

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NOISE INFORMED LLM FOR ZERO-SHOT TIME SERIES FORECASTING WITH UNCERTAINTY QUANTIFICATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Large language models (LLMs) exhibit strong zero-shot generalization, not only
012 for complex reasoning but also for time-series forecasting. Existing LLM-based
013 forecasters, however, almost exclusively target deterministic accuracy—via elabo-
014 rate prompts design, tokenization schemes, or instruction tuning—while ignoring
015 the predictive uncertainty that underlies both hallucination and over-confidence.
016 In this work, we bridge this divide by introducing a novel and model-agnostic
017 noise-informed Bayesian approximation (NBA) framework that quantifies the un-
018 certainty of frozen LLMs. We first derive a Bayesian formulation that treats
019 input noise as a stochastic latent variable; marginalizing this noise yields a
020 predictive distribution whose variance is provably calibrated to epistemic plus
021 aleatoric uncertainty. Consequently, the NBA adds negligible overhead, pre-
022 serves zero-shot accuracy, and avoids the computational cost of posterior in-
023 ference over LLMs. Systematic experiments on 11 representative LLMs and
024 simulated / real-world datasets show that NBA produces well-calibrated predic-
025 tion intervals across varying temperature scalings, forecast horizons, model ar-
026 chitectures, and prompting strategies. NBA establishes a strong reproducible
027 baseline for uncertainty quantification in LLMs and reveals actionable insights
028 for reliable zero-shot time series forecasting. Code and data are available at
029 <https://anonymous.4open.science/r/NBA-LLM>.

1 INTRODUCTION

030 The advent of large language models (LLMs) has heralded a paradigm shift in artificial intelligence
031 (AI), demonstrating an unprecedented capacity for zero-shot and few-shot generalization across a
032 diverse spectrum of tasks (Brown et al., 2020). Owing to the efficient information retrieval and
033 representation capabilities of LLMs, they have been widely adopted in fields such as general question
034 answering (QA), finance, healthcare, and education (Chen et al., 2024b; Cheng et al., 2024). Beyond
035 their prowess in natural language generation and understanding, a fascinating and emergent property
036 of these models is their ability to perform complex reasoning in domains far removed from their
037 core training, such as time series (TS) forecasting (Tang et al., 2025; Jin et al., 2023). By leveraging
038 intricate prompt engineering and tokenization mechanisms (Naveed et al., 2024), the application of
039 LLMs to TS forecasting represents an emerging and surprisingly effective paradigm, capitalizing
040 on their innate ability to discern and extrapolate complex temporal patterns in a zero-shot manner.
041 This capability stems from the models’ pretraining on vast corpora that implicitly encode sequences,
042 rhythms, and correlations, allowing them to generate forecasts without task-specific fine-tuning
043 (Gruver et al., 2024).

044 However, it has been observed that LLMs may generate responses that appear plausible but are in
045 fact incorrect or inaccurate, a phenomenon commonly referred to as “hallucination” (Huang et al.,
046 2025; Lin et al., 2022; Li et al., 2025). A significant limitation of this approach lies in its predominant
047 focus on deterministic point predictions, neglecting a cornerstone of trustworthy forecasting: the
048 quantification of predictive uncertainty. Reliable uncertainty quantification (UQ) is indispensable
049 for risk-sensitive decision-making in domains such as finance, epidemiology, and climate science,
050 where understanding the confidence of a forecast is as critical as the forecast itself. Without this,
051 LLMs are prone to overconfident projections or unacknowledged errors, thereby limiting their utility
052 in practical applications. The growing need to quantify predictive uncertainty in high-stakes domains
053 has made it a pressing issue to develop LLMs that can provide reliable UQ.

Broadly, UQ methods can be categorized into two types based on whether they require access to the model’s internal parameters: white-box methods and black-box methods. Black-box methods primarily aim to establish correlations between the model’s internal output layer and uncertainty, such as CoT-UQ (Zhang & Zhang, 2025), BLoB (Wang et al., 2025). In contrast, white-box methods focus on computing uncertainty values based on multiple responses from the large model, such as semantic entropy (Kuhn et al., 2023) and verbalization (Xiong et al., 2024). However, most of these existing methods concentrate on factual tasks, such as QA and summarization (Fadeeva et al., 2023), where the primary focus is on the correctness of the answers. The estimation of uncertainty in TS forecasting tasks has received relatively limited attention. Current methodologies for UQ in TS are ill-suited for the black-box nature of many contemporary LLMs—particularly closed-source commercial APIs. Furthermore, the computational burden of fine-tuning open-source LLMs is often prohibitive. These constraints collectively necessitate the development of novel black-box UQ (Heo et al., 2025) techniques tailored for temporal reasoning.

In response, we introduce a systematic noise-informed Bayesian approximation (NBA) framework that quantifies the uncertainty of pretrained and frozen LLMs. Given that manipulating the inputs to LLMs is more straightforward than adjusting their parameters, we indirectly apply Bayesian principles to UQ by innovatively estimating the predictive distribution of the outputs conditioned on noisy prompts. Specifically, we introduce noise into the original sequence and treat it as a random variable. By employing Monte Carlo sampling techniques to obtain the predictive likelihood distribution, we can quantify model uncertainty from existing zero-shot black-box LLMs. These noisy TS are tokenized for compatibility with LLMs, and the frozen LLM generates autoregressive forecasts across multiple noise realizations. This framework approximates the predictive distribution via marginalizing over noise: the predictive mean is the average of forecasts from M noise samples, while the variance integrates epistemic (model forecast variability) and aleatoric (inherent noise) uncertainty. Specifically, our contributions are as follows:

- We introduce a novel, model-agnostic Bayesian approximation framework designed to quantify predictive uncertainty in frozen LLMs. This is achieved through injecting carefully calibrated noise into the prompt.
- We establish a rigorous mathematical formulation that provides critical insights into the principles connecting noise-based perturbation to Bayesian marginalization. The derivation of this theoretical foundation not only justifies the use of input noise injection as a valid tool for UQ but also transforms it from a heuristic technique into a well-founded analytical procedure.
- We present an extensive empirical analysis that systematically investigates the influence of critical factors, including temperature scaling, prediction length, model architecture, noise levels, noise distributions, and prompting strategies, on the quality and behavior of the elicited uncertainties. This comprehensive study across diverse datasets and models yields practical insights for implementing UQ in real-world applications and establishes a strong, reproducible baseline for future research in black-box UQ.

2 RELATED WORK

Bayesian Neural Networks (BNNs): In statistics and machine learning, uncertainty is modeled in a probabilistic manner. The more dispersed the probability distribution is, the higher the uncertainty appears to be (Hüllermeier & Waegeman, 2021). The Bayesian framework provides a practical tool for uncertainty reasoning in deep learning (Gal & Ghahramani, 2016a). Since the introduction of BNNs (MacKay, 1992), by treating network parameters as random variables with prior distributions, Bayesian deep learning provides a full predictive probability distribution instead of point estimates (Blundell et al., 2015; Xie et al., 2021). However, the sheer size of modern neural networks, with millions or even billions of parameters, makes exact probabilistic inference computationally intractable. Two classes of methods have been proposed to address this. First, sampling techniques like Monte Carlo dropout (Gal & Ghahramani, 2016b), No-U-Turn Sampling (NUTS) (Hoffman et al., 2014), and stochastic gradient MCMC (Welling & Teh, 2011) (Chen et al., 2014) (Zhang et al., 2020) approximate the true posterior distribution by drawing samples from it. Second, approximation methods such as variational inference (Hinton & Van Camp, 1993) (Blundell et al., 2015) (Gal & Ghahramani, 2016a) use a simplified variational distribution to approximate the true posterior,

108 minimizing the divergence between the two to enable probabilistic predictions. However, recent
 109 studies have shown that directly applying the Bayesian framework to LLMs may not be feasible (Lin
 110 et al., 2024). This is primarily due to the characteristics of LLMs, which have a large number of
 111 internal parameters (Arteaga et al., 2024) and are difficult to train (Xiong et al., 2024), leading to
 112 excessive memory and computational costs.

113 **Uncertainty Quantification in LLMs:** Research in UQ for LLMs is still emerging, especially in
 114 NLP (Ling et al., 2024). Some methods rely on internal model information, such as token probabilities
 115 (Jiang et al., 2021) or intermediate embeddings (Chen et al., 2024a), which offer robustness but require
 116 white-box access and high computational cost. Alternative black-box approaches include prompting
 117 models to verbalize numerical confidence (Lin et al., 2022; Xiong et al., 2024), though these are prone
 118 to prompt sensitivity and overconfidence (Shorinwa et al., 2024). A notable limitation of such methods
 119 is their narrow focus on factual tasks like question answering and summarization, coupled with a
 120 lack of mathematical grounding. One line of work explicitly quantifies uncertainty by estimating
 121 entropy in the semantic embedding space (Kuhn et al., 2023; Qiu & Miikkulainen, 2024), yet its latent
 122 representation must be extracted with an auxiliary deep network, incurring prohibitive computational
 123 overhead. Others leverage response consistency as an uncertainty proxy (Wang et al., 2023; Cole
 124 et al., 2023; Hou et al., 2024), but these often lack generalizability beyond specific tasks like fact
 125 retrieval. Our NBA framework for TS forecasting treats noise as a random variable, eliminating the
 126 need for internal access or engineered prompts while achieving good convenience, mathematical rigor,
 127 and generalization. In Table 1, we taxonomize UQ methods for LLMs, focusing on QA tasks. The
 128 proposed NBA-LLM is uniquely applied to TS forecasting, operating as a mathematically grounded,
 129 efficient, black-box Bayesian method without fine-tuning or external tools.

130 Table 1: A taxonomy of UQ methods for LLMs, categorized by white- or black-box access (W/B),
 131 absence of fine-tuning (FT), external tool independence (ET), mathematical grounding (Theo.),
 132 computational efficiency (Effi.: low (L) / high (H)), and Bayesian nature (Bayes.).

Type	Methods	Tasks	W/B	FT	ET	Theo.	Effi.	Bayes.
Semantic-similarity	(Qiu & Miikkulainen, 2024)	QA	B	✓	✗	✓	L	✗
	(Ao et al., 2024)	QA	B	✓	✗	✓	L	✗
	(Kossen et al., 2024)	QA	B	✓	✗	✓	L	✗
Self-verbalized	(Lin et al., 2022)	QA	B	✗	✓	✓	L	✗
	(Xiong et al., 2024)	QA	B	✓	✓	✗	H	✗
	(Band et al., 2024)	QA	B	✗	✓	✓	L	✗
	(Stengel-Eskin et al., 2024)	QA	B	✗	✗	✓	L	✗
Latent-information	(Jiang et al., 2021)	QA	W	✗	✓	✓	L	✗
	(Chen et al., 2024a)	QA	W	✓	✓	✓	H	✗
	(Ji et al., 2025)	QA	W	✗	✓	✓	L	✗
Consistency-based	(Manakul et al., 2023)	QA	B	✓	✓	✗	H	✗
	(Harsha Tanneru et al., 2024)	QA	B	✓	✓	✓	H	✗
	NBA-LLM (Our)	Time series	B	✓	✓	✓	H	✓

3 NOISY PROMPTS AS A BAYESIAN APPROXIMATION

149 We systematically investigate how to enforce UQ for TS forecasting in LLMs through data perturbation
 150 with noise injection and how noisy prompts impact predictive variance.

3.1 PROBLEM FORMULATION OF TS FORECASTING

154 Generally, a TS $\mathbf{x} = \{x_t\}_{t=1}^T$ is formally decomposed into a structured signal component $\{f(t)\}_{t=1}^T$
 155 and a stochastic noise component $\{\epsilon_t\}_{t=1}^T$, such that $x_t = f(t) + \epsilon_t$. Here, $f(t)$ captures the underlying
 156 temporal dynamics, including trends, cycles, and seasonal patterns. At the same time, ϵ_t encapsulates
 157 irreducible variability and measurement imperfections. The objective of TS forecasting extends
 158 beyond point prediction to the probabilistic estimation of future values $\{x_{T+1}, x_{T+2}, \dots, x_{T+H}\}$
 159 over a horizon H , conditioned on historical observations. This is framed as inferring the conditional
 160 distribution $p(\{x_t\}_{t=T+1}^{T+H} \mid \{x_t\}_{t=1}^T)$. Within our proposed NBA framework, the noise process
 161 is explicitly modeled as an informative random variable, enabling principled UQ and enhanced
 162 generalization in a zero-shot learning setting.

162 3.2 UQ OF TS FORECASTING FOR LLM
163164 Formally, UQ of TS forecasting involves inferring a predictive likelihood that marginalizes over both
165 the latent data-generating process and the model parameters (if applicable):

166
$$p(\mathbf{x}_{T+1:T+H} \mid \mathbf{x}_{1:T}) = \int p(\mathbf{x}_{T+1:T+H} \mid \boldsymbol{\theta}, \mathbf{x}_{1:T}) p(\boldsymbol{\theta} \mid \mathbf{x}_{1:T}) d\boldsymbol{\theta}, \quad (1)$$

167

168 where $\boldsymbol{\theta}$ represents the model parameters or latent variables. In cases where the model is treated
169 as a black box (e.g., a pretrained LLM) and parameter uncertainty is not directly accessible, UQ
170 must be performed through alternative strategies. When leveraging LLMs for TS forecasting, the
171 series is often tokenized into symbolic sequences $\mathbf{s}_{1:n}$, and forecasting becomes an autoregressive
172 sequence generation task. The UQ objective thus translates to quantifying uncertainty in this
173 token-level generative process, accounting for both the variability in token predictions and the
174 propagation of uncertainty through sequential steps. We suppose that a robust UQ method should
175 therefore: 1) provide well-calibrated probabilistic forecasts, 2) remain computationally tractable
176 without requiring internal model modifications, and 3) generalize across varying forecast horizons
177 and model architectures.178 3.3 BAYESIAN MARGINALIZATION
179180 The core challenge for TS forecasting in LLMs lies in quantifying the predictive uncertainty of the
181 LLM without modifying its parameters or incurring significant computational overhead. Because the
182 parameter uncertainty of LLMs is precluded, Eq. 1 underscores the need for alternative approaches
183 such as Bayesian approximation, noise injection, or sampling strategies that yield a distribution over
184 plausible futures rather than a single deterministic trajectory. Therefore, we define a mathematically
185 grounded and efficient Bayesian marginalization in the NBA framework that treats the LLM as a
186 black-box function $f(t)$ subject to input perturbations. Let $H = 1$ and $\delta \sim p(\delta)$ be a noise variable
187 injected into the TS or its embedding. The predictive distribution is approximated via marginalization
188 over this noise:

189
$$p(\mathbf{x}_{T+1} \mid \mathbf{x}_{1:T}) = \int p(\mathbf{x}_{T+1} \mid \boldsymbol{\delta}, \mathbf{x}_{1:T}) p(\boldsymbol{\delta} \mid \mathbf{x}_{1:T}) d\boldsymbol{\delta}, \quad (2)$$

190
$$= \int p(\hat{f}(\mathbf{x}_{1:T}, \boldsymbol{\delta})) p(\boldsymbol{\delta}) d\boldsymbol{\delta},$$

191

192 where f denotes the deterministic forward pass of the frozen LLM. From a probabilistic perspective,
193 the target predictive distribution is formulated as a Bayesian model average. Rather than relying on
194 a single deterministic forward pass of the LLM $f(x)$, the NBA framework incorporates multiple
195 realizations of the input noise δ , each weighted by its probability. This marginalization over δ follows
196 directly from the sum and product rules of probability, allowing the model to account for predictive
197 uncertainty without modifying the underlying LLM parameters. By treating noise as a key source of
198 uncertainty, the approach facilitates robust probabilistic forecasting in a zero-shot setting.201 3.4 OBTAINING MODEL UNCERTAINTY VIA BAYESIAN APPROXIMATION
202203 Building upon the Bayesian marginalization, we demonstrate that model uncertainty can be effectively
204 quantified. Due to the intractable integral in Eq. 2, we employ moment-matching to estimate the first
205 two moments of the distribution empirically.206 **Proposition 1** *Given the predictive distribution $p(\mathbf{x}_{T+1} \mid \mathbf{x}_{1:T})$, the corresponding predictive mean
207 admits the Monte Carlo approximation*

208
$$\begin{aligned} \mathbb{E}_{p(\mathbf{x}_{T+1} \mid \mathbf{x}_{1:T})}(\mathbf{x}_{T+1}) &= \int \hat{f}_{T+1}(\mathbf{x}_{1:T}, \boldsymbol{\delta}) p(\boldsymbol{\delta}) d\boldsymbol{\delta}, \\ &\approx \frac{1}{M} \sum_{m=1}^M \hat{f}_{T+1}(\mathbf{x}_{1:T}, \boldsymbol{\delta}_m), \quad \boldsymbol{\delta}_m \sim p(\boldsymbol{\delta}). \end{aligned} \quad (3)$$

209

210 where $\hat{f}(\mathbf{x}_{1:T}, \boldsymbol{\delta})$ denotes the LLM forecast under noise realization $\boldsymbol{\delta} \sim p(\boldsymbol{\delta})$, M is the number of
211 independent noise realizations.

216 **Proposition 2** *The predictive variance of the future value \mathbf{x}_{T+1} under the NBA framework can be*
 217 *approximated via Monte Carlo sampling as:*

$$\begin{aligned} 219 \quad \text{Var}_{p(\mathbf{x}_{T+1} | \mathbf{x}_{1:T})}(\mathbf{x}_{T+1}) &= \mathbb{E}_{p(\delta)}[\sigma_*^2] + \text{Var}_{p(\delta)}[\hat{f}_{T+1}(\mathbf{x}_{1:T}, \boldsymbol{\delta}_m)], \\ 220 \quad &\approx \frac{1}{M} \sum_{m=1}^M \hat{f}_{T+1}(\mathbf{x}_{1:T}, \boldsymbol{\delta}_m)^2 - \left(\frac{1}{M} \sum_{m=1}^M \hat{f}_{T+1}(\mathbf{x}_{1:T}, \boldsymbol{\delta}_m) \right)^2 + \sigma_\delta^2, \end{aligned} \quad (4)$$

223 where σ_*^2 is the variance of the predictive distribution $p(\mathbf{x}_{T+1} | \mathbf{x}_{1:T}, \boldsymbol{\delta})$ for a given noise $\boldsymbol{\delta}$, σ_δ^2
 224 denotes the noise variance.

226 Hence, we derived and proved that a mathematically grounded model uncertainty estimate can be
 227 obtained from LLMs with a prompt-noising strategy. The detailed derivation process is provided in
 228 Appendix A.

229 **Noise Design and Sampling Strategies.** In the context of the NBA, we specify a tractable prior
 230 distribution for the noise variable, typically Gaussian, denoted as $p(\boldsymbol{\delta})$. From a predictive estimation
 231 standpoint, this Monte Carlo procedure approximates the predictive likelihood using discrete point
 232 masses situated at samples drawn from the continuous prior, such that $p(\boldsymbol{\delta}) \approx \sum_{m=1}^M \delta(\boldsymbol{\delta} = \boldsymbol{\delta}_m)$ for
 233 $\boldsymbol{\delta}_m \sim p(\boldsymbol{\delta})$. The injected noise is modeled as a random variable with zero mean and variance σ_δ^2 ,
 234 where the variance quantifies the uncertainty inherent in the observational process. Gaussian noise, for
 235 instance, is expressed as $\boldsymbol{\delta}_m \sim \mathcal{N}(0, \sigma_\delta^2)$. Beyond Gaussian assumptions, we also investigate uniform,
 236 Laplace, Gamma, and Beta distributions to assess robustness under various noise structures. To
 237 regulate the influence of noise relative to the underlying signal, we incorporate a scaling mechanism
 238 that adjusts the noise magnitude in a controlled manner. This is formalized by parameterizing the
 239 noise variance as $\sigma_\delta^2 = \alpha^2 \sigma_x^2$, where σ_x^2 is the variance of the original TS and α is a scaling factor that
 240 modulates the noise intensity. This approach ensures that the injected noise meaningfully influences
 241 model behavior without dominating the true signal, thereby balancing sensitivity and robustness in the
 242 forecasting process. The resulting noise amplitude is thus jointly determined by the data variability
 243 σ_x and the tunable scaling factor α .

244 3.5 TOKEN MODELING AND PREDICTION IN LLM

246 **Tokenization of Noisy TS.** Within the NBA framework, noise injection is formalized as a stochastic
 247 perturbation operator $\mathcal{P} : \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$249 \quad \mathcal{P}(\mathbf{x}_t) = \tilde{\mathbf{x}}_t = \mathbf{x}_t + \delta_t, \quad (5)$$

250 where δ_t is sampled from a noise distribution with $\mathbb{E}[\delta_t] = 0$. This perturbation encourages the
 251 model to prioritize robust latent temporal structures over incidental fluctuations, thereby enhancing
 252 generalization without architectural changes or retraining. The perturbed series $\{\tilde{\mathbf{x}}_t\}$ is then processed
 253 by the LLM, improving robustness to distributional shifts and enabling uncertainty-aware forecasting.
 254 To interface numerical TS with transformer-based LLMs, a tokenization operator $\mathcal{Q} : \mathbb{R}^T \rightarrow \mathcal{S}^T$
 255 bijectively maps the noised series $\{\tilde{\mathbf{x}}_t\}_{t=1}^T$ into a discrete token sequence $S = \{\text{Token}_t(\tilde{\mathbf{x}}_t)\}_{t=1}^T$,
 256 where \mathcal{S} denotes the token vocabulary. This mapping preserves invertibility, satisfying

$$257 \quad S = \mathcal{Q}(\{\tilde{\mathbf{x}}_t\}) \quad \text{and} \quad \{\tilde{\mathbf{x}}_t\} = \mathcal{Q}^{-1}(S), \quad (6)$$

259 ensuring faithful representation between numerical inputs and symbolic sequences. This tokenization
 260 enables the LLM to leverage its sequence modeling capabilities for zero-shot forecasting, while the
 261 injected noise provides a mechanism for Bayesian UQ through stochastic forward passes.

262 **Token Prediction.** LLMs are trained on sequential data $\mathcal{S} = \{S_1, S_2, \dots, S_N\}$, where each sequence
 263 S_i consists of tokens from a vocabulary \mathcal{V} . These models learn an autoregressive distribution
 264 $p_\Theta(S_i) = \prod_{j=1}^{n_i} p_\Theta(s_{i,j} | s_{i,0:j-1})$, with parameters Θ optimized to maximize the corpus likelihood
 265 $p_\Theta(\mathcal{S}) = \prod_{i=1}^N p_\Theta(S_i)$. In the NBA framework, TS data are treated as token streams, allowing the
 266 LLM to capture implicit dynamics. By integrating Bayesian principles, the model facilitates UQ
 267 without retraining. In this context, token prediction initiates from a noisy prompt sequence $\mathbf{s}_{0:k}$ and
 268 proceeds autoregressively according to the distribution $p_\Theta(s_j | \mathbf{s}_{0:j-1})$. Within this formulation, TS
 269 forecasting is reframed as a conditional sequence generation problem. The autoregressive predictive
 distribution for a future time point is expressed as $p(\text{Token}(\mathbf{x}_{T+1}) | \{\text{Token}(\mathbf{x}_t)\}_{t=1}^T)$, thereby

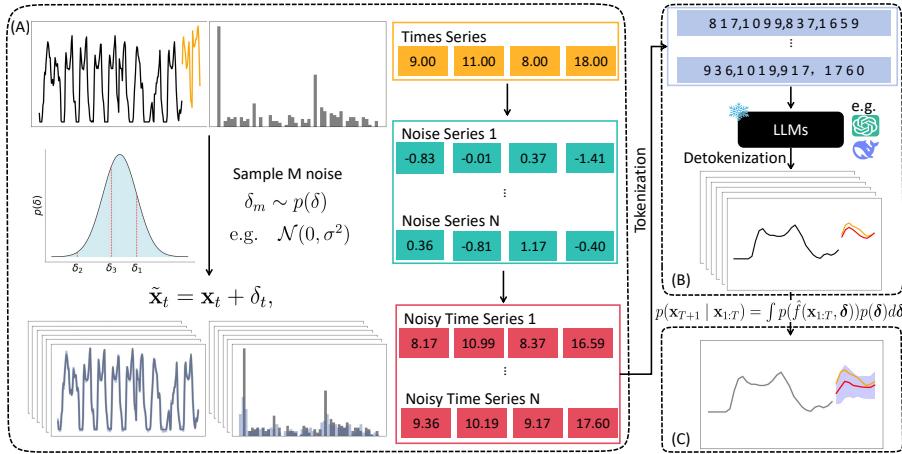


Figure 1: Pipeline of NBA-LLM: a lightweight and model-agnostic Bayesian-LLM with UQ for zero-shot TS forecasting. Box (A): Monte Carlo sampling of TS with noise injection. Box (B): Token prediction of frozen LLM with noisy prompt. Box (C): zero-shot TS forecasting with UQ.

enabling the approximation of the forecast distribution $p(\tilde{\mathbf{x}}_{T+1} \mid \{\tilde{\mathbf{x}}_t\}_{t=1}^T)$ through token-level predictive probabilities. Consequently, the predictive distribution is approximated as

$$p(\mathbf{x}_{T+1} \mid \{\tilde{\mathbf{x}}_t\}_{t=1}^T) \approx p(\text{Token}(\mathbf{x}_{T+1}) \mid \{\text{Token}(\tilde{\mathbf{x}}_t)\}_{t=1}^T). \quad (7)$$

3.6 FRAMEWORK OF NBA

In Fig. 1, we present the procedural pipeline of the NBA-LLM for zero-shot TS forecasting with integrated UQ. In the Box (a), the gray curve represents the training set of the true sequence, the orange curve represents the test set of the true sequence, and the blue curve represents the training set with added noise. At each time point, the noise is completely random, causing fluctuations in the data, either increasing or decreasing. However, overall, the distribution shape of the original sequence and the perturbed sequence is approximately similar. This indicates that our perturbed sequence still retains sufficient original structural features, successfully simulating the uncertainty of the data. In the Box (B), the predicted sequence (in red line) can fluctuate in accordance with the true sequence, but there is still a certain deviation from the true sequence. This highlights the importance of evaluating the uncertainty of LLMs in TS forecasting tasks. By quantifying the uncertainty of the large language model’s predictions, we aim to reflect its confidence in the prediction results. In the Box (C), we observe that even though there is a certain gap between the predicted sequence and the true sequence, the confidence interval (in the blue area) still manages to cover the original sequence.

4 EXPERIMENTS

To rigorously evaluate the efficacy of the NBA-LLM framework, we conduct an extensive empirical study for zero-shot TS forecasting and UQ. The experiments are structured to systematically investigate the impact of various critical factors on the quality of the predictive distribution and the calibration of UQ. We consider a series of benchmark datasets, including Darts (Herzen et al., 2022), Informer (Zhou et al., 2021), and Memorization (Gruver et al., 2024). Detailed experiments are provided in the Appendix C.

Model. To ensure a representative evaluation of NBA-LLM, we select a diverse set of LLMs spanning multiple architectural families and scaling regimes. The evaluated models include the GPT series (OpenAI et al., 2024), Claude models (Team et al., 2024), GLM-4 (GLM et al., 2024), Gemini Flash 2.0, Qwen series (Qwen et al., 2025), and DeepSeek models (Zhang et al., 2025). This spectrum covers both instruction-tuned (IT) and reasoning specialized variants. However, some of the latest or more complex LLMs were not included, primarily due to cost considerations.

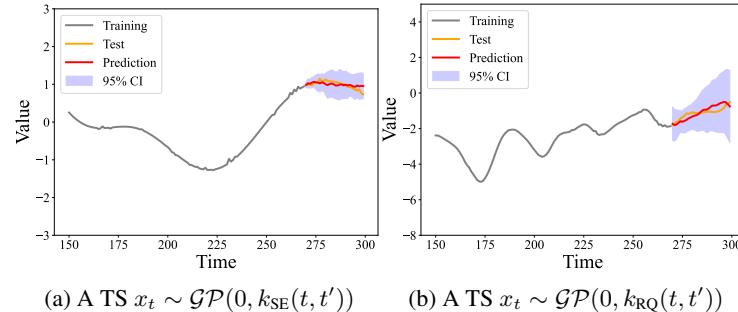
Metrics. We evaluate UQ using the negative log-likelihood (NLL), which measures sharpness at the true value, and the continuous ranked probability score (CRPS), which assesses overall distributional

324 calibration. These metrics offer a rigorous probabilistic benchmark. In addition, the Normalized
 325 Mean Squared Error (NMSE) is employed to complement probabilistic metrics by quantifying the
 326 precision of the predictive mean. Direct numerical comparisons with other methods are avoided, as
 327 results under differing protocols are not statistically comparable.

332 4.1 UQ OF LLMs ON SYNTHETIC DATA

335 To validate the efficacy of the NBA-LLM for zero-shot TS forecasting with UQ, we generate synthetic
 336 data by sampling from a Gaussian process (GP). The use of synthetic data eliminates the risk of data
 337 leakage. This guarantees that the LLM, operating in a strict zero-shot regime, has had absolutely no
 338 prior exposure—direct or indirect—to the test sequences. A series of 300 points is sampled from
 339 the GP, with added observational noise introduced to 20% of the points to simulate real-world data
 340 imperfections. The series is partitioned into 270 points for context and 30 points for testing.

341 As shown in Fig. 2, the synthetic TS superimposes a
 342 smooth trend with abrupt, noise-driven irregularities,
 343 deliberately increasing the
 344 difficulty of uncertainty es-
 345 timation. The NBA-LLM
 346 predictions not only accu-
 347 rately track the underlying
 348 trend but also produce well-
 349 calibrated uncertainty (indi-
 350 cated by confidence inter-
 351 val (CI)) that closely en-
 352 velops the ground-truth val-
 353 ues. Importantly, the pre-
 354 dictive intervals exhibit in-
 355 creasing width with fore-
 356 casting horizon, reflecting the accumulation of uncertainty over time—a key
 357 characteristic of principled probabilistic forecasting. This result underscores the NBA’s capacity for
 358 robust UQ without task-specific training.



359 Figure 2: UQ of NBA-LLM (GPT-3.5-Turbo model) on synthetic TS
 360 sampled from GPs with squared exponential (SE) kernel $k_{\text{SE}}(t, t')$ and
 361 rational quadratic (RQ) kernel $k_{\text{RQ}}(t, t')$.

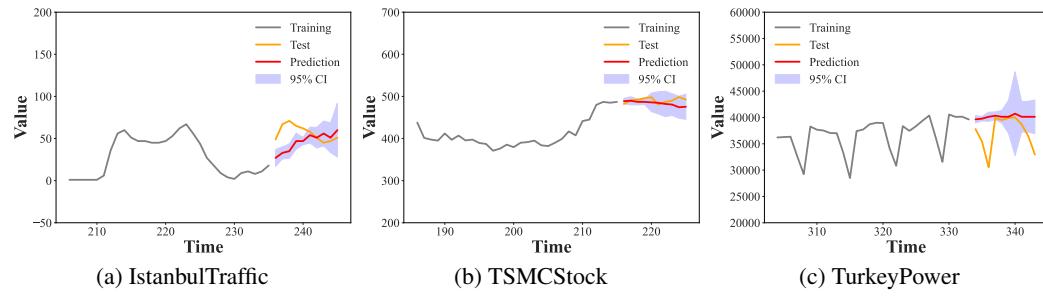
362 4.2 NBA-LLM WITH UQ FOR REAL-WORLD TS FORECASTING

363
 364 As shown in Table 2, we applied NBA across various LLMs to gain preliminary insights into their
 365 performance and UQ in TS forecasting. More results are detailed in Appendices C.9, C.10 and C.11.
 366 Among closed-source models, GPT-4 demonstrates superior performance, while GLM-4 emerges as
 367 the leading open-source alternative. However, both approaches exhibit substantial performance gaps
 368 when compared to GPT-4. Although closed-source models achieve significantly higher accuracy, our
 369 analysis reveals that uncertainty estimation capabilities remain comparable between closed-source
 370 and open-source paradigms, with neither demonstrating clear advantages in uncertainty calibration.
 371 Notably, we observe anomalous behaviors in specific model-dataset configurations: GPT-3.5-Turbo-
 372 Instruct and Gemini Flash 2.0 (lite) exhibit exceptionally high NLL values on particular datasets,
 373 indicating outlier peaks in predicted probability densities. This phenomenon suggests inherent
 374 model overconfidence. Surprisingly, DeepSeek-R1, despite its renowned reasoning capabilities,
 375 demonstrates uncontrolled uncertainty propagation in temporal tasks. This unexpected degradation
 376 may stem from alignment interventions, particularly Reinforcement Learning from Human Feedback
 377 (RLHF), which appears to introduce unintended side effects in UQ for TS applications. Our findings
 378 underscore that UQ in zero-shot TS forecasting remains a formidable challenge for current LLMs.

378 4.3 COMPARATIVE BAYESIAN MARGINALIZATION: TEMPERATURE VS. NOISE
379380 Table 2: UQ of LLMs on the Memorize, Darts, and Informer datasets. The models are abbreviated
381 as follows: Clau. 3.5H (Claude-3.5-Haiku), Clau. 3.5S (Claude-3.5-Sonnet), QW (Qwen), and
382 DS (DeepSeek). Gemini refers to Gemini Flash 2.0. Subscripts T and I indicate Turbo and Instruct
383 models, respectively, and the superscript R denotes a reasoning model.
384

385 Model	386 NMSE			387 CRPS			388 NLL		
	389 Memorization	390 Darts	391 Informer	392 Memorization	393 Darts	394 Informer	395 Memorization	396 Darts	397 Informer
Closed-source LLM									
GPT-3.5 _T	1.50±0.37	1.43±0.26	2.32±0.26	0.14±0.08	0.15±0.06	0.28±0.04	7.76±1.76	6.22±0.91	3.56±0.65
GPT-3.5 _{IT}	1.07±0.68	1.26±0.22	3.88±0.79	0.14±0.08	0.16±0.07	0.46±0.08	6.17±1.16	6.56±0.63	966.78±423.86
GPT-4	0.81±0.28	0.81±0.18	2.05±0.20	0.13±0.07	0.14±0.06	0.28±0.04	6.03±1.24	6.66±0.90	6.72±1.48
Clau. 3.5 _H	1.36±0.50	1.73±0.36	2.55±0.36	0.15±0.09	0.17±0.06	0.26±0.03	6.87±1.88	13.09±5.07	15.09±3.67
Clau. 3.5 _S	4.21±2.14	1.42±0.41	5.67±1.01	0.13±0.06	0.16±0.06	0.33±0.06	90.44±64.96	9.46±2.05	26.71±14.02
Average	1.79	1.33	3.29	0.14	0.16	0.32	23.45	8.40	203.77
Open-source LLM									
GLM-4	1.30±0.51	1.52±0.24	2.23±0.23	0.18±0.11	0.17±0.06	0.27±0.04	6.30±1.45	6.48±0.95	3.63±0.65
Gemini	2.42±1.53	14.14±5.03	2.78±0.51	0.23±0.15	0.19±0.07	0.26±0.03	7.05±1.37	1013.08±910.75	6.14±1.45
QW _T	1.53±0.49	2.14±0.41	2.98±0.43	0.12±0.07	0.22±0.10	0.31±0.05	8.48±1.81	9.21±1.94	24.34±7.14
QW2.5 _{IT}	2.20±0.43	8.32±4.72	2.90±0.46	0.16±0.10	0.18±0.08	0.29±0.04	8.57±1.92	169.22±149.76	17.70±4.34
DS-R1	2.78±1.18	1.78±0.37	3.83±0.62	0.27±0.19	0.18±0.06	0.38±0.05	14.88±2.42	15.72±4.26	145.61±52.01
DS-V3	1.84±0.90	2.25±0.73	5.65±1.10	0.17±0.11	0.17±0.06	0.35±0.06	6.59±1.22	7.15±0.74	27.47±15.37
Average	2.20	5.03	3.43	0.19	0.18	0.31	8.51	1477.96	35.03

398 The temperature parameter in LLMs is a scaling factor
399 applied to the logits prior to the softmax operation in
400 the final output layer, formally defined as $P(\text{Token}) =$
401 $\text{softmax}(\text{logits}/\tau)$, where τ denotes the temperature and
402 $P(\text{Token})$ is the corresponding probability. The un-
403 certainty in the noise injection strategy is primarily intro-
404 duced by altering the data, whereas the uncertainty in the
405 temperature scaling strategy is mainly introduced by con-
406 trolling the entropy of the resulting probability distribution
407 over the vocabulary. By treating the temperature as the
408 latent variable to be integral in the Bayesian marginalization, we have the formula for the tem-
409 perature strategy as $p(\mathbf{x}_{T+1} \mid \mathbf{x}_{1:T}) = \int p(\hat{f}(\mathbf{x}_{1:T}, \tau))p(\tau)d\tau$. As shown in Table 3, noise injection
410 uniformly outperforms temperature scaling in NBA-LLM, with the gap most pronounced on NLL,
411 indicating that the former yields better-calibrated and more trustworthy UQ. This result cautions that
412 aggressive temperature tuning can seed low-probability outliers during autoregressive generation;
413 consequently, careful temperature initialization should be treated as a first-class design decision
414 rather than a post-hoc afterthought. Furthermore, we visualize the UQ under the temperature-scaling
415 strategy in Fig. 3.

424 Figure 3: Uncertainty-aware prediction of NBA-LLM (GPT-3.5-turbo) with temperature marginaliza-
425 tion on the Memorization dataset.
426427 4.4 ABLATION STUDY
428429 In this section, we meticulously analyze the influence of a comprehensive set of parameters, including
430 forecast horizon, noise levels, noise distribution specifications, sampling temperature, model scale,
431 prompt engineering strategies, and underlying model architecture.393 Table 3: UQ of NBA-LLM with tem-
394 perature and noise marginalization on the
395 Memorize dataset.

Time series	Temperature			Noise		
	NMSE	CRPS	NLL	NMSE	CRPS	NLL
IstanbulTraffic	2.35	0.31	8.82	2.36	0.33	8.06
TSMCStock	2.23	0.02	4.48	0.80	0.02	3.89
TurkeyPower	1.56	0.06	24.80	1.34	0.06	11.33

432 **Forecast Horizon Proportionally Inflates Uncertainty.** In the field of TS forecasting, traditional
 433 machine learning methods often categorize tasks based on their prediction horizon, namely, short-term
 434 versus long-term forecasting. This study systematically evaluates the performance of GPT-3.5-Turbo
 435 across two distinct prediction horizons—96 and 192 steps—to offer a more comprehensive perspective.
 436 As shown in Fig. 6, NBA-LLMs consistently produce stable and reasonable results for both short-
 437 and long-term horizons. This finding indicates a promising path forward for extending LLMs to
 438 achieve highly effective long-term forecasting with UQ.

439 **Sweet-Spot Noise Improves Calibration and Excess Noise Destroys It.** In NBA-LLM, the noise
 440 level σ_δ directly controls the noise variance. Theoretically, as the injected variance increases, so
 441 does the apparent volatility of the series, monotonically amplifying the complexity of reliable UQ. In
 442 Fig. 8, we plot the LLM estimation metrics for the Darts dataset under varying noise levels. Across
 443 all noise levels, the overall metrics for the Darts collection remain relatively constant, showing only
 444 mild fluctuations. The general trend is a slight decrease followed by an increase. This suggests that
 445 injecting low levels of noise during inference can be considered an effective UQ technique.

446 **Noise Following Heavy-Tailed Gamma Distribution Yields Better Calibration.** Beyond the noise
 447 levels, the distribution of noise also influences the distribution of input data, thereby affecting the
 448 performance of NBA-LLM. We primarily introduced six types of noise distributions: Gaussian,
 449 uniform, geometric, Laplace, Gamma, and Beta. The specific forms of these distributions are detailed
 450 in Appendix C.5. As shown in Fig. 9, under all noise-injection conditions, the TS predictions closely
 451 track the fluctuations of the true values, and the confidence intervals encompass the majority of the
 452 true values, demonstrating that the NBA-LLM method exhibits good generalizability and robustness
 453 to different noise distributions. Note that noise sampled from a heavy-tailed Gamma distribution
 454 yields superior calibration properties. This is attributed to the distribution’s capacity to generate more
 455 diverse and extreme perturbations, which better explores the function space of the LLM during the
 456 Monte Carlo marginalization process.

457 **Temperature Scaling Induces Minor Changes in Calibration.** We conduct a systematic evaluation
 458 of GPT-3.5-Turbo on the Memorization dataset, sweeping temperature $\tau \in [0, 2]$. As shown in Fig. 10,
 459 all three metrics exhibit minimal variance across the entire range, confirming that the model’s TS
 460 forecasts are remarkably robust to temperature rescaling. Notably, no monotonic trend emerges;
 461 instead, intermediate temperatures ($\tau \approx [0.8, 1.2]$) consistently occupy a broad, low-error plateau,
 462 making this interval a safe default when calibration stability is paramount.

463 **Text-First Prompts Undermine UQ in TS Forecasting.** To investigate the effect of specific prompts
 464 on LLM-Time’s forecasting uncertainty, we tested several common human-heuristic prompting
 465 strategies in this section. These strategies have been repeatedly shown to significantly influence
 466 model output in commonsense question-answering tasks, including: Direct, CoT (Wei et al., 2023;
 467 Kojima et al., 2023), Self-Probing (Baek et al., 2025), Self-Correcting (Kim et al., 2023; Madaan
 468 et al., 2023; Kumar et al., 2024), Prompt-Optimizer (Shen, 2025). For the full prompt, refer to
 469 Appendix D.2. Surprisingly, Table 6 reveals that text-first prompts impair both predictive accuracy
 470 and UQ on numerical tasks. Augmenting the prompt with additional cognitive stages (e.g., explicit
 471 reasoning or self-correction) systematically degrades performance.

472 5 CONCLUSION

473 In this work, we focus on quantifying the uncertainty of LLMs in TS forecasting tasks using Bayesian
 474 methods. Specifically, we introduce noise into the original sequence and treat it as a random variable.
 475 By employing Monte Carlo sampling techniques to obtain the predictive likelihood distribution
 476 of predictions, we can quantify model uncertainty from existing zero-shot black-box LLMs. This
 477 approach not only eliminates the need to access the internal parameters of large models but is also
 478 applicable to both open-source and closed-source models. It significantly reduces computational
 479 resources and does not require the careful design of prompts. As a zero-shot prediction task, it
 480 dramatically lowers the technical threshold, demonstrating strong versatility, convenience, and cost-
 481 effectiveness. We conducted extensive benchmarking using LLMs on a synthetic dataset and three
 482 real-world datasets. Our results show that the noise injection strategy consistently enhances predictive
 483 performance and provides reasonable UQ across all datasets, outperforming Bayesian methods based
 484 on temperature strategies. Moreover, we performed a comprehensive set of ablation studies, analyzing
 485 and conducting sensitivity analyses on eight factors: short-term and long-term predictions (data level),

486 noise levels and noise distributions (noise level), temperature parameters, model sizes, prompt styles,
 487 sample sizes, and model types (model level).
 488

489 **ETHICS STATEMENT**
 490

491 This work advances the development of safer AI systems by providing calibrated probabilistic
 492 forecasts, crucial for high-stakes domains like finance, where overreliance on deterministic predictions
 493 poses significant risks. While our framework enhances uncertainty quantification, responsible
 494 deployment requires context-specific validation to ensure proper interpretation and action based on
 495 the uncertainty estimates.

496 **REPRODUCIBILITY STATEMENT**
 497

498 We release a fully open-source, zero-shot pipeline that turns off-the-shelf LLMs into principled
 499 uncertainty quantification for TS forecasting. The workflow requires neither fine-tuning nor task-
 500 specific training—only lightweight API calls—eliminating dependence on proprietary architectures
 501 or expensive retraining. By lowering these practical barriers, we aim to accelerate community-wide
 502 progress on reliable, large-scale generative modeling. Source code, complete proofs, and experimental
 503 datasets are provided under the MIT licence in the Appendix.

504
 505 **REFERENCES**
 506

507 Shuang Ao, Stefan Rueger, and Advaith Siddharthan. Css: Contrastive semantic similarity for
 508 uncertainty quantification of llms, 2024. URL <https://arxiv.org/abs/2406.03158>.

509 Gabriel Y. Arteaga, Thomas B. Schön, and Nicolas Pielawski. Hallucination detection in llms:
 510 Fast and memory-efficient fine-tuned models, 2024. URL <https://arxiv.org/abs/2409.02976>.

511 Ingeol Baek, Hwan Chang, Byeongjeong Kim, Jimin Lee, and Hwanhee Lee. Probing-rag: Self-
 512 probing to guide language models in selective document retrieval, 2025. URL <https://arxiv.org/abs/2410.13339>.

513 Neil Band, Xuechen Li, Tengyu Ma, and Tatsunori Hashimoto. Linguistic calibration of long-form
 514 generations, 2024. URL <https://arxiv.org/abs/2404.00474>.

515 Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
 516 neural networks, 2015. URL <https://arxiv.org/abs/1505.05424>.

517 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
 518 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
 519 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
 520 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
 521 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
 522 Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL <https://arxiv.org/abs/2005.14165>.

523 Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. INSIDE:
 524 LLMs’ internal states retain the power of hallucination detection. In *The Twelfth International
 525 Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=Zj12nz1Qbz>.

526 Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In
 527 *International conference on machine learning*, pp. 1683–1691. PMLR, 2014.

528 Zhiyu Zoey Chen, Jing Ma, Xinlu Zhang, Nan Hao, An Yan, Armineh Nourbakhsh, Xianjun Yang,
 529 Julian McAuley, Linda Petzold, and William Yang Wang. A survey on large language models for
 530 critical societal domains: Finance, healthcare, and law, 2024b. URL <https://arxiv.org/abs/2405.01769>.

540 Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xiangrui Meng, Sirui Hong, Wenhao Li, Zihao
 541 Wang, Zekai Wang, Feng Yin, Junhua Zhao, et al. Exploring large language model based intelligent
 542 agents: Definitions, methods, and prospects. *arXiv preprint arXiv:2401.03428*, 2024.

543

544 Jeremy R. Cole, Michael J. Q. Zhang, Daniel Gillick, Julian Martin Eisenschlos, Bhuwan Dhingra,
 545 and Jacob Eisenstein. Selectively answering ambiguous questions, 2023. URL <https://arxiv.org/abs/2305.14613>.

546

547 Ekaterina Fadeeva, Roman Vashurin, Akim Tsvigun, Artem Vazhentsev, Sergey Petrakov, Kirill
 548 Fedyanin, Daniil Vasilev, Elizaveta Goncharova, Alexander Panchenko, Maxim Panov, Timothy
 549 Baldwin, and Artem Shelmanov. Lm-polygraph: Uncertainty estimation for language models,
 550 2023. URL <https://arxiv.org/abs/2311.07383>.

551

552 Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with bernoulli approxi-
 553 mative variational inference, 2016a. URL <https://arxiv.org/abs/1506.02158>.

554

555 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
 556 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
 557 PMLR, 2016b.

558

559 Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego
 560 Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie
 561 Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Jingyu Sun, Juanzi Li, Lei Zhao, Lindong
 562 Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi
 563 Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao
 564 Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song,
 565 Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao
 566 Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang.
 567 Chatglm: A family of large language models from glm-130b to glm-4 all tools, 2024. URL
<https://arxiv.org/abs/2406.12793>.

568

569 Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are
 570 zero-shot time series forecasters, 2024. URL <https://arxiv.org/abs/2310.07820>.

571

572 Sree Harsha Tanneru, Chirag Agarwal, and Himabindu Lakkaraju. Quantifying uncertainty
 573 in natural language explanations of large language models. In Sanjoy Dasgupta, Stephan
 574 Mandt, and Yingzhen Li (eds.), *Proceedings of The 27th International Conference on Artifi-
 575 cial Intelligence and Statistics*, volume 238 of *Proceedings of Machine Learning Research*, pp.
 576 1072–1080. PMLR, 02–04 May 2024. URL <https://proceedings.mlr.press/v238/harsha-tanneru24a.html>.

577

578 Juyeon Heo, Miao Xiong, Christina Heinze-Deml, and Jaya Narain. Do llms estimate uncertainty
 579 well in instruction-following?, 2025. URL <https://arxiv.org/abs/2410.14582>.

580

581 Julien Herzen, Francesco Lässig, Samuele Giuliano Piazzetta, Thomas Neuer, Léo Tafti, Guillaume
 582 Raille, Tomas Van Pottelbergh, Marek Pasieka, Andrzej Skrodzki, Nicolas Huguenin, Maxime
 583 Dumonal, Jan Kościsz, Dennis Bader, Frédéric Gusset, Mounir Benheddi, Camila Williamson,
 584 Michal Kosinski, Matej Petrik, and Gaël Grosch. Darts: User-friendly modern machine learning
 585 for time series, 2022. URL <https://arxiv.org/abs/2110.03224>.

586

587 Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the
 588 description length of the weights. In *Proceedings of the sixth annual conference on Computational
 589 learning theory*, pp. 5–13, 1993.

590

591 Matthew D Hoffman, Andrew Gelman, et al. The no-u-turn sampler: adaptively setting path lengths
 592 in hamiltonian monte carlo. *J. Mach. Learn. Res.*, 15(1):1593–1623, 2014.

593

594 Bairu Hou, Yujian Liu, Kaizhi Qian, Jacob Andreas, Shiyu Chang, and Yang Zhang. Decomposing
 595 uncertainty for large language models through input clarification ensembling, 2024. URL <https://arxiv.org/abs/2311.08718>.

594 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 595 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
 596 language models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on*
 597 *Information Systems*, 43(2):1–55, January 2025. ISSN 1558-2868. doi: 10.1145/3703155. URL
 598 <http://dx.doi.org/10.1145/3703155>.

599 Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
 600 an introduction to concepts and methods. *Machine Learning*, 110(3):457–506, March 2021. ISSN
 601 1573-0565. doi: 10.1007/s10994-021-05946-3. URL <http://dx.doi.org/10.1007/s10994-021-05946-3>.

602 Ziwei Ji, Lei Yu, Yeskendir Koishkenov, Yejin Bang, Anthony Hartshorn, Alan Schelten, Cheng
 603 Zhang, Pascale Fung, and Nicola Cancedda. Calibrating verbal uncertainty as a linear feature to
 604 reduce hallucinations, 2025. URL <https://arxiv.org/abs/2503.14477>.

605 Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham Neubig. How can we know when language
 606 models know? on the calibration of language models for question answering. *Transactions of*
 607 *the Association for Computational Linguistics*, 9:962–977, 09 2021. ISSN 2307-387X. doi:
 608 10.1162/tacl_a_00407. URL https://doi.org/10.1162/tacl_a_00407.

609 Ming Jin, Qingsong Wen, Yuxuan Liang, Chaoli Zhang, Siqiao Xue, Xue Wang, James Zhang,
 610 Yi Wang, Haifeng Chen, Xiaoli Li, Shirui Pan, Vincent S. Tseng, Yu Zheng, Lei Chen, and Hui
 611 Xiong. Large models for time series and spatio-temporal data: A survey and outlook, 2023. URL
 612 <https://arxiv.org/abs/2310.10196>.

613 Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks,
 614 2023. URL <https://arxiv.org/abs/2303.17491>.

615 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 616 language models are zero-shot reasoners, 2023. URL <https://arxiv.org/abs/2205.11916>.

617 Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth Malik, and Yarin Gal.
 618 Semantic entropy probes: Robust and cheap hallucination detection in llms, 2024. URL <https://arxiv.org/abs/2406.15927>.

619 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances
 620 for uncertainty estimation in natural language generation, 2023. URL <https://arxiv.org/abs/2302.09664>.

621 Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate
 622 Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha
 623 Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra
 624 Faust. Training language models to self-correct via reinforcement learning, 2024. URL <https://arxiv.org/abs/2409.12917>.

625 Yuangang Li, Yiqing Shen, Yi Nian, Jiechao Gao, Ziyi Wang, Chenxiao Yu, Shawn Li, Jie Wang,
 626 Xiyang Hu, and Yue Zhao. Mitigating hallucinations in large language models via causal reasoning,
 627 2025. URL <https://arxiv.org/abs/2508.12495>.

628 Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in
 629 words. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL <https://openreview.net/forum?id=8s8K2UZGTZ>.

630 Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantifi-
 631 cation for black-box large language models, 2024. URL <https://arxiv.org/abs/2305.19187>.

632 Chen Ling, Xujiang Zhao, Xuchao Zhang, Wei Cheng, Yanchi Liu, Yiyou Sun, Mika Oishi, Takao
 633 Osaki, Katsushi Matsuda, Jie Ji, Guangji Bai, Liang Zhao, and Haifeng Chen. Uncertainty
 634 quantification for in-context learning of large language models. In Kevin Duh, Helena Gomez,
 635 and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter*
 636 *of the Association for Computational Linguistics: Human Language Technologies (Volume 1)*:

648 *Long Papers*), pp. 3357–3370, Mexico City, Mexico, June 2024. Association for Computational
 649 Linguistics. doi: 10.18653/v1/2024.nacl-long.184. URL <https://aclanthology.org/2024.nacl-long.184/>.

650

651 David JC MacKay. A practical bayesian framework for backpropagation networks. *Neural computation*, 4(3):448–472, 1992.

652

653 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
 654 Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
 655 Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
 656 refinement with self-feedback, 2023. URL <https://arxiv.org/abs/2303.17651>.

657

658 Potsawee Manakul, Adian Liusie, and Mark J. F. Gales. Selfcheckgpt: Zero-resource black-box
 659 hallucination detection for generative large language models, 2023. URL <https://arxiv.org/abs/2303.08896>.

660

661 Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
 662 Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
 663 models, 2024. URL <https://arxiv.org/abs/2307.06435>.

664

665 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
 666 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
 667 Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
 668 Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
 669 Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
 670 Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
 671 Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
 672 Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
 673 Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
 674 Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
 675 Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
 676 Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
 677 Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
 678 Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
 679 Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
 680 Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
 681 Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
 682 Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
 683 Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
 684 Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
 685 Aris Konstantinidis, Kyle Koscic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
 686 Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
 687 Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
 688 Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
 689 Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
 690 Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
 691 Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
 692 Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
 693 Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
 694 Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
 695 Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
 696 Michael Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
 697 Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
 698 Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
 699 Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
 700 Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
 701 Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
 Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
 Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun

702 Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
 703 Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
 704 Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren
 705 Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
 706 Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
 707 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
 708 <https://arxiv.org/abs/2303.08774>.

709 Xin Qiu and Risto Miikkulainen. Semantic density: Uncertainty quantification in semantic
 710 space for large language models. *ArXiv*, abs/2405.13845, 2024. URL <https://api.semanticscholar.org/CorpusID:269983698>.

711 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 712 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 713 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 714 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 715 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 716 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
 717 <https://arxiv.org/abs/2412.15115>.

718 Lin Shen. Prompt optimizer. <https://github.com/linshenx/prompt-optimizer>,
 719 2025.

720 Ola Shorinwa, Zhiting Mei, Justin Lidard, Allen Z. Ren, and Anirudha Majumdar. A survey on
 721 uncertainty quantification of large language models: Taxonomy, open research challenges, and
 722 future directions, 2024. URL <https://arxiv.org/abs/2412.05563>.

723 Elias Stengel-Eskin, Peter Hase, and Mohit Bansal. Lacie: Listener-aware finetuning for confidence
 724 calibration in large language models, 2024. URL <https://arxiv.org/abs/2405.21028>.

725 Hua Tang, Chong Zhang, Mingyu Jin, Qinkai Yu, Zhenting Wang, Xiaobo Jin, Yongfeng Zhang,
 726 and Mengnan Du. Time series forecasting with llms: Understanding and enhancing model
 727 capabilities. *SIGKDD Explor. Newsl.*, 26(2):109–118, January 2025. ISSN 1931-0145. doi:
 728 10.1145/3715073.3715083. URL <https://doi.org/10.1145/3715073.3715083>.

729 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 730 Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng, Fred
 731 Alcober, Roy Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin, Andrea
 732 Tacchetti, Colin Gaffney, Samira Daruki, Olcan Sercinoglu, Zach Gleicher, Juliette Love, Paul
 733 Voigtlaender, Rohan Jain, Gabriela Surita, Kareem Mohamed, Rory Blevins, Junwhan Ahn, Tao
 734 Zhu, Kornraphop Kawintiranon, Orhan Firat, Yiming Gu, Yujing Zhang, Matthew Rahtz, Manaal
 735 Faruqui, Natalie Clay, Justin Gilmer, JD Co-Reyes, Ivo Penchev, Rui Zhu, Nobuyuki Morioka,
 736 Kevin Hui, Krishna Haridasan, Victor Campos, Mahdis Mahdieh, Mandy Guo, Samer Hassan,
 737 Kevin Kilgour, Arpi Vezer, Heng-Tze Cheng, Raoul de Liedekerke, Siddharth Goyal, Paul Barham,
 738 DJ Strouse, Seb Noury, Jonas Adler, Mukund Sundararajan, Sharad Vikram, Dmitry Lepikhin,
 739 Michela Paganini, Xavier Garcia, Fan Yang, Dasha Valter, Maja Trebacz, Kiran Vodrahalli,
 740 Chulayuth Asawaroengchai, Roman Ring, Norbert Kalb, Livio Baldini Soares, Siddhartha Brahma,
 741 David Steiner, Tianhe Yu, Fabian Mentzer, Antoine He, Lucas Gonzalez, Bibo Xu, Raphael Lopez
 742 Kaufman, Laurent El Shafey, Junhyuk Oh, Tom Hennigan, George van den Driessche, Seth Odoom,
 743 Mario Lucic, Becca Roelofs, Sid Lall, Amit Marathe, Betty Chan, Santiago Ontanon, Luheng He,
 744 Denis Teplyashin, Jonathan Lai, Phil Crone, Bogdan Damoc, Lewis Ho, Sebastian Riedel, Karel
 745 Lenc, Chih-Kuan Yeh, Aakanksha Chowdhery, Yang Xu, Mehran Kazemi, Ehsan Amid, Anastasia
 746 Petrushkina, Kevin Swersky, Ali Khodaei, Gowoon Chen, Chris Larkin, Mario Pinto, Geng Yan,
 747 Adria Puigdomenech Badia, Piyush Patil, Steven Hansen, Dave Orr, Sebastien M. R. Arnold,
 748 Jordan Grimstad, Andrew Dai, Sholto Douglas, Rishika Sinha, Vikas Yadav, Xi Chen, Elena
 749 Gribovskaya, Jacob Austin, Jeffrey Zhao, Kaushal Patel, Paul Komarek, Sophia Austin, Sebastian
 750 Borgeaud, Linda Friso, Abhimanyu Goyal, Ben Caine, Kris Cao, Da-Woon Chung, Matthew
 751 Lamm, Gabe Barth-Maron, Thais Kagohara, Kate Olszewska, Mia Chen, Kaushik Shivakumar,
 752 Rishabh Agarwal, Harshal Godhia, Ravi Rajwar, Javier Snaider, Xerxes Dotiwalla, Yuan Liu,
 753 Aditya Barua, Victor Ungureanu, Yuan Zhang, Bat-Orgil Batsaikhan, Mateo Wirth, James Qin, Ivo
 754 Danihelka, Tulsee Doshi, Martin Chadwick, Jilin Chen, Sanil Jain, Quoc Le, Arjun Kar, Madhu

756 Gurumurthy, Cheng Li, Ruoxin Sang, Fangyu Liu, Lampros Lamprou, Rich Munoz, Nathan Lintz,
 757 Harsh Mehta, Heidi Howard, Malcolm Reynolds, Lora Aroyo, Quan Wang, Lorenzo Blanco, Albin
 758 Cassirer, Jordan Griffith, Dipanjan Das, Stephan Lee, Jakub Sygnowski, Zach Fisher, James Besley,
 759 Richard Powell, Zafarali Ahmed, Dominik Paulus, David Reitter, Zalan Borsos, Rishabh Joshi,
 760 Aedan Pope, Steven Hand, Vittorio Selo, Vihan Jain, Nikhil Sethi, Megha Goel, Takaki Makino,
 761 Rhys May, Zhen Yang, Johan Schalkwyk, Christina Butterfield, Anja Hauth, Alex Goldin, Will
 762 Hawkins, Evan Senter, Sergey Brin, Oliver Woodman, Marvin Ritter, Eric Noland, Minh Giang,
 763 Vijay Bolina, Lisa Lee, Tim Blyth, Ian Mackinnon, Machel Reid, Obaid Sarvana, David Silver,
 764 Alexander Chen, Lily Wang, Loren Maggiore, Oscar Chang, Nithya Attaluri, Gregory Thornton,
 765 Chung-Cheng Chiu, Oskar Bunyan, Nir Levine, Timothy Chung, Evgenii Eltyshev, Xiance Si,
 766 Timothy Lillicrap, Demetra Brady, Vaibhav Aggarwal, Boxi Wu, Yuanzhong Xu, Ross McIlroy,
 767 Kartikeya Badola, Paramjit Sandhu, Erica Moreira, Wojciech Stokowiec, Ross Hemsley, Dong
 768 Li, Alex Tudor, Pranav Shyam, Elahe Rahimtoroghi, Salem Haykal, Pablo Sprechmann, Xiang
 769 Zhou, Diana Mincu, Yujia Li, Ravi Addanki, Kalpesh Krishna, Xiao Wu, Alexandre Frechette,
 770 Matan Eyal, Allan Dafoe, Dave Lacey, Jay Whang, Thi Avrahami, Ye Zhang, Emanuel Taropa,
 771 Hanzhao Lin, Daniel Toyama, Eliza Rutherford, Motoki Sano, HyunJeong Choe, Alex Tomala,
 772 Chalence Safranek-Shrader, Nora Kassner, Mantas Pajarskas, Matt Harvey, Sean Sechrist, Meire
 773 Fortunato, Christina Lyu, Gamaleldin Elsayed, Chenkai Kuang, James Lottes, Eric Chu, Chao Jia,
 774 Chih-Wei Chen, Peter Humphreys, Kate Baumli, Connie Tao, Rajkumar Samuel, Cicero Nogueira
 775 dos Santos, Anders Andreassen, Nemanja Rakićević, Dominik Grewe, Aviral Kumar, Stephanie
 776 Winkler, Jonathan Caton, Andrew Brock, Sid Dalmia, Hannah Sheahan, Iain Barr, Yingjie Miao,
 777 Paul Natsev, Jacob Devlin, Feryal Behbahani, Flavien Prost, Yanhua Sun, Artiom Myaskovsky,
 778 Thanumalayan Sankaranarayana Pillai, Dan Hurt, Angeliki Lazaridou, Xi Xiong, Ce Zheng, Fabio
 779 Pardo, Xiaowei Li, Dan Horgan, Joe Stanton, Moran Ambar, Fei Xia, Alejandro Lince, Mingqiu
 780 Wang, Basil Mustafa, Albert Webson, Hyo Lee, Rohan Anil, Martin Wicke, Timothy Dozat,
 781 Abhishek Sinha, Enrique Piqueras, Elahe Dabir, Shyam Upadhyay, Anudhyan Boral, Lisa Anne
 782 Hendricks, Corey Fry, Josip Djolonga, Yi Su, Jake Walker, Jane Labanowski, Ronny Huang, Vedant
 783 Misra, Jeremy Chen, RJ Skerry-Ryan, Avi Singh, Shruti Rijhwani, Dian Yu, Alex Castro-Ros,
 784 Beer Changpinyo, Romina Datta, Sumit Bagri, Arnar Mar Hrafinkelsson, Marcello Maggioni,
 785 Daniel Zheng, Yury Sulsky, Shaobo Hou, Tom Le Paine, Antoine Yang, Jason Riesa, Dominika
 786 Rogozinska, Dror Marcus, Dalia El Badawy, Qiao Zhang, Luyu Wang, Helen Miller, Jeremy
 787 Greer, Lars Lowe Sjos, Azade Nova, Heiga Zen, Rahma Chaabouni, Mihaela Rosca, Jiepu Jiang,
 788 Charlie Chen, Ruibo Liu, Tara Sainath, Maxim Krikun, Alex Polozov, Jean-Baptiste Lespiau,
 789 Josh Newlan, Zeynep Cankara, Soo Kwak, Yunhan Xu, Phil Chen, Andy Coenen, Clemens
 790 Meyer, Katerina Tsihlas, Ada Ma, Juraj Gottweis, Jinwei Xing, Chenjie Gu, Jin Miao, Christian
 791 Frank, Zeynep Cankara, Sanjay Ganapathy, Ishita Dasgupta, Steph Hughes-Fitt, Heng Chen,
 792 David Reid, Keran Rong, Hongmin Fan, Joost van Amersfoort, Vincent Zhuang, Aaron Cohen,
 793 Shixiang Shane Gu, Anhad Mohananey, Anastasija Ilic, Taylor Tobin, John Wieting, Anna Bortsova,
 794 Phoebe Thacker, Emma Wang, Emily Caveness, Justin Chiu, Eren Sezener, Alex Kaskasoli,
 795 Steven Baker, Katie Milligan, Mohamed Elhawaty, Kostas Aisopos, Carl Lebsack, Nathan Byrd,
 796 Hanjun Dai, Wenhao Jia, Matthew Wiethoff, Elnaz Davoodi, Albert Weston, Lakshman Yagati,
 797 Arun Ahuja, Isabel Gao, Golan Pundak, Susan Zhang, Michael Azzam, Khe Chai Sim, Sergi
 798 Caelles, James Keeling, Abhanshu Sharma, Andy Swing, YaGuang Li, Chenxi Liu, Carrie Grimes
 799 Bostock, Yamini Bansal, Zachary Nado, Ankesh Anand, Josh Lipschultz, Abhijit Karmarkar,
 800 Lev Proleev, Abe Ittycheriah, Soheil Hassas Yeganeh, George Polovets, Aleksandra Faust, Jiao
 801 Sun, Alban Rrustemi, Pen Li, Rakesh Shivanna, Jeremiah Liu, Chris Welty, Federico Lebron,
 802 Anirudh Baddepudi, Sebastian Krause, Emilio Parisotto, Radu Soricut, Zheng Xu, Dawn Bloxwich,
 803 Melvin Johnson, Behnam Neyshabur, Justin Mao-Jones, Renshen Wang, Vinay Ramasesh, Zaheer
 804 Abbas, Arthur Guez, Constant Segal, Duc Dung Nguyen, James Svensson, Le Hou, Sarah York,
 805 Kieran Milan, Sophie Bridgers, Wiktor Gworek, Marco Tagliasacchi, James Lee-Thorp, Michael
 806 Chang, Alexey Guseynov, Ale Jakse Hartman, Michael Kwong, Ruizhe Zhao, Sheleem Kashem,
 807 Elizabeth Cole, Antoine Miech, Richard Tanburn, Mary Phuong, Filip Pavetic, Sebastien Cevey,
 808 Ramona Comanescu, Richard Ives, Sherry Yang, Cosmo Du, Bo Li, Zizhao Zhang, Mariko Iinuma,
 809 Clara Huiyi Hu, Aurko Roy, Shaan Bijwadia, Zhenkai Zhu, Danilo Martins, Rachel Saputro, Anita
 Gergely, Steven Zheng, Dawei Jia, Ioannis Antonoglou, Adam Sadovsky, Shane Gu, Yingying
 Bi, Alek Andreev, Sina Samangooei, Mina Khan, Tomas Kociský, Angelos Filos, Chintu Kumar,
 Colton Bishop, Adams Yu, Sarah Hodkinson, Sid Mittal, Premal Shah, Alexandre Moufarek, Yong
 Cheng, Adam Bloniarz, Jaehoon Lee, Pedram Pejman, Paul Michel, Stephen Spencer, Vladimir
 Feinberg, Xuehan Xiong, Nikolay Savinov, Charlotte Smith, Siamak Shakeri, Dustin Tran, Mary

810 Chesus, Bernd Bohnet, George Tucker, Tamara von Glehn, Carrie Muir, Yiran Mao, Hideto Kazawa,
 811 Ambrose Slone, Kedar Soparkar, Disha Shrivastava, James Cobon-Kerr, Michael Sharman, Jay
 812 Pavagadhi, Carlos Araya, Karolis Misiunas, Nimesh Ghelani, Michael Laskin, David Barker,
 813 Qiujiu Li, Anton Briukhov, Neil Housby, Mia Glaese, Balaji Lakshminarayanan, Nathan Schucher,
 814 Yunhao Tang, Eli Collins, Hyeontaek Lim, Fangxiaoyu Feng, Adria Recasens, Guangda Lai,
 815 Alberto Magni, Nicola De Cao, Aditya Siddhant, Zoe Ashwood, Jordi Orbay, Mostafa Dehghani,
 816 Jenny Brennan, Yifan He, Kelvin Xu, Yang Gao, Carl Saroufim, James Molloy, Xinyi Wu, Seb
 817 Arnold, Solomon Chang, Julian Schrittweiser, Elena Buchatskaya, Soroush Radpour, Martin
 818 Polacek, Skye Giordano, Ankur Bapna, Simon Tokumine, Vincent Hellendoorn, Thibault Sottiaux,
 819 Sarah Cogan, Aliaksei Severyn, Mohammad Saleh, Shantanu Thakoor, Laurent Shefey, Siyuan
 820 Qiao, Meenu Gaba, Shuo yiin Chang, Craig Swanson, Biao Zhang, Benjamin Lee, Paul Kishan
 821 Rubenstein, Gan Song, Tom Kwiatkowski, Anna Koop, Ajay Kannan, David Kao, Parker Schuh,
 822 Axel Stjerngren, Golnaz Ghiasi, Gena Gibson, Luke Vilnis, Ye Yuan, Felipe Tiengo Ferreira,
 823 Aishwarya Kamath, Ted Klimenko, Ken Franko, Kefan Xiao, Indro Bhattacharya, Miteyan Patel,
 824 Rui Wang, Alex Morris, Robin Strudel, Vivek Sharma, Peter Choy, Sayed Hadi Hashemi, Jessica
 825 Landon, Mara Finkelstein, Priya Jhakra, Justin Frye, Megan Barnes, Matthew Mauger, Dennis
 826 Daun, Khuslen Baatarsukh, Matthew Tung, Wael Farhan, Henryk Michalewski, Fabio Viola, Felix
 827 de Chaumont Quity, Charline Le Lan, Tom Hudson, Qingze Wang, Felix Fischer, Ivy Zheng,
 828 Elspeth White, Anca Dragan, Jean baptiste Alayrac, Eric Ni, Alexander Pritzel, Adam Iwanicki,
 829 Michael Isard, Anna Bulanova, Lukas Zilka, Ethan Dyer, Devendra Sachan, Srivatsan Srinivasan,
 830 Hannah Muckenheim, Honglong Cai, Amol Mandhane, Mukarram Tariq, Jack W. Rae, Gary Wang,
 831 Kareem Ayoub, Nicholas FitzGerald, Yao Zhao, Woohyun Han, Chris Alberti, Dan Garrette,
 832 Kashyap Krishnakumar, Mai Gimenez, Anselm Levskaya, Daniel Sohn, Josip Matak, Inaki Iturrate,
 833 Michael B. Chang, Jackie Xiang, Yuan Cao, Nishant Ranka, Geoff Brown, Adrian Hutter, Vahab
 834 Mirrokni, Nanxin Chen, Kaisheng Yao, Zoltan Egyed, Francois Galilee, Tyler Liechty, Praveen
 835 Kallakuri, Evan Palmer, Sanjay Ghemawat, Jasmine Liu, David Tao, Chloe Thornton, Tim Green,
 836 Mimi Jasarevic, Sharon Lin, Victor Cotruta, Yi-Xuan Tan, Noah Fiedel, Hongkun Yu, Ed Chi,
 837 Alexander Neitz, Jens Heitkaemper, Anu Sinha, Denny Zhou, Yi Sun, Charbel Kaed, Brice Hulse,
 838 Swaroop Mishra, Maria Georgaki, Sneha Kudugunta, Clement Farabet, Izhak Shafran, Daniel
 839 Vlasic, Anton Tsitsulin, Rajagopal Ananthanarayanan, Alen Carin, Guolong Su, Pei Sun, Shashank
 840 V, Gabriel Carvajal, Josef Broder, Iulia Comsa, Alena Repina, William Wong, Warren Weilun Chen,
 841 Peter Hawkins, Egor Filonov, Lucia Loher, Christoph Hirnschall, Weiyi Wang, Jingchen Ye, Andrea
 842 Burns, Hardie Cate, Diana Gage Wright, Federico Piccinini, Lei Zhang, Chu-Cheng Lin, Ionel
 843 Gog, Yana Kulizhskaya, Ashwin Sreevatsa, Shuang Song, Luis C. Cobo, Anand Iyer, Chetan Tekur,
 844 Guillermo Garrido, Zhuyun Xiao, Rupert Kemp, Huaixiu Steven Zheng, Hui Li, Ananth Agarwal,
 845 Christel Ngani, Kati Goshvadi, Rebeca Santamaria-Fernandez, Wojciech Fica, Xinyun Chen,
 846 Chris Gorgolewski, Sean Sun, Roopal Garg, Xinyu Ye, S. M. Ali Eslami, Nan Hua, Jon Simon,
 847 Pratik Joshi, Yelin Kim, Ian Tenney, Sahitya Potluri, Lam Nguyen Thiet, Quan Yuan, Florian
 848 Luisier, Alexandra Chronopoulou, Salvatore Scellato, Praveen Srinivasan, Minmin Chen, Vinod
 849 Koverkathu, Valentin Dalibard, Yaming Xu, Brennan Saeta, Keith Anderson, Thibault Sellam,
 850 Nick Fernando, Fantine Huot, Junehyuk Jung, Mani Varadarajan, Michael Quinn, Amit Raul,
 851 Maigo Le, Ruslan Habalov, Jon Clark, Komal Jalan, Kalesha Bullard, Achintya Singhal, Thang
 852 Luong, Boyu Wang, Sujeevan Rajayogam, Julian Eisenschlos, Johnson Jia, Daniel Finchelstein,
 853 Alex Yakubovich, Daniel Balle, Michael Fink, Sameer Agarwal, Jing Li, Dj Dvijotham, Shalini
 854 Pal, Kai Kang, Jaclyn Konzelmann, Jennifer Beattie, Olivier Dousse, Diane Wu, Remi Crocker,
 855 Chen Elkind, Siddhartha Reddy Jonnalagadda, Jong Lee, Dan Holtmann-Rice, Krystal Kallarackal,
 856 Rosanne Liu, Denis Vnukov, Neera Vats, Luca Invernizzi, Mohsen Jafari, Huanjie Zhou, Lilly
 857 Taylor, Jennifer Prendki, Marcus Wu, Tom Eccles, Tianqi Liu, Kavya Kopparapu, Francoise
 858 Beaufays, Christof Angermueller, Andreea Marzoca, Shourya Sarcar, Hilal Dib, Jeff Stanway,
 859 Frank Perbet, Nejc Trdin, Rachel Sterneck, Andrey Khorlin, Dinghua Li, Xihui Wu, Sonam
 860 Goenka, David Madras, Sasha Goldshtain, Willi Gierke, Tong Zhou, Yixin Liu, Yannie Liang,
 861 Anais White, Yunjie Li, Shreya Singh, Sanaz Bahargam, Mark Epstein, Sujoy Basu, Li Lao,
 862 Adnan Ozturel, Carl Crous, Alex Zhai, Han Lu, Zora Tung, Neeraj Gaur, Alanna Walton, Lucas
 863 Dixon, Ming Zhang, Amir Globerson, Grant Uy, Andrew Bolt, Olivia Wiles, Milad Nasr, Ilia
 Shumailov, Marco Selvi, Francesco Piccinno, Ricardo Aguilar, Sara McCarthy, Misha Khalman,
 864 Mrinal Shukla, Vlado Galic, John Carpenter, Kevin Villela, Haibin Zhang, Harry Richardson,
 865 James Martens, Matko Bosnjak, Shreyas Rammohan Belle, Jeff Seibert, Mahmoud Alnahlawi,
 866 Brian McWilliams, Sankalp Singh, Annie Louis, Wen Ding, Dan Popovici, Lenin Simicich, Laura
 867 Knight, Pulkit Mehta, Nishesh Gupta, Chongyang Shi, Saaber Fatehi, Jovana Mitrovic, Alex Grills,
 868

864 Joseph Pagadura, Tsendsuren Munkhdalai, Dessie Petrova, Danielle Eisenbud, Zhishuai Zhang,
 865 Damion Yates, Bhavishya Mittal, Nilesh Tripuraneni, Yannis Assael, Thomas Brovelli, Prateek
 866 Jain, Mihajlo Velimirovic, Canfer Akbulut, Jiaqi Mu, Wolfgang Macherey, Ravin Kumar, Jun Xu,
 867 Haroon Qureshi, Gheorghe Comanici, Jeremy Wiesner, Zhitao Gong, Anton Ruddock, Matthias
 868 Bauer, Nick Felt, Anirudh GP, Anurag Arnab, Dustin Zelle, Jonas Rothfuss, Bill Rosgen, Ashish
 869 Shenoy, Bryan Seybold, Xinjian Li, Jayaram Mudigonda, Goker Erdogan, Jiawei Xia, Jiri Simsa,
 870 Andrea Michi, Yi Yao, Christopher Yew, Steven Kan, Isaac Caswell, Carey Radebaugh, Andre
 871 Elisseeff, Pedro Valenzuela, Kay McKinney, Kim Paterson, Albert Cui, Eri Latorre-Chimoto,
 872 Solomon Kim, William Zeng, Ken Durden, Priya Ponnappalli, Tiberiu Sosea, Christopher A.
 873 Choquette-Choo, James Manyika, Briona Robenek, Harsha Vashisht, Sebastien Pereira, Hoi Lam,
 874 Marko Velic, Denese Owusu-Afriyie, Katherine Lee, Tolga Bolukbasi, Alicia Parrish, Shawn Lu,
 875 Jane Park, Balaji Venkatraman, Alice Talbert, Lambert Rosique, Yuchung Cheng, Andrei Sozanschi,
 876 Adam Paszke, Praveen Kumar, Jessica Austin, Lu Li, Khalid Salama, Bartek Perz, Wooyeol Kim,
 877 Nandita Dukkipati, Anthony Baryshnikov, Christos Kaplanis, XiangHai Sheng, Yuri Chervonyi,
 878 Caglar Unlu, Diego de Las Casas, Harry Askham, Kathryn Tunyasuvunakool, Felix Gimeno,
 879 Siim Poder, Chester Kwak, Matt Miecnikowski, Vahab Mirrokni, Alek Dimitriev, Aaron Parisi,
 880 Dangyi Liu, Tomy Tsai, Toby Shevlane, Christina Kouridi, Drew Garmon, Adrian Goedeckemeyer,
 881 Adam R. Brown, Anitha Vijayakumar, Ali Elqursh, Sadegh Jazayeri, Jin Huang, Sara Mc Carthy,
 882 Jay Hoover, Lucy Kim, Sandeep Kumar, Wei Chen, Courtney Biles, Garrett Bingham, Evan Rosen,
 883 Lisa Wang, Qijun Tan, David Engel, Francesco Pongetti, Dario de Cesare, Dongseong Hwang, Lily
 884 Yu, Jennifer Pullman, Srinivas Narayanan, Kyle Levin, Siddharth Gopal, Megan Li, Asaf Aharoni,
 885 Trieu Trinh, Jessica Lo, Norman Casagrande, Roopali Vij, Loic Matthey, Bramandia Ramadhana,
 886 Austin Matthews, CJ Carey, Matthew Johnson, Kremena Goranova, Rohin Shah, Shereen Ashraf,
 887 Kingshuk Dasgupta, Rasmus Larsen, Yicheng Wang, Manish Reddy Vuyyuru, Chong Jiang, Joana
 888 Ijazi, Kazuki Osawa, Celine Smith, Ramya Sree Boppana, Taylan Bilal, Yuma Koizumi, Ying
 889 Xu, Yasemin Altun, Nir Shabat, Ben Bariach, Alex Korchemniy, Kiam Choo, Olaf Ronneberger,
 890 Chimezie Iwuanyanwu, Shubin Zhao, David Soergel, Cho-Jui Hsieh, Irene Cai, Shariq Iqbal,
 891 Martin Sundermeyer, Zhe Chen, Elie Bursztein, Chaitanya Malaviya, Fadi Biadsy, Prakash Shroff,
 892 Inderjit Dhillon, Tejaswi Latkar, Chris Dyer, Hannah Forbes, Massimo Nicosia, Vitaly Nikolaev,
 893 Somer Greene, Marin Georgiev, Pidong Wang, Nina Martin, Hanie Sedghi, John Zhang, Praseem
 894 Banzal, Doug Fritz, Vikram Rao, Xuezhi Wang, Jiageng Zhang, Viorica Patrascu, Dayou Du,
 895 Igor Mordatch, Ivan Jurin, Lewis Liu, Ayush Dubey, Abhi Mohan, Janek Nowakowski, Vlad-Doru
 896 Ion, Nan Wei, Reiko Tojo, Maria Abi Raad, Drew A. Hudson, Vaishakh Keshava, Shubham
 897 Agrawal, Kevin Ramirez, Zhichun Wu, Hoang Nguyen, Ji Liu, Madhavi Sewak, Bryce Petrini,
 898 DongHyun Choi, Ivan Philips, Ziyue Wang, Ioana Bica, Ankush Garg, Jarek Wilkiewicz, Priyanka
 899 Agrawal, Xiaowei Li, Danhao Guo, Emily Xue, Naseer Shaik, Andrew Leach, Sadh MNM Khan,
 900 Julia Wiesinger, Sammy Jerome, Abhishek Chakladar, Alek Wenjiao Wang, Tina Ornduff, Folake
 901 Abu, Alireza Ghaffarkhah, Marcus Wainwright, Mario Cortes, Frederick Liu, Joshua Maynez,
 902 Andreas Terzis, Pouya Samangouei, Riham Mansour, Tomasz Kępa, François-Xavier Aubet, Anton
 903 Algymr, Dan Banica, Agoston Weisz, Andras Orban, Alexandre Senges, Ewa Andrejczuk, Mark
 904 Geller, Niccolo Dal Santo, Valentin Anklin, Majd Al Merey, Martin Baeuml, Trevor Strohman,
 905 Junwen Bai, Slav Petrov, Yonghui Wu, Demis Hassabis, Koray Kavukcuoglu, Jeff Dean, and Oriol
 906 Vinyals. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context,
 907 2024. URL <https://arxiv.org/abs/2403.05530>.

908 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 909 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
 910 2023. URL <https://arxiv.org/abs/2203.11171>.

911 Yibin Wang, Haizhou Shi, Ligong Han, Dimitris Metaxas, and Hao Wang. Blob: Bayesian low-rank
 912 adaptation by backpropagation for large language models, 2025. URL <https://arxiv.org/abs/2406.11675>.

913 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
 914 and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
 915 URL <https://arxiv.org/abs/2201.11903>.

916 Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
 917 *Proceedings of the 28th international conference on machine learning (ICML-11)*, pp. 681–688,
 918 2011.

918 Jiyang Xie, Zhanyu Ma, Jing-Hao Xue, Guoqiang Zhang, Jian Sun, Yinhe Zheng, and Jun Guo.
919 Ds-ui: Dual-supervised mixture of gaussian mixture models for uncertainty inference in image
920 recognition. *IEEE Transactions on Image Processing*, 30:9208–9219, 2021. ISSN 1941-0042. doi:
921 10.1109/tip.2021.3123555. URL <http://dx.doi.org/10.1109/TIP.2021.3123555>.
922

923 Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
924 express their uncertainty? an empirical evaluation of confidence elicitation in llms, 2024. URL
925 <https://arxiv.org/abs/2306.13063>.
926

927 Boxuan Zhang and Ruqi Zhang. Cot-uq: Improving response-wise uncertainty quantification in llms
928 with chain-of-thought, 2025. URL <https://arxiv.org/abs/2502.17214>.
929

930 Chong Zhang, Yue Deng, Xiang Lin, Bin Wang, Dianwen Ng, Hai Ye, Xingxuan Li, Yao Xiao,
931 Zhanfeng Mo, Qi Zhang, and Lidong Bing. 100 days after deepseek-r1: A survey on replication
932 studies and more directions for reasoning language models, 2025. URL <https://arxiv.org/abs/2505.00551>.
933

934 Ruqi Zhang, A Feder Cooper, and Christopher De Sa. Amagold: Amortized metropolis adjustment
935 for efficient stochastic gradient mcmc. In *International conference on artificial intelligence and
936 statistics*, pp. 2142–2152. PMLR, 2020.
937

938 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
939 Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021. URL
940 <https://arxiv.org/abs/2012.07436>.
941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972 A PROPOSITION AND PROOF
973974 **Proposition 3** *The predictive log-likelihood for the future value \mathbf{x}_{T+1} under the NBA framework can*
975 *be approximated via Monte Carlo sampling as:*

976
$$\begin{aligned} 977 \log p(\mathbf{x}_{T+1} | \mathbf{x}_{1:T}) &= \log \int p(\mathbf{x}_{T+1} | \mathbf{x}_{1:T}, \boldsymbol{\delta}) p(\boldsymbol{\delta}) d\boldsymbol{\delta} \\ 978 &\approx \log \left(\frac{1}{M} \sum_{m=1}^M p(\mathbf{x}_{T+1} | \mathbf{x}_{1:T}, \boldsymbol{\delta}_m) \right). \end{aligned} \tag{8}$$

981 Assuming a Gaussian observation model $p(\mathbf{x}_{T+1} | \mathbf{x}_{1:T}, \boldsymbol{\delta}) = \mathcal{N}(\mathbf{x}_{T+1}; \hat{f}_{T+1}(\mathbf{x}_{1:T}, \boldsymbol{\delta}), \sigma_\epsilon^2)$, this
982 simplifies to:

983
$$\log p(\mathbf{x}_{T+1} | \mathbf{x}_{1:T}) \approx \text{logsumexp}_{m=1}^M \left(-\frac{(\mathbf{x}_{T+1} - \hat{f}_{T+1}(\mathbf{x}_{1:T}, \boldsymbol{\delta}_m))^2}{2\sigma_\epsilon^2} \right) - \log M - \frac{1}{2} \log(2\pi\sigma_\epsilon^2),$$

984 where logsumexp denotes the log-sum-exp operator.
985986 A.1 PROOF OF PREDICTIVE MEAN
987988 Starting from the definition of the predictive distribution:
989

990
$$p(x_{T+1} | x_{1:T}) = \int p(x_{T+1} | x_{1:T}, \boldsymbol{\delta}) p(\boldsymbol{\delta}) d\boldsymbol{\delta}.$$

991 The expectation of x_{T+1} is therefore:
992

993
$$\mathbb{E}_{p(x_{T+1} | x_{1:T})}(x_{T+1}) = \int x_{T+1} p(x_{T+1} | x_{1:T}) dx_{T+1} = \iint x_{T+1} p(x_{T+1} | x_{1:T}, \boldsymbol{\delta}) p(\boldsymbol{\delta}) d\boldsymbol{\delta} dx_{T+1}.$$

994 Exchanging the order of integration and recognizing that the inner integral yields the model's forecast
995 $\hat{x}_{T+1}(x_{1:T}, \boldsymbol{\delta})$, we obtain:
996

997
$$\mathbb{E}_{p(x_{T+1} | x_{1:T})}(x_{T+1}) = \int \hat{x}_{T+1}(x_{1:T}, \boldsymbol{\delta}) p(\boldsymbol{\delta}) d\boldsymbol{\delta}.$$

998 The Monte Carlo estimate follows directly from this integral representation.
9991000 A.2 PROOF OF PREDICTIVE VARIANCE
10011002 The predictive variance is defined as:
1003

1004
$$\text{Var}_{p(\mathbf{x}_{T+1} | \mathbf{x}_{1:T})}(\mathbf{x}_{T+1}) = \mathbb{E}_{p(\mathbf{x}_{T+1} | \mathbf{x}_{1:T})}[\mathbf{x}_{T+1}^2] - (\mathbb{E}_{p(\mathbf{x}_{T+1} | \mathbf{x}_{1:T})}[\mathbf{x}_{T+1}])^2.$$

1005 We begin by expressing the second raw moment via the law of total expectation:
1006

1007
$$\mathbb{E}[\mathbf{x}_{T+1}^2 | \mathbf{x}_{1:T}] = \mathbb{E}_{p(\boldsymbol{\delta})} [\mathbb{E}[\mathbf{x}_{T+1}^2 | \mathbf{x}_{1:T}, \boldsymbol{\delta}]].$$

1008 For a fixed $\boldsymbol{\delta}$, the inner expectation decomposes as:
1009

1010
$$\mathbb{E}[\mathbf{x}_{T+1}^2 | \mathbf{x}_{1:T}, \boldsymbol{\delta}] = \text{Var}[\mathbf{x}_{T+1} | \mathbf{x}_{1:T}, \boldsymbol{\delta}] + (\mathbb{E}[\mathbf{x}_{T+1} | \mathbf{x}_{1:T}, \boldsymbol{\delta}])^2 = \sigma_x^2 + \hat{f}_{T+1}(\mathbf{x}_{1:T}, \boldsymbol{\delta})^2.$$

1011 Substituting back, the second moment becomes:
1012

1013
$$\mathbb{E}[\mathbf{x}_{T+1}^2 | \mathbf{x}_{1:T}] = \mathbb{E}_{p(\boldsymbol{\delta})}[\sigma_x^2 + \hat{f}_{T+1}^2] = \mathbb{E}_{p(\boldsymbol{\delta})}[\sigma_x^2] + \mathbb{E}_{p(\boldsymbol{\delta})}[\hat{f}_{T+1}^2].$$

1014 From Proposition 3, the first moment is $\mathbb{E}[\mathbf{x}_{T+1} | \mathbf{x}_{1:T}] = \mathbb{E}_{p(\boldsymbol{\delta})}[\hat{f}_{T+1}]$. Therefore, the predictive
1015 variance is:
1016

1017
$$\text{Var}[\mathbf{x}_{T+1} | \mathbf{x}_{1:T}] = (\mathbb{E}_{p(\boldsymbol{\delta})}[\sigma_x^2] + \mathbb{E}_{p(\boldsymbol{\delta})}[\hat{f}_{T+1}^2]) - (\mathbb{E}_{p(\boldsymbol{\delta})}[\hat{f}_{T+1}])^2.$$

1018 Recognizing that $\mathbb{E}_{p(\boldsymbol{\delta})}[\hat{f}_{T+1}^2] - (\mathbb{E}_{p(\boldsymbol{\delta})}[\hat{f}_{T+1}])^2 = \text{Var}_{p(\boldsymbol{\delta})}[\hat{f}_{T+1}]$, we obtain the final expression:
1019

1020
$$\text{Var}[\mathbf{x}_{T+1} | \mathbf{x}_{1:T}] = \mathbb{E}_{p(\boldsymbol{\delta})}[\sigma_x^2] + \text{Var}_{p(\boldsymbol{\delta})}[\hat{f}_{T+1}].$$

1021 The Monte Carlo approximation follows directly by estimating each term with samples $\boldsymbol{\delta}_m \sim p(\boldsymbol{\delta})$:
1022

1023
$$\text{Var}[\mathbf{x}_{T+1} | \mathbf{x}_{1:T}] \approx \frac{1}{M} \sum_{m=1}^M \sigma_{\boldsymbol{\delta}_m}^2 + \left(\frac{1}{M} \sum_{m=1}^M \hat{f}_{T+1}^2 - \left(\frac{1}{M} \sum_{m=1}^M \hat{f}_{T+1} \right)^2 \right).$$

1026 **B ALGORITHM OF NBA**
1027

1028 In Algorithm. 1, the methodology commences with a Monte Carlo noise injection stage, wherein
 1029 the original observed sequence $\mathbf{x}_{1:T}$ is perturbed by M independent noise realizations δ_m drawn
 1030 from a prescribed distribution, such as $\mathcal{N}(0, \sigma^2)$. This operation produces M noised variants of the
 1031 input, formally expressed as Eq. 5, thereby constructing an ensemble of plausible input scenarios that
 1032 embody aleatoric uncertainty at the data level. Each perturbed series $\tilde{\mathbf{x}}_{1:T}$ is subsequently mapped into
 1033 a discrete token sequence via a deterministic tokenization operator, rendering it suitable for processing
 1034 by a frozen LLM. The LLM executes an autoregressive forward pass on each tokenized sequence,
 1035 generating a corresponding predictive distribution over subsequent values, symbolically represented
 1036 as $p(\text{Token}(\mathbf{x}_{T+1}) \mid \{\text{Token}(\mathbf{x}_t)\}_{t=1}^T)$. This step effectively propagates input-level stochasticity
 1037 through the model, inducing functional diversity in the forecasts without any internal parameter
 1038 adjustments. The final phase involves statistical aggregation of the M independent predictive outputs
 1039 to approximate the predictive likelihood. The predictive mean is estimated as Eq. 3, while the total
 1040 predictive variance is derived from Eq. 4 across the ensemble, capturing both epistemic uncertainty
 1041 (via the variance of the forecasts) and aleatoric uncertainty (via the average internal variance of each
 1042 prediction). This pipeline furnishes a computationally efficient, mathematically rigorous mechanism
 1043 for deriving well-calibrated UQ from pre-trained LLMs, operating entirely in a zero-shot inference
 1044 regime.

1045 **Algorithm 1** NBA-LLM for Zero-Shot Time Series Forecasting with Uncertainty Quantification

1046 **Require:** Original time series $x_{0:T}$, number of Monte Carlo samples M , noise distribution $\mathcal{N}(0, \sigma^2)$, frozen
 1047 LLM f_θ , tokenization function Q , forecast horizon H
 1048 **Ensure:** Predictive mean $\mu_{T+1:T+H}$, predictive variance $\sigma_{T+1:T+H}^2$

1049 1: Initialize empty sets $\mathcal{P} = \{\}$, $\mathcal{F} = \{\}$ ▷ Perturbed inputs and forecasts
 1050 2: **for** $m = 1$ to M **do**
 1051 3: Sample noise vector $\delta_m \sim \mathcal{N}(0, \sigma^2)$ of length $T + 1$
 1052 4: Generate perturbed series: $\tilde{\mathbf{x}}_{0:T}^{(m)} \leftarrow x_{0:T} + \delta_m$
 1053 5: Tokenize input: $S^{(m)} \leftarrow Q(\tilde{\mathbf{x}}_{0:T}^{(m)})$
 1054 6: Obtain forecast: $\hat{\mathbf{x}}_{T+1:T+H}^{(m)} \leftarrow f_\theta(S^{(m)})$ ▷ Autoregressive generation
 1055 7: Invert tokenization: $\hat{y}_{t^*}^{(m,n)} = Q^{-1}(\hat{S}_{t^*}^{(m,n)})$;
 1056 8: $\mathcal{P} \leftarrow \mathcal{P} \cup \{\tilde{\mathbf{x}}_{0:T}^{(m)}\}$, $\mathcal{F} \leftarrow \mathcal{F} \cup \{\hat{\mathbf{x}}_{T+1:T+H}^{(m)}\}$
 1057 9: **end for**
 1058 10: Compute the median forecast for this sample: $\hat{y}_{t^*}^{(m)} = \text{median}\{\hat{y}_{t^*}^{(m,1)}, \dots, \hat{y}_{t^*}^{(m,N)}\}$;
 1059 11: Final prediction: $\hat{y}_{t^*} = \text{median}\{\hat{y}_{t^*}^1, \hat{y}_{t^*}^2, \dots, \hat{y}_{t^*}^M\}$
 1060 12: predictive distribution: $\text{Var}(\hat{y}_{t^*}) = \frac{1}{M-1} \sum_{m=1}^M (\hat{y}_{t^*}^m - \hat{y}_{t^*})^2$.
 1061 13: Compute predictive mean: $\mu_{T+1:T+H} \leftarrow \frac{1}{M} \sum_{m=1}^M \hat{y}_{t^*}^{(m)}$
 1062 14: Compute predictive variance:
 1063 15: $\sigma_{T+1:T+H}^2 \leftarrow \frac{1}{M} \sum_{m=1}^M (\hat{y}_{t^*}^{(m)})^2 - \mu_{T+1:T+H}^2$
 1064 16: **return** $\mu_{T+1:T+H}, \sigma_{T+1:T+H}^2$

1065
1066 **C EXPERIMENT DETAIL**1069 **C.1 DATASET**

1071 **Darts** (Herzen et al., 2022). A collection comprising 8 real univariate time series datasets, including
 1072 AirPassengers, AusBeer, GasRateCO2, MonthlyMilk, Sunspots, Wine, Wooly, and HeartRate. Among
 1073 these datasets, some exhibit clear patterns, such as the AirPassengers dataset. However, there are also
 1074 irregular datasets, like the Sunspots dataset. For each time series, the last 20% of the sequence is
 1075 reserved for testing.

1076 **Informer** (Zhou et al., 2021). This dataset contains six widely recognized time series benchmarks.
 1077 The {ETTh1, ETTh2, ETTm1, ETTm2} datasets consist of 2-year electricity transformer temperature
 1078 data collected from two different counties in China, with ETTh used for 1-hour granularity and ETTm
 1079 for 15-minute granularity; {ECL} collects daily electricity consumption (in kilowatt-hours) of 321
 clients over 2 years; {Weather} contains local climatological data from nearly 1,600 locations in the

United States over a span of 4 years. Specifically, the last 30 observations of each time series are retained for testing purposes.

Memorization (Gruver et al., 2024). This dataset comprises 3 sub-datasets, namely Istanbul Traffic (traffic index data per minute in Istanbul from October 2022 to May 2023), TSMCStock (the daily stock market transaction data of Taiwan Semiconductor Manufacturing Company Limited in 2022), and Turkey Power (hourly electricity production and consumption data for Turkey from January 1, 2020, to December 31, 2022). The final 96 time steps of each time series are used for testing.

C.2 STATISTICAL VALIDATION OF NOISE INJECTION

The NBA-LLM method relies on the implicit assumption that data perturbed by noise are statistically indistinguishable from the original data. This assumption is critical to our experimental design, as the ground truth for predictions on the noisy data is defined by the original, unperturbed test set. To validate this assumption, we conducted a **Mann-Whitney U test**. This non-parametric test does not require the data to be normally distributed, making it more suitable for real-world data. The results, as presented in Table 4, consistently yielded a p -value greater than 0.05. This indicates that at a significance level of $\alpha_U = 0.05$, we can conclude that the noisy and original sequences are drawn from the same population and are, therefore, statistically indistinguishable. Taking one TS of the IstanbulTraffic dataset as an example, Fig. 4 depicts the kernel density plots comparing the noisy versus the original sequences. The kernel density curves of the noisy and original sequences nearly overlap perfectly, both exhibiting a similar bimodal normal distribution. However, the range of values in the noisy sequence is more continuous. Without altering the overall sample population, noise injection has increased the diversity of the samples. Thus, the noise injection technique proves to be a simple yet effective method.

Table 4: **Mann-Whitney U test** of the original versus noisy Istanbul-Traffic series. ($\alpha = 0.05$, Memorization split).

Index of TS	1	2	3	...
Statistic	27751.0	27615.0	27920.0	...
P -value	0.9480	0.8752	0.9615	...
Significance	✓	✓	✓	...

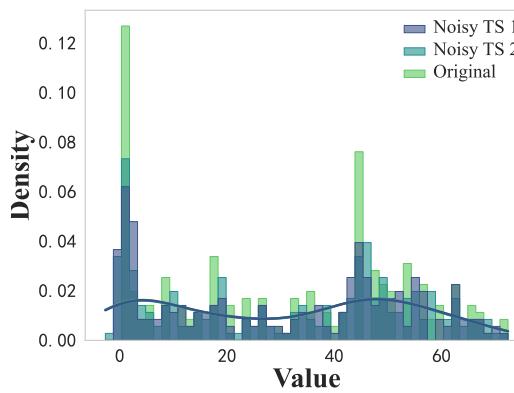
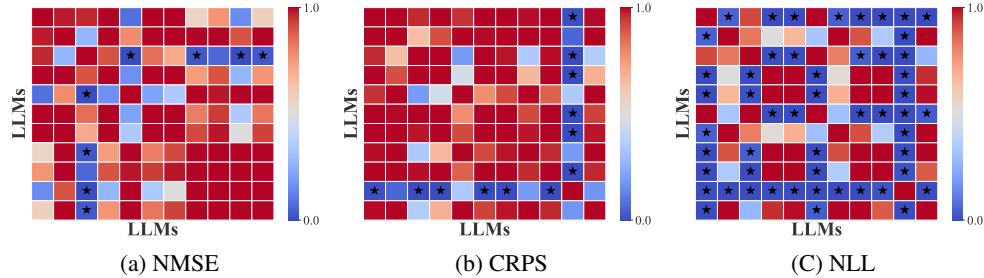


Figure 4: Kernel-density estimates of the original versus Gaussian-perturbed IstanbulTraffic series. For clarity, only the first two noisy realisations are plotted.

Furthermore, to accurately determine whether there are significant differences among these models, we conducted the **Friedman test** using evaluation metrics from all subsets. The p -values for all three metrics were found to be less than 0.05. At a significance level of 0.05, we rejected the null hypothesis, concluding that there are significant differences among the models. To further investigate the nature of these differences, we employed the **Nemenyi post-hoc test** and visualized the results

1134 using a heatmap of p -values, as shown in Fig. 5. The starred cells in the heatmap indicate significant
 1135 differences between pairs of models. We observe that, for both NMSE and CRPS, the differences
 1136 between models—whether open- or closed-source—are marginal. In sharp contrast, the NLL metric
 1137 reveals substantial heterogeneity across models, with DeepSeek-R1 exhibiting the most extreme
 1138 behaviour. This implies that the uncertainty exhibited by LLMs is not mere variance inflation, but
 1139 is instead dominated by sporadic, sharp outlier spikes. Consequently, future research must shift the
 1140 focus of UQ from "overall calibration" to "tail calibration", explicitly suppressing these catastrophic
 1141 peaks to guarantee deployable reliability.



1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2

comparison, NLL focuses more on the degree of match between the probability distribution predicted by the model and the actual observed values, whereas CRPS pays more attention to the overall shape and location of the predictive distribution.

In the evaluation of the proposed Noise-Informed Bayesian LLM for zero-shot time series forecasting, the Normalized Mean Squared Error (NMSE) serves as a critical metric for assessing point forecast accuracy. The NMSE is defined as the ratio of the mean squared error of the model's predictions to the variance of the true observed values, formally expressed as:

$$\text{NMSE} = \frac{\frac{1}{H} \sum_{t=T+1}^{T+H} (x_t - \hat{x}_t)^2}{\text{Var}(\{x_{T+1}, \dots, x_{T+H}\})}$$

where x_t denotes the true value at time t , \hat{x}_t is the corresponding predictive mean, and H is the forecast horizon. The normalization by the variance of the ground-truth sequence renders the NMSE a scale-independent measure, enabling meaningful comparison of forecasting performance across datasets with differing inherent variability. A value of NMSE less than one indicates that the model's forecast is more accurate than simply predicting the historical mean, while a value approaching zero signifies superior predictive precision. Within our Bayesian framework, this metric provides a standardized assessment of how effectively the noise-informed LLM captures the central tendency of the future series distribution, complementing probabilistic scores like NLL and CRPS that evaluate the quality of the full predictive distribution and its associated uncertainty.

C.5 NOISE DISTRIBUTION

We provide a selection of six types of noise distributions, including Gaussian, uniform, geometric, gamma, beta, and Laplace distributions. Our research encompasses both continuous and discrete distributions, incorporating a diverse array of distributional forms that collectively illustrate a rich tapestry of variability. Unless otherwise specified, α represents the noise level, and σ_x represents the standard deviation of the original sequence. The probability density functions (PDFs) of these distributions are as follows:

- Gaussian distribution: it is characterized by two parameters: the mean μ and the variance σ^2 . In our specific experiments, we set the mean to zero ($\mu = 0$), while the variance is determined by scaling the variance of the data with a noise level parameter: $\sigma^2 = \alpha \sigma_x^2$.

$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Uniform distribution: it assumes that noise is equally likely to be generated within the interval $[a, b]$, and it is commonly used as a reference for other distributions. In our study, we set $a = -\alpha \sigma_x$ and $b = \alpha \sigma_x$.

$$f(x|a, b) = \begin{cases} \frac{1}{b-a} & \text{for } a \leq x \leq b \\ 0 & \text{otherwise} \end{cases}$$

- Gamma distribution: it is characterized by two parameters: the shape parameter α and the scale parameter β . It can be interpreted as the sum of α independent exponentially distributed random variables, each with a rate parameter of $1/\beta$. In our specific experiments, we set $\alpha = 2$ and $\beta = a \sigma_x$. Here, a represents the noise level.

$$f(x|\alpha, \beta) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$

- Beta distribution: it constrains the noise within the domain $[0, 1]$ and is characterized by two shape parameters, typically denoted as α (alpha) and β (beta). By adjusting these parameters, one can generate a variety of shapes, including symmetric, skewed, and uniform distributions. In our experiments, we set $\alpha = 2$ and $\beta = 5$.

$$f(x|\alpha, \beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}$$

1242 • Laplace distribution: it is characterized by two parameters: the location parameter μ and the
 1243 scale parameter b . Compared to the Gaussian distribution, the Laplace distribution exhibits
 1244 a sharper peak and heavier tails. In our experiments, we set $\mu = 0$ and $b = \frac{\alpha\sigma_x}{\sqrt{2}}$.

1246
$$f(x|\mu, b) = \frac{1}{2b} e^{-\frac{|x-\mu|}{b}}$$

1247 • Geometric distribution: It is capable of generating discrete noise sequences, determined by
 1248 the parameter p . In our experiments, we set $p = 0.5$.

1249
$$f(x|p) = (1-p)^{x-1}p$$

1250 **C.6 PRICING OF DIFFERENT LLMs**

1251 The experimental framework of this study leverages a diverse set of LLMs accessed via API, with
 1252 computational cost being a primary consideration. The pricing structure for processing 1,000 tokens
 1253 for each model referenced in this work is detailed in Table X. The input token cost exhibited significant
 1254 variance, ranging from a maximum of \$0.03 per 1,000 tokens for GPT-4 to a notably lower \$0.00007
 1255 per 1,000 tokens for Gemini-2.0-flash-lite. A consistent premium was observed for output tokens,
 1256 with costs ranging from \$0.06 to \$0.0003 per 1,000 tokens for the same respective models. It is
 1257 critical to acknowledge the dynamic nature of these pricing schedules, which are subject to frequent
 1258 adjustments and discounts, as exemplified by a 50% reduction observed for DeepSeek-R1 during our
 1259 evaluation period. Consequently, under constrained research budgets, the selection of a cost-effective
 1260 model like Gemini-2.0-flash-lite becomes a methodologically prudent choice, ensuring the scalability
 1261 and reproducibility of the proposed noise-informed Bayesian framework without compromising the
 1262 integrity of the uncertainty quantification analysis.

1263 **Table 5: Prices of LLMs for prompt and completion tasks.**

1264 LLMs	1265 Prompt tokens	1266 Prompt price	1267 Completion tokens	1268 Completion price
1269 GPT-3.5-Turbo	1K	\$0.0005	1K	\$0.0015
1270 GPT-3.5-Turbo-Instruct	1K	\$0.0015	1K	\$0.002
1271 GPT-4	1K	\$0.03	1K	\$0.06
1272 Claude-3-5-Haiku	1K	\$0.0028	1K	\$0.014
1273 Claude-3-5-Sonnet	1K	\$0.0084	1K	\$0.042
1274 GLM-4	1K	\$0.005	1K	\$0.005
1275 Gemini-2.0-flash(lite)	1K	\$0.00007	1K	\$0.0003
1276 Qwen-Turbo	1K	\$0.0003	1K	\$0.0006
1277 Qwen2.5-32B-Instruct	-	-	-	\$0.015
1278 Qwen3-8b	1K	\$0.00035	1K	\$0.0014
1279 Qwen3-14b	1K	\$0.0007	1K	\$0.0028
1280 Qwen3-32b	1K	\$0.0014	1K	\$0.0056
1281 DeepSeek-R1	1K	\$0.001	1K	\$0.004
1282 DeepSeek-V3	1K	\$0.0008	1K	\$0.0032

1283 **C.7 RESULTS OF ABLATION STUDY**

1284 As shown in Fig. 9, we visualized the prediction results based on the GPT-3-Turbo model across
 1285 the Wine subset of DartS. The gray lines represent the training set, the orange lines represent the
 1286 test set, and the shaded areas indicate the prediction confidence intervals. Under all noise-injection
 1287 conditions, the TS predictions closely track the fluctuations of the true values, and the confidence
 1288 intervals encompass the majority of the true values, demonstrating that the NBA-LLM method
 1289 exhibits good generalizability and robustness to different noise distributions. In comparison, noise
 1290 injection following a Gamma distribution yields the best performance. We hypothesize that this might
 1291 be due to the distribution’s flexible shape and scale parameters, enabling it to model a variety of
 1292 distribution shapes and more effectively manage extreme values or outliers. Noise injection with
 1293 heavy-tailed characteristics leads to improved prediction performance and UQ.

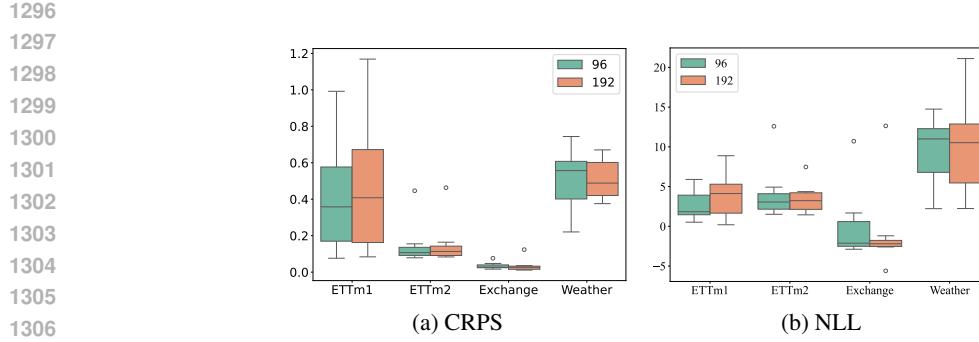


Figure 6: CRPS and NLL of NBA-LLM with different forecast horizons.

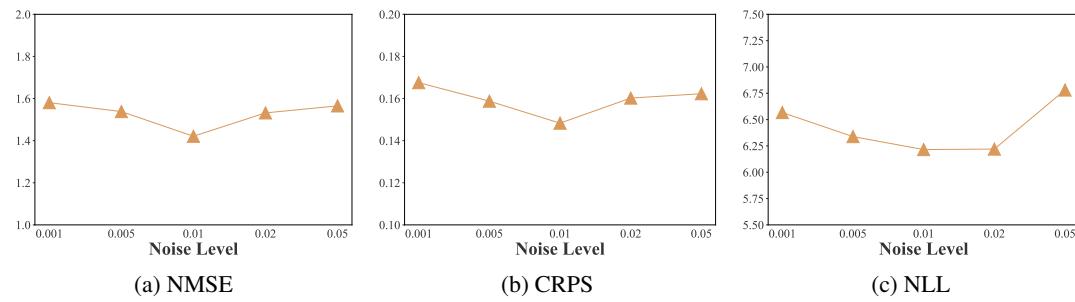
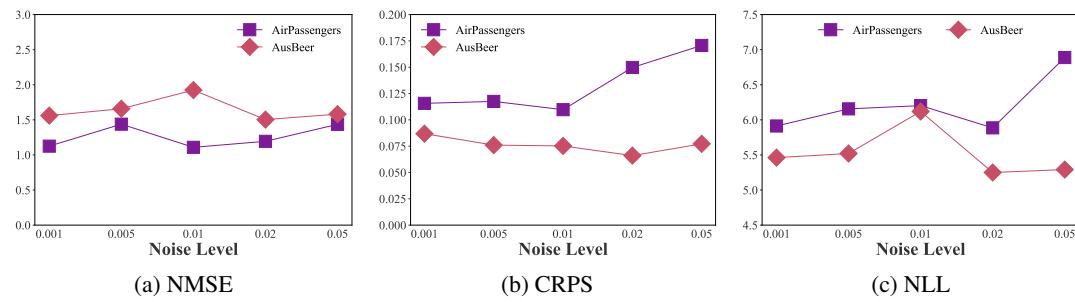
Figure 7: Impact of noise level ($\alpha \in \{0.001, 0.005, 0.01, 0.02, 0.05\}$) in NBA-LLM (GPT-3.5-Turbo) on the Darts.Figure 8: Impact of noise level ($\alpha \in \{0.001, 0.005, 0.01, 0.02, 0.05\}$) on NBA-LLM UQ evaluated on the subsets of Darts (GPT-3.5-Turbo backbone).

Table 6: UQ in NBA-LLMs under Special-Cue Strategies (GPT-3.5-Turbo backbone, TSMCStock subset of the Memorization)

Method	NMSE	CRPS	NLL
Directly	0.80	0.02	3.89
CoT	1.48	0.03	4.08
Self-Probing	1.12	0.03	4.30
Self-Correcting	1.10	0.03	4.14
Prompt-Optimizer	1.78	0.03	4.42

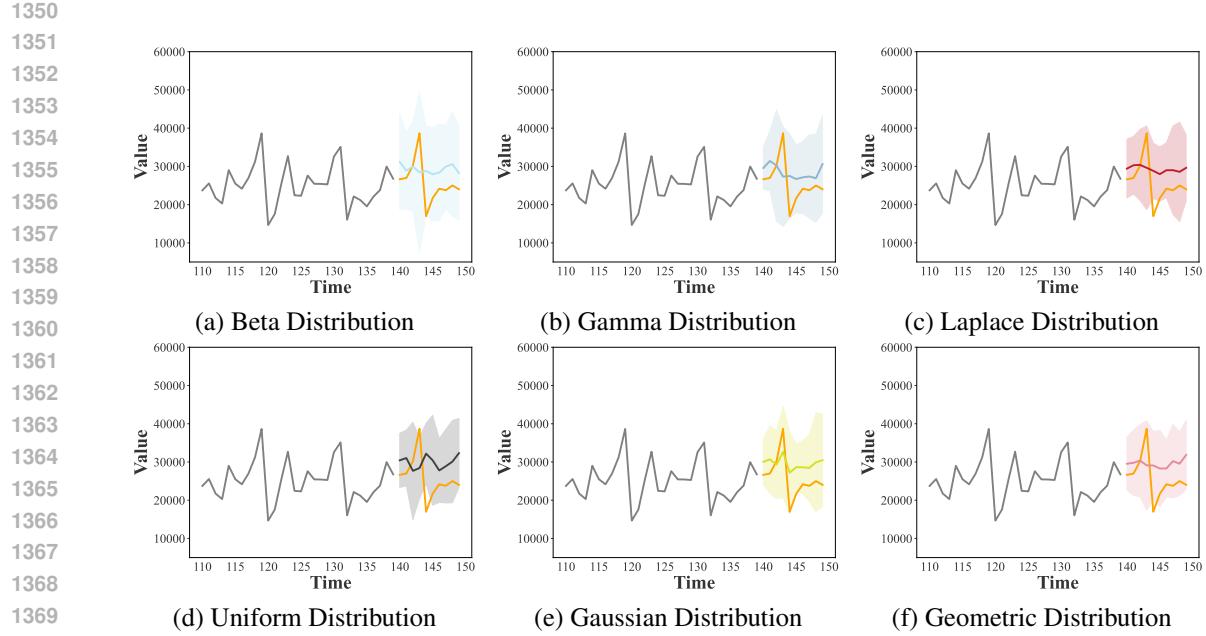


Figure 9: Impact of noise distribution on UQ in NBA-LLMs: experiments on the Wine subset of Darts (GPT-3.5-Turbo backbone).

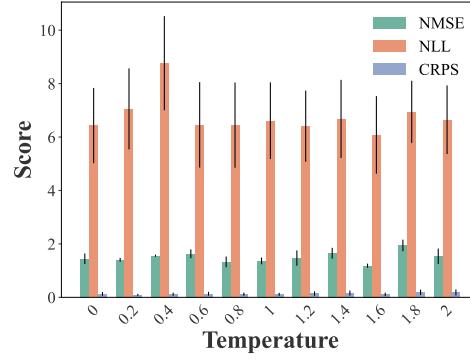


Figure 10: Impact of LLM temperature on UQ in NBA-LLMs:(Memorization benchmark with GPT-3.5-Turbo backbone).

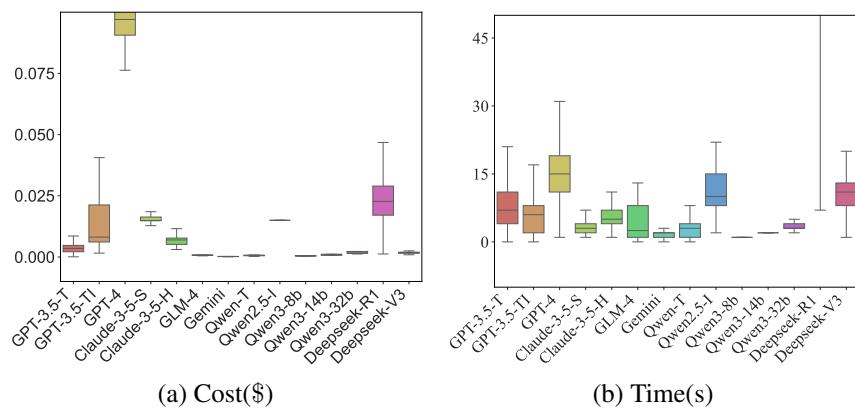
Table 7: UQ performance across three LLM variants: (i) Base (zero post-training), (ii) Instruct (after supervised fine-tuning), and (iii) Reasoning, while sweeping model scale.(TSMCStock subset of the Memorization)

Model	NMSE	CRPS	NLL
Qwen3-8b	2.34	0.03	4.57
Qwen3-14b	0.91	0.03	4.88
Qwen3-32b	1.07	0.03	4.32
DeepSeek_R1	1.50	0.03	9.33
DeepSeek_V3	1.31	0.03	4.32
GPT-3.5-turbo	0.80	0.02	3.89
GPT-3.5-turbo-instruct	0.33	0.02	3.85

1404 C.8 RUNTIME ANALYSIS IN LLM FOR TIME SERIES FORECASTING TASKS
1405

1406 Although our pipeline eliminates the need for fine-tuning or training, every API call still incurs a
1407 non-negligible expense. High inference cost has become a critical bottleneck that prevents wider
1408 adoption of LLMs, especially for academic groups with limited budgets. To contextualize this burden,
1409 Fig. 11 reports per-query latency and monetary cost for each LLM, providing an auxiliary lens
1410 through which practitioners can assess the practicality of their uncertainty-estimation performance.

1411 GPT-4 incurs the highest per-query cost, followed closely by the recently popular DeepSeek-R1.
1412 Latency paints an even starker picture: DeepSeek-R1’s average response time is 1–2 orders of
1413 magnitude slower than its peers, whereas the Qwen family consistently returns results within five
1414 seconds. Remarkably, most models exhibit both low variance in latency and a near-flat cost curve
1415 across queries, signalling stable and predictable behaviour for uncertainty estimation on time-series
1416 data. Balancing accuracy and budget, we recommend resource-constrained groups default to GLM-4.
1417 For developers, aggressively reducing DeepSeek-R1’s inference latency is now a prerequisite for
1418 commercial viability.



1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431 Figure 11: Per-query latency and monetary cost of LLMs. All measurements are aggregated from the
1432 complete response logs collected during training.
1433
1434
1435
1436 C.9 PERFORMANCES ON MEMORIZATION DATASET
1437
1438 We present and visualize the experimental results on the various sub-datasets of the Memorization
1439 dataset. (Table 8, Table 10, Table 9) Due to space limitations, we showcase only the visualizations
1440 based on the GPT-3.5-Turbo model. (Fig. 12)

1441
1442 Table 8: The NMSE metric for Memorization dataset
1443
1444

Model\Datasets	IstanbulTraffic	TSMC Stock	Turkey Power
Closed-source LLM			
GPT-3.5 _T	2.36	0.80	1.34
GPT-3.5 _{TI}	2.73	0.33	0.15
GPT-4	1.42	0.75	0.26
Clau. 3.5 _H	2.55	0.51	1.00
Clau. 3.5 _S	3.26	9.14	0.22
Open-source LLM			
GLM-4	2.50	0.36	1.03
Gemini	6.16	0.34	0.75
QW _T	2.59	1.47	0.52
QW2.5 _I	5.21	0.63	0.77
DS-R1	5.65	1.50	1.18
DS-V3	3.96	1.31	0.25

1458

1459

1460

Table 9: The CRPS metric for the Memorization dataset

1461

1462

1463

Model\Datasets	IstanbulTraffic	TSMC Stock	Turkey Power
Closed-source LLM			
GPT-3.5 _T	0.33	0.02	0.06
GPT-3.5 _{TI}	0.34	0.02	0.05
GPT-4	0.31	0.02	0.05
Clau. 3.5 _H	0.38	0.02	0.05
Clau. 3.5 _S	0.28	0.07	0.05
Open-source LLM			
GLM-4	0.45	0.02	0.06
Gemini	0.60	0.02	0.06
QW _T	0.28	0.03	0.05
QW2.5 _I	0.40	0.02	0.05
DS-R1	0.73	0.03	0.06
DS-V3	0.43	0.03	0.05

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Table 10: The NLL metric for the Memorization dataset

Model\Datasets	IstanbulTraffic	TSMC Stock	Turkey Power
Closed-source LLM			
GPT-3.5 _T	8.06	3.89	11.33
GPT-3.5 _{TI}	5.90	3.85	8.75
GPT-4	5.16	3.94	8.97
Clau. 3.5 _H	5.16	4.04	11.43
Clau. 3.5 _S	249.56	10.59	11.17
Open-source LLM			
GLM-4	5.33	3.82	9.75
Gemini	7.98	3.79	9.38
QW _T	9.73	4.19	11.54
QW2.5 _I	12.36	4.25	9.10
DS-R1	15.86	9.33	19.44
DS-V3	6.02	4.32	9.42

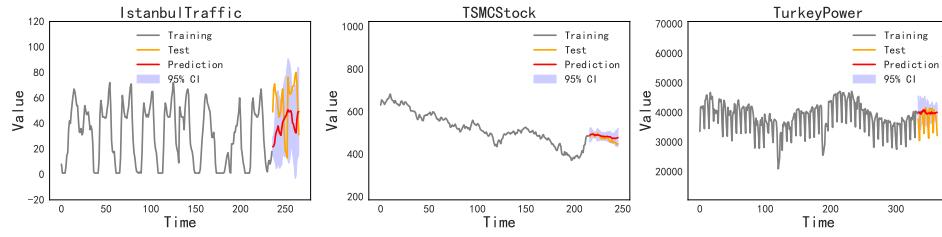


Figure 12: Visualization of forecasting across the Memorization dataset, with GPT-3.5-Turbo as the illustrative example.

1512 C.10 PERFORMANCES ON DARTS DATASET
1513
15141515 We present and visualize the experimental results on the various sub-datasets of the Darts
1516 dataset.(Table 11, Table 13 , Table 12) Due to space limitations, we showcase only the visualizations
1517 based on the GPT-3.5-Turbo model (Fig. 13).1521 Table 11: The NMSE metric for the Darts dataset
1522

Model\Datasets	AirPassengers	AusBeer	GasRateCO2	MonthlyMilk
Closed-source LLM				
GPT-3.5 _T	1.17	0.97	1.15	1.29
GPT-3.5 _{TI}	0.51	0.22	2.12	0.98
GPT-4	0.10	0.15	1.31	0.59
Clau. 3.5 _H	0.90	2.25	1.72	0.27
Clau. 3.5 _S	0.12	2.63	1.49	0.26
Open-source LLM				
GLM-4	0.80	1.15	1.62	1.22
Gemini	11.77	32.30	1.57	0.50
QW _T	0.86	2.78	1.54	0.36
QW2.5 _I	0.76	0.59	2.10	0.56
DS-R1	2.29	1.09	1.41	1.72
DS-V3	0.20	2.24	4.72	0.15
Model\Datasets	Sunspots	Wine	Wooly	HeartRate
Closed-source LLM				
GPT-3.5 _T	0.94	1.28	3.34	1.34
GPT-3.5 _{TI}	2.01	1.22	1.37	1.70
GPT-4	1.45	0.49	1.33	1.03
Clau. 3.5 _H	1.05	3.81	2.43	1.40
Clau. 3.5 _S	1.83	0.32	3.59	1.07
Open-source LLM				
GLM-4	1.10	2.19	2.97	1.10
Gemini	1.78	6.61	17.65	40.96
QW _T	2.72	3.58	3.71	1.60
QW2.5 _I	2.29	1.51	18.37	40.37
DS-R1	0.99	1.06	4.33	1.39
DS-V3	1.28	0.27	3.35	5.83

1557 C.11 PERFORMANCES ON INFORMER DATASET
1558
15591560 We present and visualize the experimental results on the various sub-datasets of the Informer dataset.
1561 Unlike the Memorization and DartS datasets, each subset of the Informer dataset is a multivariate
1562 collection. Given that our study focuses exclusively on univariate time series forecasting, we present
1563 the evaluation metrics for each variable in the Table 14 Table 19. To ensure the manuscript remains
1564 concise, the metrics for NLL and CRPS are not displayed. These metrics are available upon request
1565 from the authors. Due to space limitations, we showcase only the visualizations based on the
1566 GPT-3.5-Turbo model. (Fig. 14, Fig. 15)

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579

Table 12: The CRPS metric for the Darts dataset

Model\Datasets	AirPassengers	AusBeer	GasRateCO2	MonthlyMilk
Closed-source LLM				
GPT-3.5 _T	0.12	0.07	0.04	0.05
GPT-3.5 _{TI}	0.11	0.06	0.05	0.05
GPT-4	0.10	0.05	0.04	0.05
Clau. 3.5 _H	0.13	0.08	0.04	0.04
Clau. 3.5 _S	0.10	0.08	0.04	0.04
Open-source LLM				
GLM-4	0.12	0.09	0.04	0.05
Gemini	0.19	0.12	0.05	0.05
QW _T	0.12	0.09	0.03	0.04
QW2.5 _I	0.12	0.06	0.05	0.05
DS-R1	0.23	0.08	0.04	0.07
DS-V3	0.11	0.08	0.08	0.04
Model\Datasets	Sunspots	Wine	Wooly	HeartRate
Closed-source LLM				
GPT-3.5 _T	0.55	0.15	0.20	0.05
GPT-3.5 _{TI}	0.69	0.12	0.12	0.06
GPT-4	0.57	0.12	0.11	0.05
Clau. 3.5 _H	0.53	0.28	0.16	0.06
Clau. 3.5 _S	0.63	0.12	0.19	0.05
Open-source LLM				
GLM-4	0.57	0.22	0.18	0.05
Gemini	0.67	0.17	0.15	0.10
QW _T	0.90	0.29	0.19	0.06
QW2.5 _I	0.78	0.12	0.17	0.11
DS-R1	0.60	0.15	0.23	0.06
DS-V3	0.62	0.12	0.19	0.13

1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

Table 13: The NLL metric for the Darts dataset

Model\Datasets	AirPassengers	AusBeer	GasRateCO2	MonthlyMilk
Closed-source LLM				
GPT-3.5 _T	6.21	5.15	2.61	5.80
GPT-3.5 _{TI}	5.45	4.43	6.42	5.48
GPT-4	4.88	4.54	3.19	8.91
Clau. 3.5 _H	5.77	6.01	7.09	5.27
Clau. 3.5 _S	6.16	9.48	3.33	5.81
Open-source LLM				
GLM-4	5.66	5.16	2.99	5.89
Gemini	6.48	78243.02	3.22	8.45
QW _T	5.93	5.78	3.04	6.89
QW2.5 _I	6.13	5.50	7.28	5.13
DS-R1	25.49	5.47	6.39	10.26
DS-V3	5.32	8.17	6.80	4.99
Model\Datasets	Sunspots	Wine	Wooly	HeartRate
Closed-source LLM				
GPT-3.5 _T	6.04	10.14	10.23	3.58
GPT-3.5 _{TI}	7.50	10.03	8.31	4.87
GPT-4	9.09	9.39	9.24	4.01
Clau. 3.5 _H	8.55	50.57	12.47	8.98
Clau. 3.5 _S	6.58	18.38	19.89	6.07
Open-source LLM				
GLM-4	6.08	11.33	10.33	4.42
Gemini	11.68	10.26	2753.09	4.44
QW _T	20.64	12.00	13.87	5.50
QW2.5 _I	23.13	11.60	1289.79	5.20
DS-R1	8.70	10.07	43.32	16.11
DS-V3	6.21	9.69	10.91	5.07

Table 14: The NMSE metric for ETTh1 dataset

Model\Datasets	ETTh1_1	ETTh1_2	ETTh1_3	ETTh1_4	ETTh1_5	ETTh1_6	ETTh1_7
Closed-source LLM							
GPT-3.5 _T	1.53	2.73	1.38	2.19	1.26	3.19	1.15
GPT-3.5 _{TI}	0.90	3.17	0.83	4.16	4.49	2.88	1.96
GPT-4	0.51	1.63	0.76	1.80	0.88	0.94	1.09
Clau. 3.5 _H	0.42	1.40	0.60	2.21	1.30	0.96	1.41
Clau. 3.5 _S	0.23	1.33	0.58	1.56	0.45	0.93	4.77
Open-source LLM							
GLM-4	1.00	1.92	1.22	1.66	1.14	2.56	2.17
Gemini	0.89	1.36	0.95	1.76	1.16	1.19	1.80
QW _T	0.99	1.14	0.98	1.31	1.24	1.69	2.82
QW2.5 _I	1.01	1.21	1.03	2.27	1.82	3.51	2.79
DS-R1	1.00	8.01	1.11	5.73	7.08	4.14	2.69
DS-V3	3.63	0.97	0.95	1.01	0.64	1.42	8.88

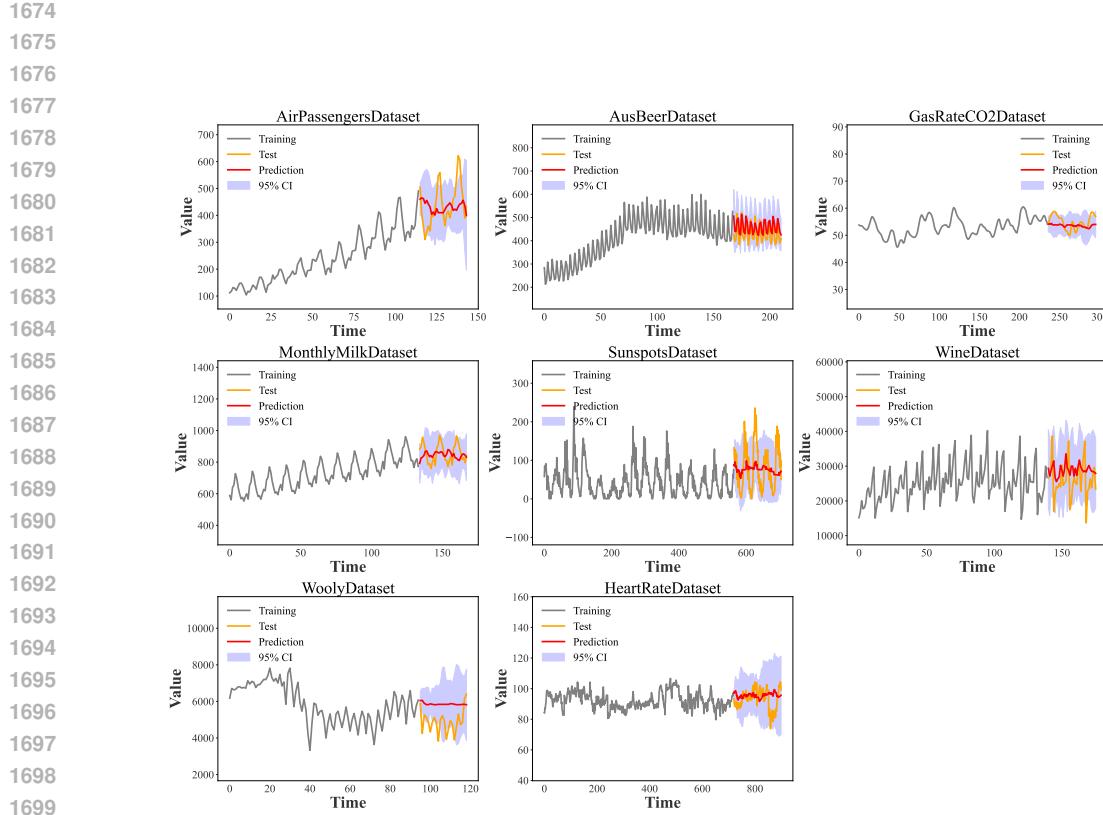


Figure 13: Visualization of forecasting across the Darts dataset, with GPT-3.5-Turbo as the illustrative example.

Table 15: The NMSE metric for ETTh2 dataset

Model\Datasets	ETTh2_1	ETTh2_2	ETTh2_3	ETTh2_4	ETTh2_5	ETTh2_6	ETTh2_7
Closed-source LLM							
GPT-3.5 _T	1.00	1.10	1.83	1.06	1.20	0.99	1.50
GPT-3.5 _{TI}	2.05	2.11	3.91	1.69	1.33	1.09	8.31
GPT-4	1.52	1.12	1.30	1.16	1.28	1.12	2.02
Clau. 3.5 _H	1.57	1.75	1.12	1.19	1.80	1.33	0.85
Clau. 3.5 _S	3.68	2.71	3.08	1.88	1.96	0.99	1.00
Open-source LLM							
GLM-4	1.31	1.38	1.05	1.42	1.40	1.24	3.10
Gemini	1.42	1.37	1.79	1.39	1.11	2.30	1.49
QW _T	1.07	1.13	1.13	1.50	0.95	1.08	1.61
QW2.5 _I	0.93	1.42	2.03	1.15	1.88	1.09	2.24
DS-R1	1.92	4.13	3.37	2.72	2.35	1.99	3.61
DS-V3	2.57	1.35	1.10	1.18	1.97	1.07	0.46

1728

1729

Table 16: The NMSE metric for ETTm1 dataset

1730

1731

1732

1733

Model\Datasets	ETTm1_1	ETTm1_2	ETTm1_3	ETTm1_4	ETTm1_5	ETTm1_6	ETTm1_7
Closed-source LLM							
GPT-3.5 _T	1.74	3.25	2.02	2.52	1.06	1.17	3.23
GPT-3.5 _{TI}	1.45	5.11	0.70	6.34	0.56	4.72	1.76
GPT-4	2.37	3.56	1.42	4.18	1.10	2.02	1.42
Clau. 3.5 _H	1.27	3.36	1.48	3.63	1.71	2.83	11.68
Clau. 3.5 _S	5.86	3.73	6.14	4.43	3.39	1.89	12.14
Open-source LLM							
GLM-4	1.31	3.19	1.71	3.94	1.62	2.41	2.63
Gemini	0.48	3.75	0.39	3.97	0.91	1.82	6.08
QW _T	2.08	4.35	2.65	6.64	1.78	1.43	5.91
QW2.5 _I	2.07	3.45	2.08	6.81	0.89	1.07	10.84
DS-R1	1.12	15.30	1.03	9.97	11.24	21.32	1.39
DS-V3	7.37	5.43	10.61	3.38	2.97	5.46	19.78

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

Table 17: The NMSE metric for ETTm2 dataset

1749

1750

1751

Model\Datasets	ETTm2_1	ETTm2_2	ETTm2_3	ETTm2_4	ETTm2_5	ETTm2_6	ETTm2_7
Closed-source LLM							
GPT-3.5 _T	1.24	1.11	1.07	2.04	1.55	1.11	5.26
GPT-3.5 _{TI}	1.00	1.64	1.07	3.34	1.04	0.90	13.16
GPT-4	1.10	1.33	1.04	2.07	1.36	1.03	1.01
Clau. 3.5 _H	1.12	1.66	1.15	1.39	1.42	1.00	7.67
Clau. 3.5 _S	3.95	4.90	4.37	1.69	1.51	1.00	10.86
Open-source LLM							
GLM-4	1.48	1.55	1.16	1.35	1.57	1.22	1.06
Gemini	19.09	2.10	1.71	2.70	1.53	1.00	10.23
QW _T	2.65	1.75	1.95	1.91	1.47	0.99	5.26
QW2.5 _I	1.23	1.67	1.10	1.68	1.46	0.97	4.52
DS-R1	1.20	1.60	1.13	1.83	2.44	1.93	1.08
DS-V3	2.99	1.23	6.34	1.11	1.43	0.96	20.15

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

Table 18: The NMSE metric for exchange_rate(ex) dataset

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Model\Datasets	ex_1	ex_2	ex_3	ex_4	ex_5	ex_6	ex_7	ex_8
Closed-source LLM								
GPT-3.5 _T	2.54	10.01	4.37	3.78	4.87	3.26	5.44	3.16
GPT-3.5 _{TI}	1.24	2.27	2.04	1.10	0.95	2.96	1.48	2.46
GPT-4	4.69	4.68	2.41	3.81	3.24	5.00	4.30	4.89
Clau. 3.5 _H	2.01	7.65	5.11	4.11	3.64	4.03	4.84	5.75
Clau. 3.5 _S	5.86	27.72	28.70	16.14	4.65	9.08	18.11	17.52
Open-source LLM								
GLM-4	1.49	9.22	3.15	4.46	3.45	3.85	4.81	3.78
Gemini	1.84	8.53	1.55	2.37	1.57	4.39	2.34	6.09
QW _T	5.19	6.98	2.03	4.47	3.55	3.67	4.40	6.76
QW2.5 _I	3.65	16.79	2.02	2.55	3.31	3.67	3.92	3.78
DS-R1	1.99	6.51	1.79	3.81	3.49	4.25	4.24	3.68
DS-V3	14.95	2.11	4.04	9.97	3.48	8.61	9.35	25.47

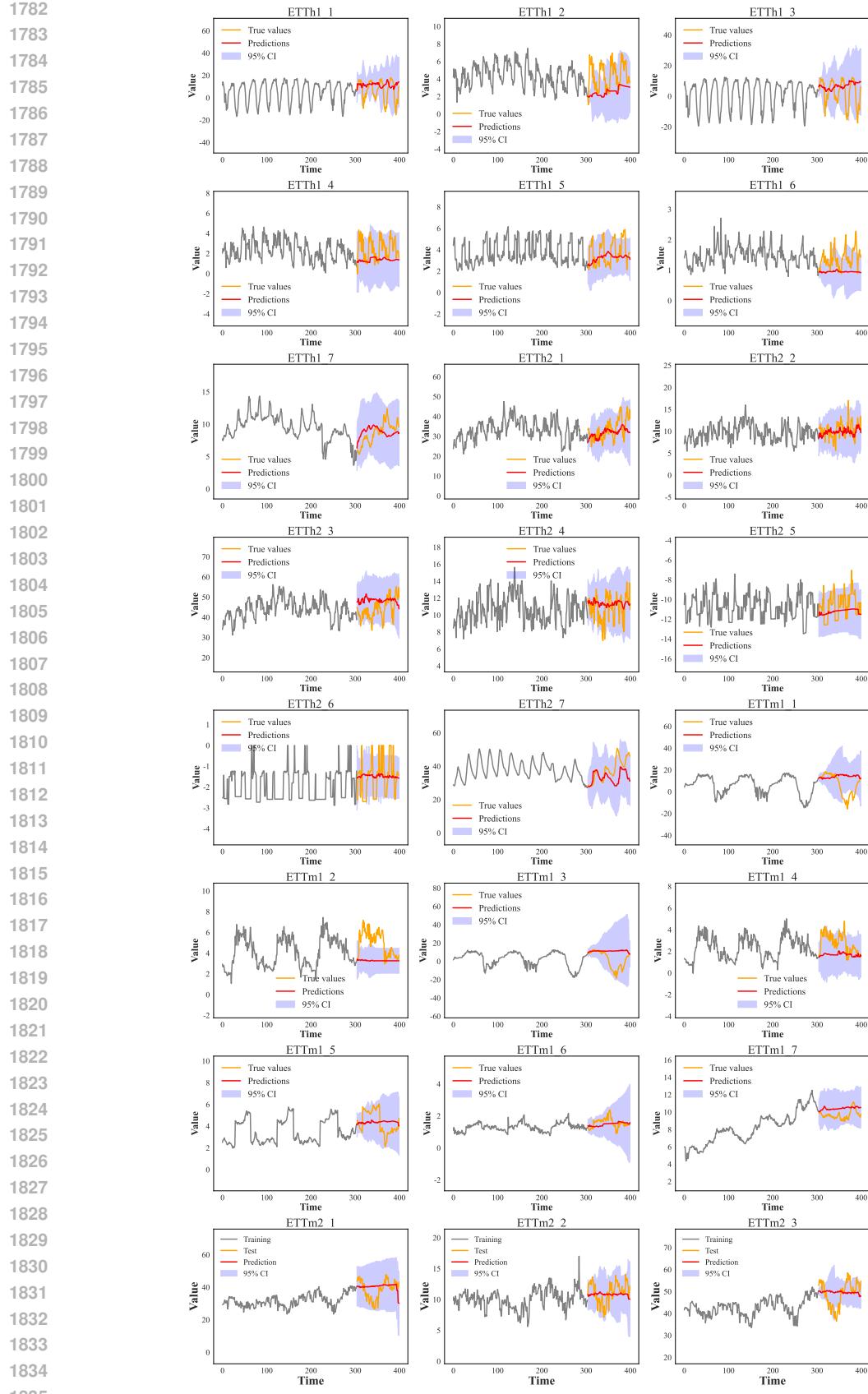


Figure 14: Visualization of forecasting across the Informer dataset, with GPT-3.5-Turbo as the illustrative example.

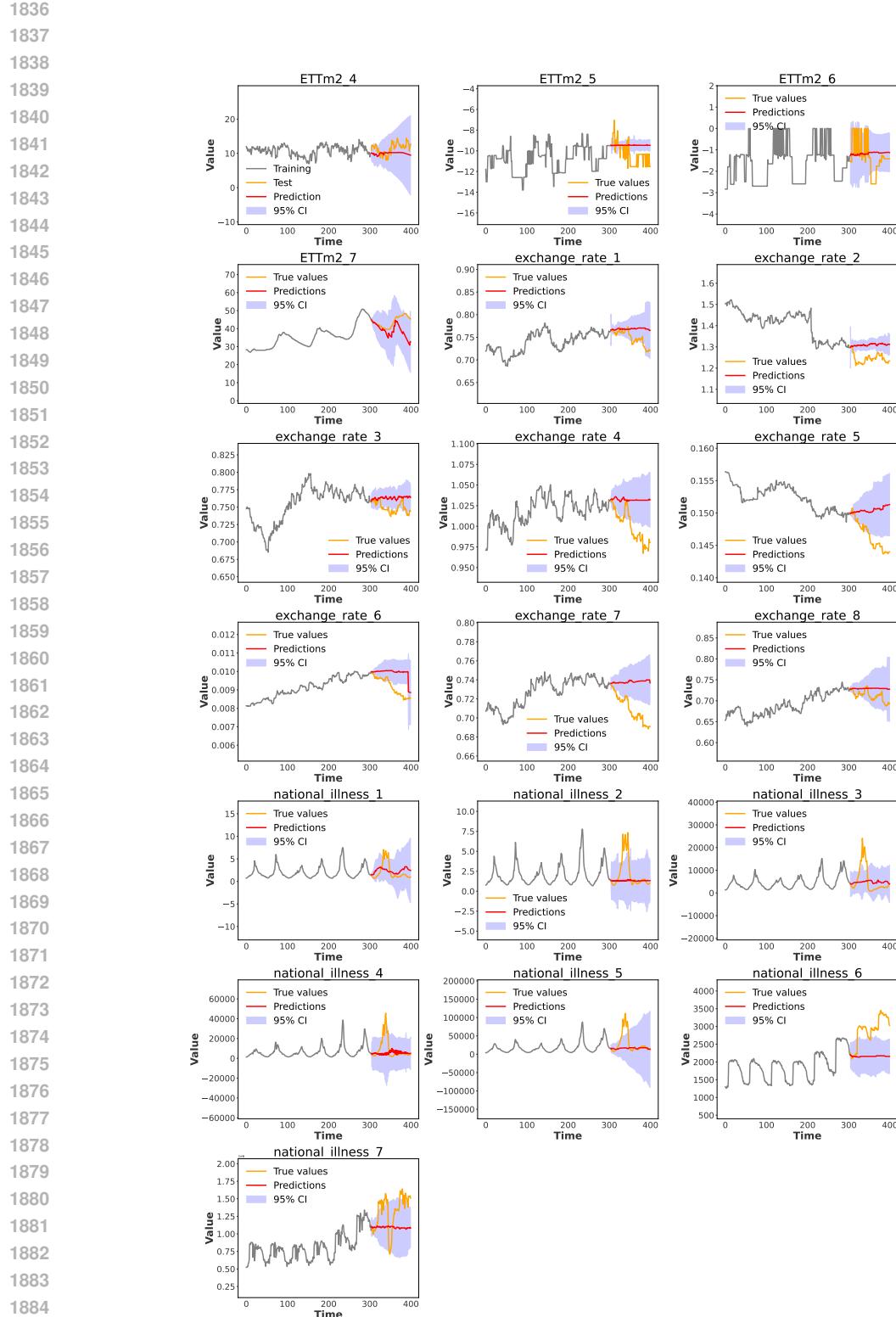


Figure 15: Visualization of forecasting across the Informer dataset, with GPT-3.5-Turbo as the illustrative example.

1890 D PROMPT OF LLMs
1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916 D.1 ZERO-SHOT TIME-SERIES FORECASTING
1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933 **Automated Answer Evaluation**
1934

1935

1936

[Instruction]

You are a helpful assistant who performs time series predictions. The user will provide a sequence, and you will predict the remaining sequence. The sequence is represented by decimal strings separated by commas. Please continue the following sequence without producing any additional text. Do not say anything like 'the next terms in the sequence are', just return the numbers. Sequence:[*input_str*],[*time_sep**]

*: the [*time_sep*] token serves to separate distinct time steps

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

Table 19: The NMSE metric for Weather dataset

Model\Datasets	Weather_1	Weather_2	Weather_3	Weather_4	Weather_5	Weather_6	Weather_7
Closed-source LLM							
GPT-3.5 _T	0.97	1.18	0.99	1.23	1.19	4.57	1.92
GPT-3.5 _{TI}	4.91	4.80	3.06	4.54	4.63	29.33	19.54
GPT-4	1.27	0.87	1.13	1.22	1.69	4.35	2.31
Clau. 3.5 _H	0.84	1.07	0.78	0.91	1.22	7.24	1.17
Clau. 3.5 _S	5.50	4.14	1.45	1.70	2.49	8.97	0.93
Open-source LLM							
GLM-4	1.14	0.83	1.01	1.21	1.23	3.56	3.79
Gemini	0.71	0.57	0.74	0.83	0.85	7.13	4.28
QW _T	1.75	0.84	1.55	1.59	1.95	16.45	7.28
QW2.5 _I	1.59	1.74	1.67	1.61	1.66	9.80	2.86
DS-R1	1.15	1.18	1.04	1.20	1.34	4.48	2.20
DS-V3	1.48	0.87	1.44	1.58	1.42	34.01	7.97

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

Table 20: Text-First Prompts in Section 4.4

Method	Prompt
Directly	the user will provide a sequence, and you will predict the remaining sequence.
CoT	Analyze step by step. The user will provide a sequence, and you will predict the remaining sequence.
Self-Probing	The user will provide a sequence, and you will predict the remaining sequence. After your prediction, please assess the confidence level of your prediction and provide your reasoning concisely.
Self-Correcting	The user will provide a sequence, and you will predict the remaining sequence. As you generate the prediction, please self-check and correct any inconsistencies or errors in your prediction to ensure accuracy.
Prompt_Optimizer	Please see the table below.

1992

1993

1994

1995

1996

1997

1998
1999

D.2 TEXT-FIRST PROMPTS

2000
2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

Prompt Optimizer**[system]**

Role: Time Series Prediction Assistant

Profile

- language: Python

- description: A helpful assistant that specializes in time series predictions.

- background: Equipped with advanced machine learning algorithms, this assistant analyzes the provided sequence and predicts the remaining sequence accurately.

- personality: Analytical, precise, and reliable.

- expertise: Machine learning, time series analysis, prediction algorithms.

- target_audience: Users in need of accurate time series predictions for forecasting purposes.

Skills

1. Core Skills

- Machine Learning: Proficient in building and training models for time series data.

- Time Series Analysis: Capable of analyzing patterns and trends in time series data.

- Prediction Algorithms: Knowledgeable in utilizing predictive algorithms for accurate forecasts.

- Data Preprocessing: Skilled in cleaning and preparing time series data for analysis.

2. Auxiliary Skills

- Python Programming: Strong programming skills in Python for implementing algorithms.

- Data Visualization: Ability to present time series data visually for better interpretation.

- Model Evaluation: Experience in evaluating the performance of prediction models.

- Feature Engineering: Competent in creating relevant features for accurate predictions.

Rules

1. Basic Principles:

- Data Integrity: Ensure the input sequence is clean and formatted correctly.

- Model Selection: Choose the appropriate model based on the characteristics of the time series data.

- Evaluation Metrics: Use appropriate metrics to evaluate the accuracy of predictions.

- Continuous Learning: Stay updated on new algorithms and techniques in time series prediction.

2. Code of Conduct:

- Respect User Privacy: Maintain confidentiality of user data and predictions.

- Transparent Communication: Clearly explain the prediction process and results to the user.

- Timely Responses: Provide predictions in a timely manner to meet user requirements.

- Professionalism: Maintain a professional attitude and demeanor in all interactions.

3. Limitations:

- Historical Data Dependency: Predictions are based on historical patterns and may be affected by unforeseen events.

- Model Assumptions: Predictions are subject to the assumptions made by the selected prediction model.

- Margin of Error: Acknowledge that predictions may have a margin of error based on the complexity of the time series data.

- External Factors: Consider external factors that may impact the accuracy of predictions.

Workflows

- Goal: To predict the remaining sequence accurately based on the provided input sequence.

- Step 1: Preprocess the input sequence by cleaning and formatting the data.

- Step 2: Train a prediction model on the processed data to learn patterns and trends.

- Step 3: Generate predictions for the remaining sequence using the trained model.

- Expected Result: Provide the user with accurate predictions for the remaining sequence.

Initialization

As a Time Series Prediction Assistant, you must adhere to the above Rules and follow the Workflows to perform accurate time series predictions.

E THE USE OF LLMs

We leveraged Gemini-2.5-Pro solely as a language-polishing assistant. After the human authors had finalized all technical content, the model was consulted for suggestions on clarity and grammatical

2052 accuracy. It played no role in problem formulation, algorithmic design, experimental planning, data
2053 analysis, or figure/table generation. Every scientific claim, mathematical statement, and empirical
2054 result was verified exclusively by the authors. No large language model was listed as an author, and
2055 we accept full responsibility for the entire manuscript.

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105