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Abstract
Fine-tuning is a prominent technique to adapt001
a pre-trained language model to downstream002
scenarios. In parameter-efficient fine-tuning,003
only a small subset of modules are trained over004
the downstream datasets, while leaving the rest005
of the pre-trained model frozen to save compu-006
tation resources. In recent years, a popular pro-007
ductization form arises as Model-as-a-Service008
(MaaS), in which vendors provide abundant009
pre-trained language models, server resources010
and core functions, and customers can fine-011
tune, deploy and invoke their customized model012
by accessing the one-stop MaaS with their013
own private dataset. In this paper, we iden-014
tify the model and data privacy leakage risks015
in MaaS fine-tuning, and propose a Split-and-016
Privatize (SAP) framework, which manage to017
mitigate the privacy issues by adapting the ex-018
isting split learning architecture. Furthermore,019
we propose a contributing-token-identification020
(CTI) method to alleviate the utility degrada-021
tion caused by privatization. The proposed022
framework is sufficiently investigated by ex-023
periments, and the results indicate that it can024
enhance the empirical privacy by 65% at the025
cost of 1% model performance degradation on026
the Stanford Sentiment Treebank dataset.027

1 Introduction028

In recent years, pre-trained language models029

(PLMs) represented by BERT (Kenton and030

Toutanova, 2019) and GPT (Brown et al., 2020)031

have demonstrated powerful text learning capabil-032

ities and have been widely used in various fields033

such as law (Jiang and Yang, 2023), finance (Ar-034

slan et al., 2021), and healthcare (Arora and Arora,035

2023). To improve the adaptability of a PLM on036

downstream applications, it is necessary to fine-037

tune it on datasets related to the downstream tasks.038

Considering that PLMs contain hundreds of mil-039

lions of parameters, researchers have proposed sev-040

eral parameter-efficient fine-tuning (PEFT) algo-041

rithms to reduce the cost of secondary training042

(Ding et al., 2023), such as LoRA (Hu et al., 2021) 043

and prompt tuning (Lester et al., 2021). In practice, 044

most users are unable to independently acquire the 045

PLM and perform fine-tuning due to resource or 046

technical constraints, which has given rise to a new 047

business direction known as model-as-a-service 048

(MaaS). In MaaS, enterprises with ample resources 049

and technical capabilities (called vendors) release 050

PLMs in the form of cloud services and provide 051

customers with a fine-tuning API so that they can 052

customize their own LLM based on private data. 053

However, while this solution provides customers 054

with efficient and customizable LLM services, it 055

also carries the risk of privacy leakage. On the one 056

hand, since the pre-training process requires a large 057

amount of computational overhead, the weights of 058

PLMs are typically considered as proprietary as- 059

sets of vendors and cannot be made public. On 060

the other hand, customers’ text data usually con- 061

tains sensitive information such as identity and age, 062

so directly transmitting the original data or repre- 063

sentations to the vendor may result in serious pri- 064

vacy leaks (Pan et al., 2020; Qu et al., 2021; Song 065

and Raghunathan, 2020), which hinders privacy- 066

conscious customers from using the customization 067

service. Therefore, there is an urgent need for a 068

privacy-preserving fine-tuning framework to allevi- 069

ate privacy concerns and promote the development 070

of customized services for LLM. 071

Some prior works have ventured into this do- 072

main, albeit encountering certain challenges along 073

the way. For example, the work (Qu et al., 2021) 074

proposed a text privatization mechanism based on 075

dχ-privacy, where the consumer perturbs each in- 076

dividual data entry locally before releasing it to the 077

vendor. But it must be acknowledged that imple- 078

menting text privatization will invariably lead to 079

performance degradation on downstream tasks (Qu 080

et al., 2021; Li et al., 2023), involving the delicate 081

trade-off between utility and privacy. In order to 082

protect both parties’ privacy and achieve efficient 083
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fine-tuning, the work (Xiao et al., 2023) proposed084

the offsite-tuning framework, in which the vendor085

sends a lightweight adapter and a lossy compressed086

emulator to the customer, and the customer per-087

forms fine-tuning and then returns the final adapter.088

However, this framework does not consider privacy089

concerns during the inference phase.090

To address the challenges mentioned above, we091

propose a Split-and-Privatize (SAP) federated fine-092

tuning framework based on the existing split learn-093

ing architecture (Vepakomma et al., 2018; Ceballos094

et al., 2020). Specifically, the vendor first splits095

the entire PLM into a bottom model and a top096

model, and then sends the bottom model to the097

customer while preserving the confidentiality of098

the majority of the PLM. During fine-tuning, the099

customer feeds local sensitive data into the bot-100

tom model and privatizes the outputs by apply-101

ing privacy-preserving mechanisms before sending102

them to the vendor. Furthermore, to improve the103

utility-privacy trade-off caused by privatization, we104

propose a contributing-token-identification (CTI)105

method. By reducing the perturbation to a small106

number of token representations that are strongly107

related to the utility task, we significantly improve108

the utility performance while maintaining a similar109

level of empirical privacy.110

In order to comprehensively evaluate the perfor-111

mance and security of the proposed framework, we112

conduct a series of experiments covering multiple113

tasks, including sentiment analysis, topic classifi-114

cation and semantic equivalence judgment. Ad-115

ditionally, we conduct simulated privacy attacks116

to validate the effectiveness of SAP on protecting117

data privacy. Experimental results indicate that the118

proposed framework can achieve a good balance119

between protecting model privacy and data privacy120

while maintaining competitive performance.121

2 Related Work and Preliminary122

2.1 Related Work123

2.1.1 Split Learning124

Split learning (SL) is a distributed learning tech-125

nique that divides the entire model into multiple126

segments held by different parties, allowing multi-127

ple parties to collaboratively train the model with-128

out revealing their original data (Vepakomma et al.,129

2018). In SL, split neural network (SplitNN) is the130

most commonly used paradigm (Romanini et al.,131

2021). Specifically, the entire neural network is132

split into a top network on the server and multiple133

bottom networks held by different clients. During 134

training, each client transforms its local input data 135

into intermediate features and sends them to the 136

server. The server first concatenates all the inter- 137

mediate features and continues to perform forward 138

propagation in the top model to compute the loss. 139

Then it performs backpropagation to compute the 140

gradient and sends the corresponding intermediate- 141

layer gradient to each client so that they can com- 142

plete the update of their local network segment. 143

Although SL has the advantage of avoiding the 144

disclosure of raw data, some studies have shown 145

that there is still a potential risk of privacy leakage 146

when clients directly transmit intermediate repre- 147

sentations (Dosovitskiy and Brox, 2016; He et al., 148

2020). For instance, the work (He et al., 2020) pro- 149

posed attack methods for both the white-box and 150

black-box scenarios, which can partially recover 151

the original inputs from the transmitted representa- 152

tions. 153

2.1.2 Privacy-preserving LLM Services 154

Existing research on privacy-preserving LLM 155

mainly focuses on centralized learning and ad- 156

dresses concerns about the potential privacy leak- 157

age of training data when deploying LLMs pub- 158

licly, which is referred to as the memory privacy of 159

LLMs (Carlini et al., 2021; Peris et al., 2023). For 160

the MaaS scenario, a few of studies effort to pro- 161

pose methods that protect both model privacy and 162

data privacy. Typically, the vendor keeps the back- 163

bone of the PLM confidential at the cloud server 164

and only releases the embedding layer. The cus- 165

tomer is then required to send perturbed texts or 166

text representations to the vendor to complete sub- 167

sequent fine-tuning and inference. The work (Lyu 168

et al., 2020) proposed a method based on differen- 169

tial privacy (DP) and word dropout, which protects 170

data privacy during the inference phase by ran- 171

domly dropping some words and adding Gaussian 172

noise to the text representation. Chen et al. (Qu 173

et al., 2021) investigated the impact of applying 174

the dχ-privacy mechanism (a variant of local DP) 175

to BERT fine-tuning on both privacy and utility, 176

and proposed a privacy-adaptive LLM pre-training 177

method, which applies the same perturbations to 178

the pre-training corpus to improve the practical- 179

ity of the fine-tuned model. Compared with our 180

work, (Qu et al., 2021) requires retraining the PLM 181

based on the designed masked LM objective on 182

the publicly available corpora, which incurs signifi- 183

cant computation costs. Besides, considering the 184
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high cost of fine-tuning the entire model on private185

data, Li et al. (Li et al., 2023) proposed a privacy-186

preserving prompt tuning framework called RAPT,187

where the customer applies text-to-text privatiza-188

tion based on the dχ-privacy locally and the ven-189

dor performs prompt tuning on the privatized data,190

which also introduced a token reconstruction task191

to learn better task-related representations. In com-192

parison, we propose a more general federated fine-193

tuning framework SAP. By splitting some encoder194

blocks to the bottom model instead of just the em-195

bedding layer, the SAP framework achieves a bet-196

ter trade-off between model performance and data197

privacy. Furthermore, compared with the token198

reconstruction method, the proposed CTI method199

saves extra resources required for plain token trans-200

mission and reconstructing model training.201

2.2 Preliminary202

In this subsection, we introduce some preliminaries203

about dχ-privacy mechanism used in this paper,204

which is a variant of LDP (Chatzikokolakis et al.,205

2013). The specific definition of dχ-privacy is206

given below.207

Definition 1. A randomized mechanism M satis-208

fies ηdχ-privacy if for any two inputs x, x′ ∈ X ,209

Pr[M(x) = y]

Pr [M (x′) = y]
≤ eηd(x,x

′),∀y ∈ Y, (1)210

where η > 0 is a privacy parameter and d(x, x′)211

is a distance function.212

Compared with the definition of LDP, dχ-213

privacy replaces the exponent term on the right214

side of the inequality (1) from ϵ to ηd (x, x′), so215

it is a relaxation of LDP. LDP is a strong privacy216

standard, which requires that any two inputs have217

similar and indistinguishable output distributions218

regardless of how different they are. Therefore,219

the output may not retain enough information of220

the original input, resulting in severe performance221

degradation. In contrast, dχ-privacy allows the in-222

distinguishability of the output distributions to be223

scaled by the distance between inputs, which en-224

ables the randomized mechanism to retain more225

information about input.226

The work (Feyisetan et al., 2020) proposed a227

text-to-text privatization mechanism that guaran-228

tees the ηdχ-privacy. For any word w, the mech-229

anism first computes the embedding vector ϕ(w),230

and then adds appropriate random noise n to ob-231

tain the perturbed vector ϕ̂(w) = ϕ(w) + n,232

where the probability density of the noise satis- 233

fies p(n) ∝ exp(−η∥n∥). Finally the word w is 234

replaced by the word w′ closest to ϕ̂(w). 235

3 Problem Setting 236

3.1 Problem Definition 237

In this paper, we focus on the customization of 238

LLM involving two parties, where the vendor 239

holds the complete PLM w and abundant server 240

resources, and the customer holds the private la- 241

beled dataset D := {(xi, yi)|i = 1, 2, . . . , |D|} 242

and limited computation resources. In order to 243

achieve optimal adaptation on the downstream task, 244

the vendor and customer need to collaboratively 245

fine-tune the PLM, which can be formulated as 246

argmin
δ

L(w + δ,D). (2) 247

However, due to privacy constraints, the above fine- 248

tuning process cannot be performed in a centralized 249

manner on one party. Specifically, the privacy con- 250

straints include that the vendor cannot share the 251

PLM w with the customer, and the customer can- 252

not share the private dataset D with the vendor. 253

3.2 Threat Model and Design Goals 254

For the threat model, we assume that both par- 255

ticipants are honest-but-curious, that is, they al- 256

ways follow the designed framework but are cu- 257

rious about other’s private information (i.e. the 258

private data of customer and the model parameters 259

of vendor). The customer might peek at the model 260

architecture and parameters transferred from the 261

vendor, while the vendor may attempt to infer some 262

privacy information from text representations trans- 263

mitted from the customer, such as the embedding 264

inversion attack (Qu et al., 2021) and the attribute 265

inference attack (Song and Raghunathan, 2020). 266

Under the above threat model, the proposed 267

framework aims to achieve the following goals. 268

Firstly, most parameters of the PLM cannot be dis- 269

closed to the customer. Secondly, the framework 270

should ensure that it is difficult for the vendor to 271

recover the original input text from the transmit- 272

ted representations. Lastly, the utility performance 273

should not degrade significantly compared to cen- 274

tralized fine-tuning. 275

4 Proposed Method 276

In this section, we first give an overview of the 277

proposed framework and then introduce two impor- 278

tant modules (model split and text privatization) in 279
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Figure 1: An overview of the SAP framework with CTI,
where the PLM is split into a bottom model (embedding
layer) and a top model, and the customer privatizes the
embedding vectors before releasing them.

detail. Following that, the CTI method is proposed280

to improve the utility-privacy trade-off.281

4.1 Split-and-Privatize Framework282

To protect both the vendor’s model privacy and the283

customer’s data privacy while achieving LLM cus-284

tomization, we propose the SAP framework based285

on the split learning architecture, as shown in Fig-286

ure 1. In general, the entire PLM is split into a top287

model on the vendor and a bottom model on the288

customer. During fine-tuning, the customer first289

computes the outputs of bottom model on local290

private data, adaptively privatize the text represen-291

tations and sends the results to vendor. After re-292

ceiving the perturbed representations, the vendor293

proceeds to perform forward propagation in the top294

model to compute the output of the PLM. Since295

the sample labels are also held by the customer, to296

update trainable parameters in the PLM such as the297

LoRA module, the vendor needs to send the output298

to customer and receive the gradients of the output299

layer in return. The following subsections provide300

detailed descriptions of the SAP framework.301

4.2 Model Split302

Similar to the idea of SplitNN (Romanini et al.,303

2021), the vendor splits the PLM into a bottom304

model and a top model, and sends the bottom model305

to the customer before fine-tuning. The choice of 306

which layer to split the model is an important op- 307

tion in SAP. If the bottom model only has an embed- 308

ding layer, the customer’s computational burden is 309

relatively small, but the vendor can easily recover 310

the input text from the transmitted representations 311

by nearest neighbor search (Qu et al., 2021). If 312

the bottom model contains more encoder blocks, 313

it becomes more difficult to recover the original 314

text. The work (Song and Raghunathan, 2020) 315

demonstrated that inverting input text from higher 316

layers of a deep model is more challenging, as the 317

representations at higher layers are more abstract 318

and generic. However, since the weights of PLM 319

are also important assets, the vendor may request 320

to release as few weights as possible. Therefore, 321

determining the split position of PLM requires a 322

comprehensive consideration of multiple factors. 323

Besides, the SAP framework can be divided into 324

two cases depending on whether the bottom model 325

is trainable or not. For the case where the bot- 326

tom model is frozen, the customer computes the 327

representations of all samples after receiving the 328

bottom model, adds perturbations and sends them 329

to the vendor all at once. Therefore, the customer 330

does not need to repeatedly perform forward com- 331

putations in the fine-tuning phase, which signifi- 332

cantly reduces computational and communication 333

overhead. Another implementation is to make the 334

bottom model also trainable. It is hoped that by 335

altering the parameters of bottom model during 336

fine-tuning, it will be more challenging for the ven- 337

dor to infer the original input text. In this paper, we 338

focus on the case where the bottom model is frozen 339

due to page limitations. A detailed discussion on 340

the other case is presented in Appendix A. 341

4.3 Text Privatization 342

Given the bottom model, the customer can obtain 343

the text representation for each sample. However, if 344

plain representations are directly released, the ven- 345

dor might be able to accurately recover the original 346

input text (Song and Raghunathan, 2020). There- 347

fore, to achieve stronger privacy protection, it is 348

necessary for the customer to employ privatization 349

mechanisms to perturb text representations. We 350

take the case where the bottom model is a frozen 351

embedding layer as an example to demonstrate how 352

to combine the SAP framework with the privatiza- 353

tion mechanism proposed in (Feyisetan et al., 2020) 354

to guarantee ηdχ-privacy. 355

Let [x1i , x
2
i , . . . , x

n
i ] represent a sequence of to- 356
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kens for the input text xi. The customer first ob-357

tains the embedding vector ϕ(xji ) for each token358

xji in the sample xi based on the embedding layer.359

Then independent random noise n is added to each360

embedding vector,361

ϕ̂(xji ) = ϕ(xji )+n, p(n) ∝ exp(−η∥n∥). (3)362

The specific generation method of noise n can be363

found in Section 2.6 of (Feyisetan et al., 2020).364

Then the perturbed vector is replaced by its nearest365

neighbor in the embedding space,366

ϕ̄(xji ) = argmin
wl

∥∥∥ϕ̂(xji )−wl

∥∥∥ , (4)367

where wl represents the vector in the embedding368

space. Finally, the customer sends |D| perturbed369

sequences ϕ̄(xi) = [ϕ̄(x1i ), ϕ̄(x
2
i ), . . . , ϕ̄(x

n
i )] to370

the vendor.371

4.4 Contributing Token Identification372

Although text privatization strengthens the pro-373

tection of data privacy, fine-tuning PLM on the374

perturbed representations will inevitably lead to375

performance degradation on the downstream task,376

so there is a trade-off between utility and pri-377

vacy. To improve the utility-privacy trade-off of the378

SAP framework, we propose a contributing-token-379

identification (CTI) method. The key rationale of380

this method is to use statistical analysis to identify381

the tokens that contribute the most to the utility382

target in each class of samples, and then reduce383

the perturbations applied to these specific tokens,384

aiming to improve utility performance while main-385

taining a similar level of privacy protection. The386

following is a detailed description of this method.387

In natural language processing, term frequency-388

inverse document frequency (TF-IDF) (Salton and389

Buckley, 1988) is a metric used to measure the390

importance of a word to a document in a collec-391

tion or corpus, which is widely used in information392

retrieval and text mining. The TF-IDF value is pro-393

portional to the frequency of a word appearing in394

a document, and inversely proportional to the pro-395

portion of documents containing this word in the396

corpus, thereby reducing the impact of common397

words. Inspired by TF-IDF, we propose a metric398

that measures the importance of each token in rela-399

tion to the utility target for text classification tasks.400

Let p(t = tm|y = c) represent the frequency of to-401

ken tm appearing in the c-th class of samples, then402

the utility importance (UI) of token tm to class c is403

defined as 404

UImc =
1

N − 1

∑
c′,c′ ̸=c

ln
p(t = tm|y = c)

p(t = tm|y = c′)
, (5) 405

where ln p(t=tm|y=c)
p(t=tm|y=c′) can be regarded as the differ- 406

ence between the probability distribution of tokens 407

in the c-th class of samples and that in the c′-th 408

class of samples specifically at token tm, and N is 409

the number of categories. Intuitively, tokens that 410

appear frequently in the c-th class of samples while 411

having low frequency in other class of samples will 412

be considered to contribute significantly to distin- 413

guishing the c-th class from other classes, and thus 414

will be assigned a larger UI value. 415

For each class, the customer first computes the 416

utility importance of each token in the vocabulary. 417

Then, when applying text privatization locally, the 418

customer adaptively assigns different privacy pa- 419

rameters to each token according to 420

ηmc =
2η0

1 + exp(−UImc + c0)
, (6) 421

where η0 is the basic privacy budget and c0 is a 422

constant. Compared to a fixed privacy budget η0 for 423

all tokens, the customer reduces the perturbation 424

to the embedding vectors of tokens with larger UI 425

values and increases the perturbation to those with 426

smaller UI values, thereby achieving a better utility- 427

privacy trade-off. 428

4.5 Implementation 429

In specific implementation, the SAP framework 430

can utilize a variety of existing PEFT algorithms 431

to reduce computation cost during fine-tuning. In 432

the inference phase, the customer can perform the 433

same forward computation and text privatization 434

locally to protect the inference data. 435

5 Empirical Experiments 436

5.1 Experiment Settings 437

To begin with, let us introduce the experiment set- 438

tings, including the PLM, datasets, attack methods, 439

and implementation details. 440

Model and Datasets. In the experiments, we 441

use the Roberta-Large (Liu et al., 2019) published 442

by Huggingface1 as the PLM, which consists of a 443

total of 355 million parameters. We evaluate the 444

SAP framework on the Financial Phrasebank (FP) 445

(Malo et al., 2014), the Blog dataset used in (Lyu 446

1https://huggingface.co/roberta-large
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Dataset Task #Train #Dev #Test Centralized Accuracy (%)
FP sentiment analysis 1808 226 226 98.75
Blog topic classification 7098 887 887 96.71
SST sentiment analysis 66675 674 872 95.89
MRPC equivalence judgment 3301 367 408 89.42

Table 1: Description of the used datasets and performance of centralized fine-tuning on these datasets.

et al., 2020), as well as Stanford Sentiment Tree-447

bank (SST) and Microsoft Research Paraphrase448

Corpus (MRPC) datasets from the GLUE bench-449

mark2 (Wang et al., 2019). Detailed descriptions450

of these datasets are provided in Table 1.451

Attack Methods. Following the work (Song452

and Raghunathan, 2020), simulated attacks are em-453

ployed to investigate the capability of SAP frame-454

work to protect customer’s data privacy. To maxi-455

mize the attacker’s abilities, we consider the white-456

box setting, assuming that the attacker has the same457

perspective as the vendor and can access the per-458

turbed text representations transmitted by customer459

as well as the parameters of bottom model. The460

attack methods used are listed as follows:461

• Embedding inversion attack (EIA) is a token-462

level attack whose goal is to recover the orig-463

inal input text from the perturbed text repre-464

sentations. Specifically, for the case where the465

bottom model only has the embedding layer,466

the nearest neighbor of each perturbed embed-467

ding is searched in the embedding space as468

a prediction of the original token (Qu et al.,469

2021). For the case where the bottom model470

contains more layers, a complex optimization-471

based attack method proposed in (Song and472

Raghunathan, 2020) is employed. For each in-473

put sample, the method iteratively optimizes474

the word selection vectors by minimizing the475

distance between the predicted text’s represen-476

tations and the observed representations.477

• Attribute inference attack (AIA) aims to infer478

sensitive attributes of users from the text repre-479

sentations. In this paper, it is assumed that the480

attacker can obtain privacy attribute labels of481

some samples, such as the author’s gender in482

the Blog dataset. The privacy inference problem483

is then treated as a downstream task, and a clas-484

sifier is trained using the text representations of485

these samples and the corresponding privacy la-486

bels. After training, the attacker can predict the487

2https://gluebenchmark.com

privacy attributes of other samples by feeding 488

their representations into the classifier. 489

Implementation Details. Our experiments are 490

implemented based on the Transformers library 491

and PEFT library of Huggingface. Specifically, the 492

LoRA (Hu et al., 2021) method is adopted to fine- 493

tune the Roberta-Large model, and the AdamW 494

optimizer with a linear learning rate scheduler is 495

used during fine-tuning, where the initial learning 496

rate is set to 3e-4. Empirically, the constant c0 in 497

Equation 6 is set to (max(UImc)+min(UImc))/2. 498

Following the work (Li et al., 2023), we use utility 499

classification accuracy (UA) and empirical privacy 500

(EP) as metrics to evaluate utility performance and 501

privacy protection capability, where empirical pri- 502

vacy is defined as 1−X and X represents the attack 503

success rate. 504

5.2 Effectiveness of SAP with CTI 505

First, we evaluate the performance and security of 506

the proposed framework under different privacy 507

parameter η0 when the bottom model is a frozen 508

embedding layer. From the results in Figure 2, 509

it can be observed that model split without text 510

privatization does not result in performance loss 511

compared with the centralized fine-tuning accu- 512

racy given in Table 1. However, if embedding 513

vectors are released without privatization, the at- 514

tacker can easily recover the input text through 515

EIA, with an attack success rate of up to 100%. 516

By adding perturbations to text representations to 517

guarantee ηdχ-privacy, the privacy protection ca- 518

pability of the SAP framework is strengthened. As 519

the basic privacy parameter η0 decreases, we ob- 520

tain better empirical privacy against EIA, but at 521

the same time, the utility accuracy keeps decreas- 522

ing. In other words, the SAP framework involves a 523

trade-off between utility and privacy. For example, 524

on the FP dataset, SAP improves the empirical pri- 525

vacy to 38.85% at the cost of 6.17% performance 526

degradation when η0 is set to 50. 527

Furthermore, the experimental results on the 528

FP, Blog, and SST datasets demonstrate that the 529
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Figure 2: Impact of the privacy parameter η0 on the empirical privacy (EP) against EIA and utility accuracy (UA).

CTI method significantly improves the trade-off530

between utility and privacy of the SAP framework.531

By adaptively adjusting the privacy budget accord-532

ing to the utility importance of each token for the533

target task, the CTI method can significantly im-534

prove both UA and EP. Specifically, on the FP535

dataset with η0 set to 50, the SAP-CTI algorithm536

can achieve the empirical privacy of 49.98% with537

only 2.73% performance loss. However, the CTI538

method does not yield very significant improve-539

ment on the MRPC dataset. This is because the540

CTI method only performs correlation analysis at541

the token level, while for tasks like semantic equiv-542

alence judgment, the class label of each sample is543

less relevant to individual tokens and more relevant544

to the overall semantics of the sentence. This is an545

inherent limitation of the CTI method.546

Figure 3 presents the results of the SAP frame-547

work defending against AIA on the Blog dataset548

with different numbers of labeled data Nl. Specif-549

ically, the attacker fine-tunes the Roberta model550

using some auxiliary gender labels along with the551

corresponding text representations sent by the cus- 552

tomer to infer the gender labels of other samples. 553

The results indicate that the attack success rate of 554

attacker is positively related to the amount of la- 555

beled data it possesses. By reducing the privacy 556

parameter, the SAP framework becomes more ca- 557

pable of defending against AIA, which is consistent 558

with the results of EIA. 559

5.3 Impact of Split Position 560

In the SAP framework, the split position of the 561

PLM is an important option. The Roberta model 562

comprises a total of 24 encoder blocks. In the ex- 563

periment, we split the model after the 1st to 8th 564

encoder block and compare them with the case 565

where the bottom model only has the embedding 566

layer. Figure 4 gives the impact of different split 567

positions on the empirical privacy against EIA of 568

the SAP framework without text privatization. The 569

results show that as the number of encoder blocks 570

in the bottom model increases, it becomes increas- 571

ingly difficult for an attacker to infer the input text 572

7



Bottom Model Metric
Privacy Parameter η0

45 50 55 60 65 70 None

Embedding and 2 encoder blocks
EP 55.28 46.03 37.46 31.18 25.79 21.42 19.68
UA 87.21 91.08 93.24 94.38 95.30 95.41 95.84

Embedding and 4 encoder blocks
EP 72.15 67.98 59.13 51.42 45.34 40.97 37.80
UA 87.06 90.38 93.21 94.25 94.89 95.13 95.72

Embedding and 6 encoder blocks
EP 80.45 75.22 71.58 68.06 64.83 61.41 59.19
UA 86.79 90.51 93.16 93.61 94.77 95.06 95.53

Table 2: Empirical privacy against EIA (%) and utility accuracy (%) of SAP-CTI with different split positions and
different privacy parameter settings on SST dataset, where “None” represents the case without privatization.
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Figure 3: Results of the SAP framework defending
against AIA on the Blog dataset.

from the representations transmitted by the cus-573

tomer. Even without text privatization, the empir-574

ical privacy reaches about 80% when there are 8575

encoder blocks in the bottom model.576

Furthermore, we delve into the privacy protec-577

tion capability and utility performance of the SAP578

framework with different split positions and dif-579

ferent privacy parameter settings. Compared with580

centralized fine-tuning, the results in the last col-581

umn of Table 2 indicate that as the number of layers582

included in the bottom model increases, the UA of583

the SAP framework without privatization decreases584

slightly while the EP increases significantly. In ad-585

dition, we can observe that by applying text priva-586

tization and reducing the privacy parameter, EP is587

further strengthened, but at the same time, the UA588

also decreases, which is consistent with the results589

in Figure 2.590

6 Conclusion591

We consider the model privacy and data privacy is-592

sues in LLM customization and propose a privacy-593

preserving fine-tuning framework SAP, along with594
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Figure 4: Empirical privacy against EIA of SAP frame-
work (without privatization) with different split posi-
tions on the SST dataset.

a utility enhancement method called CTI. By split- 595

ting the PLM into a top model on the vendor and a 596

bottom model on the customer, and applying text 597

privatization to adaptively perturb the transmitted 598

representations, the SAP framework with CTI can 599

effectively protect both the backbone model privacy 600

and data privacy while maintaining competitive per- 601

formance. Moreover, SAP is a flexible framework 602

capable of adapting to various scenarios in LLM 603

customization services. For customers with limited 604

computation resources, it is recommended to adopt 605

the solution with a frozen embedding layer in the 606

bottom model. Experimental results indicate that 607

it enhances the empirical privacy by 40% at the 608

cost of 4.6% performance degradation on the SST 609

dataset. For customers with relatively abundant re- 610

sources, a solution with more encoder blocks in the 611

bottom model can be adopted. Results indicate that 612

it can enhance the empirical privacy by 65% at the 613

cost of 1% performance degradation on the SST 614

dataset when the bottom model contains 6 encoder 615

blocks. 616
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Limitations617

One limitation of this work is that it only considers618

text classification tasks. The effectiveness of the619

SAP framework on more complex text generation620

tasks, particularly the impact of text privatization621

on the usability of generated content, remains to be622

further researched.623

In addition, the proposed CTI method analyzes624

the utility importance of each token for the target625

task based on the label information, and therefore626

cannot be directly applied to text generation tasks.627

How to alleviate the negative impact of text privati-628

zation on the usability of generated content is also629

one of our future research directions.630
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Bottom Model Metric
Privacy Parameter η0

45 50 55 60 65 70

Frozen Embedding Layer
EP 51.27 40.86 31.32 22.69 16.09 11.08
UA 87.33 91.25 93.56 94.55 95.31 95.49

Unfrozen Embedding Layer
EP 20.52 14.31 10.86 7.64 5.19 3.05
UA 87.83 91.46 94.30 94.71 95.59 95.78

Table 3: Empirical privacy against EIA (%) and utility accuracy (%) comparison on the SST dataset when the
bottom model is a frozen or unfrozen embedding layer.

A Discussion on Trainable Bottom Model763

In this appendix, we discuss another implementa-764

tion of the SAP framework where the bottom model765

is also trainable. The premise of this setup is to766

make it more challenging for the vendor to infer767

the original input text based on the released text768

representations by altering the parameters of the769

bottom model during fine-tuning.770

The specific implementation steps are as fol-771

lows. During forward propagation, the customer772

no longer sends the perturbed representations of773

all samples to the vendor at once. Instead, in each774

iteration, the customer randomly selects a batch of775

samples, computes the output of the bottom model776

for that batch, independently privatize the represen-777

tations, and then sends the privatized results to the778

vendor. The specific privatization process is consis-779

tent with the case where the bottom model is frozen.780

During backpropagation, the vendor needs to re-781

turn the gradient of the input layer of top model782

to the customer so that it can update the bottom783

model.784

We also evaluate the privacy protection capabil-785

ity and utility performance of the SAP framework786

when training the bottom model and top model to-787

gether. When the bottom model is trainable, the788

customer needs to send a batch of sample represen-789

tations in each iteration. If the training is conducted790

for E epochs, the attacker will have access to E791

representations for each sample, and it can indepen-792

dently use each representation to launch the EIA.793

The input tokens successfully inferred by the at-794

tacker are the union of the results of performing E795

attacks. The results in Table 3 indicate that when796

the bottom model consists only of an embedding797

layer, joint training of the bottom model has a mi-798

nor impact on utility accuracy but results in a signif-799

icant decrease in empirical privacy. The reason is800

that the parameters of the embedding layer change801

slightly after fine-tuning, and the attacker can still802

use the initial parameters to perform nearest neigh-803

bor search. Therefore, multiple observations of the 804

same sample will significantly increase the attack 805

success rate. 806
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