federated learning tends to be small.
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In this work, we address all of the above challenges by introducing a new personalized federated
learning algorithm. In PeFLL (for Personalized Federated Learning by Learning to Learn), it is the
server that produces ready-to-use personalized models for any client by means of a single forward
pass through a hypernetwork. The hypernetwork’s input is a descriptor vector, which any client
can produce by forward passing some of its data through an embedding network. The output of the
hypernetwork is the parameters of a personalized model, which the client can use directly without the
need for further training or finetuning. Thereby PeFLL overcomes the problems of high latency
and client-side computation cost in model personalization from which previous approaches suffered
when they required client-side optimization and/or multi-round client-server communication.

The combined effect of evaluating first the embedding network and then the hypernetwork constitutes
a learning method: it produces model parameters from input data. The process is parametrized
by the networks’ weights, which PeFLL trains end-to-end across a training set of clients. This
learning-to-learn viewpoint allows for a number of advantageous design choices. For example,
PeFLL benefits when many clients are available for training, where other approaches might suffer
in prediction quality. The reason is that the client models are created by end-to-end trained networks,
and the more clients participate in the training and the more diverse these are, the better the networks’
generalization abilities to future clients. Also, PeFLL is able to handle clients with small datasets
better than previous approaches. Because the descriptor evaluation is a feed-forward process, it is not
susceptible to overfitting, as any form of on-client training or finetuning would be. At the same time,
already during training the client descriptors are computed from mini-batches, thereby anticipating
the setting of clients with little data. Once the training phase is concluded, PeFLL can even be used
to create personalized models for clients with only unlabeled data.

PeFLL’s strong empirical results, on which we report in Section 4 are not a coincidence, but they
can be explained by its roots in theory. Its training objective is derived from a new generalization
bound, which we prove in Section 3.2 and which yields tighter bounds in the federated setting than
previous ones. PeFLL’s training procedure distributes the necessary computation between the server
and the clients in a way that ensures that the computationally most expensive task happen on the
server yet stays truthful to the federated paradigm. The optimization is stateless, meaning that clients
can drop out of the training set or enter it at any time. Nevertheless, as we show in Section 3.1, it
converges at a rate comparable to standard federated averaging.

2 RELATED WORK

Personalized federated learning (pFL) is currently one of the promising techniques for learning
models that are adapted to individual clients’ data distributions without jeopardizing their privacy.
Existing approaches typically follow one of multiple blueprints: multi-task methods (Smith et al.,
2017; Marfoq et al., 2021; Dinh et al., 2022; Li et al., 2021; Dinh et al., 2020; Hanzely et al., 2020;
Hanzely and Richtárik, 2020; Ye et al., 2023; Zhang et al., 2023; Qin et al., 2023) learn individual
per-client models, while sharing information between clients, e.g. through regularization towards
a central model. Meta-learning methods learn a shared model, which the clients can quickly adapt
or finetune to their individual data distributions, e.g. by a small number of gradient updates (Fallah
et al., 2020; Jiang et al., 2019; Wu et al., 2023a). Decomposition-based methods (Arivazhagan et al.,
2019; Collins et al., 2021; Bui et al., 2019; Liang et al., 2020; Chen et al., 2023; Wu et al., 2023b)
split the learnable parameters into two groups: those that are meant to be shared between clients (e.g.
a feature representation) and those that are learned on a per-client basis (e.g. classification heads).
Clustering-based methods (Ghosh et al., 2020; Mansour et al., 2020) divide the clients into a fixed
number of subgroups and learn individual models for each cluster.

Hypernetworks (Ha et al., 2017) have only recently been employed in the context of pFL (Ma
et al., 2022; Yi et al., 2023). Typically, the hypernetworks reside on the clients, which limits the
methods’ efficiency. Closest to our work are Shamsian et al. (2021) and Li et al. (2023), which
also generate each clients’ personalized model using server-side hypernetworks. These works adopt
a non-parametric approach in which the server learns and stores individual descriptor vectors per
client. However, such an approach has a number of downsides. First, it entails a stateful optimization
problem, which is undesirable because it means the server has to know at any time in advance which
client is participating in training to retrieve their descriptors. Second, the number of parameters
stored at the server grows with the number of clients, which can cause scalability issues in large-scale
applications. Finally, in such a setting the hypernetwork can only be evaluated for clients with which
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the server has interactive before. For new clients, descriptors must first to be inferred, and this
requires an optimization procedure with multiple client-server communication rounds. In contrast,
in PeFLL the server learns just the embedding network, and the client descriptors are computed
on-the-fly using just forward-evaluations on the clients. As a consequence, clients can drop in or
out at any time, any number of clients can be handled with a fixed memory budget, and even for
previously unseen clients, no iterative optimization is required.

Learning-to-Learn. Outside of federated learning, the idea that learning from several tasks should
make it easier to learn future tasks has appeared under different names, such as continual learn-
ing (Ring, 1994; Mitchell et al., 2015), lifelong learning (Thrun and Mitchell, 1995; Chen and Liu,
2018; Parisi et al., 2019), learning to learn (Thrun and Pratt, 1998; Andrychowicz et al., 2016),
inductive bias learning (Baxter, 2000), meta-learning (Vilalta and Drissi, 2002; Finn et al., 2017;
Hospedales et al., 2021). In this work, we use the term learning-to-learn, because it best describes
the aspect that the central object that PeFLL learns is a mechanism for predicting model parameters
from training data, i.e. essentially it learns a learning algorithm.

The central question of interest is if the learned learning algorithm generalizes, i.e., if it produces
good models not only for the datasets used during its training phase, but also for future datasets.
Corresponding results are typically generalization bounds in a PAC-Bayesian framework (Pentina
and Lampert, 2014; Amit and Meir, 2018; Rothfuss et al., 2021; Guan and Lu, 2022; Rezazadeh,
2022), as we also provide in this work. Closest to our work in this regard is Rezazadeh (2022),
which addresses the task of hyperparameter learning. However, their bound is not well adapted to the
federated learning setting in which the number of clients is large and the amount of data per client
might be small. For a more detailed comparison, see Section 3.2 and Appendix B.

3 METHOD

We now formally introduce the problem we address and introduce the proposed PeFLL algorithm.
We assume a standard supervised federated learning setting with a (possibly very large) number, n, of
clients. Each of these has a data set, Si = {(xi

1, y
i
1), . . . , (x

i
mi , yimi)} ⊂ X × Y , for i ∈ {1, . . . , n},

sampled from a client-dependent data distribution Di. Throughout the paper, we adopt a non-i.i.d.
setting, i.e., the data distributions can differ between clients, Di ̸= Dj for i ̸= j. For any model,
θ ∈ Rd (we identify models with their parameter vectors), the client can compute its training loss,
L(θ;Si) =

1
mi

∑mi

j=1 ℓ(x
i
j , y

i
j , θ), where ℓ : X × Y × Rd → R+ is a loss function. The goal is to

learn client-specific models, θi, in a way that exploits the benefit of sharing information between
clients, while adhering to the principles of federated learning.

PeFLL adopts a hypernetwork approach: for any client, a personalized model, θ ∈ Rd, is produced as
the output of a shared deep network, h : Rl → Rd, that takes as input a client descriptor v ∈ Rl. To
compute client descriptors, we use an embedding network, ϕ : X × Y → Rl, which takes individual
data points as input and averages the resulting embeddings:1 v(S) = 1

|S|
∑

(x,y)∈S ϕ(x, y). We
denote the hypernetwork’s parameters as ηh and the embedding network’s parameters as ηv. As
shorthand, we write η = (ηh, ηv).

Evaluating the embedding network followed by the hypernetwork can be seen as a learning algorithm:
it transforms a set of training data points into model parameters. Consequently, learning η can be
seen as a form of learning-to-learn. Specifically, we propose the PeFLL (Personalized Federated
Learning by Learning to Learn) algorithm, which consists of solving the following optimization
problem, where ∥ · ∥ denotes the L2-norm,

min
ηh,ηv

λh∥ηh∥2 + λv∥ηv∥2 +
n∑

i=1

[
L
(
h(v(Si; ηv); ηh);Si

)
+ λθ

∥∥h(v(Si; ηv); ηh)
∥∥2]. (1)

PeFLL performs this optimization in a way that is compatible with the constraints imposed by
the federated learning setup. Structurally, it splits the objective (1) into several parts: a server
objective, which consist of the first two (regularization) terms, f(ηh, ηv) = λh∥ηh∥2 +λv∥ηv∥2, and
multiple per-client objectives, each of which consists of the terms inside the summation fi(θi;Si) =
L(θi;Si) + λθ

∥∥θi∥2. The terms are coupled through the identity θi = h(v(Si; ηv); ηh). This split

1This construction is motivated by the fact that v should be a permutation invariant (set) function (Zaheer
et al., 2017), but for the sake of conciseness, one can also take it simply as an efficient design choice.
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Algorithm 1 PeFLL-predict
input target client with private dataset S
1: Server sends embedding network ηv to client
2: Client selects a data batch B ⊆ S
3: Client computes v = v(B; ηv)
4: Client sends descriptor v to server
5: Server computes θ = h(v; ηh)
6: Server sends personalized model θ to client

Server

Client

em
bedding

network
η
v

cli
en

t
de

sc
rip

to
r v

personal

m
odel θ

Figure 1: Communication protocol of PeFLL-
predict for generating personalized models.

Algorithm 2 PeFLL-train
input number of training steps, T
input number of clients to select per step, c
1: for t = 1, . . . , T do
2: P ← Server randomly samples c clients
3: Server broadcasts embedding network ηv to P
4: for client i ∈ P in parallel do
5: Client selects a data batch B ⊆ Si

6: vi ← v(B; ηv), client computes descriptor
7: Client sends vi to server
8: θi ← h(vi; ηh) server computes personalized model
9: Server sends θi to client

10: θnew
i ← client runs k steps of local SGD on fi(θi)

11: Client sends ∆θi := θnew
i − θi to server

12: (∆η
(i)
h ,∆vi)← server runs backprop with error vector ∆θi

13: Server sends ∆vi to client
14: ∆η

(i)
v ← client runs backprop with error vector ∆vi

15: Client sends ∆η
(i)
v to server

16: end for
17: ηh ← (1− 2βλh)ηh + 1

|P |
∑

i∈P ∆η
(i)
h

18: ηv ← (1− 2βλv)ηv + 1
|P |

∑
i∈P ∆η

(i)
v

19: end for
output network parameters (ηh, ηv)

Model θi
(personalized, on client)

Hypernetwork ηh
(shared, on server)

Embedding network ηv
(shared, on client)

v
i

∆
v
i

θ
i

∆
θ
i

Figure 2: Data flow for PeFLL
model generation (forward pass,
left) and training (backward pass,
right). The client descriptor, vi,
and the client model θi are small.
Transmitting them and their up-
date vectors is efficient. The hy-
pernetwork, ηh, can be large, but
it remains on the server.

allows PeFLL to distribute the necessary computation efficiently, preserving the privacy of the client
data, and minimizing the necessary communication overhead. Pseudocode of the specific steps is
provided in Algorithms 1 and 2.

We start by describing the PeFLL-predict routine (Algorithm 1), which can predict a personalized
model for any target client. First, the server sends the current embedding network, ηv, to the client
(line 1), which evaluates it on all or a subset of its data to compute the client descriptor (line 3). Next,
the client sends its descriptor to the server (line 4), who evaluates the hypernetwork on it (line 5).
The resulting personalized model is sent back to the client (line 6), where it is ready for use. Overall,
only two server-to-client and one client-to-server communication steps are required before the client
has obtained a functioning personalized model (see Figure 1).

The PeFLL-train routine (Algorithm 2) mostly adopts a standard stochastic optimization pattern
in a federated setting, with the exception that certain parts of the forward (and backward) pass take
place on the clients and others take place on the server. Thus PeFLL follows the Split Learning
(Gupta and Raskar, 2018) paradigm in Federated Learning (Thapa et al., 2022). In each iteration
the server selects a batch of available clients (line 2) and broadcasts the embedding model, ηv , to all
of them (line 3). Then, each client in parallel computes its descriptor, vi, (6), sends it to the server
(line 7), and receives a personalized model from the server in return (line 8, 9). At this point the
forward pass is over and backpropagation starts. To this end, each client performs local SGD for k
steps on its personalized model and personal data (line 10). It sends the resulting update, ∆θi, to the
server (line 11), where it acts as a proxy for ∂fi

∂θi
. According to the chain rule, ∂fi

∂ηh
= ∂fi

∂θi
∂θi
∂ηh

and
∂fi
∂vi

= ∂fi
∂θi

∂θi
∂vi

. The server can evaluate both expressions using backpropagation (line 12), because all
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required expressions are available to it now. It obtains updates ∆η
(i)
h and ∆vi, the latter of which it

sends to the client (line 13) as a proxy for ∂fi
∂vi

. Again based on the chain rule ( ∂fi
∂ηv

= ∂fi
∂vi

∂vi

∂ηv
), the

client computes an update vector for the embedding network, ∆η
(i)
v (line 14), and sends it back to the

server (line 15). Finally, the server updates all network parameters from the average of per-client
contributions as well as the contributions from the server objective (lines 17, 18) 2.

The above analysis shows that PeFLL has a number of desirable properties: 1) It distributes the
necessary computation in a client-friendly way. The hypernetwork is stored on the server and
evaluated only there. It is also never sent via the communication channel. This is important, because
hypernetworks can be quite large, as already their output layer must have as many neurons as the
total number of parameters of the client model. Therefore, they tend to have high memory and
computational requirements, which client devices might not be able to provide.

2) It has low latency and communication cost. Generating a model for any client requires com-
municating only few and small quantities: a) the parameters of the embedding network, which are
typically small, b) the client descriptors, which are low dimensional vectors, and c) the personalized
models, which typically also can be kept small, because they only have to solve client-specific rather
than general-purpose tasks. For the backward pass in the training phase, three additional quantities
need to be communicated: a) the clients’ suggested parameter updates, which are of equal size as the
model parameters, b) gradients with respect to the client descriptors, which are of equal size as the
descriptors, and c) the embedding network’s updates, which are of the same size as the embedding
network. All of these quantities are rather small compared to, e.g., the size of the hypernetwork,
which PeFLL avoids sending.

3) It respects the federated paradigm. Clients are not required to share their training data but
only their descriptors and—during training—the gradient of the loss with respect to the model
parameters. Both of these are computed locally on the client devices. Note that we do not aim for
formal privacy guarantees in this work. These could, in principle, be provided by incorporating
multi-party computation (Evans et al., 2018) and/or differential privacy (Dwork and Roth, 2014).
Since a descriptor is an average of a batch of embeddings, this step can be made differentially private
with some added noise using standard DP techniques such as Gaussian or Laplace mechanisms. This,
however, could add the need for additional trade-offs, so we leave the analysis to future work.

3.1 CONVERGENCE GUARANTEES

We now establish the convergence of PeFLL’s training procedure. Specifically, we give guarantees
in the form of bounding the expected average gradient norm, as is common for deep stochastic
optimization algorithms. The proof and full formulation can be found in Appendix C.
Theorem 3.1. Under standard smoothness and boundedness assumptions (see appendix), PeFLL’s
optimization after T steps fulfills

1

T

T∑
t=1

E ∥∇F (ηt)∥2 ≤ (F (η0)−F∗)√
cT

+
L(6σ2

1+4kγ2
G)

k
√
cT

+
224cL2

1b
2
1b

2
2

T
+
8b21σ

2
2

b
+
14L2

1b
2
2σ

2
3

b
, (2)

where F is the PeFLL objective (1) with lower bound F∗. η0 are the parameter values at initialization,
η1, . . . , ηT are the intermediate parameter values. L,L1 are smoothness parameters of F and the
local models. b1, b2 are bounds on the norms of the gradients of the local model and the hypernetwork,
respectively. σ1 is a bound on the variance of stochastic gradients of local models, and σ2, σ3 are
bounds on the variance due to the clients generating models with data batches of size b instead of
their whole training set. γG is a bound on the dissimilarity of clients, c is the number of clients
participating at each round, and k is the number of local SGD steps performed by the clients.

The proof resembles convergence proofs for FedAvg with non-i.i.d. clients, but differs in three
aspects that we believe makes our result of independent interest: 1) due to the non-linearity of the
hypernetwork, gradients computed from batches might not be unbiased; 2) the updates to the network
parameters are not simple averages, but consist of multiple gradient steps on the clients, which the
server processes further using the chain rule; 3) the objective includes regularization terms that only
the server can compute.

2Note that all of these operations are standard first-order derivatives and matrix multiplications. In contrast to
some meta-learning algorithms, no second-order derivatives, such as gradients of gradients, are required.

5



Published as a conference paper at ICLR 2024

Discussion Theorem 3.1 characterizes the convergence rate of PeFLL’s optimization step in terms
of the number of iterations, T , and some problem-specific constants. For illustration, we first discuss
the case where the client descriptors are computed from the complete client dataset (B = Si in
Algorithm 1, line 5). In that case, σ2 and σ3 vanish, such that only three terms remain in (2). The first
two are of order 1√

T
, while the third one is of order 1

T . For sufficiently large T , the first two terms
dominate, resulting in the same order of convergence as FedAvg (Karimireddy et al., 2020). If clients
compute their descriptors from batches (B ⊊ Si), two additional variance terms emerge in the bound,
which depend on the size of the batches used by the clients to compute their descriptors. It is always
possible to control these terms, though: for large Si, one can choose B sufficiently large to make the
additional terms as small as desired, and for small Si, setting B = Si is practical, which will make
the additional terms disappear completely, see above.

3.2 GENERALIZATION GUARANTEES

In this section, we prove a generalization bound that justifies PeFLL’s learning objective. Following
prior work in learning-to-learn theory we adopt a PAC-Bayesian framework. For this, we assume that
the embedding network, the hypernetwork and the personalized models are all learned stochastically.
Specifically, the result of training the hypernetwork and embedding network are Gaussian probability
distributions over their parameters, Qh = N (ηh;αhId), and Qv = N (ηv;αvId), for some fixed
αh, αv > 0. The mean vectors ηh and ηv are the learnable parameters, and Id is the identity matrix of
the respective dimensions. The (stochastic) prediction model for a client with dataset S is obtained by
sampling from the Gaussian distribution Q = N (θ;αθId) for θ = h(v(S; ηv); ηh) and some αθ > 0.

We formalize clients as tuples (Di, Si), where Di is their data distribution, and Si
i.i.d.∼ Di is training

data. For simplicity, we assume that all data sets are of identical size, m. We assume that both
observed clients and new clients are sampled from a client environment, T (Baxter, 2000), that is, a
probability distribution over clients. Then, we can prove the following guarantee of generalization
from observed to future clients. For the proof and a more general form of the result, see Appendix B.

Theorem 3.2. For all δ > 0 the following statement holds with probability at least 1− δ over the
randomness of the clients. For all parameter vectors, η = (ηh, ηv):

E
(D,S)∼T

E
(x,y)∼D

E
η̄h∼Qh
η̄v∼Qv

ℓ
(
x, y, h(v(S; η̄v); η̄h)

)
≤ 1

n

n∑
i=1

1

m

∑
(x,y)∈Si

E
η̄h∼Qh
η̄v∼Qv

ℓ
(
x, y, h(v(Si; η̄v); η̄h)

)

+

√
1

2αh
∥ηh∥2+ 1

2αv
∥ηv∥2+log( 4

√
n

δ )

2n
+ E
η̄h∼Qh
η̄v∼Qv

√
1

2αθ

∑n
i=1∥h(v(Si; η̄v); η̄h)∥2+log( 8mn

δ )+1

2mn
(3)

Discussion Theorem 3.2 states that the expected loss of the learned models on future clients (which
is the actual quantity of interest) can be controlled by the empirical loss on the observed clients’ data
(which we can compute) plus two terms that resemble regularizers. The first term penalizes extreme
values in the parameters of the hypernetwork and the embedding network. Thereby, it prevents
overfitting for the part of the learning process that accumulates information across clients. The
second term penalizes extreme values in the output of the hypernetwork, which are the parameters of
the per-client models. By this, it prevents overfitting on each client. Because the guarantee holds
uniformly over all parameter vectors, we can optimize the right hand side with respect to η and the
guarantee will still be fulfilled for the minimizer. The PeFLL objective is modeled after the right
hand side of (3) to mirror this optimization in simplified form: we drop constant terms and use just
the mean vectors of the network parameters instead of sampling them stochastically. Also, we drop
the square roots from the regularization terms to make them numerically better behaved.

Relation to previous work A generalization bound of similar form as the one underlying Theo-
rem 3.2 appeared in (Rezazadeh, 2022, Theorem 5.2). That bound, however, is not well suited to the
federated setting. First, it contains a term of order (n+m) logm

√
n

nm , which is not necessarily small for
large n (number of clients) but small m (samples per client). In contrast, the corresponding terms in
our bound, log

√
n

n and lognm
nm , are both small in this regime. Second, when instantiating the bound

from Rezazadeh (2022) an additional term of order 1
m∥η∥ would appear, which can be large in the

case where the dimensionality of the network parameters is large but m is small.
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4 EXPERIMENTS

In this section we report on our experimental evaluation3. The values reported in every table and plot
are given as the mean together with the standard deviation across three random seeds.

Datasets For our experiments, we use three datasets that are standard benchmarks for FL: CI-
FAR10/CIFAR100 (Krizhevsky, 2009) and FEMNIST (Caldas et al., 2018). Following prior pFL
works, for CIFAR10 and CIFAR100 we form statistically heterogeneous clients by randomly assign-
ing a fixed fraction of the total number of C classes to each of n clients, for n ∈ {100, 500, 1000}.
The clients then receive test and train samples from only these classes. For CIFAR10 each client has
2 of the C = 10 classes and for CIFAR100 each client has 10 of the C = 100 classes. FEMNIST is a
federated dataset for handwritten character recognition, with C = 62 classes (digits and lower/upper
case letters) and 817,851 samples. We keep its predefined partition into 3597 clients based on writer
identity. We randomly partition the clients into 90% seen and 10% unseen. Seen clients are used
for training while unseen clients do not contribute to the initial training and are only used to later
assess each method’s performance on new clients as described below. Additional experiments on the
Shakespeare dataset (Caldas et al., 2018) are provided in Appendix A.

Baselines We evaluate and report results for the following pFL methods, for which we build on
the FL-Bench repository 4: Per-FedAvg (Fallah et al., 2020), which optimizes the MAML (Finn et al.,
2017) objective in a federated setting; FedRep (Collins et al., 2021), which trains a global feature
extractor and per-client classifier heads; pFedMe (Dinh et al., 2020), which trains a personal model
per client using a regularization term to penalize differences from a global model; kNN-Per (Marfoq
et al., 2022), which trains a single global model which each client uses individually to extract features
of their data for use in a k-nearest-neighbor-based classifier; pFedHN (Shamsian et al., 2021) which
jointly trains a hypernetwork and per client embedding vectors to output a personalized model for
each client. For reference, we also include results of (non-personalized) FedAvg (McMahan et al.,
2017) and of training a local model separately on each client.

Constructing models for unseen clients We are interested in the performance of PeFLL not just
on the training clients but also on clients not seen at training time. As described in Algorithm 1
inference on new clients is simple and efficient for unseen clients as it does not require any model
training, by either the client or the server. With the exception of kNN-Per all other methods require
some form of finetuning in order to obtain personalized models for new clients. Per-FedAvg and
pFedMe obtain personal models by finetuning the global model locally at each client for some small
number of gradient steps. FedRep freezes the global feature extractor and optimizes a randomly
initialized head locally at each new client. pFedHN freezes the trained hypernetwork and optimizes
a new embedding vector for each new client, which requires not just local training but also several
communication rounds with the server. The most efficient baseline for inference on a new client
is kNN-Per, which requires only a single forward pass through the trained global model and the
evaluation of a k-nearest-neighbor-based predictor.

Models Following prior works in pFL the personalized model used by each client is a LeNet-style
model (Lecun et al., 1998) with two convolutional layers and three fully connected layers. For fair
comparison we use this model for PeFLL as well as all reported baselines. PeFLL uses an embedding
network and a hypernetwork to generate this personalized client model. For our experiments the
hypernetwork is a three layer fully connected network which takes as input a client descriptor vector,
v ∈ Rl, and outputs the parameters of the client model, θ ∈ Rd. For further details, see Appendix A.
Note that the final layer of the client model predicts across all classes in the dataset. For the embedding
network we tested two options, a single linear projection which takes as input a one-hot encoded
label vector, and a LeNet-type ConvNet with the same architecture as the client models except that its
input is extended by C extra channels that encode the label in one-hot form. The choice of such small
models for our embedding network is consistent with the fact that the embedding network must be
transmitted to the client. We find that for CIFAR10 and FEMNIST the ConvNet embedding network
produces the best results while for CIFAR100 the linear embedding is best, and these are the results
we report.

Training Details We train all methods, except Local, for 5000 rounds with partial client partic-
ipation. For CIFAR10 and CIFAR100 client participation is set to 5% per round. For FEMNIST

3We provide the code as supplemental material. We will publish it when the anonymity requirement is lifted.
4https://github.com/KarhouTam/FL-bench
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CIFAR10 CIFAR100 FEMNIST
#trn.clients n = 90 450 900 90 450 900 3237

Local 82.2± 0.6 70.9± 0.5 65.5± 0.7 39.4± 0.2 19.7± 0.2 11.3± 0.1 62.2± 0.1
FedAvg 47.5± 0.5 50.4± 0.6 51.9± 0.7 16.4± 0.4 20.2± 0.1 20.2± 0.2 82.1± 0.2

Per-FedAvg 79.1± 2.1 76.9± 0.9 76.6± 0.3 40.0± 0.3 31.5± 0.2 20.5± 0.1 82.7± 0.9
FedRep 84.6± 0.8 79.2± 0.6 77.3± 0.3 42.7± 0.8 35.5± 0.7 30.8± 0.5 83.6± 0.8
pFedMe 83.9± 1.2 79.0± 2.0 80.4± 0.9 39.6± 0.5 40.5± 0.4 34.6± 0.2 85.9± 0.8
kNN-Per 84.0± 0.3 82.0± 0.5 79.9± 0.7 42.2± 0.9 38.1± 0.4 34.5± 0.5 85.2± 0.3
pFedHN 87.8± 0.5 77.4± 1.3 66.0± 1.1 53.6± 0.2 25.5± 0.3 20.0± 1.2 83.8± 0.3
PeFLL 89.0± 0.8 88.9± 0.4 87.8± 0.4 56.0± 0.3 43.2± 0.8 40.9± 0.6 90.1± 0.1

(a) Accuracy on clients observed at training time (best values per setup in bold)
CIFAR10 CIFAR100 FEMNIST

#trn.clients n = 90 450 900 90 450 900 3237
Local 81.6± 0.7 70.6± 1.8 65.5± 0.5 38.7± 0.9 19.9± 1.1 11.0± 0.5 62.1± 0.2

FedAvg 48.6± 0.3 49.6± 1.0 51.7± 0.7 17.1± 0.9 19.3± 2.0 20.5± 1.0 81.9± 0.4
Per-FedAvg 77.6± 1.9 69.0± 2.5 67.3± 0.8 35.6± 1.5 30.6± 0.4 20.5± 0.5 81.1± 1.5

FedRep 81.8± 1.0 77.4± 1.7 76.0± 0.3 38.6± 1.1 35.9± 1.5 31.8± 1.6 82.8± 0.7
pFedMe 78.4± 2.2 74.3± 1.4 72.3± 1.7 31.1± 1.4 32.3± 0.5 28.9± 0.2 86.1± 0.4
kNN-Per 82.4± 0.7 80.8± 1.5 78.4± 1.1 41.8± 1.2 37.2± 2.0 33.7± 0.7 84.6± 0.6
pFedHN 63.3± 3.7 60.9± 2.4 57.8± 2.0 24.1± 1.2 21.5± 1.4 20.8± 1.2 82.5± 0.1
PeFLL 89.3± 2.2 88.9± 0.6 88.5± 0.3 35.2± 1.4 38.1± 0.4 38.4± 0.9 90.7± 0.2

(b) Accuracy on clients not observed at training time (best values per setup in bold)

Table 1: Experimental results on standard pFL benchmarks. In all settings, except CIFAR100 with
100 clients, PeFLL achieves higher accuracy than previous methods, and the accuracy difference
between training clients (top table) and unseen clients (bottom table) is small, if present at all.

we fix the number of clients participating per round to 5. The Local baseline trains on each client
independently for 200 epochs. The hyperparameters for all methods are tuned using validation data
that was held out from the training set (10,000 samples for CIFAR10 and CIFAR100, spread across
the clients, and 10% of each client’s data for FEMNIST). The optimizer used for training at the client
is SGD with a batch size of 32, a learning rate chosen via grid search and momentum set to 0.9. The
batch size used for computing the descriptor is also 32. More details of the hyperparameter selection
for each method as well as ablation studies are provided in Appendix A.

4.1 RESULTS

Table 1 shows the results for PeFLL and the baseline methods. In all cases, we report the test set
accuracy on the clients that were used for training (Table 1a) and on new clients that were not part
of the training process (Table 1b). PeFLL achieves the best results in almost all cases, and often
by a large margin. The improvements over previous methods are most prominent for previously
unseen clients, for which PeFLL produces model of almost identical accuracy as for the clients used
for training. This is especially remarkable in light of the fact that several of the other methods have
computationally more expensive procedures for generating models in this setting than PeFLL, in
particular requiring on-client or even federated training to produce the personalized models. We see
this result as a strong evidence that PeFLL successful generalizes, as predicted by Theorem 3.2.

Comparing PeFLL’s results to the most similar baseline, pFedHN, one observes that the latter’s
performance decreases noticeably when the number of clients increases and the number of samples
per client decrease accordingly. We attribute this to the fact that pFedHN learns independent client
descriptors for each client, which can become unreliable if only few training examples are available
for each client. Similarly, for Per-FedAvg, pFedMe and FedRep, which construct personalized models
by local finetuning, the model accuracy drops when the amount of data per client decreases, especially
in the more challenging CIFAR100 setup. kNN-Per maintains good generalization from train to
unseen clients, but its performance worsens when the number of samples per client drops and the
kNN predictors have less client data available. In contrast, PeFLL’s performance remains stable,
which we attribute to the fact that it learns the embedding and hypernetwork jointly from all available
data. The new client does not have to use its data for training, but rather just to generate a client
descriptor. As a pure feed-forward process, this does not suffer from overfitting in the low-data
regime.
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CIFAR10 CIFAR100 FEMNIST
#trn.clients n = 90 450 900 90 450 900 3237

FedAvg 48.6± 0.3 49.6± 1.0 51.7± 0.7 17.1± 0.9 19.3± 2.0 20.5± 1.0 81.9± 0.4
PeFLL 84.5± 0.6 83.6± 1.0 81.5± 0.7 26.3± 0.4 28.2± 0.6 30.3± 0.6 91.4± 0.1

Table 2: Test accuracy on CIFAR10 and CIFAR100 for (test) clients that have only unlabeled data.

Personalization for clients with only unlabeled data A scenario of particular interest is when
some clients have only unlabeled data available. PeFLL can still provide personalized models for
them in the following way. To train PeFLL, as before one uses only clients which do have labeled
data. However, the embedding network is constructed to take only the unlabeled parts of the client
data as input (i.e. it ignores the labels). Consequently, even clients that only have unlabeled data can
evaluate the embedding network and obtain descriptors, so the hypernetwork can assign personalized
models to them during the test phase. We report results for this in Table 2. Note that none of the
personalized baseline methods from Section 4 are able to handle this setting, because they train or
finetune on the test clients. Therefore, the only alternative would be to train a non-personalized
model, e.g. from FedAvg, and use this for clients with only labeled data. One can see that PeFLL
improves the accuracy over this baseline in all cases.
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Figure 3: Correlation between client descrip-
tor similarity obtained from the embedding
network and ground truth similarity over the
course of training.

Analysis of Client Descriptors Our work relies
on the hypothesis that clients with similar data dis-
tributions should obtain similar descriptors, such
that the hypernetwork then produces similar models
for them. To study this hypothesis empirically, we
create clients of different similarities to each other
in the following way.

Let C denote the number of classes and n the num-
ber of clients. Then, for each client i we sample
a vector of class proportions, πi ∈ ∆C , from a
Dirichlet distribution Dir(α) with parameter vector
α = (0.1, . . . , 0.1), where ∆C is the unitary sim-
plex of dimension C. Each client then receives a
dataset, Si, of samples from each of the C classes
according to its class proportion vector πi. We randomly split the clients into train and unseen clients,
and we run PeFLL on the train clients. Throughout training we periodically use the embedding
network to compute all client descriptors in order to track how they evolve.

For any pair of such clients, we compute two similarity measures: dπij = ∥πi − πj∥, which provides
a ground truth notion of similarity between client distributions, and dvij = ∥v(Si)− v(Sj)∥, which
measures the similarity between client descriptors. To measure the extent to which dv reflects dπ,
we use their average rank correlation in the following way. For any unseen client i we a form
vector of similarities dvi = (dvi1, . . . , d

v
in) ∈ Rn, and compute its Spearman’s rank correlation

coefficient (Spearman, 1904) to the corresponding ground truth vector dπi = (dπi1, . . . , d
π
in) ∈ Rn.

Figure 3 shows the average of this value across the unseen clients after different numbers of training
steps (CIFAR 10 dataset, 1000 clients in total). One can see that the rank correlation increases over
the course of training, reaching very high correlation values of approximately 0.93. Results for other
numbers of clients are comparable, see Appendix A. This indicates that the embedding network
indeed learns to organize the descriptor space according to client distributional similarity, with similar
clients being mapped to similar descriptors. Moreover, because these results are obtained from unseen
clients, it is clear that the effect does not reflect potential overfitting of the embedding network to the
training clients, but that the learned similarity indeed generalizes well.

5 CONCLUSION

In this work, we presented PeFLL, a new algorithm for personalized federated learning based on
learning-to-learn. By means of an embedding network that creates inputs to a hypernetwork it
efficiently generates personalized models, both for clients present during training and new clients
that appear later. PeFLL has several desirable properties for real-world usability. It stands on
solid theoretical foundation in terms of convergence and generalization. It is trained by stateless
optimization and does not require additional training steps to obtain models for new clients. Overall,
it has low latency and puts little computational burden on the clients, making it practical to use in
large scale applications with many clients each possessing little data.
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Layer Shape Nonlinearity
Conv1 3× 5× 5× 16 ReLU

MaxPool 2× 2 –
Conv2 16× 5× 5× 32 ReLU

MaxPool 2× 2 flatten
FC1 800× 120 ReLU
FC2 120× 84 ReLU
FC3 84× C softmax

Table 3: LeNet-based ConvNet of personalized
client models. Convolutions are without padding.
C is the number of classes.

Layer Shape Nonlinearity
Conv1 3× 5× 5× 16 ReLU

MaxPool 2× 2 –
Conv2 16× 5× 5× 32 ReLU

MaxPool 2× 2 flatten
FC1 800× 120 ReLU
FC2 120× 84 ReLU
FC3 84× l none

Table 4: LeNet-based embedding network. Con-
volutions are without padding. l is the dimen-
sionality of the client descriptor.

Layer Shape Nonlinearity
FC1 l × 100 ReLU
FC2 100× 100 ReLU
FC3 100× 100 ReLU
FC4 100× 100 ReLU
FC5 100×D none

Table 5: Fully connected hypernetwork. D is the dimensionality of the model to be created. Note
that because of FC5 alone the hypernetwork is at least 100 bigger than the client models.

A APPENDIX - EXPERIMENTS

A.1 MODEL ARCHITECTURES

We used a LeNet-based architecture for the personalized model on each client. The exact architecture
is shown in Table 3. After each convolutional and fully connected layer we apply a ReLU non-
linearity except for the final layer which uses a softmax for input into the cross-entropy loss. The
embedding network uses the same architecture except that the final layer has dimension 84× l and we
do not apply a non-linearity (Table 4). For the hypernetwork we use a fully connected network. The
exact architecture is shown in Table 5. Again we apply a ReLU after each layer except the last one,
which does not have a non-linearity and simply has output of size D, where D denotes the number of
parameters in the client personalized model.

A.2 HYPERPARAMETER SETTINGS

For PeFLL, each client uses a single batch of data (batch size 32) as input to the embedding network.
For the hypernetwork parameter settings we use the recomended values given in (Shamsian et al.,
2021) as we found these to work well in our setting as well. Specifically, the dimension of the
embedding vectors is l = n

4 and the number of client SGD steps is k = 50. The regularization
parameters for the embedding network and hypernetwork are set to λh = λv = 10−3, while the
output regularization is λθ = 0.

For Per-FedAvg we used the first order (FO) approximation detailed in (Fallah et al., 2020), and
following the recomendations we set the number of client local steps is set to be a single epoch. For
FedRep we set the number of client updates to the head and body to 5 and 1 epochs respectively
as recommended in (Collins et al., 2021). To infer on a new client we we randomly initialized a
head and trained only the head locally for 20 epochs. For pFedMe we follow the recomendations
in (Dinh et al., 2020) and set the regularization parameter to λ = 15, the computation parameter to
K = 3 and β = 1. To infer for a new client we first initialize the clients personalized model to the
global model and finetuned this for 20 epochs using the pFedMe loss function. For kNN-Per, for the
scale parameter in the kNN classifier we searched over the values recommended in (Marfoq et al.,
2022), namely {0.1, 1, 10, 100}, we found that setting the scale parameter to 100 to worked best.
The k parameter for the kNN search and the weight parameter for how much to weight the client
local vs global model were chosen individually on each client by cross-validation searching over
{5, 10} and {0.0, 0.1, 0.2, . . . , 1.0} respectively. For pFedHN we set the hyperparameters following
the recommendations in (Shamsian et al., 2021). For inferring on a new client we followed the
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procedure given in (Shamsian et al., 2021) and we randomly initialized a new embedding vector and
optimized only this using 20 rounds of client server communication.

A.3 ADDITIONAL EXPERIMENTS

Comparison of communication and computation cost with FedAvg We compare the perfor-
mance of PeFLL to FedAvg with respect to communication costs of training. At each global round,
the communication cost of PeFLL between the server and c clients is 2c(∥θ∥+ ∥ηv∥+ ∥v∥) while
for FedAvg is 2c∥θ∥. In our setting, the embedding network and client models are of comparable size
and the size of client descriptors (v) is negligibly small compared to them. Therefore, the per round
communication cost of PeFLL is about twice that of FedAvg. In Figures 8–14 we plot the accuracies
during training for a given communication cost (measured in GB of information transferred between
server and clients) as well computational cost for the clients (measured in number of global rounds).
As shown in the figures, for any given communication or computational budget PeFLL outperforms
FedAvg on these datasets.

Shakespeare dataset In order to test the effectiveness of PeFLL in non-image tasks, we also
provide results for the Shakespeare dataset (Caldas et al., 2018), which is a next character prediction
task. We use the LSTM model from Caldas et al. (2018) as the client model, and as the embedding
network. The hypernetwork is the same as in all other experiments. We compare the performance
in comparison to a number of baselines. Figure 5 shows the comparison of the accuracies for train
and test clients during training with respect to the number of global rounds. PeFLL outperforms all
baselines when comparing performance with respect to the number of global rounds. We additionally
compare the performance of PeFLL with FedAvg with respect to accuracy for a given communication
cost, see Figure 6. We observe similar performances for a fixed communication budget.

ResNet Experiments In order to test the effectiveness of PeFLL for more modern architectures,
we also performed experiments using a ResNet20 model5 for CIFAR10 dataset. We compared the
performance of PeFLL with FedAvg, and the results are shown in Figure 7 for 100, 500, and 1000
clients, respectively. These figures show PeFLL outperforms FedAvg also for this model, and support
the feasibility of generating modern models as part of our pipeline.

Analysis of Client Extrapolation For all experiments so far, clients at training time and new
clients were related in the sense that they come from the same client environment. In this section, we
examine how well PeFLL is able to generalize beyond this, by studying its extrapolation performance,
where the new clients come from a different client environment than the train clients. We follow
the same procedure as in the previous section to simulate heterogeneous clients and use sampled
Dirichlet class proportions to assign classes. For the train clients we again use αtrain = (0.1, . . . , 0.1)
to generate each clients class proportion vector. However, for the new clients we use a different
Dirichlet parameter αnew = (α, . . . , α). For each α ∈ {0.1, 0.2, 0.3, . . . , 1.0} we generate a group
of new clients using this parameter. We run PeFLL on the train clients then use the trained embedding
and hypernetworks to generate a model for each of the new clients.
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alpha

0.6

0.8

ne
w 

cli
en

t a
cc

ur
ac

y

PeFLL
pFedMe

kNN-Per
Local

Figure 4: Accuracy in client extrapolation. Larger values of α indicate new clients that are more
dissimilar to the train clients.

5We use the implementation from https://github.com/chenyaofo/
pytorch-cifar-models, except without the batch normalization layers.
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Figure 5: Test Accuracies for train clients (top row) and test clients (bottom row) during different
steps of the training for PeFLL and baselines, for the Shakespeare dataset.
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Figure 6: Test Accuracies for train clients (left) and test clients (right) over the course of training
measured with respect to total communication cost for PeFLL and FedAvg, for the Shakespeare
dataset.

Figure 4 shows the resulting accuracy values for PeFLL and the best performing baselines of Table 1,
as well the baseline of purely local per-client training. Note that as α increases so does the difficulty
of the client’s problem, as illustrated by the fact that the accuracy of purely local training decreases.
Despite this increased task difficulty and distributional difference PeFLL still obtains strong results.
Even at α = 1, PeFLL produces models that are more accurate than those learned by the other
methods for smaller values of α, and far superior to purely local training on the new clients.

Integrating known client label sets In the vanilla setting of Section 4, only the client training
data is used to create a model. By design, each model was a multi-class classifier across all possible
classes, even if only a subset of those are relevant for the client. However, it is also reasonable to
assume that clients might have prior knowledge which of the output classes they actually want to
predict. This information can be included by label masking (LM), in which the client overwrites the
output probabilities of classes that cannot occur for it by 0, such that they will never be predicted. We
report results for this in Table 6. One can see that this has minor effects for CIFAR10, but the results
for CIFAR100 are clear improved. We attribute this to the fact that the larger label set and the smaller
number of examples per class increase the chances of spurious classes being predicted.
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Figure 7: Test Accuracies for train clients (left) and test clients (right) during different steps of the
training for PeFLL and FedAvg for the CIFAR10 dataset with 100 clients (top row), 500 clients
(middle row) and 1000 clients (bottom row). PeFLL consistently outperforms FedAvg.
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Figure 8: Test Accuracies for train clients (top) and test clients (bottom) during different steps of the
training for PeFLL and FedAvg, for the CIFAR10 dataset, 100 clients. PeFLL’s accuracy is higher
than FedAvg’s with respect to the number of rounds (which roughly reflect the computational cost for
the clients) as well as the communication cost.
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Figure 9: Test Accuracies for train clients (top) and test clients (bottom) during different steps of the
training for PeFLL and FedAvg, for the CIFAR10 dataset, 500 clients. PeFLL’s accuracy is higher
than FedAvg’s with respect to the number of rounds (which roughly reflect the computational cost for
the clients) as well as the communication cost.
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Figure 10: Test Accuracies for train clients (top) and test clients (bottom) during different steps of
the training for PeFLL and FedAvg, for the CIFAR10 dataset, 1000 clients. PeFLL’s accuracy is
higher than FedAvg’s with respect to the number of rounds (which roughly reflect the computational
cost for the clients) as well as the communication cost.

A.4 ADDITIONAL FIGURES

We include additional figures for the correlation between the distances between client descriptors
and the true client distributional distances as described in Section 4. In Figures 15 - 17 we show the
results of the experiment for different numbers of clients, 100, 500 and 1000. As we can see in all
cases high correlation is achieved. With more clients we obtain higher levels of correlation and less
variability in the results.

A.5 ABLATION STUDIES

We include several ablation studies to explore how different design choices impact PeFLL’s perfor-
mance.
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Figure 11: Test Accuracies for train clients (top) and test clients (bottom) during different steps of
the training for PeFLL and FedAvg, for the CIFAR100 dataset, 100 clients. PeFLL’s accuracy is
higher than FedAvg’s with respect to the number of rounds (which roughly reflect the computational
cost for the clients) as well as the communication cost.
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Figure 12: Test Accuracies for train clients (top) and test clients (bottom) during different steps of
the training for PeFLL and FedAvg, for the CIFAR100 dataset, 500 clients. PeFLL’s accuracy is
higher than FedAvg’s with respect to the number of rounds (which roughly reflect the computational
cost for the clients) as well as the communication cost.

Hypernetwork Size. We investigate how the size of the hypernetwork impacts performance. We
keep the same hypernetwork architecture as described in Table 5 but vary the number of hidden layers.
We have a small network (S) with only a single hidden layer, a medium network (M) with 3 hidden
layers and a large network (L) with 5 hidden layers. We evaluate on CIFAR10 and CIFAR100 using
the same experimental setup as for previous experiments, with 100, 500 and 1000 clients. The results
are shown in Table 7. As we can see in the results, for CIFAR10 all 3 networks are reasonably similar
with a slight drop in performance observed for the S network. For CIFAR100 it is more pronounced,
with a modest increase in performance for the L network and a noticeable drop for the S network.

Regularization Parameters. We examine the impact of varying the regularization parameters of
the objective (1) on the performance of PeFLL. We consider different values for the regularization pa-
rameters and study the values in {0, 5×10−5, 5×10−3, 5×10−1} for client regularization parameter,
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Figure 13: Test Accuracies for train clients (top) and test clients (bottom) during different steps of
the training for PeFLL and FedAvg, for the CIFAR100 dataset, 1000 clients. PeFLL’s accuracy is
higher than FedAvg’s with respect to the number of rounds (which roughly reflect the computational
cost for the clients) as well as the communication cost.
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Figure 14: Test Accuracies for train clients (top) and test clients (bottom) during different steps of
the training for PeFLL and FedAvg, for the FEMNIST dataset. PeFLL’s accuracy is higher than
FedAvg’s with respect to the number of rounds (which roughly reflect the computational cost for the
clients) as well as the communication cost.

and values in {0, 5× 10−5, 5× 10−3} for embedding and hypernetwork regularization. The results
are shown in Table 8. As one can see, PeFLL’s performance is rather robust over the regularization
strengthh. However, consistent with the theory, modest amounts of hypernetwork regularization
parameter help preventing overfitting on training clients and improve client-level generalization.
Similarly, modest amounts of client regularization improve sample-level generalization. As can be
expected, very large values of this parameter leads to underfitting.

Embedding network architecture. We also study the effect of different architecture choices for
the embedding network. We compare the performance of a single-layer MLP network layer and a
LeNet-style ConvNet for CIFAR10 and CIFAR100. As we can see in Table 9 the CNN embedding
outperforms the MLP in all experiments.
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CIFAR10 CIFAR100
#trn.clients n = 90 450 900 90 450 900

PeFLL 89.0± 0.8 88.9± 0.4 87.8± 0.4 56.0± 0.3 43.2± 0.8 40.9± 0.6
PeFLL + LM 88.9± 0.7 88.9± 0.3 88.4± 0.4 59.5± 0.7 53.2± 0.6 51.4± 0.3

CIFAR10 CIFAR100
#trn.clients n = 90 450 900 90 450 900

PeFLL 89.3± 2.2 88.9± 0.6 88.5± 0.3 35.2± 1.4 38.1± 0.4 38.4± 0.9
PeFLL + LM 88.9± 2.4 88.2± 0.9 87.4± 1.3 55.6± 1.6 53.4± 0.1 51.1± 0.2

Table 6: Test accuracy on CIFAR10 and CIFAR100 for training clients (top) and test clients (bottom)
without and with label masking (LM).
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Figure 15: Correlation between client descriptor similarity obtained from the embedding network
and ground truth similarity over the course of training. CIFAR10, 100 Clients.
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Figure 16: Correlation between client descriptor similarity obtained from the embedding network
and ground truth similarity over the course of training. CIFAR10, 500 clients.
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Figure 17: Correlation between client descriptor similarity obtained from the embedding network
and ground truth similarity over the course of training. CIFAR10, 1000 clients.
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CIFAR10 CIFAR100
#Clients 100 500 1000 100 500 1000

S 88.7± 0.3 88.2± 0.4 87.7± 0.4 57.9± 0.3 51.9± 0.6 47.4± 1.4
M 88.9± 0.7 88.9± 0.3 88.1± 0.3 59.4± 0.2 53.1± 0.4 50.8± 0.5
L 88.7± 0.8 88.8± 0.3 88.2± 0.6 59.8± 0.1 53.8± 0.2 52.6± 1.0

Table 7: Test accuracy on CIFAR10 and CIFAR100 using different sizes of hypernetworks, small (S),
medium (M) and large (L).

λh = λv

λθ 0 10−5 10−3

0 87.4± 1.1 87.4± 1.0 88.4± 0.6
5 · 10−5 88.7± 0.7 88.7± 0.6 88.8± 0.3
5 · 10−3 87.8± 0.8 87.6± 0.8 87.5± 0.5
5 · 10−1 82.5± 1.5 83.8± 1.1 86.2± 0.4

Table 8: Test accuracy on CIFAR10 with 100 clients for different settings of the regularization param-
eters. On the left is the regularization of the client network, and along the top is the regularization of
the hypernetwork and embedding network.

CIFAR10 CIFAR100
#Clients 100 500 1000 100 500 1000

MLP 88.5± 1.2 87.8± 1.1 87.5± 2.1 59.1± 0.2 53.4± 0.4 51.2± 0.5
CNN 88.9± 0.7 88.9± 0.3 88.4± 0.4 59.4± 0.2 54.4± 0.3 53.2± 0.3

Table 9: Test accuracy on CIFAR10 and CIFAR100 using different embedding network architectures.
MLP is a single hidden layer fully connected network and CNN is a LeNet-style ConvNet.
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B APPENDIX - GENERALIZATION

In this section we prove a new generalization bound for the generic learning-to-learn setting that, in
particular, will imply Theorem 3.2 as a special case. Before formulating and proving our main results,
we remind the reader of the PAC-Bayesian learning framework (McAllester, 1998) and its use for
obtaining guarantees for learning-to-learn.

PAC-Bayesian learning and learning-to-learn In standard PAC-Bayesian learning, we are given
a set of possible models, H, and a prior distribution over these P ∈ M(H), where M(·) denotes the
set of probability measures over a base set. Given a dataset, S, learning a model means constructing
a new (posterior) distribution, Q ∈ M(H), which is meant to give high probability to models
with small loss. The posterior distribution, Q, induces a stochastic predictor: for any input, one
samples a specific model, f ∼ Q, and outputs the result of this model applied to the input. Note
that Q can in principle be a Dirac delta distribution at a single model, resulting in a deterministic
predictor. However, for large (uncountably infinite) model such a choice typically does not lead to
strong generalization guarantees. For conciseness of notation, in the following we do not distinguish
between the distributions over models and their stochastic predictors.

The quality of a stochastic predictor, Q, on a data point (x, y) is quantified by its expected
loss, ℓ(x,y)(Q) = Ef∼Q ℓ(x, y, f). From this, we define the empirical error on a dataset,
S, as 1

|S|
∑

(x,y)∈S ℓ(x,y)(Q), and its expected loss with respect to a data distribution, D, as
E(x,y)∼D ℓ(x,y)(Q). Ordinary PAC-Bayesian generalization bounds provide high-probability up-
per bounds to the expected loss of a stochastic predictors by the corresponding empirical loss as
well as some complexity terms, which typically include the Kullback-Leibler divergence between
the chosen posterior distribution and the original (training-data independent) prior, DKL(Q||P )
(McAllester, 1998).

Typically, the posterior distribution is not chosen arbitrarily, but it is the result of a learning algorithm,
A : (X ×Y)m → M(H), which takes as input the training data and, potentially, the prior distribution.
The idea of learning-to-learn (also called meta-learning or lifelong learning in the literature) is to
learn the learning algorithm (Baxter, 2000; Pentina and Lampert, 2015).

To study this theoretically, we adopt the setting where n learning tasks is available, which we write
as tuples, (Si, Di), for i ∈ {1, . . . , n}, each with a data set Si ⊂ X × Y that is sampled from a
corresponding data distribution Di ∈ M(X × Y). For simplicity, we assume that all datasets are of
the same size, m. We assume tasks are sampled i.i.d. from a task environment, T , which is simply a
data distribution over such tuples.

Again adopting the PAC-Bayesian framework, we assume that a data-independent (meta-)prior
distribution over learning algorithms is available, P ∈ M(A), where A is the set of possible
algorithms, and the goal is use the observed task data to construct a (meta-)posterior distribution,
Q ∈ M(A). As before, the resulting procedure is stochastic: at every invocation, the system samples
an algorithm A ∼ Q. It applies this to the training data, obtaining a posterior distribution A(S), and
it makes predictions by sampling models accordingly, f ∼ A(S).

Analogously to above situation, we define two measures of quality for such a stochastic algorithms.
Its empirical loss on the data of the observed clients:

êr(Q) :=
1

n

n∑
i=1

E
A∼Q

1

m

m∑
j=1

ℓ(xi
j , y

i
j , A(Si)), (4)

and its expected loss on future clients,

er(Q) := E
(D,S)∼T

E
A∼Q

E
(x,y)∼D

ℓ(x, y,A(S)). (5)

The following theorem provides a connection between both quantities.

Theorem B.1. Let P ∈ M(A) and P ∈ M(H) be a meta-prior and a prior distribution, respectively,
which are chosen independently of the observed training data, S1, . . . , Sn. Assume that the loss
function is bounded in [0,M ]. Then, for all δ ≥ 0 it holds with probability at least 1 − δ over the
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sampling of the datasets, that for all distributions Q ∈ M(A) over algorithms,

er(Q) ≤ êr(Q)+M

√
DKL(Q||P)+log( 4

√
n

δ )

2n
+M E

A∼Q

√∑n
i=1 DKL(A(Si)||P )+log( 8mn

δ ) + 1

2mn
(6)

where DKL denotes the Kullback-Leibler divergence.

Proof. The proof resembles previous proofs for PAC-Bayesian learning-to-learn learning, but it
differs in some relevant steps. We discuss this in a Discussion section after the proof itself.

First, we observe that (6) depends linearly in M . Therefore, if suffices to prove the case of M = 1,
and the general case follows by applying the theorem to ℓ/M with subsequent rescaling. Next, we
define the expected loss for the n training clients, ẽr(Q), as an intermediate object:

ẽr(Q) =
1

n

n∑
i=1

E
A∼Q

E
(x,y)∼Di

ℓ(x, y,A(Si)). (7)

To bound er(Q) − êr(Q), we divide it in two parts: er(Q) − ẽr(Q) and ẽr(Q) − êr(Q). We then
bound each part separately and combine the results.

Part I For the former, for any h ∈ H let ∆i(h) =
1
m

∑m
j=1 ℓ(x

i
j , y

i
j , h) − E(x,y)∼Di

ℓ(x, y, h),
and ∆i(Q) = Eh∈Q ∆i(h), such that ẽr(Q) − êr(Q) = EA∼Q

1
n

∑n
i=1 ∆i(A(Si)). Then, for any

λ > 0,

ẽr(Q)− êr(Q)− 1

λ
E

A∼Q
DKL(A(S1)× · · · ×A(Sn)||P × · · · × P ) (8)

≤ sup
Q1,...,Qn

1

n

n∑
i=1

∆i(Qi)−
1

λ
DKL(Q1 × · · · ×Qn||P × ...× P ) (9)

≤ 1

λ
log E

h1∼P
. . . E

hn∼P

n∏
i=1

e
λ
n∆i(hi), (10)

where the second inequality is due to the change of measure inequality (Seldin et al., 2012).

Because for each i = 1, . . . , n, P is independent of Si, ..., Sn, we have

E
S1,...,Sn

E
h1∼P

. . . E
hn∼P

n∏
i=1

e
λ
n∆i(hi) = E

S1

E
h1∼P

e
λ
n∆1(h1) . . . E

Sn

E
hn∼P

e
λ
n∆n(hn) (11)

Each ∆i(hi) is a bounded random variable with support in an interval of size 1. By Hoeffding’s
lemma we have

E
Si

E
hi∼P

e
λ
n∆i(hi) ≤ e

λ2

8n2m . (12)

Therefore,

E
S1,...,Sn

E
h1∼P

. . . E
hn∼P

n∏
i=1

e
λ
n∆i(hi) ≤ e

λ2

8nm , (13)

and by Markov’s inequality, for any ϵ ∈ R,

PS1,...,Sn

(
E

h1∼P
. . . E

hn∼P

n∏
i=1

e
λ
n∆i(hi) ≥ eϵ

)
≤ e

λ2

8nm−ϵ (14)

Hence

PS1,...,Sn

(
∃Q1, ..., Qn :

1

n

n∑
i=1

∆i(Qi)−
1

λ
DKL(Q1 × · · · ×Qn||P × ...× P ) ≥ 1

λ
ϵ
)
≤ e

λ2

8nm−ϵ,

(15)
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or equivalently,

PS1,...,Sn

(
∀Q1, . . . , Qn :

1

n

n∑
i=1

∆i(Qi) (16)

≤ 1

λ

n∑
i=1

DKL(Qi||P ) +
1

λ
log(

2

δ
) +

λ

8nm

)
≥ 1− δ

2
. (17)

By applying a union bound for all the values of λ ∈ Λ with Λ = {1, . . . , 4mn} we get that

PS1,...,Sn

(
∀Q1, . . . , Qn,∀λ ∈ Λ :

1

n

n∑
i=1

∆i(Qi) (18)

≤ 1

λ

n∑
i=1

DKL(Qi||P ) +
1

λ
log(

8mn

δ
) +

λ

8nm

)
≥ 1− δ

2
(19)

Note that ⌊λ⌋ ≤ λ and 1
⌊λ⌋ ≤ 1

λ−1 . Therefore, for all values of λ ∈ (1, 4mn) we have

PS1,...,Sn

(
∀Q1, . . . , Qn,∀λ ∈ (1, 4mn) :

1

n

n∑
i=1

∆i(Qi) (20)

≤ 1

λ− 1

( n∑
i=1

DKL(Qi||P ) + log(
8mn

δ
)
)
+

λ

8mn︸ ︷︷ ︸
=:Γ(λ)

)
≥ 1− δ

2
(21)

For any choice of Q1, . . . , Qn, let λ∗ =
√

8mn(
∑n

i=1 DKL(Qi||P ) + log( 8mn
δ )) + 1. If λ∗ ≥

4mn, that implies
∑n

i=1(DKL(Qi||P ) + log(8mn
δ ) + 1) ≥ 2mn and Γ(λ∗) > 1, so Inequality (21)

holds trivially. Otherwise, λ∗ ∈ (0, 4mn), so Inequality (21) also holds. Therefore, we

PS1,...,Sn

(
∀Q1, . . . , Qn, :

1

n

n∑
i=1

∆i(Qi) ≤

√∑n
i=1 DKL(Qi||P ) + log( 8mn

δ ) + 1

2mn

)
≥ 1− δ

2
.

(22)

In combination with (10), we obtain:

PS1,...,Sn

(
∀Q : ẽr(Q)− êr(Q) ≤ E

A∼Q

√∑n
i=1 DKL(A(Si)||P ) + log( 8mn

δ ) + 1

2mn

)
≥ 1− δ

2
.

(23)

Part II For upper bounding er(Q)− ẽr(Q) we have by a standard PAC-Bayesian bound (Maurer,
2004; Pérez-Ortiz et al., 2021),

PS1,...,Sn

(
∀Q : er(Q)− ẽr(Q) ≤

√
DKL(Q||P) + log( 4

√
n

δ )

2n

)
≥ 1− δ

2
. (24)

Combination We combine (23) and (24) by a union bound to obtain

PS1,...,Sn

(
∀Q : er(Q)− êr(Q) ≤

√
DKL(Q||P) + log( 4

√
n

δ )

2n
(25)

+ E
A∼Q

√∑n
i=1 DKL(A(Si)||P ) + log( 8mn

δ ) + 1

2mn

)
≥ 1− δ. (26)

This concludes the proof of the theorem.

Discussion The difference in our proof and previous bounds in the similar settings (Pentina and
Lampert, 2015; Rezazadeh, 2022) is in the upper bound for ẽr(Q)− êr(Q) which is the average of
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the generalization gaps for the n training tasks that we observe. In our case we prove a generalization
bound for arbitrary posteriors to be used by the tasks, using the change-of-measure inequality (CMI)
for the transition from Q1 × · · · × Qn to P × · · · × P . Because our bound holds uniformly in
Q1, . . . Qn, it also holds for the posteriors produced by a deterministic learning algorithm (a fixed A)
or any distributions of algorithms (a hyperposterior Q over algorithms). This way we do not have
to include the transition from Q to P in the CMI, as all prior work did. Consequently, in part of
the proof we avoid getting a KL(Q||P) term which otherwise would be divided only by a 1

m factor,
which is undesirable in the federated setting. Additionally compared to (Rezazadeh, 2022) we have
better logarithmic dependency. They have a term of order logm

√
n

m which is not negligible in the
case that we have large number of tasks and small number of samples per task, which is usual in the
federated setting. In contrast, our logarithmic terms are divided by n.

Proof of Theorem 3.2 We now instantiate the situation of Theorem 3.2 by specific choice of prior
and posterior distributions. Let the learning algorithm be parameterized by the hypernetwork weights,
ηh, and the embedding networks weights, ηv. As meta-posterior we use a Gaussian distribution,
Q = Qh ×Qv for Qh = N (ηh;αhId), and Qv = N (ηv;αvId), where ηh and ηv are learnable and
αv and αh are fixed. For any (η̄h, η̄v) ∼ Q and training set S, the learning algorithm produces a
posterior distribution Q = N (θ;αθId), where θ = h(v; ηh) with v = 1

|S|
∑

(x,y) ϕ(x, y; ηv). As
prior, we use N (0;αθId). With these choices, we have DKL(Q,P) = αh∥ηh∥2 + αv|ηv∥2 and
DKL(Qi, P ) = αθ∥θ∥2. Inserting these into Theorem B.1, we recover Theorem 3.2.

C APPENDIX - OPTIMIZATION

In this section, we formulate the technical assumptions for Theorem 3.1 and prove it. For the
convenience of reading we repeat some notation from Section 3. For each client i = 1, . . . , n and
parameter θi, we note the client objective as fi(θi) and Fi(η) = fi(h(Si, η)), where h(S, η) =
h(v(S, ηv), ηh) is a shorthand notation for the combination of hypernetwork and embedding network.
The server objective we denote by f(η), which in our setting consists only of regularization terms.
The overall objective is F (η) = 1

n

∑n
i=1 Fi(η) + f(η). For the rest of this section, by ηt we mean

the parameters at iteration t, and gt,i,j is the stochastic gradient for client i at global step t, local step
l.

C.1 ANALYTICAL ASSUMPTIONS

We make the following assumptions, which are common in the literature (Karimireddy et al., 2020;
Fallah et al., 2020). Since our algorithm consists of multiple parts, we have to make the assumptions
for different parts separately.

• Bounded Gradients: there exist constants, b1, b2, such that

∥∇θfi(θ)∥ ≤ b1, ∥∇ηh(S, η)∥ ≤ b2 (27)

which, in particular, implies

∥h(S, η)− h(S, η′)∥ ≤ b2∥η − η′∥ (28)

• Smoothness: there exist constants, L1, L2, L3, such that

∥∇θfi(θ)−∇θfi(θ
′)∥ ≤ L1∥θ − θ′∥ (29)

∥∇ηh(S, η)−∇ηh(S, η
′)∥ ≤ L2∥η − η′∥ (30)

∥∇ηf(η)−∇ηf(η
′)∥ ≤ L3∥η − η′∥ (31)

• Bounded Dissimilarity: there exists a constant γG with, such that with F̄ (η) =
1
n

∑n
i=1 Fi(η):

1

n

n∑
i=1

E[∥∇Fi(η)−∇F̄ (η)∥2] ≤ γ2
G (32)
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• Bounded Variance: there exists constants σ1, σ2, σ3, such that, for batches Bi ⊂ Si of size
b < |Si|:

E ∥∇θ(fi(θ))− ∇̃θ(fi(θ))∥2 ≤ σ2
1 (33)

E ∥∇h(Bi, η)−∇h(Si, η)∥2 ≤ σ2
2

b
(34)

E ∥h(Bi, η)− h(Si, η)∥2 ≤ σ2
3

b
(35)

C.2 CONVERGENCE

Lemma C.1. There exists a constant L which ∇F (η) is L-smooth.

Proof. For each Fi we have

∥∇ηFi(η)−∇ηFi(η
′)∥ = ∥∇θfi(h(Si, η))∇ηh(Si, η)

T −∇θfi(h(Si, η
′))∇ηh(Si, η

′)T ∥ (36)

= ∥∇θfi(h(Si, η))∇ηh(Si, η)
T −∇θfi(h(Si, η))∇ηh(Si, η

′)T (37)

+∇θfi(h(Si, η))∇ηh(Si, η
′)T −∇θfi(h(Si, η

′))∇ηh(Si, η
′)T ∥ (38)

≤ ∥∇θfi(h(Si, η))∇ηh(Si, η)
T −∇θfi(h(Si, η))∇ηh(Si, η

′)T ∥ (39)

+ ∥∇θfi(h(Si, η))∇ηh(Si, η
′)T −∇θfi(h(Si, η

′))∇ηh(Si, η
′)T ∥ (40)

≤ b1L2∥η − η′∥+ b2L1b2∥η − η′∥ = (b1L2 + b2L1b2)∥η − η′∥ = L′∥η − η′∥ (41)

Therefore for F we have

∥∇ηF (η)−∇ηF (η′)∥ ≤ ∥ 1
n

n∑
i=1

∇ηFi(η) +∇ηf(η)−
1

n

n∑
i=1

∇ηFi(η
′)−∇ηf(η

′)∥ (42)

≤ 1

n

n∑
i=1

∥∇ηFi(η)−∇ηFi(η
′)∥+ ∥∇ηf(η)−∇ηf(η

′)∥ ≤ (L′ + L3)∥η − η′∥ = L∥η − η′∥

(43)

Lemma C.2. For independent random vectors a1, ..., anwe have

E[∥
∑
i∈C

ai − E[ai]∥2] ≤
c

n

∑
i

E[∥ai − E[ai]∥2] (44)

Also if E[ai] ≤ a for each i, we have

E[∥
∑
i∈C

ai − E[ai]∥2] ≤
c

n

∑
i

E[∥ai − E[ai]∥2] + c2a2 (45)

Proof. By expanding the power 2 we get

E[∥
∑
i∈C

ai − E[ai]∥2] = E[
∑
i∈C

∥ai − E[ai]∥2] + E[
∑

i̸=j∈C

⟨ai − E[ai], aj − E[aj ]⟩] (46)

≤
(
n−1
c−1

)(
n
c

) ∑
i

E[∥ai − E[ai]∥2] +
(
n−2
c−2

)(
n
c

) ∑
i ̸=j

E[⟨ai − E[ai], aj − E[aj ]⟩] (47)

=

(
n−1
c−1

)(
n
c

) ∑
i

E[∥ai − E[ai]∥2]−
2
(
n−2
c−2

)(
n
c

) ∑
i

E[∥ai − E[ai]∥2] (48)

≤ c

n

∑
i

E[∥ai − E[ai]∥2] (49)
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For the second part we have

E[∥
∑
i∈C

ai∥2] = E[∥
∑
i∈C

ai − E[ai] + E[ai]∥2] (50)

= E[∥
∑
i∈C

ai − E[ai]∥2] + E[∥
∑
i∈C

E[ai]∥2] + 2E[⟨
∑
i∈C

ai − E[ai],
∑
i∈C

E[ai]⟩] (51)

= E[∥
∑
i∈C

ai − E[ai]∥2] + E[∥
∑
i∈C

E[ai]∥2] ≤
c

n

∑
i

E[∥ai − E[ai]∥2] + c2a2 (52)

Lemma C.3. For any step t and client i the following inequality holds:

E ∥∇Fi(ηt)−∇θfi(h(Bi, ηt)−
l−1∑
j=0

gt,i,j(h(Bi, ηt)))∇h(Bi, ηt)
T ∥2 (53)

≤ 27L2
1b

2
2β

2l2(b21 + σ2
1) + 3b21σ

2
2 + 6L2

1b
2
2σ

2
3 (54)

Proof. By adding and subtracting some immediate terms we get

E ∥∇Fi(ηt)−∇θfi(h(Bi, ηt)−
l−1∑
j=0

gt,i,j(h(Bi, ηt)))∇h(Bi, ηt)
T ∥2 (55)

= E ∥∇Fi(ηt)−∇θfi(h(Si, ηt)− β

l−1∑
j=0

gt,i,j(h(Si, ηt)))∇h(Si, ηt)
T (56)

+∇θfi(h(Si, ηt)− β

l−1∑
j=0

gt,i,j(h(Si, ηt)))(∇h(Si, ηt)
T −∇h(Bi, ηt)

T ) (57)

+ (∇θfi(h(Si, ηt)− β

l−1∑
j=0

gt,i,j(h(Si, ηt)))−∇θfi(h(Bi, ηt)− β

l−1∑
j=0

gt,i,j(h(Bi, ηt))))∇h(Bi, ηt)
T ∥2

(58)

And by Cauchy–Schwarz inequality we get
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E ∥∇Fi(ηt)−∇θfi(h(Bi, ηt)−
l−1∑
j=0

gt,i,j(h(Bi, ηt)))∇h(Bi, ηt)
T ∥2 (59)

≤ 3E ∥∇θfi(h(Si, ηt))∇h(Si, ηt)
T −∇θfi(h(Si, ηt)− β

l−1∑
j=0

gt,i,j(h(Si, ηt)))∇h(Si, ηt)
T ∥2

(60)

+ 3E ∥∇θfi(h(Si, ηt)− β

l−1∑
j=0

gt,i,j(h(Si, ηt)))(∇h(Bi, ηt)
T −∇h(Si, ηt)

T )∥2 (61)

+ 3E ∥(∇θfi(h(Bi, ηt)− β

l−1∑
j=0

gt,i,j(h(Bi, ηt)))−∇θfi(h(Si, ηt)− β

l−1∑
j=0

gt,i,j(h(Si, ηt))))∇h(Bi, ηt)
T ∥2

(62)

≤ 3E(∥∇θfi(h(Si, ηt))−∇θfi(h(Si, ηt)− β

l−1∑
j=0

gt,i,j(h(Si, ηt)))∥2∥∇h(Si, ηt)∥2) (63)

+ 3E(∥∇θfi(h(Si, ηt)− β

l−1∑
j=0

gt,i,j(h(Si, ηt)))∥2∥∇h(Bi, ηt)−∇h(Si, ηt)∥2) (64)

+ 3E(∥∇θfi(h(Bi, ηt)− β

l−1∑
j=0

gt,i,j(h(Bi, ηt)))−∇θfi(h(Si, ηt)− β

l−1∑
j=0

gt,i,j(h(Si, ηt)))∥2∥∇h(Bi, ηt)∥2)

(65)

≤ 3L2
1b

2
2β

2 E ∥
l−1∑
j=0

gt,i,j(h(Si, ηt))∥2 + 3b21 E ∥∇h(Bi, ηt)−∇h(Si, ηt)∥2 (66)

+ 6L2
1b

2
2 E ∥h(Bi, ηt)− h(Si, ηt)∥2 + 6L2

1b
2
2β

2 E ∥
l−1∑
j=0

gt,i,j(h(Si, ηt))−
l−1∑
j=0

gt,i,j(h(Bi, ηt))∥2

(67)

≤ 3L2
1b

2
2β

2l2(b21 + σ2
1) + 3b21σ

2
2 + 6L2

1b
2
2σ

2
3 + 24L2

1b
2
2β

2l2(b21 + σ2
1) (68)

= 27L2
1b

2
2β

2l2(b21 + σ2
1) + 3b21σ

2
2 + 6L2

1b
2
2σ

2
3 (69)

which we used the assumptions on the bounded gradients and bounded variance and Lemma C.2.

Lemma C.4. For any step t the following inequality holds:

E[⟨∇F (ηt), ηt+1 − ηt⟩] ≤
−3βk

4
∥∇F (ηt)∥2 + 27L2

1b
2
2β

3k3(b21 + σ2
1) + 3βkb21σ

2
2 + 6βkL2

1b
2
2σ

2
3

(70)
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Proof.

E
t
[⟨∇F (ηt), ηt+1 − ηt⟩] = E

t
[⟨∇F (ηt),−

β

c

∑
i∈C

k∑
l=1

gt,i,l(h(Bi, ηt))∇h(Bi, ηt)
T − βk∇f(ηt)⟩]

(71)

= E
t
[⟨∇F (ηt),−

β

n

n∑
i=1

k∑
l=1

∇θfi(h(Bi, ηt)− β

l−1∑
j=0

gt,i,j(h(Bi, ηt)))∇h(Bi, ηt)
T ⟩] (72)

+ E
t
[⟨∇F (ηt),−βk∇f(ηt)⟩] (73)

=
β

n

n∑
i=1

k∑
l=1

E
t
[⟨∇F (ηt),∇Fi(ηt)−∇θfi(h(Bi, ηt)− β

l−1∑
j=0

gt,i,j(h(Bi, ηt)))∇h(Bi, ηt)
T ⟩]

(74)

+
β

n

n∑
i=1

k∑
l=1

E
t
[⟨∇F (ηt),−∇Fi(ηt)⟩] + E

t
[⟨∇F (ηt),−βk∇f(ηt)⟩] (75)

By definition F (η) = 1
n

∑n
i=1 Fi(η) + f(η), and by Young’s inequality and lemma C.3 we have

E
t
[⟨∇F (ηt), ηt+1 − ηt⟩] (76)

≤ βk

4
∥∇F (ηt)∥2 +

β

n

n∑
i=1

k∑
l=1

E
t
∥∇Fi(ηt)−∇θfi(h(Bi, ηt)− β

l−1∑
j=0

gt,i,j(h(Bi, ηt)))∇h(Bi, ηt)
T ∥2

(77)

− βk∥∇F (ηt)∥2 (78)

≤ −3βk

4
∥∇F (ηt)∥2 +

β

n

n∑
i=1

k∑
l=1

(27L2
1b

2
2β

2l2(b21 + σ2
1) + 3b21σ

2
2 + 6L2

1b
2
2σ

2
3) (79)

=
−3βk

4
∥∇F (ηt)∥2 + 27L2

1b
2
2β

3k3(b21 + σ2
1) + 3βkb21σ

2
2 + 6βkL2

1b
2
2σ

2
3 (80)

Lemma C.5. For any step t the following inequality holds:

E[∥ηt+1 − ηt∥2] ≤
4β2k

c
σ2
1 +

4β2k2

c
γ2
G + 4β2k2 E[∥∇F (ηt)∥2] (81)

+ 108L2
1b

2
2β

4k4(b21 + σ2
1) + 12b21k

2β2σ2
2 + 24L2

1b
2
2k

2β2σ2
3 (82)

Proof. The change of η in one step of optimization is the average of the change caused by selected
clients plus function f(η) at the server.

E[∥ηt+1 − ηt∥2] = E[∥ − β

c

∑
i∈C

k∑
l=1

gt,i,l(h(Bi, ηt))∇h(Bi, ηt)
T − βk∇f(ηt)∥2] (83)

29



Published as a conference paper at ICLR 2024

Which we can write as

E[∥ηt+1 − ηt∥2] =
β2

c2
E[∥

∑
i∈C

k∑
l=1

gt,i,l(h(Bi, ηt))∇h(Bi, ηt)
T + ck∇f(ηt)∥2] (84)

=
β2

c2
E[∥

∑
i∈C

k∑
l=1

gt,i,l(h(Bi, ηt))∇h(Bi, ηt)
T −∇θfi(h(Bi, ηt)−

l−1∑
j=0

gt,i,j(h(Bi, ηt)))∇h(Bi, ηt)
T

(85)

+
∑
i∈C

k∑
l=1

∇θfi(h(Bi, ηt)−
l−1∑
j=0

gt,i,j(h(Bi, ηt)))∇h(Bi, ηt)
T −∇Fi(ηt) (86)

+
∑
i∈C

k∑
l=1

(∇Fi(ηt) +∇f(ηt)−∇F (ηt)) +
∑
i∈C

k∑
l=1

∇F (ηt)∥2] (87)

And by Cauchy–Schwarz inequality we get

E[∥ηt+1 − ηt∥2] (88)

≤ 4β2

c2
E[∥

∑
i∈C

k∑
l=1

gt,i,l(h(Bi, ηt))∇h(Bi, ηt)
T −∇θfi(h(Bi, ηt)−

l−1∑
j=0

gt,i,j(h(Bi, ηt)))∇h(Bi, ηt)
T ∥2]

(89)

+
4β2

c2
E[∥

∑
i∈C

k∑
l=1

∇θfi(h(Bi, ηt)−
l−1∑
j=0

gt,i,j(h(Bi, ηt)))∇h(Bi, ηt)
T −∇Fi(ηt)∥2] (90)

+
4β2

c2
E[∥

∑
i∈C

k∑
l=1

∇Fi(ηt) +∇f(ηt)−∇F (ηt)∥2] +
4β2

c2
E[∥

∑
i∈C

k∑
l=1

∇F (ηt)∥2] (91)

Note that ∇F (η) − ∇f(η) = 1
n

∑n
i=1 ∇Fi(η). By lemma C.2, C.3, the bounded dissimilarity

assumption and simplifying terms we get

E[∥ηt+1 − ηt∥2] (92)

≤ 4β2k

c
σ2
1 +

4β2k2

cn

∑
i

E[∥∇Fi(ηt)− (
1

n

n∑
i=1

∇Fi(ηt))∥2] + 4β2k2 E[∥∇F (ηt)∥2] (93)

+ 108L2
1b

2
2β

4k4(b21 + σ2
1) + 12b21k

2β2σ2
2 + 24L2

1b
2
2k

2β2σ2
3 (94)

≤ 4β2k

c
σ2
1 +

4β2k2

c
γ2
G + 4β2k2 E[∥∇F (ηt)∥2] (95)

+ 108L2
1b

2
2β

4k4(b21 + σ2
1) + 12b21k

2β2σ2
2 + 24L2

1b
2
2k

2β2σ2
3 (96)

We are now ready to prove Theorem 3.1, which we restate for the convenience of the reader.
Theorem 3.1. Under the assumptions C.1 PeFLL’s optimization after T steps fulfills

1

T

T∑
t=1

E ∥∇F (ηt)∥2 ≤ (F (η0)− F∗)√
cT

+
224cL2

1b
2
1b

2
2

T
+ 8b21σ

2
2 + 14L2

1b
2
2σ

2
3 (97)

+
4L(2σ2

1 + kγ2
G)

k
√
cT

(98)

Proof. By smoothness of F we have

E[F (ηt+1)− F (ηt)] ≤ E⟨∇F (ηt), ηt+1 − ηt⟩+
L

2
E ∥ηt+1 − ηt∥2 (99)

30



Published as a conference paper at ICLR 2024

And by combining it with Lemma C.4 and C.5 and simplifying terms we get

E[F (ηt+1)− F (ηt)] ≤ E⟨∇F (ηt), ηt+1 − ηt⟩+
L

2
E ∥ηt+1 − ηt∥2 (100)

≤ −3βk

4
E ∥∇F (ηt)∥2 + 27L2

1b
2
2β

3k3(b21 + σ2
1) + 3βkb21σ

2
2 + 6βkL2

1b
2
2σ

2
3 (101)

+
2Lβ2k

c
σ2
1 +

2Lβ2k2

c
γ2
G + 2Lβ2k2 E[∥∇F (ηt)∥2] (102)

+ 56LL2
1b

2
2β

4k4(b21 + σ2
1) + 6Lb21k

2β2σ2
2 + 12LL2

1b
2
2k

2β2σ2
3 (103)

= (
−3βk

4
+ 2Lβ2k2)E ∥∇F (ηt)∥2 + (27L2

1b
2
2β

3k3 + 56LL2
1b

2
2β

4k4)b21 (104)

+ 3βkb21σ
2
2 + 6Lb21k

2β2σ2
2 + 6βkL2

1b
2
2σ

2
3 + 12LL2

1b
2
2k

2β2σ2
3 (105)

+ (
Lβ2k

c
+ 27L2

1b
2
2β

3k3 + 56LL2
1b

2
2β

4k4)σ2
1 +

Lβ2k2

c
γ2
G (106)

≤ −βk

2
E ∥∇F (ηt)∥2 + 28L2

1b
2
1b

2
2β

3k3 + 4βkb21σ
2
2 + 7βkL2

1b
2
2σ

2
3 (107)

+
3Lβ2k

c
σ2
1 +

2Lβ2k2

c
γ2
G (108)

Therefore

E[F (ηt+1)− F (ηt)] ≤
−βk

2
E ∥∇F (ηt)∥2 + 28L2

1b
2
1b

2
2β

3k3 + 4βkb21σ
2
2 + 7βkL2

1b
2
2σ

2
3 (109)

+
3Lβ2k

c
σ2
1 +

2Lβ2k2

c
γ2
G (110)

Hence

E ∥∇F (ηt)∥2 ≤ 2

βk
E[F (ηt)− F (ηt+1)] + 56L2

1b
2
1b

2
2β

2k2 + 8b21σ
2
2 + 14L2

1b
2
2σ

2
3 (111)

+
6Lβ

c
σ2
1 +

4Lβk

c
γ2
G (112)

And

1

T

T∑
t=1

E ∥∇F (ηt)∥2 ≤ 2(F (η0)− F∗)

βkT
+ 56L2

1b
2
1b

2
2β

2k2 + 8b21σ
2
2 + 14L2

1b
2
2σ

2
3 (113)

+
6Lβ

c
σ2
1 +

4Lβk

c
γ2
G (114)

by setting β = 2
√
c

k
√
T

we get

1

T

T∑
t=1

E ∥∇F (ηt)∥2 ≤ (F (η0)− F∗)√
cT

+
224cL2

1b
2
1b

2
2

T
+ 8b21σ

2
2 + 14L2

1b
2
2σ

2
3 (115)

+
L(6σ2

1 + 4kγ2
G)

k
√
cT

(116)
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