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ABSTRACT

Large language models (LLMs) exhibit strong zero-shot generalization, not only
for complex reasoning but also for time-series forecasting. Existing LLM-based
forecasters, however, almost exclusively target deterministic accuracy—via elabo-
rate prompts design, tokenization schemes, or instruction tuning—while ignoring
the predictive uncertainty that underlies both hallucination and over-confidence.
In this work, we bridge this divide by introducing a novel and model-agnostic
noise-informed Bayesian approximation (NBA) framework that quantifies the un-
certainty of frozen LLMs. We first derive a Bayesian formulation that treats
input noise as a stochastic latent variable; marginalizing this noise yields a
predictive distribution whose variance is provably calibrated to epistemic plus
aleatoric uncertainty. Consequently, the NBA adds negligible overhead, pre-
serves zero-shot accuracy, and avoids the computational cost of posterior in-
ference over LLMs. Systematic experiments on 11 representative LLMs and
simulated / real-world datasets show that NBA produces well-calibrated predic-
tion intervals across varying temperature scalings, forecast horizons, model ar-
chitectures, and prompting strategies. NBA establishes a strong reproducible
baseline for uncertainty quantification in LLMs and reveals actionable insights
for reliable zero-shot time series forecasting. Code and data are available at
https://anonymous. 4open.science/r/NBA-LLM.

1 INTRODUCTION

The advent of large language models (LLMs) has heralded a paradigm shift in artificial intelligence
(AD), demonstrating an unprecedented capacity for zero-shot and few-shot generalization across a
diverse spectrum of tasks ( , ). Owing to the efficient information retrieval and
representatlon capabilities of LLMs, they have been widely adopted in ﬁelds such as general question
answering (QA), finance, healthcare, and education ( , , ). Beyond
their prowess in natural language generation and understanding, a fascmatlng and emergent property
of these models is their ability to perform complex reasoning in domains far removed from their
core training, such as time series (TS) forecasting ( , ; , ). By leveraging
intricate prompt engineering and tokenization mechanisms ( , ), the application of
LLMs to TS forecasting represents an emerging and surprisingly effective paradigm, capitalizing
on their innate ability to discern and extrapolate complex temporal patterns in a zero-shot manner.
This capability stems from the models’ pretraining on vast corpora that implicitly encode sequences,
rhythms, and correlations, allowing them to generate forecasts without task-specific fine-tuning

( b )'

However, it has been observed that LLMs may generate responses that appear plausible but are in
fact incorrect or inaccurate, a phenomenon commonly referred to as "hallucination" ( ,

; , ). A significant limitation of this approach lies in its predominant
focus on determlmstlc point predictions, neglecting a cornerstone of trustworthy forecastlng the
quantification of predictive uncertainty. Reliable uncertainty quantification (UQ) is indispensable
for risk-sensitive decision-making in domains such as finance, epidemiology, and climate science,
where understanding the confidence of a forecast is as critical as the forecast itself. Without this,
LLM:s are prone to overconfident projections or unacknowledged errors, thereby limiting their utility
in practical applications. The growing need to quantify predictive uncertainty in high-stakes domains
has made it a pressing issue to develop LLMs that can provide reliable UQ.
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Broadly, UQ methods can be categorized into two types based on whether they require access to
the model’s internal parameters: white-box methods and black-box methods. Black-box methods
primarily aim to establish correlations between the model’s internal output layer and uncertainty,

such as CoT-UQ ( s ), BLoB ( s ). In contrast, white-box methods
focus on computing uncertainty values based on multiple responses from the large model, such
as semantic entropy ( R ) and verbalization ( , ). However, most of

these existing methods concentrate on factual tasks, such as QA and summarization ( s
), where the primary focus is on the correctness of the answers. The estimation of uncertainty
in TS forecasting tasks has received relatively limited attention. Current methodologies for UQ in
TS are ill-suited for the black-box nature of many contemporary LLMs—particularly closed-source
commercial APIs. Furthermore, the computational burden of fine-tuning open-source LLMs is often
prohibitive. These constraints collectively necessitate the development of novel black-box UQ (
, ) techniques tailored for temporal reasoning.

In response, we introduce a systematic noise-informed Bayesian approximation (NBA) framework
that quantifies the uncertainty of pretrained and frozen LLMs. Given that manipulating the inputs
to LLMs is more straightforward than adjusting their parameters, we indirectly apply Bayesian
principles to UQ by innovatively estimating the predictive distribution of the outputs conditioned
on noisy prompts. Specifically, we introduce noise into the original sequence and treat it as a
random variable. By employing Monte Carlo sampling techniques to obtain the predictive likelihood
distribution, we can quantify model uncertainty from existing zero-shot black-box LLMs. These
noisy TS are tokenized for compatibility with LLMs, and the frozen LLM generates autoregressive
forecasts across multiple noise realizations. This framework approximates the predictive distribution
via marginalizing over noise: the predictive mean is the average of forecasts from M noise samples,
while the variance integrates epistemic (model forecast variability) and aleatoric (inherent noise)
uncertainty. Specifically, our contributions are as follows:

* We introduce a novel, model-agnostic Bayesian approximation framework designed to
quantify predictive uncertainty in frozen LLMs. This is achieved through injecting carefully
calibrated noise into the prompt.

* We establish a rigorous mathematical formulation that provides critical insights into the
principles connecting noise-based perturbation to Bayesian marginalization. The derivation
of this theoretical foundation not only justifies the use of input noise injection as a valid
tool for UQ but also transforms it from a heuristic technique into a well-founded analytical
procedure.

* We present an extensive empirical analysis that systematically investigates the influence of
critical factors, including temperature scaling, prediction length, model architecture, noise
levels, noise distributions, and prompting strategies, on the quality and behavior of the
elicited uncertainties. This comprehensive study across diverse datasets and models yields
practical insights for implementing UQ in real-world applications and establishes a strong,
reproducible baseline for future research in black-box UQ.

2 RELATED WORK

Bayesian Neural Networks (BNNs): In statistics and machine learning, uncertainty is modeled in a
probabilistic manner. The more dispersed the probability distribution is, the higher the uncertainty
appears to be ( , ). The Bayesian framework provides a practical tool
for uncertainty reasoning in deep learning ( , ). Since the introduction of
BNNs ( , ), by treating network parameters as random variables with prior distributions,
Bayesian deep learnmg provides a full predictive probability distribution instead of point estimates
( s , ). However, the sheer size of modern neural networks,
with millions or even b1111ons of parameters, makes exact probabilistic inference computationally
intractable. Two classes of methods have been proposed to address this. First, sampling techniques

like Monte Carlo dropout ( , ), No-U-Turn Sampling (NUTS) (
R ), and stochastic gradient MCMC ( , ) ( R ) ( s
) approximate the true posterior distribution by drawing samples from it. Second, approximation
methods such as variational inference ( , ) ( s ) (

, ) use a simplified variational distribution to approximate the true posterior,
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minimizing the divergence between the two to enable probabilistic predictions. However, recent
studies have shown that directly applying the Bayesian framework to LLMs may not be feasible (

, ). This is primarily due to the characteristics of LLMs, which have a large number of
internal parameters ( , ) and are difficult to train ( , ), leading to
excessive memory and computational costs.

Uncertainty Quantification in LLMs: Research in UQ for LLMs is still emerging, especially in
NLP ( s ). Some methods rely on internal model information, such as token probabilities
( , ) or intermediate embeddings ( , ), which offer robustness but require
white-box access and high computational cost. Alternative black-box approaches include prompting
models to verbalize numerical confidence ( s ; s ), though these are prone
to prompt sensitivity and overconfidence ( , ). A notable limitation of such methods
is their narrow focus on factual tasks like question answering and summarization, coupled with a
lack of mathematical grounding. One line of work exphc1tly quantifies uncertainty by estimating
entropy in the semantic embedding space ( , ), yet its latent
representation must be extracted with an auxiliary deep network incurring prohibitive computatlonal
overhead. Others leverage response consistency as an uncertainty proxy (

, ), but these often lack generahzablhty beyond specific tasks hke fact
retneval Our NBA framework for TS forecasting treats noise as a random variable, ehrnlnatmg the
need for internal access or engineered prompts while achieving good convenience, mathematical rigor,
and generalization. In Table 1, we taxonomize UQ methods for LLMs, focusing on QA tasks. The
proposed NBA-LLM is uniquely applied to TS forecasting, operating as a mathematically grounded,
efficient, black-box Bayesian method without fine-tuning or external tools.

Table 1: A taxonomy of UQ methods for LLMs, categorized by white- or black-box access (W/B),
absence of fine-tuning (FT), external tool independence (ET), mathematical grounding (Theo.),
computational efficiency (Effi.: low (L) / high (H)), and Bayesian nature (Bayes.).

Type Methods Tasks W/B FT ET Theo. Effi. Bayes.
( , ) QA B v x v L X
Semantic-similarity ( , ) QA B v X v L X
( s ) QA B v X v L X
( , ) QA B x v V/ L X
Self-verbalized ( , ) QA B v V X H X
( s ) QA B x V v L X
( , ) QA B x X v L X
( s ) QA v X v v L X
Latent-information ( , ) QA v v v v H X
( s ) QA v X v v L X
( , ) QA B v v Xx H X
: ( ) ) QA B v v / H X
Consistency-based NBA-LLM (Our) Timeseies B « « v H /

3 NOISY PROMPTS AS A BAYESIAN APPROXIMATION

We systematically investigate how to enforce UQ for TS forecasting in LLMs through data perturba-
tion with noise injection and how noisy prompts impact predictive variance.

3.1 PROBLEM FORMULATION OF TS FORECASTING

Generally, a TS « = {w,;}]_, is formally decomposed into a structured signal component { f(¢)}7_,
and a stochastic noise component {¢; }7_;, such that z; = f(¢)+¢;. Here, f(t) captures the underlying
temporal dynamics, including trends, cycles, and seasonal patterns. At the same time, €; encapsulates
irreducible variability and measurement imperfections. The objective of TS forecasting extends
beyond point prediction to the probabilistic estimation of future values {xr11,Z742,..., 27411}
over a horizon H, conditioned on historical observations. This is framed as inferring the conditional
distribution p({z;}7 7 “1 | {=}{2,). Within our proposed NBA framework, the noise process
is explicitly modeled as an informative random variable, enabling principled UQ and enhanced
generalization in a zero-shot learning setting.
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3.2 UQ OF TS FORECASTING FOR LLM

Formally, UQ of TS forecasting involves inferring a predictive likelihood that marginalizes over both
the latent data-generating process and the model parameters (if applicable):

P(XT41:74H | X1T) = /p(XT+1;T+H | 0,x1.7)p(0 | x1.7)d0O, (1

where 0 represents the model parameters or latent variables. In cases where the model is treated
as a black box (e.g., a pretrained LLM) and parameter uncertainty is not directly accessible, UQ
must be performed through alternative strategies. When leveraging LL.Ms for TS forecasting, the
series is often tokenized into symbolic sequences s1.,, and forecasting becomes an autoregressive
sequence generation task. The UQ objective thus translates to quantifying uncertainty in this
token-level generative process, accounting for both the variability in token predictions and the
propagation of uncertainty through sequential steps. We suppose that a robust UQ method should
therefore: 1) provide well-calibrated probabilistic forecasts, 2) remain computationally tractable
without requiring internal model modifications, and 3) generalize across varying forecast horizons
and model architectures.

3.3 BAYESIAN MARGINALIZATION

The core challenge for TS forecasting in LLMs lies in quantifying the predictive uncertainty of the
LLM without modifying its parameters or incurring significant computational overhead. Because the
parameter uncertainty of LLMs is precluded, Eq. 1 underscores the need for alternative approaches
such as Bayesian approximation, noise injection, or sampling strategies that yield a distribution over
plausible futures rather than a single deterministic trajectory. Therefore, we define a mathematically
grounded and efficient Bayesian marginalization in the NBA framework that treats the LLM as a
black-box function f(t) subject to input perturbations. Let H = 1 and § ~ p(J) be a noise variable
injected into the TS or its embedding. The predictive distribution is approximated via marginalization
over this noise:

p(X741 | X17) = /p(XT+1 | 0,x1.7)p(d | x1.7)dd,
) 2)
~ [ i, 8))p(8)a5.

where f denotes the deterministic forward pass of the frozen LLM. From a probabilistic perspective,
the target predictive distribution is formulated as a Bayesian model average. Rather than relying on
a single deterministic forward pass of the LLM f(x), the NBA framework incorporates multiple
realizations of the input noise J, each weighted by its probability. This marginalization over ¢ follows
directly from the sum and product rules of probability, allowing the model to account for predictive
uncertainty without modifying the underlying LLM parameters. By treating noise as a key source of
uncertainty, the approach facilitates robust probabilistic forecasting in a zero-shot setting.

3.4 OBTAINING MODEL UNCERTAINTY VIA BAYESIAN APPROXIMATION

Building upon the Bayesian marginalization, we demonstrate that model uncertainty can be effectively
quantified. Due to the intractable integral in Eq. 2, we employ moment-matching to estimate the first
two moments of the distribution empirically.

Proposition 1 Given the predictive distribution p(x741 | X1.1), the corresponding predictive mean
admits the Monte Carlo approximation

B cr s pere) (X741) = / fre1(x1ir, 6) p(8) do,
M 3)

%

1 ~
M Z fT+1(X1:T767n)a 5m, ~ p(5)
m=1

where f(xl;T, d) denotes the LLM forecast under noise realization § ~ p(8), M is the number of
independent noise realizations.
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Proposition 2 The predictive variance of the future value X1 under the NBA framework can be
approximated via Monte Carlo sampling as:

Varyeps s ) (X711) = Eps)[02] + Varys) [fr1 (X7, 0im)],
M

1 ~
T2 ;
]\4mZ:1 T+1 XIT (

where af is the variance of the predictive distribution p(xry1 | X1.7,0) for a given noise 9, a§
denotes the noise variance.

2 (4)
Xl:T7 6’m)) + O-gv

Ma

m=1

Hence, we derived and proved that a mathematically grounded model uncertainty estimate can be
obtained from LLMs with a prompt-noising strategy. The detailed derivation process is provided in
Appendix A.

Noise Design and Sampling Strategies. In the context of the NBA, we specify a tractable prior
distribution for the noise variable, typically Gaussian, denoted as p(9). From a predictive estimation
standpoint, this Monte Carlo procedure approximates the predictive likelihood using discrete point

masses situated at samples drawn from the continuous prior, such that p(d) ~ Z%:r 0(6 = o) for
8m ~ p(8). The injected noise is modeled as a random variable with zero mean and variance o2,
where the variance quantifies the uncertainty inherent in the observational process. Gaussian noise, for
instance, is expressed as &, ~ N (0, 05) Beyond Gaussian assumptions, we also 1nvest1gate uniform,
Laplace, Gamma, and Beta distributions to assess robustness under various noise structures. To
regulate the influence of noise relative to the underlying signal, we incorporate a scaling mechanism
that adjusts the noise magnitude in a controlled manner. This is formalized by parameterizing the
noise variance as 0 = a®02, where o2 is the variance of the original TS and « is a scaling factor that
modulates the noise intensity. This approach ensures that the injected noise meaningfully influences
model behavior without dominating the true signal, thereby balancing sensitivity and robustness in the
forecasting process. The resulting noise amplitude is thus jointly determined by the data variability

o0, and the tunable scaling factor a.

3.5 TOKEN MODELING AND PREDICTION IN LLM

Tokenization of Noisy TS. Within the NBA framework, noise injection is formalized as a stochastic
perturbation operator P : R — R defined by

P(x:) = X¢ = X¢ + 0y, 5)

where 0, is sampled from a noise distribution with E[§;] = 0. This perturbation encourages the
model to prioritize robust latent temporal structures over incidental fluctuations, thereby enhancing
generalization without architectural changes or retraining. The perturbed series {X; } is then processed
by the LLM, improving robustness to distributional shifts and enabling uncertainty-aware forecasting.
To interface numerical TS with transformer-based LLMs, a tokenization operator Q : RT — 8T
bijectively maps the noised series {X;}7_; into a discrete token sequence S = {Token, (%)},
where S denotes the token vocabulary. This mapping preserves invertibility, satisfying

S=9Q({x}) and {x}=Q7'(5), (6)

ensuring faithful representation between numerical inputs and symbolic sequences. This tokenization
enables the LLM to leverage its sequence modeling capabilities for zero-shot forecasting, while the
injected noise provides a mechanism for Bayesian UQ through stochastic forward passes.

Token Prediction. LLMs are trained on sequential data S = {S1, So, . .., Sn }, where each sequence
S; consists of tokens from a vocabulary V. These models learn an autoregressive distribution
pe(Si) =1 = po(si; | 8i0.—1), with parameters © optimized to maximize the corpus likelihood

po(S) =TIN ;1 Pe(Si). In the NBA framework, TS data are treated as token streams, allowing the
LLM to capture implicit dynamics. By integrating Bayesian principles, the model facilitates UQ
without retraining. In this context, token prediction initiates from a noisy prompt sequence sq., and
proceeds autoregressively according to the distribution pg (s; | So.j—1). Within this formulation, TS
forecasting is reframed as a conditional sequence generation problem. The autoregressive predictive
distribution for a future time point is expressed as p(Token(xry1) | {Token(x;)}~ ;), thereby
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Figure 1: Pipeline of NBA-LLM: a lightweight and model-agnostic Bayesian-LLM with UQ for
zero-shot TS forecasting. Box (A): Monte Carlo sampling of TS with noise injection. Box (B): Token
prediction of frozen LLM with noisy prompt. Box (C): zero-shot TS forecasting with UQ.

enabling the approximation of the forecast distribution p(X711 | {X;}7_,) through token-level
predictive probabilities. Consequently, the predictive distribution is approximated as

p(xri1[{Xe}/_1) ~ p(Token(xr1)|[{Token (%) }{_y)- N
3.6 FRAMEWORK OF NBA

In Fig. 1, we present the procedural pipeline of the NBA-LLM for zero-shot TS forecasting with
integrated UQ. In the Box (a), the gray curve represents the training set of the true sequence, the
orange curve represents the test set of the true sequence, and the blue curve represents the training set
with added noise. At each time point, the noise is completely random, causing fluctuations in the
data, either increasing or decreasing. However, overall, the distribution shape of the original sequence
and the perturbed sequence is approximately similar. This indicates that our perturbed sequence still
retains sufficient original structural features, successfully simulating the uncertainty of the data. In
the bar chart, gray represents the true sequence, and blue represents the perturbed sequence. In the
Box (B), the predicted sequence (in red line) can fluctuate in accordance with the true sequence, but
there is still a certain deviation from the true sequence. This highlights the importance of evaluating
the uncertainty of LLMs in TS forecasting tasks. By quantifying the uncertainty of the large language
model’s predictions, we aim to reflect its confidence in the prediction results. In the Box (C), we
observe that even though there is a certain gap between the predicted sequence and the true sequence,
the confidence interval (in the blue area) still manages to cover the original sequence.

4 EXPERIMENTS

To rigorously evaluate the efficacy of the NBA-LLM framework, we conduct an extensive empir-
ical study for zero-shot TS forecasting and UQ. The experiments are structured to systematically
investigate the impact of various critical factors on the quality of the predictive distribution and the
calibration of UQ. We consider a series of benchmark datasets, including Darts (Herzen et al., 2022),
Informer (Zhou et al., 2021), and Memorization (Gruver et al., 2024). Detailed experiments are
provided in the Appendix C.

Model. To ensure a representative evaluation of NBA-LLM, we select a diverse set of LLMs spanning
multiple architectural families and scaling regimes. The evaluated models include the GPT series
(OpenAl et al., 2024), Claude models (Team et al., 2024), GLM-4 (GLLM et al., 2024), Gemini Flash
2.0, Qwen series (Qwen et al., 2025), and DeepSeek models (Zhang et al., 2025). This spectrum
covers both instruction-tuned (IT) and reasoning specialized variants. However, some of the latest or
more complex LLMs were not included, primarily due to cost considerations.

Metrics. We evaluate UQ using the negative log-likelihood (NLL), which measures sharpness at the
true value, and the continuous ranked probability score (CRPS), which assesses overall distributional
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calibration. These metrics offer a rigorous probabilistic benchmark. In addition, the Normalized
Mean Squared Error (NMSE) is employed to complement probabilistic metrics by quantifying the
precision of the predictive mean. Direct numerical comparisons with other methods are avoided, as
results under differing protocols are not statistically comparable.

4.1 UQ oF LLMS ON SYNTHETIC DATA

To validate the efficacy of the NBA-LLM for zero-shot TS forecasting with UQ, we generate synthetic
data by sampling from a Gaussian process (GP). The use of synthetic data eliminates the risk of data
leakage. This guarantees that the LLM, operating in a strict zero-shot regime, has had absolutely no
prior exposure—direct or indirect—to the test sequences. A series of 300 points is sampled from
the GP, with added observational noise introduced to 20% of the points to simulate real-world data
imperfections. The series is partitioned into 270 points for context and 30 points for testing.

As shown in Fig. 2, the syn-
thetic TS superimposes a 3
smooth trend with abrupt,
noise-driven irregularities,
deliberately increasing the
difficulty of uncertainty es-
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Prediction
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95% CI
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timation. The NBA-LLM
predictions not only accu-
rately track the underlying
trend but also produce well-
calibrated uncertainty (indi-
cated by confidence inter-
val (CI)) that closely en-
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Figure 2: UQ of NBA-LLM (GPT-3.5-Turbo model) on synthetic TS

velops the ground-truth val-
ues. Importantly, the pre-
dictive intervals exhibit in-
creasing width with forecasting horizon, reflecting the accumulation of uncertainty over time—a key
characteristic of principled probabilistic forecasting. This result underscores the NBA’s capacity for
robust UQ without task-specific training.

sampled from GPs with squared exponential (SE) kernel ksg(¢,t’) and
rational quadratic (RQ) kernel krq(t,t').

4.2 NBA-LLM WITH UQ FOR REAL-WORLD TS FORECASTING

As shown in Table 2, we applied NBA across various LLMs to gain preliminary insights into their
performance and UQ in TS forecasting. More results are detailed in Appendices C.9, C.10 and C.11.
Among closed-source models, GPT-4 demonstrates superior performance, while GLM-4 emerges as
the leading open-source alternative. However, both approaches exhibit substantial performance gaps
when compared to GPT-4. Although closed-source models achieve significantly higher accuracy, our
analysis reveals that uncertainty estimation capabilities remain comparable between closed-source
and open-source paradigms, with neither demonstrating clear advantages in uncertainty calibration.
Notably, we observe anomalous behaviors in specific model-dataset configurations: GPT-3.5-Turbo-
Instruct and Gemini Flash 2.0 (lite) exhibit exceptionally high NLL values on particular datasets,
indicating outlier peaks in predicted probability densities. This phenomenon suggests inherent
model overconfidence. Surprisingly, DeepSeek-R1, despite its renowned reasoning capabilities,
demonstrates uncontrolled uncertainty propagation in temporal tasks. This unexpected degradation
may stem from alignment interventions, particularly Reinforcement Learning from Human Feedback
(RLHF), which appears to introduce unintended side effects in UQ for TS applications. Our findings
underscore that UQ in zero-shot TS forecasting remains a formidable challenge for current LLMs.
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4.3 COMPARATIVE BAYESIAN MARGINALIZATION: TEMPERATURE VS. NOISE

Table 2: UQ of LLMs on the Memorize, Darts, and Informer datasets.The models are abbreviated
as follows: Clau. 3.5H (Claude-3.5-Haiku), Clau. 3.5S (Claude-3.5-Sonnet), QW (Qwen), and
DS (DeepSeek). Gemini refers to Gemini Flash 2.0. Subscripts T and I indicate Turbo and Instruct
models, respectively, and the superscript R denotes a reasoning model.

NMSE CRPS NLL
Model
Memorization Darts Informer Memorization  Darts Informer Memorization Darts Informer
Closed-source LLM
GPT-3.57 1.50£0.37 1.43+0.26 2.324+0.26 0.14£0.08 0.1540.06 0.28+0.04 7.76+1.76 6.221+0.91 3.5610.65
GPT-3.5;7 1.0740.68 1.26+£0.22 3.88+0.79 0.1440.08 0.1640.07 0.4640.08 6.174+1.16 6.561+0.63  966.78+423.86
GPT-4 0.81+0.28 0.81+0.18 2.05+£0.20 0.13+0.07 0.14+0.06 0.284+0.04 6.03+1.24 6.661+0.90 6.721+1.48

Clau. 3.5 1.364£0.50 1.734+0.36 2.55+0.36 0.15+0.09 0.1740.06 0.26+0.03 6.871+1.88 13.09+5.07 15.09+3.67
Clau. 3.55 4.21£2.14 1424041 5.67+£1.01 0.13+0.06 0.1640.06 0.33+£0.06 90.44+64.96  9.46+2.05 26.71+14.02
Average 1.79 1.33 3.29 0.14 0.16 0.32 23.45 8.40 203.77

Open-source LLM

GLM-4 1.30+0.51  1.524+0.24 2.23+0.23  0.18£0.11 0.17+0.06 0.27£0.04 6.30£1.45 6.48+£0.95 3.63+0.65
Gemini 2.42+1.53 14.1445.03 2.784+0.51 0.234+0.15 0.19£0.07 0.26+0.03 7.05£1.37 1013.084+910.75 6.14%1.45

QW 1.53+0.49 2.14+0.41 2.984+0.43 0.124+0.07 0.22£0.10 0.31+0.05 8.48+1.81 9.21+1.94 24.34+7.14
QW25 2204043 8324472 2.90+0.46 0.1640.10 0.184+0.08 0.29+0.04 8.57£1.92 169.22£149.76  17.70+4.34
DS-R1 2.78+1.18 1.78+0.37 3.83£0.62 0.274£0.19 0.18£0.06 0.38+0.05 14.88+2.42 15724426 145.61+52.01
DS-V3 1.84+£0.90 2.25+0.73 5.65£1.10 0.174£0.11 0.17£0.06 0.35+0.06 6.59+1.22 7.15+0.74 27.47+15.37
Average 2.20 5.03 3.43 0.19 0.18 0.31 8.51 1477.96 35.03

The temperature parameter in LLMs is a scaling factor Table 3: UQ of NBA-LLM with temper-
applied to the logits prior to the softmax operation in ature and noise marginalization on the
the final output layer, formally defined as P(Token) = Memorize dataset.

softmax (logits/7), where 7 denotes the temperature and
P.(Tokfen) is thg cm;rgspo'nding probability. The uncer- NMSE CRPS NLL NMSE CRPS NLL
tainty in the noise injection strategy is primarily intro- -

duced by altering the data, whereas the uncertainty in the  Seraex 331 ooy 18 o 0o oae
temperature scaling strategy is mainly introduced by con- TurkeyPower 156 0.06 24.80 134 0.06 11.33
trolling the entropy of the resulting probability distribution
over the vocabulary. By treating the temperature as the
latent variable to be integral in the Bayesian marginalization, we have the formula for the temper-
ature strategy as p(Xr41 | X1.1) = fp(f(xlzT, 7))p(T)dr. As shown in Table 3, noise injection
uniformly outperforms temperature scaling in NBA-LLM, with the gap most pronounced on NLL,
indicating that the former yields better-calibrated and more trustworthy UQ. This result cautions that
aggressive temperature tuning can seed low-probability outliers during autoregressive generation;
consequently, careful temperature initialization should be treated as a first-class design decision
rather than a post-hoc afterthought. Furthermore, we visualize the UQ under the temperature-scaling
strategy in Fig. 3.
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Figure 3: Uncertainty-aware prediction of NBA-LLM (GPT-3.5-turbo) with temperature marginaliza-
tion on the Memorization dataset.

4.4 ABLATION STUDY
In this section, we meticulously analyze the influence of a comprehensive set of parameters, including

forecast horizon, noise levels, noise distribution specifications, sampling temperature, model scale,
prompt engineering strategies, and underlying model architecture.
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Forecast Horizon Proportionally Inflates Uncertainty. In the field of TS forecasting, traditional
machine learning methods often categorize tasks based on their prediction horizon, namely, short-term
versus long-term forecasting. This study systematically evaluates the performance of GPT-3.5-Turbo
across two distinct prediction horizons—96 and 192 steps—to offer a more comprehensive perspective.
As shown in Fig. 6, NBA-LLMs consistently produce stable and reasonable results for both short-
and long-term horizons. This finding indicates a promising path forward for extending LLMs to
achieve highly effective long-term forecasting with UQ.

Sweet-Spot Noise Improves Calibration and Excess Noise Destroys It. In NBA-LLM, the noise
level o directly controls the noise variance. Theoretically, as the injected variance increases, so
does the apparent volatility of the series, monotonically amplifying the complexity of reliable UQ. In
Fig. 8, we plot the LLM estimation metrics for the Darts dataset under varying noise levels. Across
all noise levels, the overall metrics for the Darts collection remain relatively constant, showing only
mild fluctuations. The general trend is a slight decrease followed by an increase. This suggests that
injecting low levels of noise during inference can be considered an effective UQ technique.

Noise Following Heavy-Tailed Gamma Distribution Yields Better Calibration. Beyond the noise
levels, the distribution of noise also influences the distribution of input data, thereby affecting the
performance of NBA-LLM. We primarily introduced six types of noise distributions: Gaussian,
uniform, geometric, Laplace, Gamma, and Beta. The specific forms of these distributions are detailed
in Appendix C.5. As shown in Fig. 9, under all noise-injection conditions, the TS predictions closely
track the fluctuations of the true values, and the confidence intervals encompass the majority of the
true values, demonstrating that the NBA-LLM method exhibits good generalizability and robustness
to different noise distributions. Note that noise sampled from a heavy-tailed Gamma distribution
yields superior calibration properties. This is attributed to the distribution’s capacity to generate more
diverse and extreme perturbations, which better explores the function space of the LLM during the
Monte Carlo marginalization process.

Temperature Scaling Induces Minor Changes in Calibration. We conduct a systematic evaluation
of GPT-3.5-Turbo on the Memorization dataset, sweeping temperature 7 € [0, 2]. As shown in Fig. 10,
all three metrics exhibit minimal variance across the entire range, confirming that the model’s TS
forecasts are remarkably robust to temperature rescaling. Notably, no monotonic trend emerges;
instead, intermediate temperatures (7 = [0.8, 1.2]) consistently occupy a broad, low-error plateau,
making this interval a safe default when calibration stability is paramount.

Text-First Prompts Undermine UQ in TS Forecasting. To investigate the effect of specific prompts
on LLM-Time’s forecasting uncertainty, we tested several common human-heuristic prompting
strategies in this section. These strategies have been repeatedly shown to significantly influence
model output in commonsense question-answering tasks, including: Direct, CoT ( , ;
, ), Self-Probing ( , ), Self-Correcting (

; , ), Prompt-Optimizer ( , ). For the full prompt refer to
Appendlx D 2. Surprisingly, Table 6 reveals that text-first prompts impair both predictive accuracy
and UQ on numerical tasks. Augmenting the prompt with additional cognitive stages (e.g., explicit
reasoning or self-correction) systematically degrades performance.

5 CONCLUSION

In this work, we focus on quantifying the uncertainty of LLMs in TS forecasting tasks using Bayesian
methods. Specifically, we introduce noise into the original sequence and treat it as a random variable.
By employing Monte Carlo sampling techniques to obtain the predictive likelihood distribution
of predictions, we can quantify model uncertainty from existing zero-shot black-box LLMs. This
approach not only eliminates the need to access the internal parameters of large models but is also
applicable to both open-source and closed-source models. It significantly reduces computational
resources and does not require the careful design of prompts. As a zero-shot prediction task, it
dramatically lowers the technical threshold, demonstrating strong versatility, convenience, and cost-
effectiveness. We conducted extensive benchmarking using LLMs on a synthetic dataset and three
real-world datasets. Our results show that the noise injection strategy consistently enhances predictive
performance and provides reasonable UQ across all datasets, outperforming Bayesian methods based
on temperature strategies. Moreover, we performed a comprehensive set of ablation studies, analyzing
and conducting sensitivity analyses on eight factors: short-term and long-term predictions (data level),
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noise levels and noise distributions (noise level), temperature parameters, model sizes, prompt styles,
sample sizes, and model types (model level).

ETHICS STATEMENT

This work advances the development of safer Al systems by providing calibrated probabilistic
forecasts, crucial for high-stakes domains like finance, where overreliance on deterministic predictions
poses significant risks. While our framework enhances uncertainty quantification, responsible
deployment requires context-specific validation to ensure proper interpretation and action based on
the uncertainty estimates.

REPRODUCIBILITY STATEMENT

We release a fully open-source, zero-shot pipeline that turns off-the-shelf LLMs into principled
uncertainty quantification for TS forecasting. The workflow requires neither fine-tuning nor task-
specific training—only lightweight API calls—eliminating dependence on proprietary architectures
or expensive retraining. By lowering these practical barriers, we aim to accelerate community-wide
progress on reliable, large-scale generative modeling. Source code, complete proofs, and experimental
datasets are provided under the MIT licence in the Appendix.
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A PROPOSITION AND PROOF

Proposition 3 The predictive log-likelihood for the future value x4 1 under the NBA framework can
be approximated via Monte Carlo sampling as:

log p(xr41 | X1.7) = log / p(xXr41 | X1.7,0)p(8)dd
LM ®)
~ log (M Z p(xT+1 | X1:T, 5m,))~

m=1
Assuming a Gaussian observation model p(xry1 | x1.17,8) = N (X741; fT+1(X1:T7 8),02), this
simplifies to:
(11 — fro1 (X101, 8,))?
20}

1
log p(x741 | X1.7) ~ logsumexp™_, ( — ) —log M — 5 log(2ma?),

where logsumexp denotes the log-sum-exp operator.

A.1 PROOF OF PREDICTIVE MEAN

Starting from the definition of the predictive distribution:
p(zri1 | 217) = /P($T+1 | 1.7, 6) p(6) do.
The expectation of xp 1 is therefore:

EP(IT+1|€I?1;T)($T+1) = /xT-‘rl p(xT—&-l | xl:T) d$T+1 = // TT4q p($T+1 | 1‘1;T,(5)p(6) d(Sd.I‘T_H.

Exchanging the order of integration and recognizing that the inner integral yields the model’s forecast
Zr41(z1.7,9), we obtain:

]Ep(wTﬂ\wLT)(xT-&-l) = /iT-&-l(IliT’é) p(5) do.

The Monte Carlo estimate follows directly from this integral representation.

A.2 PROOF OF PREDICTIVE VARIANCE

The predictive variance is defined as:
2
Varp(xT+1\X1:T)<XT+1) = EP(XT+1\X1:T)[X%“+1} - (IEP(XT+1|XI:T)[XT+1]) .

We begin by expressing the second raw moment via the law of total expectation:
2 2
Elx71 [ x17] = Eps) [E[XT+1 | X1:T,5]] :
For a fixed 9, the inner expectation decomposes as:

E[X2T+1 | x1.7,6] = Var[xryq | X171, 0] + (E[x7r41 | Xl:T75D2 = Ui- + fT+1(X1:T,5)2-
Substituting back, the second moment becomes:

Elx%,, | x1.7] = Epsy[02 + f211] = Epsy[02] + Epes) [f44]-

From Proposition 3, the first moment is E[x71 | X1.7] = Ep5)] fT+1]. Therefore, the predictive
variance is:

. . 2
Varlxr | xu] = (Ep[02] + By [f]) = (B Fral)
N ~ 2 A
Recognizing that E,5) /4] — (]Ep(5) [fT+1]) = Vary,s)[fr+1], we obtain the final expression:
Var[xT+1 ‘ Xl:T] = Ep(5) [03:] + Varp((;) [fT—i—l]-

The Monte Carlo approximation follows directly by estimating each term with samples d,,, ~ p(9):

| M | M | M 2
Var[xr41 | x1.7] = i Z 0§m + i Z f%H — (M Z fT+1>
m=1 m=1 m=1
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B ALGORITHM OF NBA

In Algorithm. 1, the methodology commences with a Monte Carlo noise injection stage, wherein
the original observed sequence x;.7 is perturbed by M independent noise realizations d,,, drawn
from a prescribed distribution, such as A/(0, o). This operation produces M noised variants of the
input, formally expressed as Eq. 5, thereby constructing an ensemble of plausible input scenarios that
embody aleatoric uncertainty at the data level. Each perturbed series X ;.7 is subsequently mapped into
a discrete token sequence via a deterministic tokenization operator, rendering it suitable for processing
by a frozen LLM. The LLM executes an autoregressive forward pass on each tokenized sequence,
generating a corresponding predictive distribution over subsequent values, symbolically represented
as p(Token(x7.1) | {Token(x;)}Z ;). This step effectively propagates input-level stochasticity
through the model, inducing functional diversity in the forecasts without any internal parameter
adjustments. The final phase involves statistical aggregation of the M independent predictive outputs
to approximate the predictive likelihood. The predictive mean is estimated as Eq. 3, while the total
predictive variance is derived from Eq. 4 across the ensemble, capturing both epistemic uncertainty
(via the variance of the forecasts) and aleatoric uncertainty (via the average internal variance of each
prediction). This pipeline furnishes a computationally efficient, mathematically rigorous mechanism
for deriving well-calibrated UQ from pre-trained LLMs, operating entirely in a zero-shot inference
regime.

Algorithm 1 NBA-LLM for Zero-Shot Time Series Forecasting with Uncertainty Quantification

Require: Original time series 0.7, number of Monte Carlo samples M, noise distribution A’(0, ¢2), frozen
LLM fo, tokenization function Q, forecast horizon H
Ensure: Predictive mean 7 1.74 1, predictive variance o2 1 T4+H

1: Initialize empty sets P = {}, F = {} > Perturbed inputs and forecasts
2: form = 1to M do
3: Sample noise vector &, ~ N(0,0?) of length 7' + 1
4 Generate perturbed series: i:én;r) — To.T + Om
5 Tokenize input: S™) « Q(:E(()"}))
6: Obtain forecast: i.’(TTj-)lzT +m & fo(S (m)) > Autoregressive generation
7: Invert tokenization: §\/"™ = Q~(SI™);
8 P« PUETILF« FU{E ) rin
9: end for
10: Compute the median forecast for this sample: 97" = median{g}él"’l), LN b
11: Final prediction ¢+ = median{g}tl* T ,Q,f\i[}
12: predictive distribution:Var(fj;+) = 57— MG — e )2
13: Compute predictive mean: pr41:7+5 — ﬁ Zi‘rf:l g&}?lﬂ,{
14: Compute predictive variance:
150 0F i rrim ¢ 15 o By 1) — Wrirren
16: return pyr41.7+H, a%+1:T+H
C EXPERIMENT DETAIL
C.1 DATASET
Darts ( s ). A collection comprising 8 real univariate time series datasets, including

AirPassengers, AusBeer, GasRateCO2, MonthlyMilk, Sunspots, Wine, Wooly, and HeartRate. Among
these datasets, some exhibit clear patterns, such as the AirPassengers dataset. However, there are also
irregular datasets, like the Sunspots dataset. For each time series, the last 20% of the sequence is
reserved for testing.

Informer ( , ). This dataset contains six widely recognized time series benchmarks.
The {ETTh1, ETTh2, ETTm1, ETTm2} datasets consist of 2-year electricity transformer temperature
data collected from two different counties in China, with ETTh used for 1-hour granularity and ETTm
for 15-minute granularity; {ECL} collects daily electricity consumption (in kilowatt-hours) of 321
clients over 2 years; { Weather} contains local climatological data from nearly 1,600 locations in the
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United States over a span of 4 years. Specifically, the last 30 observations of each time series are
retained for testing purposes.

Memorization ( , ). This dataset comprises 3 sub-datasets, namely Istanbul Traffic
(traffic index data per minute in Istanbul from October 2022 to May 2023), TSMCStock (the daily
stock market transaction data of Taiwan Semiconductor Manufacturing Company Limited in 2022),
and Turkey Power (hourly electricity production and consumption data for Turkey from January 1,
2020, to December 31, 2022). The final 96 time steps of each time series are used for testing.

C.2 STATISTICAL VALIDATION OF NOISE INJECTION

The NBA-LLM method relies on the implicit assumption that data perturbed by noise are statistically
indistinguishable from the original data. This assumption is critical to our experimental design, as
the ground truth for predictions on the noisy data is defined by the original, unperturbed test set. To
validate this assumption, we conducted a Mann-Whitney U test. This non-parametric test does not
require the data to be normally distributed, making it more suitable for real-world data. The results,
as presented in Table 4, consistently yielded a p-value greater than 0.05. This indicates that at a
significance level of oy = 0.05, we can conclude that the noisy and original sequences are drawn
from the same population and are, therefore, statistically indistinguishable. Taking one TS of the
IstanbulTraffic dataset as an example, Fig. 4 depicts the kernel density plots comparing the noisy
versus the original sequences. The kernel density curves of the noisy and original sequences nearly
overlap perfectly, both exhibiting a similar bimodal normal distribution. However, the range of values
in the noisy sequence is more continuous. Without altering the overall sample population, noise
injection has increased the diversity of the samples. Thus, the noise injection technique proves to be
a simple yet effective method.

Table 4: Mann-Whitney U test of the original versus noisy Istanbul-Traffic series. (a = 0.05,
Memorization split).

Index of TS 1 2 3

Statistic 27751.0 27615.0 27920.0 ...
P-value 0.9480 0.8752 0.9615
Significance v/ v 4

== Noisy TS 1
0.12 == Noisy TS 2
Original

= S
o N
® =)

Density

0 20 60

40
Value

Figure 4: Kernel-density estimates of the original versus Gaussian-perturbed IstanbulTraffic series.
For clarity, only the first two noisy realisations are plotted.

Furthermore, to accurately determine whether there are significant differences among these models,
we conducted the Friedman test using evaluation metrics from all subsets. The p-values for all
three metrics were found to be less than 0.05. At a significance level of 0.05, we rejected the null
hypothesis, concluding that there are significant differences among the models. To further investigate
the nature of these differences, we employed the Nemenyi post-hoc test and visualized the results
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using a heatmap of p-values, as shown in Fig. 5. The starred cells in the heatmap indicate significant
differences between pairs of models. We observe that, for both NMSE and CRPS, the differences
between models—whether open- or closed-source—are marginal. In sharp contrast, the NLL metric
reveals substantial heterogeneity across models, with DeepSeek-R1 exhibiting the most extreme
behaviour. This implies that the uncertainty exhibited by LLMs is not mere variance inflation, but
is instead dominated by sporadic, sharp outlier spikes. Consequently, future research must shift the
focus of UQ from "overall calibration" to "tail calibration", explicitly suppressing these catastrophic
peaks to guarantee deployable reliability.

Il.ﬂ

LLMs

I 0.0

(a) NMSE (b) CRPS (C)NLL
Figure 5: Heat map of p-values in Nemenyi post-hoc test. Asterisks mark entries significant at
p < 0.05. Rows and columns follow the model order in Table 2.

C.3 TEMPERATURE IN NBA-LLM

The temperature parameter in LLMs is a scaling factor applied to the logits prior to the softmax
operation in the final output layer, formally defined as P(token) = softmax(logits/T), where T
denotes the temperature. This parameter directly controls the entropy of the resulting probability
distribution over the vocabulary. When 7 — 0, the distribution sharpens, converging towards a
one-hot encoding that favors the most likely token, thereby reducing variability and producing
deterministic, high-confidence outputs. Conversely, as 7 increases, the distribution flattens, increasing
entropy and promoting diversity in generated sequences by assigning more uniform probabilities
across tokens. In the context of uncertainty quantification, temperature scaling can be interpreted as a
simple yet effective calibration mechanism, where 7 > 1 can mitigate overconfidence by smoothing
the predicted probabilities, while 7 < 1 can amplify the model’s confidence in its top predictions.

It is worth noting that adjusting the temperature parameter does not alter the internal structure of
the model but purely affects the output distribution during the inference stage. Therefore, this paper
proposes a UQ method based on a temperature strategy and compares it with our UQ method based
on noise.

C.4 METRICS

In the context of noise-informed Bayesian LLMs for zero-shot time series forecasting, the quality
of uncertainty quantification is evaluated using two principled probabilistic metrics. The negative
log-likelihood (NLL) measures the average predictive density at the true observation, defined as

1 & ) .
NLL = N Zlogp(ngll |20,
i=1
where N is the number of test samples and p(x741 | 21.7) is the predictive distribution obtained via
noise marginalization. The continuous ranked probability score (CRPS) assesses the calibration of
the entire forecast distribution by comparing its cumulative distribution function F' to the empirical
distribution of the ground truth y,

oo

CRPS(F.y) = [ [F(0) = 1(szy] .

—00

where 1,1 is the Heaviside step function. These metrics jointly quantify the sharpness and calibra-
tion of predictive uncertainties derived from the noise-injected Monte Carlo sampling framework. In
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comparison, NLL focuses more on the degree of match between the probability distribution predicted
by the model and the actual observed values, whereas CRPS pays more attention to the overall shape
and location of the predictive distribution.

In the evaluation of the proposed Noise-Informed Bayesian LLM for zero-shot time series forecasting,
the Normalized Mean Squared Error (NMSE) serves as a critical metric for assessing point forecast
accuracy. The NMSE is defined as the ratio of the mean squared error of the model’s predictions to
the variance of the true observed values, formally expressed as:

T+H .
NMSE — % t:T+1(‘Tt - zt)Q
Var({xTH, . 7$T+H})

where x; denotes the true value at time ¢, 2, is the corresponding predictive mean, and H is the
forecast horizon. The normalization by the variance of the ground-truth sequence renders the NMSE
a scale-independent measure, enabling meaningful comparison of forecasting performance across
datasets with differing inherent variability. A value of NMSE less than one indicates that the model’s
forecast is more accurate than simply predicting the historical mean, while a value approaching
zero signifies superior predictive precision. Within our Bayesian framework, this metric provides a
standardized assessment of how effectively the noise-informed LLM captures the central tendency of
the future series distribution, complementing probabilistic scores like NLL and CRPS that evaluate
the quality of the full predictive distribution and its associated uncertainty.

C.5 NOISE DISTRIBUTION

We provide a selection of six types of noise distributions, including Gaussian, uniform, geometric,
gamma, beta, and Laplace distributions. Our research encompasses both continuous and discrete
distributions, incorporating a diverse array of distributional forms that collectively illustrate a rich
tapestry of variability. Unless otherwise specified, o represents the noise level, and o, represents
the standard deviation of the original sequence. The probability density functions (PDFs) of these
distributions are as follows:

* Gaussian distribution: it is characterized by two parameters: the meany and the variances?.
In our specific experiments, we set the mean to zero (¢ = 0), while the variance is determined

by scaling the variance of the data with a noise level parameter: 02 = ao?.

1 _G@—w?
flalp,o®) = Wz 2%

* Uniform distribution: it assumes that noise is equally likely to be generated within the
interval [a, b], and it is commonly used as a reference for other distributions. In our study,
we seta = —ao, and b = aoy,.

L fora<z<b
b) = b—a — —
f(@la,b) {O otherwise

* Gamma distribution: it is characterized by two parameters: the shape parameter o and
the scale parameter 5. It can be interpreted as the sum of « independent exponentially
distributed random variables, each with a rate parameter of 1//3. In our specific experiments,
we set « = 2 and 8 = ao,.Here, a represents the noise level.

e}
flzla, B) = B—x‘kle*&”

I'(a)

* Beta distribution: it constrains the noise within the domain [0, 1] and is characterized by
two shape parameters, typically denoted as « (alpha) and 3 (beta). By adjusting these
parameters, one can generate a variety of shapes, including symmetric, skewed, and uniform
distributions. In our experiments, we set « = 2 and 3 = 5.

xafl(l _ m)ﬁfl

flalo ) = g5
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* Laplace distribution: it is characterized by two parameters: the location parameter 1 and the
scale parameter b. Compared to the Gaussian distribution, the Laplace distribution exhibits
a sharper peak and heavier tails. In our experiments, we set 4 = 0 and b = O%C

1 | — g
r|lp,b) = —e T
Flalpb) = 5
* Geometric distribution: It is capable of generating discrete noise sequences, determined by
the parameter p. In our experiments, we set p = 0.5.

flzlp) =1 -p)"'p

C.6 PRICING OF DIFFERENT LLMSs

The experimental framework of this study leverages a diverse set of LLMs accessed via API, with
computational cost being a primary consideration. The pricing structure for processing 1,000 tokens
for each model referenced in this work is detailed in Table X. The input token cost exhibited significant
variance, ranging from a maximum of $0.03 per 1,000 tokens for GPT-4 to a notably lower $0.00007
per 1,000 tokens for Gemini-2.0-flash-lite. A consistent premium was observed for output tokens,
with costs ranging from $0.06 to $0.0003 per 1,000 tokens for the same respective models. It is
critical to acknowledge the dynamic nature of these pricing schedules, which are subject to frequent
adjustments and discounts, as exemplified by a 50% reduction observed for DeepSeek-R1 during our
evaluation period. Consequently, under constrained research budgets, the selection of a cost-effective
model like Gemini-2.0-flash-lite becomes a methodologically prudent choice, ensuring the scalability
and reproducibility of the proposed noise-informed Bayesian framework without compromising the
integrity of the uncertainty quantification analysis.

Table 5: Prices of LLMs for prompt and completion tasks.

LLMs Prompt tokens Prompt price Completion tokens Completion price
GPT-3.5-Turbo 1K $0.0005 1K $0.0015
GPT-3.5-Turbo-Instruct 1K $0.0015 1K $0.002
GPT-4 1K $0.03 1K $0.06
Claude-3-5-Haiku 1K $0.0028 1K $0.014
Claude-3-5-Sonnet 1K $0.0084 1K $0.042
GLM-4 1K $0.005 1K $0.005
Gemini-2.0-flash(lite) 1K $0.00007 1K $0.0003
Qwen-Turbo 1K $0.0003 1K $0.0006
Qwen2.5-32B-Instruct - - - $0.015
Qwen3-8b 1K $0.00035 1K $0.0014
Qwen3-14b 1K $0.0007 1K $0.0028
Qwen3-32b 1K $0.0014 1K $0.0056
DeepSeek-R1 1K $0.001 1K $0.004
DeepSeek-V3 1K $0.0008 1k $0.0032

C.7 RESULTS OF ABLATION STUDY

As shown in Fig. 9, we visualized the prediction results based on the GPT-3-Turbo model across
the Wine subset of DartS. The gray lines represent the training set, the orange lines represent the
test set, and the shaded areas indicate the prediction confidence intervals. Under all noise-injection
conditions, the TS predictions closely track the fluctuations of the true values, and the confidence
intervals encompass the majority of the true values, demonstrating that the NBA-LLM method
exhibits good generalizability and robustness to different noise distributions. In comparison, noise
injection following a Gamma distribution yields the best performance. We hypothesize that this might
be due to the distribution’s flexible shape and scale parameters, enabling it to model a variety of
distribution shapes and more effectively manage extreme values or outliers. Noise injection with
heavy-tailed characteristics leads to improved prediction performance and UQ.
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Figure 6: CRPS and NLL of NBA-LLM with different forecast horizons.
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Figure 8: Impact of noise level (« € {0.001,0.005,0.01,0.02,0.05} ) on NBA-LLM UQ evaluated
on the subsets of Darts (GPT-3.5-Turbo backbone).

Table 6: UQ in NBA-LLMs under Special-Cue Strategies (GPT-3.5-Turbo backbone, TSMCStock

subset of the Memorization)

Method NMSE CRPS NLL
Directly 0.80 0.02 3.89
CoT 1.48 0.03 4.08
Self-Probing 1.12 0.03 4.30
Self-Correcting 1.10 0.03 4.14

Prompt-Optimizer 1.78 0.03 4.42
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Figure 9: Impact of noise distribution on UQ in NBA-LLMs: experiments on the Wine subset of
Darts (GPT-3.5-Turbo backbone).
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Figure 10: Impact of LLM temperature on UQ in NBA-LLMs:(Memorization benchmark with
GPT-3.5-Turbo backbone).

Table 7: UQ performance across three LLM variants: (i) Base (zero post-training), (ii) Instruct (after
supervised fine-tuning), and (iii) Reasoning, while sweeping model scale.(TSMCStock subset of the
Memorization)

Model NMSE CRPS NLL
Qwen3-8b 2.34 0.03 4.57
Qwen3-14b 091 0.03 4.88
Qwen3-32b 1.07 0.03 432
DeepSeek_R1 1.50 0.03 9.33
DeepSeek_V3 1.31 0.03 4.32
GPT-3.5-turbo 0.80 0.02 3.89
GPT-3.5-turbo-instruct 0.33 0.02 3.85
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C.8 RUNTIME ANALYSIS IN LLM FOR TIME SERIES FORECASTING TASKS

Although our pipeline eliminates the need for fine-tuning or training, every API call still incurs a
non-negligible expense. High inference cost has become a critical bottleneck that prevents wider
adoption of LLMs, especially for academic groups with limited budgets. To contextualize this burden,
Fig. 11 reports per-query latency and monetary cost for each LLM, providing an auxiliary lens
through which practitioners can assess the practicality of their uncertainty-estimation performance.

GPT-4 incurs the highest per-query cost, followed closely by the recently popular DeepSeek-R1.
Latency paints an even starker picture: DeepSeek-R1’s average response time is 1-2 orders of
magnitude slower than its peers, whereas the Qwen family consistently returns results within five
seconds. Remarkably, most models exhibit both low variance in latency and a near-flat cost curve
across queries, signalling stable and predictable behaviour for uncertainty estimation on time-series
data. Balancing accuracy and budget, we recommend resource-constrained groups default to GLM-4.
For developers, aggressively reducing DeepSeek-R1’s inference latency is now a prerequisite for
commercial viability.
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Figure 11: Per-query latency and monetary cost of LLMs. All measurements are aggregated from the
complete response logs collected during training.

C.9 PERFORMANCES ON MEMORIZATION DATASET

We present and visualize the experimental results on the various sub-datasets of the Memorization
dataset.( Table 8, Table 10, Table 9)Due to space limitations, we showcase only the visualizations

based on the GPT-3.5-Turbo model. ( Fig. 12)

Table 8: The NMSE metric for Memorization dataset

Model\Datasets  IstanbulTraffic ~ TSMC Stock  Turkey Power
Closed-source LLM

GPT-3.57 2.36 0.80 1.34
GPT-3.571 2.73 0.33 0.15
GPT-4 1.42 0.75 0.26
Clau. 3.5 2.55 0.51 1.00
Clau. 3.55 3.26 9.14 0.22
Open-source LLM
GLM-4 2.50 0.36 1.03
Gemini 6.16 0.34 0.75
QWr 2.59 1.47 0.52
QW2.5; 5.21 0.63 0.77
DS-R1 5.65 1.50 1.18
DS-V3 3.96 1.31 0.25
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Table 9: The CRPS metric for the Memorization dataset

Model\Datasets  IstanbulTraffic TSMC Stock  Turkey Power
Closed-source LLM
GPT-3.57 0.33 0.02 0.06
GPT-3.5r1 0.34 0.02 0.05
GPT-4 0.31 0.02 0.05
Clau. 3.5y 0.38 0.02 0.05
Clau. 3.55 0.28 0.07 0.05
Open-source LLM
GLM-4 0.45 0.02 0.06
Gemini 0.60 0.02 0.06
QWr 0.28 0.03 0.05
QW2.5; 0.40 0.02 0.05
DS-R1 0.73 0.03 0.06
DS-V3 0.43 0.03 0.05

Table 10: The NLL metric for the Memorization dataset

Model\Datasets ~ IstanbulTraffic  TSMC Stock  Turkey Power
Closed-source LLM

GPT-3.57 8.06 3.89 11.33

GPT-3.571 5.90 3.85 8.75

GPT-4 5.16 3.94 8.97

Clau. 3.5y 5.16 4.04 11.43

Clau. 3.55 249.56 10.59 11.17

Open-source LLM

GLM-4 5.33 3.82 9.75

Gemini 7.98 3.79 9.38

QWr 9.73 4.19 11.54

QW2.5; 12.36 4.25 9.10

DS-R1 15.86 9.33 19.44

DS-V3 6.02 4.32 9.42
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Figure 12: Visualization of forecasting across the Memorization dataset, with GPT-3.5-Turbo as the
illustrative example.
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C.10 PERFORMANCES ON DARTS DATASET

We present and visualize the experimental results on the various sub-datasets of the Darts
dataset.(Table 11, Table 13, Table 12) Due to space limitations, we showcase only the visualizations
based on the GPT-3.5-Turbo model (Fig. 13).

Table 11: The NMSE metric for the Darts dataset

Model\Datasets ~ AirPassengers AusBeer GasRateCO2 MonthlyMilk
Closed-source LLM

GPT-3.57 1.17 0.97 1.15 1.29
GPT-3.57; 0.51 0.22 2.12 0.98
GPT-4 0.10 0.15 1.31 0.59
Clau. 3.5y 0.90 2.25 1.72 0.27
Clau. 3.55 0.12 2.63 1.49 0.26
Open-source LLM
GLM-4 0.80 1.15 1.62 1.22
Gemini 11.77 32.30 1.57 0.50
QWr 0.86 2.78 1.54 0.36
QW2.5; 0.76 0.59 2.10 0.56
DS-R1 2.29 1.09 1.41 1.72
DS-V3 0.20 2.24 4.72 0.15
Model\Datasets Sunspots Wine Wooly HeartRate
Closed-source LLM
GPT-3.57 0.94 1.28 3.34 1.34
GPT-3.57; 2.01 1.22 1.37 1.70
GPT-4 1.45 0.49 1.33 1.03
Clau. 3.5y 1.05 3.81 243 1.40
Clau. 3.5¢ 1.83 0.32 3.59 1.07
Open-source LLM
GLM-4 1.10 2.19 2.97 1.10
Gemini 1.78 6.61 17.65 40.96
QWr 2.72 3.58 3.71 1.60
QW2.5¢ 2.29 1.51 18.37 40.37
DS-R1 0.99 1.06 4.33 1.39
DS-V3 1.28 0.27 3.35 5.83

C.11 PERFORMANCES ON INFORMER DATASET

We present and visualize the experimental results on the various sub-datasets of the Informer dataset.
Unlike the Memorization and DartS datasets, each subset of the Informer dataset is a multivariate
collection. Given that our study focuses exclusively on univariate time series forecasting, we present
the evaluation metrics for each variable in the Table 14 Table 19.To ensure the manuscript remains
concise, the metrics for NLL and CRPS are not displayed. These metrics are available upon request
from the authors. Due to space limitations, we showcase only the visualizations based on the
GPT-3.5-Turbo model. (Fig. 14, Fig. 15)
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Table 12: The CRPS metric for the Darts dataset

Model\Datasets ~ AirPassengers AusBeer GasRateCO2  MonthlyMilk

Closed-source LLM

GPT-3.51 0.12 0.07 0.04 0.05
GPT-3.57; 0.11 0.06 0.05 0.05
GPT-4 0.10 0.05 0.04 0.05
Clau. 3.5y 0.13 0.08 0.04 0.04
Clau. 3.55 0.10 0.08 0.04 0.04
Open-source LLM
GLM-4 0.12 0.09 0.04 0.05
Gemini 0.19 0.12 0.05 0.05
QWr 0.12 0.09 0.03 0.04
QW2.5; 0.12 0.06 0.05 0.05
DS-R1 0.23 0.08 0.04 0.07
DS-V3 0.11 0.08 0.08 0.04
Model\Datasets Sunspots Wine Wooly HeartRate
Closed-source LLM
GPT-3.5¢1 0.55 0.15 0.20 0.05
GPT-3.57; 0.69 0.12 0.12 0.06
GPT-4 0.57 0.12 0.11 0.05
Clau. 3.5y 0.53 0.28 0.16 0.06
Clau. 3.55 0.63 0.12 0.19 0.05
Open-source LLM
GLM-4 0.57 0.22 0.18 0.05
Gemini 0.67 0.17 0.15 0.10
QWr 0.90 0.29 0.19 0.06
QW2.5; 0.78 0.12 0.17 0.11
DS-R1 0.60 0.15 0.23 0.06
DS-V3 0.62 0.12 0.19 0.13
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Table 13: The NLL metric for the Darts dataset

Model\Datasets  AirPassengers ~ AusBeer  GasRateCO2  MonthlyMilk
Closed-source LLM

GPT-3.57 6.21 5.15 2.61 5.80
GPT-3.57; 5.45 4.43 6.42 548
GPT-4 4.88 4.54 3.19 8.91
Clau. 3.5y 5.77 6.01 7.09 5.27
Clau. 3.55 6.16 9.48 3.33 5.81
Open-source LLM
GLM-4 5.66 5.16 2.99 5.89
Gemini 6.48 78243.02 3.22 8.45
QWr 5.93 5.78 3.04 6.89
QW2.5; 6.13 5.50 7.28 5.13
DS-R1 25.49 5.47 6.39 10.26
DS-V3 5.32 8.17 6.80 4.99
Model\Datasets Sunspots Wine Wooly HeartRate
Closed-source LLM
GPT-3.5¢1 6.04 10.14 10.23 3.58
GPT-3.57; 7.50 10.03 8.31 4.87
GPT-4 9.09 9.39 9.24 4.01
Clau. 3.5y 8.55 50.57 12.47 8.98
Clau. 3.55 6.58 18.38 19.89 6.07
Open-source LLM
GLM-4 6.08 11.33 10.33 4.42
Gemini 11.68 10.26 2753.09 4.44
QWr 20.64 12.00 13.87 5.50
QW2.5; 23.13 11.60 1289.79 5.20
DS-R1 8.70 10.07 43.32 16.11
DS-V3 6.21 9.69 1091 5.07

Table 14: The NMSE metric for ETTh1 dataset

Model\Datasets ETTh1_1 ETThl 2 ETThl1 3 ETThl 4 ETThl_ S ETThl 6 ETThl 7

Closed-source LLM

GPT-3.51 1.53 2.73 1.38 2.19 1.26 3.19 1.15
GPT-3.571 0.90 3.17 0.83 4.16 4.49 2.88 1.96
GPT-4 0.51 1.63 0.76 1.80 0.88 0.94 1.09
Clau. 3.55 0.42 1.40 0.60 221 1.30 0.96 1.41
Clau. 3.55 0.23 1.33 0.58 1.56 0.45 0.93 4.77
Open-source LLM
GLM-4 1.00 1.92 1.22 1.66 1.14 2.56 2.17
Gemini 0.89 1.36 0.95 1.76 1.16 1.19 1.80
QWr 0.99 1.14 0.98 1.31 1.24 1.69 2.82
QW2.5; 1.01 1.21 1.03 2.27 1.82 3.51 2.79
DS-R1 1.00 8.01 1.11 5.73 7.08 4.14 2.69
DS-V3 3.63 0.97 0.95 1.01 0.64 1.42 8.88
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Figure 13: Visualization of forecasting across the Darts dataset, with GPT-3.5-Turbo as the illustrative
example.

Table 15: The NMSE metric for ETTh2 dataset

Model\Datasets ETTh2_1 ETTh2 2 ETTh2 3 ETTh2. 4 ETTh2_.5 ETTh2.6 ETTh2_7

Closed-source LLM
GPT-3.5¢ 1.00 1.10 1.83 1.06 1.20 0.99 1.50
GPT-3.5r1 2.05 2.11 391 1.69 1.33 1.09 8.31
GPT-4 1.52 1.12 1.30 1.16 1.28 1.12 2.02
Clau. 3.5y 1.57 1.75 1.12 1.19 1.80 1.33 0.85
Clau. 3.55 3.68 271 3.08 1.88 1.96 0.99 1.00

Open-source LLM
GLM-4 1.31 1.38 1.05 1.42 1.40 1.24 3.10
Gemini 1.42 1.37 1.79 1.39 1.11 2.30 1.49
QWr 1.07 1.13 1.13 1.50 0.95 1.08 1.61
QW2.5; 0.93 1.42 2.03 1.15 1.88 1.09 2.24
DS-R1 1.92 4.13 3.37 2.72 2.35 1.99 3.61
DS-V3 2.57 1.35 1.10 1.18 1.97 1.07 0.46
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Table 16: The NMSE metric for ETTm1 dataset

Model\Datasets ETTml_1 ETTml_2 ETTml_3 ETTml_4 ETTml_5 ETTml_6 ETTml_7
Closed-source LLM
GPT-3.51 1.74 3.25 2.02 2.52 1.06 1.17 3.23
GPT-3.57; 1.45 5.11 0.70 6.34 0.56 4.72 1.76
GPT-4 2.37 3.56 1.42 4.18 1.10 2.02 1.42
Clau. 3.5y 1.27 3.36 1.48 3.63 1.71 2.83 11.68
Clau. 3.55 5.86 3.73 6.14 4.43 3.39 1.89 12.14
Open-source LLM
GLM-4 1.31 3.19 1.71 3.94 1.62 2.41 2.63
Gemini 0.48 3.75 0.39 3.97 0.91 1.82 6.08
QWr 2.08 4.35 2.65 6.64 1.78 1.43 591
QW2.5; 2.07 345 2.08 6.81 0.89 1.07 10.84
DS-R1 1.12 15.30 1.03 9.97 11.24 21.32 1.39
DS-V3 7.37 543 10.61 3.38 2.97 5.46 19.78

Table 17: The NMSE metric for ETTm2 dataset

Model\Datasets ETTm2_1 ETTm2_2 ETTm2_3 ETTm2 4 ETTm2_ 5 ETTm2_ 6 ETTm2_7
Closed-source LLM
GPT-3.51 1.24 1.11 1.07 2.04 1.55 1.11 5.26
GPT-3.57; 1.00 1.64 1.07 3.34 1.04 0.90 13.16
GPT-4 1.10 1.33 1.04 2.07 1.36 1.03 1.01
Clau. 3.5y 1.12 1.66 1.15 1.39 1.42 1.00 7.67
Clau. 3.55 3.95 4.90 4.37 1.69 1.51 1.00 10.86
Open-source LLM
GLM-4 1.48 1.55 1.16 1.35 1.57 1.22 1.06
Gemini 19.09 2.10 1.71 2.70 1.53 1.00 10.23
QWr 2.65 1.75 1.95 1.91 1.47 0.99 5.26
QW2.5; 1.23 1.67 1.10 1.68 1.46 0.97 4.52
DS-R1 1.20 1.60 1.13 1.83 2.44 1.93 1.08
DS-V3 2.99 1.23 6.34 1.11 1.43 0.96 20.15
Table 18: The NMSE metric for exchange_rate(ex) dataset
Model\Datasets  ex_1 ex_2 ex_3 ex_ 4 ex 5 ex 6 ex_7 ex_8
Closed-source LLM

GPT-3.5¢1 2.54  10.01 4.37 378 487 326 544 3.16

GPT-3.571 1.24 2.27 2.04 1.10 095 2.96 1.48 2.46

GPT-4 4.69 4.68 2.41 3.81 324 500 430 4.89

Clau. 3.5y 2.01 7.65 5.11 4.11 3.64 4.03 4.84 5.75

Clau. 3.55 586 2772 28770 16.14 4.65 9.08 18.11 17.52

Open-source LLM

GLM-4 1.49 9.22 3.15 446 345 385 4381 3.78

Gemini 1.84 8.53 1.55 2.37 1.57 439 234 6.09

QWr 5.19 6.98 2.03 447 355 3.67 440 6.76

QW2.5; 365 1679 2.02 2,55 331 3.67 392 3.78

DS-R1 1.99 6.51 1.79 3.81 349 425 424 3.68

DS-V3 1495 2.11 4.04 997 348 8.61 9.35 2547
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Figure 14: Visualization of forecasting

illustrative example.

across the Informer dataset, with GPT-3.5-Turbo as the
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Figure 15: Visualization of forecasting across the Informer dataset, with GPT-3.5-Turbo as the
illustrative example.



Under review as a conference paper at ICLR 2026

D PROMPT OF LLMS

D.1 ZERO-SHOT TIME-SERIES FORECASTING

Automated Answer Evaluation

[Instruction]

You are a helpful assistant who performs time series predictions. The user will provide
a sequence, and you will predict the remaining sequence. The sequence is represented
by decimal strings separated by commas. Please continue the following sequence
without producing any additional text. Do not say anything like ’the next terms in the
sequence are’, just return the numbers. Sequence:[input_str],[time_sep*]

*: the [time_sep] token serves to separate distinct time steps

36



Under review as a conference paper at ICLR 2026

Table 19: The NMSE metric for Weather dataset

Model\Datasets ~Weather_1  Weather_ 2  Weather_ 3  Weather_4  Weather_5 Weather 6 Weather_7

Closed-source LLM

GPT-3.5¢1 0.97 1.18 0.99 1.23 1.19 4.57 1.92
GPT-3.51;1 491 4.30 3.06 4.54 4.63 29.33 19.54
GPT-4 1.27 0.87 1.13 1.22 1.69 4.35 2.31
Clau. 3.5y 0.84 1.07 0.78 0.91 1.22 7.24 1.17
Clau. 3.55 5.50 4.14 1.45 1.70 2.49 8.97 0.93
Open-source LLM
GLM-4 1.14 0.83 1.01 1.21 1.23 3.56 3.79
Gemini 0.71 0.57 0.74 0.83 0.85 7.13 4.28
QWr 1.75 0.84 1.55 1.59 1.95 16.45 7.28
QW2.5; 1.59 1.74 1.67 1.61 1.66 9.80 2.86
DS-R1 1.15 1.18 1.04 1.20 1.34 4438 2.20
DS-V3 1.48 0.87 1.44 1.58 1.42 34.01 7.97

Table 20: Text-First Prompts in Section 4.4

Method Prompt

Directly the user will provide a sequence, and you will predict the remaining sequence.

CoT Analyze step by step. The user will provide a sequence, and you will predict the
remaining sequence.

Self-Probing The user will provide a sequence, and you will predict the remaining sequence. After

your prediction, please assess the confidence level of your prediction and provide your
reasoning concisely.

Self-Correcting The user will provide a sequence, and you will predict the remaining sequence. As
you generate the prediction, please self-check and correct any inconsistencies or errors
in your prediction to ensure accuracy.

Prompt_Optimizer Please see the table below.
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D.2 TEXT-FIRST PROMPTS

Prompt Optimizer

[system]

Role: Time Series Prediction Assistant

Profile

- language: Python

- description: A helpful assistant that specializes in time series predictions.

- background: Equipped with advanced machine learning algorithms, this assistant analyzes the
provided sequence and predicts the remaining sequence accurately.

- personality: Analytical, precise, and reliable.

- expertise: Machine learning, time series analysis, prediction algorithms.

- target_audience: Users in need of accurate time series predictions for forecasting purposes.
Skills

1. Core Skills

- Machine Learning: Proficient in building and training models for time series data.

- Time Series Analysis: Capable of analyzing patterns and trends in time series data.

- Prediction Algorithms: Knowledgeable in utilizing predictive algorithms for accurate forecasts.
- Data Preprocessing: Skilled in cleaning and preparing time series data for analysis.

2. Auxiliary Skills

- Python Programming: Strong programming skills in Python for implementing algorithms.

- Data Visualization: Ability to present time series data visually for better interpretation.

- Model Evaluation: Experience in evaluating the performance of prediction models.

- Feature Engineering: Competent in creating relevant features for accurate predictions.

Rules

1. Basic Principles:

- Data Integrity: Ensure the input sequence is clean and formatted correctly.

- Model Selection: Choose the appropriate model based on the characteristics of the time series
data.

- Evaluation Metrics: Use appropriate metrics to evaluate the accuracy of predictions.

- Continuous Learning: Stay updated on new algorithms and techniques in time series prediction.

2. Code of Conduct:

- Respect User Privacy: Maintain confidentiality of user data and predictions.

- Transparent Communication: Clearly explain the prediction process and results to the user.

- Timely Responses: Provide predictions in a timely manner to meet user requirements.

- Professionalism: Maintain a professional attitude and demeanor in all interactions.

3. Limitations:

- Historical Data Dependency: Predictions are based on historical patterns and may be affected
by unforeseen events.

- Model Assumptions: Predictions are subject to the assumptions made by the selected prediction
model.

- Margin of Error: Acknowledge that predictions may have a margin of error based on the
complexity of the time series data.

- External Factors: Consider external factors that may impact the accuracy of predictions.
Workflows

- Goal: To predict the remaining sequence accurately based on the provided input sequence.

- Step 1: Preprocess the input sequence by cleaning and formatting the data.

- Step 2: Train a prediction model on the processed data to learn patterns and trends.

- Step 3: Generate predictions for the remaining sequence using the trained model.

- Expected Result: Provide the user with accurate predictions for the remaining sequence.
Initialization

As a Time Series Prediction Assistant, you must adhere to the above Rules and follow the
Workflows to perform accurate time series predictions.

& J

E THE USE OF LLMS

We leveraged Gemini-2.5-Pro solely as a language-polishing assistant. After the human authors had
finalized all technical content, the model was consulted for suggestions on clarity and grammatical
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accuracy. It played no role in problem formulation, algorithmic design, experimental planning, data
analysis, or figure/table generation. Every scientific claim, mathematical statement, and empirical
result was verified exclusively by the authors. No large language model was listed as an author, and
we accept full responsibility for the entire manuscript.
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