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Abstract

Fine-tuning is a prominent technique to adapt
a pre-trained language model to downstream
scenarios. In parameter-efficient fine-tuning,
only a small subset of modules are trained over
the downstream datasets, while leaving the rest
of the pre-trained model frozen to save compu-
tation resources. In recent years, a popular pro-
ductization form arises as Model-as-a-Service
(MaaS), in which vendors provide abundant
pre-trained language models, server resources
and core functions, and customers can fine-
tune, deploy and invoke their customized model
by accessing the one-stop MaaS with their
own private dataset. In this paper, we iden-
tify the model and data privacy leakage risks
in MaaS fine-tuning, and propose a Split-and-
Privatize (SAP) framework, which manage to
mitigate the privacy issues by adapting the ex-
isting split learning architecture. Furthermore,
we propose a contributing-token-identification
(CTI) method to alleviate the utility degrada-
tion caused by privatization. The proposed
framework is sufficiently investigated by ex-
periments, and the results indicate that it can
enhance the empirical privacy by 65% at the
cost of 1% model performance degradation on
the Stanford Sentiment Treebank dataset.

1 Introduction

In recent years, pre-trained language models
(PLMs) represented by BERT (Kenton and
Toutanova, 2019) and GPT (Brown et al., 2020)
have demonstrated powerful text learning capabil-
ities and have been widely used in various fields
such as law (Jiang and Yang, 2023), finance (Ar-
slan et al., 2021), and healthcare (Arora and Arora,
2023). To improve the adaptability of a PLM on
downstream applications, it is necessary to fine-
tune it on datasets related to the downstream tasks.
Considering that PLMs contain hundreds of mil-
lions of parameters, researchers have proposed sev-
eral parameter-efficient fine-tuning (PEFT) algo-
rithms to reduce the cost of secondary training

(Ding et al., 2023), such as LoRA (Hu et al., 2021)
and prompt tuning (Lester et al., 2021). In practice,
most users are unable to independently acquire the
PLM and perform fine-tuning due to resource or
technical constraints, which has given rise to a new
business direction known as model-as-a-service
(MaaS). In MaaS§, enterprises with ample resources
and technical capabilities (called vendors) release
PLMs in the form of cloud services and provide
customers with a fine-tuning API so that they can
customize their own LLM based on private data.

However, while this solution provides customers
with efficient and customizable LLM services, it
also carries the risk of privacy leakage. On the one
hand, since the pre-training process requires a large
amount of computational overhead, the weights of
PLMs are typically considered as proprietary as-
sets of vendors and cannot be made public. On
the other hand, customers’ text data usually con-
tains sensitive information such as identity and age,
so directly transmitting the original data or repre-
sentations to the vendor may result in serious pri-
vacy leaks (Pan et al., 2020; Qu et al., 2021; Song
and Raghunathan, 2020), which hinders privacy-
conscious customers from using the customization
service. Therefore, there is an urgent need for a
privacy-preserving fine-tuning framework to allevi-
ate privacy concerns and promote the development
of customized services for LLM.

Some prior works have ventured into this do-
main, albeit encountering certain challenges along
the way. For example, the work (Qu et al., 2021)
proposed a text privatization mechanism based on
dx-privacy, where the consumer perturbs each in-
dividual data entry locally before releasing it to the
vendor. But it must be acknowledged that imple-
menting text privatization will invariably lead to
performance degradation on downstream tasks (Qu
etal., 2021; Li et al., 2023), involving the delicate
trade-off between utility and privacy. In order to
protect both parties’ privacy and achieve efficient



fine-tuning, the work (Xiao et al., 2023) proposed
the offsite-tuning framework, in which the vendor
sends a lightweight adapter and a lossy compressed
emulator to the customer, and the customer per-
forms fine-tuning and then returns the final adapter.
However, this framework does not consider privacy
concerns during the inference phase.

To address the challenges mentioned above, we
propose a Split-and-Privatize (SAP) federated fine-
tuning framework based on the existing split learn-
ing architecture (Vepakomma et al., 2018; Ceballos
et al., 2020). Specifically, the vendor first splits
the entire PLM into a bottom model and a top
model, and then sends the bottom model to the
customer while preserving the confidentiality of
the majority of the PLM. During fine-tuning, the
customer feeds local sensitive data into the bot-
tom model and privatizes the outputs by apply-
ing privacy-preserving mechanisms before sending
them to the vendor. Furthermore, to improve the
utility-privacy trade-off caused by privatization, we
propose a contributing-token-identification (CTI)
method. By reducing the perturbation to a small
number of token representations that are strongly
related to the utility task, we significantly improve
the utility performance while maintaining a similar
level of empirical privacy.

In order to comprehensively evaluate the perfor-
mance and security of the proposed framework, we
conduct a series of experiments covering multiple
tasks, including sentiment analysis, topic classifi-
cation and semantic equivalence judgment. Ad-
ditionally, we conduct simulated privacy attacks
to validate the effectiveness of SAP on protecting
data privacy. Experimental results indicate that the
proposed framework can achieve a good balance
between protecting model privacy and data privacy
while maintaining competitive performance.

2 Related Work and Preliminary

2.1 Related Work

2.1.1 Split Learning

Split learning (SL) is a distributed learning tech-
nique that divides the entire model into multiple
segments held by different parties, allowing multi-
ple parties to collaboratively train the model with-
out revealing their original data (Vepakomma et al.,
2018). In SL, split neural network (SplitNN) is the
most commonly used paradigm (Romanini et al.,
2021). Specifically, the entire neural network is
split into a top network on the server and multiple

bottom networks held by different clients. During
training, each client transforms its local input data
into intermediate features and sends them to the
server. The server first concatenates all the inter-
mediate features and continues to perform forward
propagation in the top model to compute the loss.
Then it performs backpropagation to compute the
gradient and sends the corresponding intermediate-
layer gradient to each client so that they can com-
plete the update of their local network segment.

Although SL has the advantage of avoiding the
disclosure of raw data, some studies have shown
that there is still a potential risk of privacy leakage
when clients directly transmit intermediate repre-
sentations (Dosovitskiy and Brox, 2016; He et al.,
2020). For instance, the work (He et al., 2020) pro-
posed attack methods for both the white-box and
black-box scenarios, which can partially recover
the original inputs from the transmitted representa-
tions.

2.1.2 Privacy-preserving LLM Services

Existing research on privacy-preserving LLM
mainly focuses on centralized learning and ad-
dresses concerns about the potential privacy leak-
age of training data when deploying LLMs pub-
licly, which is referred to as the memory privacy of
LLMs (Carlini et al., 2021; Peris et al., 2023). For
the MaaS scenario, a few of studies effort to pro-
pose methods that protect both model privacy and
data privacy. Typically, the vendor keeps the back-
bone of the PLM confidential at the cloud server
and only releases the embedding layer. The cus-
tomer is then required to send perturbed texts or
text representations to the vendor to complete sub-
sequent fine-tuning and inference. The work (Lyu
et al., 2020) proposed a method based on differen-
tial privacy (DP) and word dropout, which protects
data privacy during the inference phase by ran-
domly dropping some words and adding Gaussian
noise to the text representation. Chen et al. (Qu
et al., 2021) investigated the impact of applying
the dy-privacy mechanism (a variant of local DP)
to BERT fine-tuning on both privacy and utility,
and proposed a privacy-adaptive LLM pre-training
method, which applies the same perturbations to
the pre-training corpus to improve the practical-
ity of the fine-tuned model. Compared with our
work, (Qu et al., 2021) requires retraining the PLM
based on the designed masked LM objective on
the publicly available corpora, which incurs signifi-
cant computation costs. Besides, considering the



high cost of fine-tuning the entire model on private
data, Li et al. (Li et al., 2023) proposed a privacy-
preserving prompt tuning framework called RAPT,
where the customer applies text-to-text privatiza-
tion based on the dy-privacy locally and the ven-
dor performs prompt tuning on the privatized data,
which also introduced a token reconstruction task
to learn better task-related representations. In com-
parison, we propose a more general federated fine-
tuning framework SAP. By splitting some encoder
blocks to the bottom model instead of just the em-
bedding layer, the SAP framework achieves a bet-
ter trade-off between model performance and data
privacy. Furthermore, compared with the token
reconstruction method, the proposed CTI method
saves extra resources required for plain token trans-
mission and reconstructing model training.

2.2 Preliminary

In this subsection, we introduce some preliminaries
about dy-privacy mechanism used in this paper,
which is a variant of LDP (Chatzikokolakis et al.,
2013). The specific definition of dy-privacy is
given below.

Definition 1. A randomized mechanism M satis-
fies ndx-privacy if for any two inputs v,x' € X,

Pr[M(z) =y

Pr[M (')

o] = @) iy e Y, (1)

where 1 > 0 is a privacy parameter and d(z, ')
is a distance function.

Compared with the definition of LDP, dx-
privacy replaces the exponent term on the right
side of the inequality (1) from € to nd (z, z’), so
it is a relaxation of LDP. LDP is a strong privacy
standard, which requires that any two inputs have
similar and indistinguishable output distributions
regardless of how different they are. Therefore,
the output may not retain enough information of
the original input, resulting in severe performance
degradation. In contrast, dx-privacy allows the in-
distinguishability of the output distributions to be
scaled by the distance between inputs, which en-
ables the randomized mechanism to retain more
information about input.

The work (Feyisetan et al., 2020) proposed a
text-to-text privatization mechanism that guaran-
tees the ndx-privacy. For any word w, the mech-
anism first computes the embedding vector ¢(w),
and then adds appropriate random noise 7 to ob-
tain the perturbed vector ¢p(w) = ¢(w) + n,

where the probability density of the noise satis-
fies p(n) o exp(—n|[n|). Finally the word w is
replaced by the word w' closest to ¢(w).

3 Problem Setting
3.1 Problem Definition

In this paper, we focus on the customization of
LLM involving two parties, where the vendor
holds the complete PLM w and abundant server
resources, and the customer holds the private la-
beled dataset D := {(x;,y;)|t = 1,2,...,|D|}
and limited computation resources. In order to
achieve optimal adaptation on the downstream task,
the vendor and customer need to collaboratively
fine-tune the PLM, which can be formulated as

arg mﬁin L(w+9,D). (2)

However, due to privacy constraints, the above fine-
tuning process cannot be performed in a centralized
manner on one party. Specifically, the privacy con-
straints include that the vendor cannot share the
PLM w with the customer, and the customer can-
not share the private dataset D with the vendor.

3.2 Threat Model and Design Goals

For the threat model, we assume that both par-
ticipants are honest-but-curious, that is, they al-
ways follow the designed framework but are cu-
rious about other’s private information (i.e. the
private data of customer and the model parameters
of vendor). The customer might peek at the model
architecture and parameters transferred from the
vendor, while the vendor may attempt to infer some
privacy information from text representations trans-
mitted from the customer, such as the embedding
inversion attack (Qu et al., 2021) and the attribute
inference attack (Song and Raghunathan, 2020).

Under the above threat model, the proposed
framework aims to achieve the following goals.
Firstly, most parameters of the PLM cannot be dis-
closed to the customer. Secondly, the framework
should ensure that it is difficult for the vendor to
recover the original input text from the transmit-
ted representations. Lastly, the utility performance
should not degrade significantly compared to cen-
tralized fine-tuning.

4 Proposed Method

In this section, we first give an overview of the
proposed framework and then introduce two impor-
tant modules (model split and text privatization) in
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Figure 1: An overview of the SAP framework with CTI,
where the PLM is split into a bottom model (embedding
layer) and a top model, and the customer privatizes the
embedding vectors before releasing them.

detail. Following that, the CTI method is proposed
to improve the utility-privacy trade-off.

4.1 Split-and-Privatize Framework

To protect both the vendor’s model privacy and the
customer’s data privacy while achieving LLLM cus-
tomization, we propose the SAP framework based
on the split learning architecture, as shown in Fig-
ure 1. In general, the entire PLM is split into a top
model on the vendor and a bottom model on the
customer. During fine-tuning, the customer first
computes the outputs of bottom model on local
private data, adaptively privatize the text represen-
tations and sends the results to vendor. After re-
ceiving the perturbed representations, the vendor
proceeds to perform forward propagation in the top
model to compute the output of the PLM. Since
the sample labels are also held by the customer, to
update trainable parameters in the PLM such as the
LoRA module, the vendor needs to send the output
to customer and receive the gradients of the output
layer in return. The following subsections provide
detailed descriptions of the SAP framework.

4.2 Model Split

Similar to the idea of SplitNN (Romanini et al.,
2021), the vendor splits the PLM into a bottom
model and a top model, and sends the bottom model

to the customer before fine-tuning. The choice of
which layer to split the model is an important op-
tion in SAP. If the bottom model only has an embed-
ding layer, the customer’s computational burden is
relatively small, but the vendor can easily recover
the input text from the transmitted representations
by nearest neighbor search (Qu et al., 2021). If
the bottom model contains more encoder blocks,
it becomes more difficult to recover the original
text. The work (Song and Raghunathan, 2020)
demonstrated that inverting input text from higher
layers of a deep model is more challenging, as the
representations at higher layers are more abstract
and generic. However, since the weights of PLM
are also important assets, the vendor may request
to release as few weights as possible. Therefore,
determining the split position of PLM requires a
comprehensive consideration of multiple factors.

Besides, the SAP framework can be divided into
two cases depending on whether the bottom model
is trainable or not. For the case where the bot-
tom model is frozen, the customer computes the
representations of all samples after receiving the
bottom model, adds perturbations and sends them
to the vendor all at once. Therefore, the customer
does not need to repeatedly perform forward com-
putations in the fine-tuning phase, which signifi-
cantly reduces computational and communication
overhead. Another implementation is to make the
bottom model also trainable. It is hoped that by
altering the parameters of bottom model during
fine-tuning, it will be more challenging for the ven-
dor to infer the original input text. In this paper, we
focus on the case where the bottom model is frozen
due to page limitations. A detailed discussion on
the other case is presented in Appendix A.

4.3 Text Privatization

Given the bottom model, the customer can obtain
the text representation for each sample. However, if
plain representations are directly released, the ven-
dor might be able to accurately recover the original
input text (Song and Raghunathan, 2020). There-
fore, to achieve stronger privacy protection, it is
necessary for the customer to employ privatization
mechanisms to perturb text representations. We
take the case where the bottom model is a frozen
embedding layer as an example to demonstrate how
to combine the SAP framework with the privatiza-
tion mechanism proposed in (Feyisetan et al., 2020)
to guarantee 7ndx-privacy.

Let [z}, 22, ..., z7] represent a sequence of to-



kens for the input text @;. The customer first ob-
tains the embedding vector ¢(z7) for each token
x{ in the sample x; based on the embedding layer.
Then independent random noise 7 is added to each
embedding vector,
d(al) = d(al)+n, p(n) o« exp(—n|nl)). 3)
The specific generation method of noise 7 can be
found in Section 2.6 of (Feyisetan et al., 2020).
Then the perturbed vector is replaced by its nearest
neighbor in the embedding space,

4
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d)(m{) = arg min
w;
where w; represents the vector in the embedding
space. Finally, the customer sends |D| perturbed
sequences ¢(x;) = [d(z}), p(z2),...,¢(z1)] to

the vendor.

4.4 Contributing Token Identification

Although text privatization strengthens the pro-
tection of data privacy, fine-tuning PLM on the
perturbed representations will inevitably lead to
performance degradation on the downstream task,
so there is a trade-off between utility and pri-
vacy. To improve the utility-privacy trade-off of the
SAP framework, we propose a contributing-token-
identification (CTI) method. The key rationale of
this method is to use statistical analysis to identify
the tokens that contribute the most to the utility
target in each class of samples, and then reduce
the perturbations applied to these specific tokens,
aiming to improve utility performance while main-
taining a similar level of privacy protection. The
following is a detailed description of this method.
In natural language processing, term frequency-
inverse document frequency (TF-IDF) (Salton and
Buckley, 1988) is a metric used to measure the
importance of a word to a document in a collec-
tion or corpus, which is widely used in information
retrieval and text mining. The TF-IDF value is pro-
portional to the frequency of a word appearing in
a document, and inversely proportional to the pro-
portion of documents containing this word in the
corpus, thereby reducing the impact of common
words. Inspired by TF-IDF, we propose a metric
that measures the importance of each token in rela-
tion to the utility target for text classification tasks.
Let p(t = t,,|y = c¢) represent the frequency of to-
ken t,, appearing in the c-th class of samples, then
the utility importance (UI) of token ¢,, to class c is

defined as
1 p(t =twly =)
Ulpe= —— 3 mEZE=mlV =9 0 s
N_lc/’cl?éc p(t—tm|y—C)
where In % can be regarded as the differ-
p(t=tm|y=c')

ence between the probability distribution of tokens
in the c-th class of samples and that in the ¢/-th
class of samples specifically at token ¢,,, and N is
the number of categories. Intuitively, tokens that
appear frequently in the c-th class of samples while
having low frequency in other class of samples will
be considered to contribute significantly to distin-
guishing the c-th class from other classes, and thus
will be assigned a larger UI value.

For each class, the customer first computes the
utility importance of each token in the vocabulary.
Then, when applying text privatization locally, the
customer adaptively assigns different privacy pa-
rameters to each token according to

210

pu— 6
1+ exp(—Ulpe + o)’ ©)

Time

where 79 is the basic privacy budget and ¢y is a
constant. Compared to a fixed privacy budget 7 for
all tokens, the customer reduces the perturbation
to the embedding vectors of tokens with larger Ul
values and increases the perturbation to those with
smaller Ul values, thereby achieving a better utility-
privacy trade-off.

4.5 Implementation

In specific implementation, the SAP framework
can utilize a variety of existing PEFT algorithms
to reduce computation cost during fine-tuning. In
the inference phase, the customer can perform the
same forward computation and text privatization
locally to protect the inference data.

5 Empirical Experiments

5.1 Experiment Settings

To begin with, let us introduce the experiment set-
tings, including the PLM, datasets, attack methods,
and implementation details.

Model and Datasets. In the experiments, we
use the Roberta-Large (Liu et al., 2019) published
by Huggingface! as the PLM, which consists of a
total of 355 million parameters. We evaluate the
SAP framework on the Financial Phrasebank (FP)
(Malo et al., 2014), the Blog dataset used in (Lyu

"https://huggingface.co/roberta-large



Dataset Task #Train #Dev #Test Centralized Accuracy (%)
FP sentiment analysis 1808 226 226 98.75
Blog topic classification 7098 887 887 96.71
SST sentiment analysis 66675 674 872 95.89
MRPC  equivalence judgment 3301 367 408 89.42

Table 1: Description of the used datasets and performance of centralized fine-tuning on these datasets.

et al., 2020), as well as Stanford Sentiment Tree-
bank (SST) and Microsoft Research Paraphrase
Corpus (MRPC) datasets from the GLUE bench-
mark? (Wang et al., 2019). Detailed descriptions
of these datasets are provided in Table 1.

Attack Methods. Following the work (Song
and Raghunathan, 2020), simulated attacks are em-
ployed to investigate the capability of SAP frame-
work to protect customer’s data privacy. To maxi-
mize the attacker’s abilities, we consider the white-
box setting, assuming that the attacker has the same
perspective as the vendor and can access the per-
turbed text representations transmitted by customer
as well as the parameters of bottom model. The
attack methods used are listed as follows:

* Embedding inversion attack (EIA) is a token-
level attack whose goal is to recover the orig-
inal input text from the perturbed text repre-
sentations. Specifically, for the case where the
bottom model only has the embedding layer,
the nearest neighbor of each perturbed embed-
ding is searched in the embedding space as
a prediction of the original token (Qu et al.,
2021). For the case where the bottom model
contains more layers, a complex optimization-
based attack method proposed in (Song and
Raghunathan, 2020) is employed. For each in-
put sample, the method iteratively optimizes
the word selection vectors by minimizing the
distance between the predicted text’s represen-
tations and the observed representations.

Attribute inference attack (AIA) aims to infer
sensitive attributes of users from the text repre-
sentations. In this paper, it is assumed that the
attacker can obtain privacy attribute labels of
some samples, such as the author’s gender in
the Blog dataset. The privacy inference problem
is then treated as a downstream task, and a clas-
sifier is trained using the text representations of
these samples and the corresponding privacy la-
bels. After training, the attacker can predict the

L]

Zhttps://gluebenchmark.com

privacy attributes of other samples by feeding
their representations into the classifier.

Implementation Details. Our experiments are
implemented based on the Transformers library
and PEFT library of Huggingface. Specifically, the
LoRA (Hu et al., 2021) method is adopted to fine-
tune the Roberta-Large model, and the AdamW
optimizer with a linear learning rate scheduler is
used during fine-tuning, where the initial learning
rate is set to 3e-4. Empirically, the constant ¢y in
Equation 6 is set to (max(Ul,,.) + min(Ul,,.))/2.
Following the work (Li et al., 2023), we use utility
classification accuracy (UA) and empirical privacy
(EP) as metrics to evaluate utility performance and
privacy protection capability, where empirical pri-
vacy is defined as 1 — X and X represents the attack
success rate.

5.2 Effectiveness of SAP with CTI

First, we evaluate the performance and security of
the proposed framework under different privacy
parameter 79 when the bottom model is a frozen
embedding layer. From the results in Figure 2,
it can be observed that model split without text
privatization does not result in performance loss
compared with the centralized fine-tuning accu-
racy given in Table 1. However, if embedding
vectors are released without privatization, the at-
tacker can easily recover the input text through
EIA, with an attack success rate of up to 100%.
By adding perturbations to text representations to
guarantee 7dx-privacy, the privacy protection ca-
pability of the SAP framework is strengthened. As
the basic privacy parameter 79 decreases, we ob-
tain better empirical privacy against EIA, but at
the same time, the utility accuracy keeps decreas-
ing. In other words, the SAP framework involves a
trade-off between utility and privacy. For example,
on the FP dataset, SAP improves the empirical pri-
vacy to 38.85% at the cost of 6.17% performance
degradation when 7 is set to 50.

Furthermore, the experimental results on the
FP, Blog, and SST datasets demonstrate that the
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Figure 2: Impact of the privacy parameter 79 on the empirical privacy (EP) against EIA and utility accuracy (UA).

CTI method significantly improves the trade-off
between utility and privacy of the SAP framework.
By adaptively adjusting the privacy budget accord-
ing to the utility importance of each token for the
target task, the CTI method can significantly im-
prove both UA and EP. Specifically, on the FP
dataset with 79 set to 50, the SAP-CTT algorithm
can achieve the empirical privacy of 49.98% with
only 2.73% performance loss. However, the CTI
method does not yield very significant improve-
ment on the MRPC dataset. This is because the
CTI method only performs correlation analysis at
the token level, while for tasks like semantic equiv-
alence judgment, the class label of each sample is
less relevant to individual tokens and more relevant
to the overall semantics of the sentence. This is an
inherent limitation of the CTI method.

Figure 3 presents the results of the SAP frame-
work defending against AIA on the Blog dataset
with different numbers of labeled data N;. Specif-
ically, the attacker fine-tunes the Roberta model
using some auxiliary gender labels along with the

corresponding text representations sent by the cus-
tomer to infer the gender labels of other samples.
The results indicate that the attack success rate of
attacker is positively related to the amount of la-
beled data it possesses. By reducing the privacy
parameter, the SAP framework becomes more ca-
pable of defending against AIA, which is consistent
with the results of EIA.

5.3 Impact of Split Position

In the SAP framework, the split position of the
PLM is an important option. The Roberta model
comprises a total of 24 encoder blocks. In the ex-
periment, we split the model after the 1st to 8th
encoder block and compare them with the case
where the bottom model only has the embedding
layer. Figure 4 gives the impact of different split
positions on the empirical privacy against EIA of
the SAP framework without text privatization. The
results show that as the number of encoder blocks
in the bottom model increases, it becomes increas-
ingly difficult for an attacker to infer the input text
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Figure 3: Results of the SAP framework defending
against AIA on the Blog dataset.

from the representations transmitted by the cus-
tomer. Even without text privatization, the empir-
ical privacy reaches about 80% when there are 8
encoder blocks in the bottom model.

Furthermore, we delve into the privacy protec-
tion capability and utility performance of the SAP
framework with different split positions and dif-
ferent privacy parameter settings. Compared with
centralized fine-tuning, the results in the last col-
umn of Table 2 indicate that as the number of layers
included in the bottom model increases, the UA of
the SAP framework without privatization decreases
slightly while the EP increases significantly. In ad-
dition, we can observe that by applying text priva-
tization and reducing the privacy parameter, EP is
further strengthened, but at the same time, the UA
also decreases, which is consistent with the results
in Figure 2.

6 Conclusion

We consider the model privacy and data privacy is-
sues in LLM customization and propose a privacy-
preserving fine-tuning framework SAP, along with
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Figure 4: Empirical privacy against EIA of SAP frame-
work (without privatization) with different split posi-
tions on the SST dataset.

a utility enhancement method called CTI. By split-
ting the PLM into a top model on the vendor and a
bottom model on the customer, and applying text
privatization to adaptively perturb the transmitted
representations, the SAP framework with CTI can
effectively protect both the backbone model privacy
and data privacy while maintaining competitive per-
formance. Moreover, SAP is a flexible framework
capable of adapting to various scenarios in LLM
customization services. For customers with limited
computation resources, it is recommended to adopt
the solution with a frozen embedding layer in the
bottom model. Experimental results indicate that
it enhances the empirical privacy by 40% at the
cost of 4.6% performance degradation on the SST
dataset. For customers with relatively abundant re-
sources, a solution with more encoder blocks in the
bottom model can be adopted. Results indicate that
it can enhance the empirical privacy by 65% at the
cost of 1% performance degradation on the SST
dataset when the bottom model contains 6 encoder
blocks.



Limitations

One limitation of this work is that it only considers
text classification tasks. The effectiveness of the
SAP framework on more complex text generation
tasks, particularly the impact of text privatization
on the usability of generated content, remains to be
further researched.

In addition, the proposed CTI method analyzes
the utility importance of each token for the target
task based on the label information, and therefore
cannot be directly applied to text generation tasks.
How to alleviate the negative impact of text privati-
zation on the usability of generated content is also
one of our future research directions.
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. Privacy Parameter 1)
Bottom Model Metric 45 50 55 60 65 70
Frogen Embedding Laver EP | 5127 4086 3132 2269 1609 11.08
0ze cading Laye UA | 8733 9125 9356 9455 9531 95.49
_ EP | 2052 1431 1086 7.64 519 3.05
Unfrozen Embedding Layer | 17\ | ¢7 63 9146 9430 9471 9559 95.78

Table 3: Empirical privacy against EIA (%) and utility accuracy (%) comparison on the SST dataset when the

bottom model is a frozen or unfrozen embedding layer.

A Discussion on Trainable Bottom Model

In this appendix, we discuss another implementa-
tion of the SAP framework where the bottom model
is also trainable. The premise of this setup is to
make it more challenging for the vendor to infer
the original input text based on the released text
representations by altering the parameters of the
bottom model during fine-tuning.

The specific implementation steps are as fol-
lows. During forward propagation, the customer
no longer sends the perturbed representations of
all samples to the vendor at once. Instead, in each
iteration, the customer randomly selects a batch of
samples, computes the output of the bottom model
for that batch, independently privatize the represen-
tations, and then sends the privatized results to the
vendor. The specific privatization process is consis-
tent with the case where the bottom model is frozen.
During backpropagation, the vendor needs to re-
turn the gradient of the input layer of top model
to the customer so that it can update the bottom
model.

We also evaluate the privacy protection capabil-
ity and utility performance of the SAP framework
when training the bottom model and top model to-
gether. When the bottom model is trainable, the
customer needs to send a batch of sample represen-
tations in each iteration. If the training is conducted
for E/ epochs, the attacker will have access to F/
representations for each sample, and it can indepen-
dently use each representation to launch the EIA.
The input tokens successfully inferred by the at-
tacker are the union of the results of performing F
attacks. The results in Table 3 indicate that when
the bottom model consists only of an embedding
layer, joint training of the bottom model has a mi-
nor impact on utility accuracy but results in a signif-
icant decrease in empirical privacy. The reason is
that the parameters of the embedding layer change
slightly after fine-tuning, and the attacker can still
use the initial parameters to perform nearest neigh-
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bor search. Therefore, multiple observations of the
same sample will significantly increase the attack
success rate.
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