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Robust Text Image Recognition via Adversarial
Sequence-to-Sequence Domain Adaptation

Yaping Zhang™, Shuai Nie

Abstract— Robust text reading is a very challenging problem,
due to the distribution of text images changing significantly in
real-world scenarios. One effective solution is to align the distrib-
ution between different domains by domain adaptation methods.
However, we found that these methods might struggle when
dealing sequence-like text images. An important reason is that
conventional domain adaptation methods strive to align images as
a whole, while text images consist of variable-length fine-grained
character information. To address this issue, we propose a novel
Adversarial Sequence-to-Sequence Domain Adaptation (ASSDA)
method to learn ‘“where to adapt” and ‘“how to align” the
sequential image. Our key idea is to mine the local regions that
contain characters, and focus on aligning them across domains
in an adversarial manner. Extensive text recognition experiments
show the ASSDA could efficiently transfer sequence knowledge
and validate the promising power towards the various domain
shift in the real world applications.

Index Terms— Sequence-to-sequence, domain adaptation, text
image recognition.

I. INTRODUCTION

EEP learning methods have achieved remarkable results
on text image reading [1]-[6]. While excellent perfor-
mance has been achieved on the benchmark datasets, robust
text image reading in the real world still faces challenges from
large variance in viewpoints, appearances and backgrounds,
which may cause a considerable domain shift between the
training and test data. Several samples are illustrated in Fig. 1,

where we can observe a considerable domain shift.
Significant performance drop caused by domain shifts has
been observed in many realistic applications. One intuitive
and effective solution to this problem is to collect large
scale annotated text images, while they are often extremely
expensive and cannot cover all diversity. Therefore, it is
highly desirable to develop an algorithm to adapt text image
recognition models to a new domain that is visually different
from the source training domain. An appealing alternative is
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Fig. 1. Tllustration of three typical domain shifts in text image recognition
scenarios. Here, we can use easily labeled synthetic text images as the source
domain (left), and the unsupervised real text images (right) in different scenes
as the target domain.

to take advantage of the unsupervised text images to reduce
domain shifts.

Unsupervised domain adaptation (UDA) has been developed
to use unannotated data to reduce the domain shift between the
different domains [7], [8]. We could consider the cross-domain
text image recognition problem as an unsupervised domain
adaptation scenario: full supervision is given in the source
domain while no supervision is available in the target domain.
However, recent UDA methods generally optimize the global
representation to minimize some measure of domain shift, such
as maximum mean discrepancy (MMD) [9], [10], correlation
alignment distance (CORAL) [11], [12], or adversarial loss [7],
[13]-[15], where they typically consider the input images as
a whole. While a text image is a combination of different
characters, which is a variable-length label sequence instead
of an isolation. Thus, the domain shift could occur not only on
global image level (e.g image background, illumination, etc. ),
but also on local character level (e.g character font, content,
etc. ). Consequently, most of popular domain adaptation meth-
ods cannot be effectively applied to the sequence prediction,
since a global representation neglects important fine-grained
information at the local character level, which in turn cannot
sufficiently describe the content of sequence-like images.

To address the aforementioned issues, we develop an Adver-
sarial Sequence-to-Sequence Domain Adaptation (ASSDA)
method for robust text image recognition. As shown in Fig. 2,
the proposed ASSDA incorporates two key components,
global-level alignment and local-level alignment, which
respectively address the question of “global image-level
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Fig. 2. The structure of ASSDA consists of: a CNN encoder to map the input images into a sequence of high-level feature vectors, an attention unit between
the encoder and decoder to adaptively focus on the location of character, and an RNN decoder to convert encoded features into output strings recurrently.
We tackle the domain shift on two levels, the global-level alignment and the local-level alignment, where two domain classifiers are built on two levels and

trained in an adversarial training manner.

domain shift” and “local character-level domain shift”. In each
component, we train a domain classifier and employ the adver-
sarial training strategy to learn robust features that are domain-
invariant. Specifically, the proposed ASSDA is an attention
based encoder-decoder model for handling sequences, which
is derived from [6]. The key idea is that attention module could
learn “where to adapt”. i.e., it could automatically concentrate
on the most relevant region of one character. Then the local-
level alignment could leverage the attended local fine-grained
character-level features on both domains to learn “how to
align” via an adversarial manner. Overall, the cooperation of
these components leads to an adaptation process that focuses
on the region of interest, thus improving the effectiveness.

We summarize our contributions as follows:
o We introduce an Adversarial Sequence-to-sequence

Domain Adaptation dubbed ASSDA, for robust text
image recognition, which bridges the sequence-like text
image recognition and domain adaptation.

o We design two domain adaptation modules to alleviate
the domain shift at both the global-level and local-level,
where they collaboratively contribute to guiding model
find the domain-invariant representations.

o« We introduce a spatial normalization network to the
domain adaption process, which makes the model robust
and could be generalized to more complex scenes.

The paper surpasses its conference version SSDAN [16]

with three major extensions:
o To address the insufficient knowledge transferring prob-

lem in the SSDAN, we redesign the alignment module
to consider the inevitable cross-domain shifts at different
levels, rather than only local-level domain shifts.

o Regarding that various perspective distortions and geo-
metric noises in real scenes, the extended ASSDA incor-
porates a spatial normalization network to the domain
adaption process. It makes our model could be general-
ized to broader scenes in a unified framework.

o We explore the application of ASSDA in more complex
tasks, including irregular text recognition, and more com-
plex cross-domain adaptation tasks.

With these extensions, ASSDA outperforms conference
paper [16] by a large margin and shows broader applicability.
Extensive experiments on benchmark datasets validate the

promising power of the proposed model towards various
domain shift settings, including synthetic-to-real (synthetic
text to real scene text), and cross-domain (scene text to
handwriting text, and handwriting text to scene text).

The remaining parts of this paper are organized as fol-
lows. We firstly discuss the related work in Sec.Il. Then,
we describe the preliminaries and the proposed model ASSDA
in Sec.Il and Sec.IV, respectively. Furthermore, we present
the evaluation and detailed analysis on it. Finally, we draw
the concluding remarks.

II. RELATED WORK

In this section, we review the literature of text recognition
methods. Then we discuss the recent unsupervised domain
adaptation techniques and its trials on text recognition.

A. Text Recognition Methods

Deep learning methods have achieved remarkable results
on image text reading [4], [6], [17]. Earlier DNN based
methods recognized image text depending on the segmentation
of each character [18] or a non-maximum suppression [19],
which may be very challenging because of the complicated
background and the inadequate distance between consecutive
characters. As well, they did not unleash the full potential of
word context information in the recognition. Recently, some
researchers treated the text recognition task as a sequence
learning problem [1], [2], [4], [17]: firstly encoding an entire
image text into a sequence of features with CNN, and then
decoding character sequence recurrently via recurrent neural
network (RNN) with CTC [1], [2] or attention schemes [4],
[6]. Nevertheless, CTC methods [1], [2] cannot handle compli-
cated two-dimensional structures, such as irregular curve text.
In this case, the attention based encoder-decoder model [4]
has shown promising performances as symbol segmentation
can be adaptively performed through attention model.

However, the literature is relatively sparse on building a
robust text recognizer that can handle varying data in abun-
dance of scenarios effectively. Some methods were designed
to handle perspective distortion exhibited in the scene text.
For example, [20] and [21] introduce a spatial transformer
network [22] to rectify the entire text before recognition.
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Furthermore, CharNet [4] tried to introduce a character-level
spatial transformer to rectify individual characters, which was
capable of handling more complicated forms of distortion that
cannot be modeled by a single global transformation easily.
However, they were only designed for spatial affine distortions
and hard to generalize to the distortion caused by handwriting
styles or various backgrounds. In summary, existing text
image recognition methods are usually designed for a specific
scenario, and the intrinsic domain shift in the text image data
is commonly neglected. While our domain adaptation model
is designed for cross-domain tasks. Specifically, the ASSDA
utilizes the domain adaptation technique to tackle the domain
shift problem, which adaptively performs the global-level and
character-level adaption in sequence-like text images.

B. Unsupervised Domain Adaptation

Unsupervised domain adaptation has received increasing
attention in recent years [7], [8], [13]-[15], [23], [24]. It’s
often considered as a promising remedy to tackle the domain
shift problem [8]. There are many domain adaption methods
designed for cross-dataset visual recognition. For example,
an exemplar SVM-based domain adaptation method [24] is
designed for cross-domain object recognition and action recog-
nition, where the source domain with complex distribution
is decomposed into many simpler sub-domains. Instead of
learning domain invariant features, this work aims to learn the
robust target classifiers directly. The domain adaptation from
multi-view to single-view (DAM2S) achieves an interesting
multi-view RGB-D data to single-view RGB visual recognition
task, which simultaneously reduces the global domain shift
between two domains and maximizes the correlation between
two global features from different views. This work is also
based on SVM classifier.

The majority of recent works use deep convolutional archi-
tectures to map the source and target domains into a shared
space where the domains are aligned. They generally opti-
mize the global representation via minimizing some measure
of domain shift, such as MMD [9], [10], CORAL [11],
[12], or adversarial loss [13]-[15], [25]-[27]. For example,
collaborative and adversarial network (CAN) [27] uses a col-
laborative and adversarial training scheme to simultaneously
learn the discriminative low-level representation and domain
invariant high-level representation. CAN aims to reduce the
coarse-grained global level domain shift for two common
visual recognition tasks: object recognition and video action
recognition.

As stated above, most of recent works concentrate on global
visual recognition. However, much less attention has been
paid to other computer vision tasks. Recently there are some
new concerning tasks such as object detection [28], [29],
where they leverage a semantic related but distribution dif-
ferent source domain with sufficient labels of bounding boxes
to train a detector on the unlabeled target domain. One of the
inspiring work [29] proposes multiple adversarial alignment
modules to align the hierarchical feature between two domains,
where the available labels of bounding boxes in source
domain could provide fine-grained instance-level information.
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In contrast, our model focuses on variable-length sequence-
like text images recognition, where there are no character-level
annotations. Essentially, our source domain is weak-supervised
sequence-like data. We need to know “where to adapt” in a
sequence-like text image. Therefore, the key idea of our model
is to address the question of “where to adapt” via attention
mechanism.

C. Domain Adaptation for Text Recognition

Some methods have been evaluated on the handwritten
character or natural scene digital dataset for recognition tasks
and have shown effective performance. However, the majority
of recent works simply consider the entire image as a whole,
focusing on the design of losses or metrics. Some other
methods have been proposed to adapt the different font styles
for image-to-image translation via adversarial learning [30].
Similarly, these methods limitedly translate the font in dif-
ferent style of signal characters on a global image, which
are still cannot be extended to text-line images. Recently,
[31] introduced a geometry-aware domain adaptation network
(GA-DAN) to convert a synthetic text image to a real scene
text image, and then use the converted text image to train
the target recognition model. Therefore, the GA-DAN cannot
be trained in an end-to-end unified framework. And the
GA-DAN still neglects the fine-grained character level domain
shift in a sequence-like text image. To address these problems,
we develop a sequence-to-sequence domain adaptation to
focus on not only global-level domain shifts but also the fine-
grained character-level domain shifts, which could transfer
variable-length sequence knowledge successfully in an end-
to-end unified framework.

ITI. PRELIMINARIES
A. Sequence-to-Sequence Domain Adaptation

In this paper, unsupervised sequence-to-sequence domain
adaptation is developed for robust text image recognition.
Specifically, the source domain text images with well-
annotated text labels (a sequence of characters or symbols)
are available, while we only have an access to unlabeled text
images in target domain, which is in a different distribution.
Our task is to train a text image recognition system that can
generalize well to the target domain, utilizing unsupervised
sequence data. Specifically, we desire to obtain a domain-
invariant feature representation that works equally well in
both domains. More formally, we assume that there are N*
annotated source domain samples X* = {x} }f.V:S o With the corre-
sponding labels ¥ = {y} }lN:S o> and N’ unlabeled target-domain
samples X' = {x/}V 10 without any available annotated labels
during the training period. Fory € V*, y = {y1, y2, ..., y7},
where y; and 7 denotes a character label and the variable
length of text, respectively.

B. Attention Text Recognition

The attentive text recognition can be essentially considered
as learning a mapping between a sequence of feature maps
encoded from a sequence-like text image X, and a ground
truth label sequence y = {y1, y2, ..., yr}. As shown in Fig. 2,
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Fig. 3. The illustration of the attention procedure, which is used to localize
individual characters in the image. (We use the raw image as intermediate
visualization result instead of convolution feature maps for the best view.).

the attentive text recognition pipeline consists of three major
components: a CNN encoder, an attention module and a GRU
decoder.

1) CNN Encoder: CNN encoder F takes the raw input
image x from the source or target domain, and produces a
feature grid F(x) of size H' x W’ x D, where D denotes
the number of channels, H' and W’ are the resulted feature
map height and width, respectively. The encoder output is then
reshaped as a grid sequence of L elements, L = H' x W'.
Each of these elements is a D-dimensional feature vector
that corresponds to a local region of the image through
its corresponding receptive field. Hence, the whole encoded
image F(x) could be reformatted as,

Fx)=I[f1,...,fr], fi € RP, (1)

where f; corresponds to i-th grid of the encoded image F(x),
which preserves specific spatial information of the input
image X.

2) Attention: Although the CNN encoder keeps the spatial
information, we cannot decide the location of a specific
character in a text image. Therefore, an attention model is
introduced to learn which part of the text image is the most
relevant to a decoding character. As shown in Fig. 3, the atten-
tion is a T-step process. At time-step k, the representation
of the most relevant part to character y; of encoding feature
map F(x) is defined as a context vector cx:

L
e = anifi, @

i=1

where, the attention weights oy ; is calculated by

exp(st,i)

L b
ijl exp(sk, ;)
where the attention score si ; indicates the probability of that
the model attends to the i-th sub-region in the encoded map
F(x) when decoding the k-th character of the text image.

Following the past empirical work [6], we defined the attention
score as

3)

Ok,i =

5

st.i = B tanh(Wyhe_1 + W s£;), (4)

where B, W;, and Wy are the parameters to be learnt,
h;_; is the previous decoding state in the decoder.

3) RNN Decoder: An RNN decoder is employed to predict
the string of an input text image recurrently, where we use
gated recurrent unit (GRU) neural network. At decoding time
step k, the GRU leverages the context vector ¢, previous
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state hy_1 and previous predicted character y;_; to generate
a new hidden state

hy = GRU (hi—1, yi—1, ¢), ©)

where, ¢, is generated by the attention mechanism, which
focuses on the most relevant region of current decod-
ing character. Then, the probability of current predicted
symbol y; is computed by :

POklyk—1, k) = g (W, tanh(Ey;—1 + Wyhe + Weer)),  (6)

where g denotes a softmax activation function, W,, W, and
W, are the mapping matrices, E is the embedding matrix, and
Vi—1 is the one-hot vector of character label yi_1.

The probability of the sequential labels y is finally given by
the product of the probability of each label:

T
PylA®) = [ ] pOrlye-1, e0), @)
k=1
where A(x) = {e¢1,¢2,...,cr}, which could be regarded as
a sequence of attended character-level features from an input
text image X.

1V. PROPOSED METHOD
A. Framework Overview

In this paper, we propose an adversarial sequence-to-
sequence domain adaptation to gradually learn “where to
adapt” and “how to align” the sequential feature space between
two domains. We introduce two domain adaptation compo-
nents: global-level alignment and local-level alignment, which
are used to align the feature representation distribution on
not only global-level but also local-level. During the training,
these two modules can guide the learning of features to
reduce the gap between domains. After training, the alignment
module is no longer needed. Only the backbone of the text
image recognition will be used for effective inference, while
benefiting from the learned domain-invariant features.

B. Global-Level Alignment

Aligning global image level representations generally helps
to reduce the shift caused by the global image difference
such as image style, illumination, efc. We wish to learn
a global representation that is invariant for both appearances
(background, illumination, efc. ), and geometry characteris-
tics (translation, rotation, and affine transformation, etzc. ).
However, text images with diverse shapes in real scenes
heavily make the model struggling for learning invariant global
representations.

To tackle this problem, we introduce a spatial normalization
network N, which transforms a raw input image x into a
geometry-normalized image X. Motivated by ASTER [32],
we apply a learnable Thin-Plate Spline (TPS) transformation
network as N to normalize the irregular text image. This can
be mathematically written as

% = N(x). (8)

TPS is a variant of the spatial transformation network
(STN) [32], which employs a smooth spline interpolation

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 12,2024 at 07:00:34 UTC from IEEE Xplore. Restrictions apply.



3926

between a set of fiducial points. Specifically, TPS finds multi-
ple fiducial points at the upper and bottom enveloping points,
and normalizes the character region to a predefined rectangle.
More detailed information can be referred to ASTER [32].

After the spatial normalization network N, we could further
get encoded global-level visual representations F(X) from
CNN encoder. To eliminate the domain distribution mismatch
on the global level, we introduce a global-level domain classi-
fier Dg. The loss of the global-level domain discriminator D,
as L, is denoted as follows,

Ly, = —Ex,~xs {log(1 — Dg(F (%))}, €
Lo, = —Ex,~xt {10g(Dg (-7'—(321)))} > (10)

1
Lo(F, Dy, X, X") = 3 (Lg, + Lg,) - (11)

C. Local-Level Alignment

The global-level alignment of DA models uses the feature
map after the last convolutional layer to align the global feature
distribution of different domains. However, such a setting has
three limitations. First the model ignores the alignment of
fine-grained local character features, making certain domain-
sensitive local features weaken the generalization ability of
the adaptive model. Second, single adaptation (one domain
classifier) is difficult to cancel the data bias between the
source domain and the target domain, because the sequential
text images are complex combinations of local characters.
Third, due to that the target sequence domain is unsupervised,
the whole ground truth strings of target domain may suffer the
inconsistency with the source domain.

To solve the aforementioned problems, we introduce the
idea of local character-level adaptation. We desire to find
those regions that cover fine-grained character region, and then
align the character-level feature in both the source and target
domain. A natural idea is to utilize the attended character
regions derived from the attention mechanism. More formally,
through attention mechanism, an input image x can be adap-
tively decomposed into a series of character-level feature set
Ax) = {e1,c,...,cr}, where ¢, presents the feature of
k-th character in the text image x. Specifically, a source text
image x* and a target text image x’ are decomposed into a
source and target attended character-level feature set A(x5)
and A(x!), respectively.

We notice that if the attention context vector fails to focus on
the region of effective character, the adaptation on the attention
context vector will not help. To overcome this problem, we
introduce a gate mechanism to select effective attention context
vectors to perform domain adaptation, as illustrated in Fig. 4.
An intuition is that if the current attention context vector
¢, is distinguishable, the probability that ¢; belongs to one
specific character y; will be relatively higher than others.
Hence, we further introduce an adaption gate function J(ck)
to judge if a context vector ¢ is attending to a valid character,

5(c) = [1 ?f P klye—1, €k) > pe (12)
0 if p (Vklyk—1,€k) < pe,
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Fig. 4. The local-level alignment is to adaptively find valid character-level
domain-invariant features between the source and target domain.

where p. is a confidence threshold. Furthermore, a gate
function set G is adaptively changed according to the specific
input image x, which is expressed as:

G(x) = {d(cy), ..., d(cT)}.

Through the gate function, we can update attention context
vector set by adaptation gate function set G(x),

Ax) = A(x) ® G(x),

13)

(14)

where ® denotes element-wise product operator. Specifically,
if ¢ x d(cx) = 0, then current context vector ¢; will not be
added in a new attention context vector set.

By decomposing the text strings into a set of characters,
the source and target domain will statistically share the
same label space in character-level, and thus the influence
of the misalignment problem can be alleviated. Furthermore,
we introduce a local-level domain discriminator D; to align
the character-level distribution. The local-level adaptation loss
can now be written as

£y, = = Exx | Eg g o2 = DI}, (9)
»Cl, = _Ex,fvxl {Ec;(’w‘i(x‘) [IOg(Dl(Clt{)]} 5 (16)

1
Li(F,Dg, X%, X") = 3 (Li, + L1,), (17)

where ¢; and ¢} denote the k-th attended character-level
feature vector in a source and a target image, respectively.

D. Overall Objective

With the well-annotated source-domain data, we could learn
an optimized source text image recognizer by minimizing
a supervised decoding loss, where we can use the negative
log likelihood of sequential probability as the decoding loss
Lgec to measure the differences between the predicted and the
source labeled character sequences:

Liec = E(X“,yS)N(XS,yS) {_ IOg p(yslxs)} . (13)

Directly optimizing L4, may cause overfitting in source
domain, and thus fails to perform well for the shifted target
domain. The local-level alignment and global-level alignment
modules are introduced to guide the model to learn domain-
invariant features between the source and target domain. The
learnt robust representations should work effectively on the
target domain, where they are also required to be discrimina-
tive. Therefore, the global-level adaptation loss £, in Eq. 11
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and the local-level adaptation loss £; in Eq. 17 are combined
with the discriminative decoder loss Lg.. in source domain.
The overall objective function of our model is defined as:

Lasspa = Laec — AgLg — 1Ly, (19)

where 4, and 4; are weights that control the interaction of
losses to achieve better trade-off between the global alignment
and local alignment.

E. Optimization

During training, we have three different networks: the text
image recognition network 7', global domain classifier Dg, and
local domain classifier D;. Let us consider their parameters to
be Or, <9Dg and Op,. In one iteration during training, D, and
D, are optimized to distinguish the global-level and local-level
features from the source domain or target domain, respectively.
The text image recognition network 7' is optimized to extract
domain-invariant features that can fool D, and D;. In other
words, Dg, D; and T play the minimax game with the
objective:

min max Lasspa = Ldec — — ML (20)

T Dg, Dy

ALy

During training, the parameters of the text image recognition
network 7" is optimized to minimize the objective LAosspa in
Eq. 19. Simultaneously, the optimization goals for D, and
D, are opposite to the optimization of the text recognition
model 7. They are trained by an alternative training way in
the concurrent sub-processes:

" OLg

O, =00, — s 75 @1
A~ 6L1

0 Op, — , 22
Dy < Up; ﬂlaeDl (22)
A 0Lgec 0L, ﬁl

0 Or — Ao —— A 23
T < 01 — Wt a0r + Uy éae +ﬂtl , (23)

where g, u;, u; are the learning rate for optlmlzlng the
parameters of the domain classifier Dg, D; and the text image
recognition network 7', respectively. For the implementation
we use a gradient reversal layer (GRL) [13], whereas the
ordinary gradient descent is applied for training the domain
classifier. The sign of the gradient is reversed when passing
through the GRL layer to optimize the base network. The
detailed optimization procedure of our proposed ASSDA is
depicted in the Algorithm 1.

V. EXPERIMENTS

Datasets: We conduct extensive experiments to validate the
proposed ASSDA on following general recognition benchmark
datasets, including three different types of text image, i.e.,
synthetic text, real scene text, and handwritten text.

o Synth90k [33] is the synthetic text dataset. The dataset
contains 9 million images generated from a set of 90k
common English words. Words are rendered onto natural
images with random transformations and effects. Every
image in Synth90k is annotated with a groundtruth word.
All of the images in this dataset are taken for training.
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Algorithm 1 the Proposed ASSDA Algorithm

Input: Labeled source data (Xs,y,) € (Xs,Ys), unlabeled target
data x; € Xr; a pre-trained source text recognition model 7.

Output: The optimized global domain classifier Dy, the local do-
main classifier Dy, and text recognition model 7' parameterized
by 0p,, 0p,, and O, respectively.

: Randomly initialize model parameters 6 p B and 0p,, and initialize
T with pre-trained source recognition model.

: repeat

// Updating global domam classifier Dy

0D9 - aDg Hgze, 80 Dy

// Updating local domain classifier D;

GDL — QD, 19 %Dl

// Updating target classifier

Or « 07 — It aLd“ + Mt>\g 99 < + ,U«t)\l 89

. until The ob]ectlvg functlon n EqA 20 converges.
Got 9Dg = 0Dg, GDL = ODZ’ and OCS = QCT'

: return The optimized model parameters éD - épl, and éT.

—_

VXD RN

—_
=]

o SynthText [34] is another widely-used synthetic text
dataset. The generation process is similar to that of [33].
But unlike [33], SynthText is targeted for text detection.
Therefore, words are rendered onto full images. We crop
the words using the groundtruth word bounding boxes.

o IIITSK-words (IIITSK) [35] contains 2,000 cropped
training scene images and 3, 000 cropped test scene text
images from the Internet.

o Street View Text (SVT) [19] is obtained from Google
Street View, where many images are severely corrupted
by noise, blur, and low resolution. It contains 257 images
for training and 647 images for test.

« ICDAR-2003 (IC03) [36] is a camera-captured scene text
dataset. Following the protocol used in [2], we discard
words that contain non-alphanumeric characters or have
less than three characters. Finally, we got 1156 cropped
training images and 860 cropped test images.

« ICDAR-2013 (IC13) [37] contains 848 images for train-
ing and 857 images for evaluation, following the same
protocol used in IC-03.

o ICDAR-2015 Incidental Text (IC15) [38] is the dataset
from the ICDAR 2015 Robust Reading Competition.
It focuses on incidental text images, which are taken
by a pair of Google Glasses without careful positioning
and focusing. Consequently, the dataset contains a lot of
irregular text. Images are obtained by cropping the words
using the groundtruth word bounding boxes. Following
the protocol used in [6], we get 4468 and 1811 cropped
images for training and evaluation, respectively.

o SVT Perspective (SVTP) [39] consists of 645 images
collected from Google Street View, where perspective
projections caused by non-frontal viewpoints exist in
most of collected images.

« CUTES80 (CUTE) [40] is a dataset focusing on curved
text, which contains 288 cropped scene text images.

o« IAM [41] is a handwritten English text dataset, written
by 657 different writers. It is partitioned into writer-
independent training, validation and test partitions of
6161, 976 and 2915 lines, respectively. That contains
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a total of 46945, 7554 and 20306 correctly segmented
words in each partition.

Evaluation Metric: In this paper, we evaluate the text
recognition model from following three different evaluation
metric:

+ Word Prediction Accuracy is used to evaluate scene text

recognition model, following several benchmark [2], [4].

« WER and CER are acronyms of Character Error Rate

(CER) and Word Error Rate (WER) [3], [42], respec-
tively. They are used to evaluate the text recognition
model from character-level and word level, respectively.
CER is defined as the Levenstein distance between
the predicted and real character sequence of the word.
WER denotes the percentage of words improperly recog-
nized. For CER and WER, small values indicate better
performance.

Implementation Details: The architecture of the CNN
encoder is derived from the ResNet [43], where the detailed
structure is illustrated in Table 1. Specifically, “conv_relu_bn”
denotes the convolutional layer followed by batch normal-
ization layer [44] and rectified linear unit (Relu) activation
function [45]. And “max_pool” and “residual_block” denote
the max pooling layer and residual block, respectively. As a
result, the resolution of feature maps produced by encoder is
H /16 x W/4, where the values of H and W are set according
to the specific dataset. After the CNN encoder, we use a bi-
directional LSTM to capture more context information for
attention, and each LSTM has 256 hidden units. And then,
we use a LSTM cell with 512 hidden units for the decoder.
The global and local domain discriminators are two layered
fully connected neural networks. All of our experiments are
implemented with Pytorch. For a fair comparison, our model
adopts the same protocols following [6]. The complete model
is initially pre-trained to minimize the decoding loss of the
source training data, and then is fine-tuned to minimize the
overall domain adaptation objective with unsupervised target
data. More training details could be referenced from our
released code.!

A. Domain Adaptation on Public Benchmarks

In this scenario, we explore the domain capability of
ASSDA on the public scene text recognition benchmarks. They
are usually trained on the synthetic data, while tested on the
real scene. Domain shifts often happens due to the existence of
different noises. Specifically, we adopt the Synth90k [33] and
SynthText [34] as the well annotated source data following
the protocol in [6]. The real scene text datasets are used as
the unlabeled target data. To validate the performance of our
ASSDA model, we focus on unconstrained text recognition
without any language model or lexicon. We also consider a
baseline for ASSDA that omits the local-level and global-level
alignment modules to switch off the domain adaption process.
Baseline model is only trained on the source data.

1) Synthetic Text to Regular Text: Table II presents the test
results on regular scene text datasets. As our model could
effectively utilize available unsupervised data in a unified

1 https://github.com/April YapingZhang/Seq2SeqAdapt
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TABLE I
THE DETAILED STRUCTURE OF THE CNN ENCODER

Layers [kernel, stride, channel] Output size

conv_bn_relu [3x3,1x1,32 HxW

conv_bn_relu 13x3,1x1,64 HxW

max_pool [2 X 2,2 % 2] . H/2 x W/2
. 3x3,1x1,128

residual_block 3x3.1x1128 x2  H/2xW/2

conv_bn_relu 3x3,1x1,128] H/2 x W/2

max_pool 2x22x2] H/4 x W/4
. 3 x3,1x1,256

residual_block 3% 3.1 x 1,256 X2 H/4x W/4

conv_bn_relu 3x3,1x1, 256] H/4x W/4

max_pool [_2 x 2,2 % 1] ) H/8 x W/4
. 3% 3,1x1,512

residual_block 3% 311512 x5  H/8x W/4

conv_bn_relu :3 x3,1x1, 5121 H/8 x W/4
. 3% 3,1x1,512

residual_block 3x3,1x1,512 %3 H/8 x W/4

conv_bn_relu :3 x 3,2 x 1,512] H/16 x W/4

conv_bn_relu 13x3,1x1,64] H/16 x W/4

framework, we perform two experiments, namely ASSDA-
single and ASSDA-all, where the only difference is in the
training target data setting. For ASSDA-single, we perform
domain adaption separably on each single dataset. While
for ASSDA-all, we combine all images from different real
scene data as target data. Compared to the baseline model,
our ASSDA-single and ASSDA-all both can obtain consistent
improvement among different datasets. As current available
real scene text images are really small, the ASSDA-single
get relatively small gains. However, when we combine unsu-
pervised images from different scenes, we could get more
benefits. It’s mainly attributed to sequence-to-sequence domain
adaptation, which is able to learn more domain-invariant
features by exploiting the unsupervised data. Furthermore,
we investigate the performance of our model among the recent
state-of-the-art approaches [4], [17], [21], [32], [47], which are
tailored for scene text recognition. We observe that the ASSDA
model can achieve comparable results with them.

2) Synthetic Text to Irregular Text: Table I1I presents the test
results on irregular scene text. The performance of our baseline
is at an average level for irregular text, although. We can
still observe that the ASSDA model achieves significant
improvement compared to the baseline without adaptation.
It’s notable that RARE [20], STAR-Net [21], Char-Net [4]
and ASTER [32] target the irregular scene text recognition,
which are designed for spatial distortions. Despite of the
brilliant performance on irregular scene text, they would not be
easily generalized to the different distortions, such as different
background and various handwriting styles. In contrast, our
method aims to perform sequence-to-sequence domain adap-
tation to reduce the domain shift, and correspondingly allows
us to relieve different distortions using a general framework
in different scenarios.

To further investigate the adaptability of the proposed
ASSDA, we also compare our model with the finetuning
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Model Reference IIT5K SVT I1C03 IC13
RARE [20] CVPR 2016 86.2 85.8 93.9 92.6
STAR-Net [21] CVPR 2016 87.0 86.9 94.4 92.8
R2AM [17] CVPR 2016 83.4 82.4 92.2 90.2
CRNN [2] TPAMI 2017 82.9 81.6 93.1 91.1
GRCNN [46] NIPS 2017 84.2 83.7 93.5 90.9
Char-Net [4] AAAI 2018 83.6 84.4 91.5 90.8
SSDAN [16] CVPR 2019 87.6 88.1 94.6 93.8
STR2019 [6] ICCV 2019 87.9 87.5 94.9 93.6
Baseline ours 87.5 86.7 95.1 92.9
Finetuning ours 89.7 87.3 94.4 94.3
ASSDA-single ours 87.6 87.8 95.5 93.8
ASSDA-all ours 88.3 88.6 95.5 93.7
TABLE III TABLE IV

SCENE TEXT RECOGNITION ACCURACIES ON IRREGULAR
SCENE TEXT RECOGNITION BENCHMARKS

Model Reference IC15 CUTE
RARE [20] CVPR 2016 74.5 70.4
STAR-Net [21] CVPR 2016 76.1 71.7
Char-Net [4] AAAI 2018 60.0 —
ASTER [32] TPAMI 2019 76.1 79.5
SSDAN [16] CVPR 2019 78.7 73.9
STR2019 [6] ICCV 2019 77.6 74.0
Baseline ours 78.1 74.2
Finetuning ours 79.7 74.9
ASSDA ours 78.7 76.3

method. The ASSDA focuses on leveraging the unsupervised
target data to reduce the domain shift. In contrast, the fine-
tuning method must use the labeled training splits of the
target dataset. However, there may be no access to the labeled
training splits in some target domain, especially in real applica-
tions. To address this issue, we combine the available training
images from different real scene data as target data. For a fair
comparison, we adopt the same combined training target data
as used in ASSDA. As shown in Table II and Table III, the
fine-tuning model (Finetuning) not always performs better than
the unsupervised domain adaptation model. It implies that the
proposed ASSDA with unsupervised domain adaptation may
be able to learn more robust features than the supervised fine-
tuning in some specific scenes.

B. Domain Adaptation on Specific Cross-Domain Tasks

We further evaluate the ASSDA on two different cross-
domain tasks: scene text v.s. handwritten text and real regular
text to real irregular text, to explore the model generalization.

1) Scene Text v.s. Handwritten Text: We evaluate our algo-
rithm on the 2 cross domain adaptation experiments: Scene
Text — Handwritten Text (ST — HT), Handwritten Text —
Scene Text (HT — ST), using the training set only during
training process and evaluating on the standard test sets. The
token “—” means the direction from the source domain to
the target. As shown in Fig. 1, the scene text has many
differences with handwritten text. Specifically, the baseline
model is firstly trained by supervised source data. And then we
employ ASSDA to take advantage of some unsupervised target

EVALUATION ON THE SCENE TEXT v.s. HANDWRITTEN TEXT TASKS. FOR
CER AND WER, SMALL VALUES INDICATE BETTER PERFORMANCE

Methods ST —HT HT—ST
WER CER WER CER
Baseline 54.30 28.41 89.67 71.04
SSDAN [16]  53.65 27.26 86.57 67.25
ASSDA 43.78 19.96 84.94 62.48

to finetune the model. For the analysis, we evaluate the model
on both CER and WER. As shown Tabel IV, the baseline
model has a poor performance on cross-domain target data.
When we employ ASSDA to learn domain invariant features,
we could get some improvement in both character level and
word level. Compared to SSDAN, the extended ASSDA made
a big progress. Especially on the ST —HT setting, we could
get nearly 10% improvement. Although the improvement is
relatively small on the more difficult setting HT— ST, it could
also validate the generalization of our model.

2) Real Regular Text to Real Irregular Text: We explore
the adaptability of the ASSDA towards perspective distortions
when the available source dataset is small. Following the
protocol used in [31], we use the real regular scene text
and real irregular scene text as the source domain and target
domain, respectively. Specifically, the real regular scene text
dataset is composed of the training data from IC13, IIIT5K,
and SVT, whose total number of data is small. We denote
the combined source data as “COMB”. While the curved
dataset CUTE and perspective dataset SVTP are used as two
target datasets. The Table V shows that non-sequential domain
adaptation methods ADDA [14] and CyCADA [26] are not
sufficiently robust to reduce the domain shift in sequence-
like text images. However, our model could get improvement
even when the available source data is small. We observe that
GA-DAN [31] shows better performance in Table V. One
possible reason may be that GA-DAN could be well-tuned
in two-stage frameworks. While our ASSDA is trained in a
unified framework via an end-to-end way.

C. Ablation Study

In this part, we design several variants of our model
to validate the contributions of different components.
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TABLE V

EVALUATION ON REAL REGULAR TEXT TO REAL
IRREGULAR TEXT TASKS

Model COMB—CUTE COMB—SVTP
ADDA [14] 32.1 45.6
CyCADA [26] 32.2 43.6
GA-DAN [31] 43.1 51.7
SSDAN [16] 33.8 45.9
Baseline 324 45.7
ASSDA 38.3 47.1

Two variants are provided as baselines: the baseline model
without spatial normalization network (Baseline w/o N),
and the baseline model with spatial normalization network
(Baseline). Both baselines are trained only on source data
without any adaptation. Furthermore, more variants based on
the baseline models are adapted with unsupervised target data
via Global-level Alignment (GA, only with D,), Local-level
Alignment (LA, only with D;), and multiple-level alignment
(ASSDA, with both D, and D;), respectively.

To sufficiently investigate the effect of different compo-
nents, we conduct the experiments on two different cross-
domain tasks: from Synthetic Scene Text to Real Scene text
(Syn—Real) and from Synthetic Scene Text to Handwritten
Text (ST—HT). Regarding that the real scene text includes
regular text and irregular text, we denote the adaptation from
synthetic text to regular text and irregular text as ST—RT and
ST—1IT, respectively. The experimental results are reported
in Table VII and Table VI.

1) The Effect of Spatial Normalization Network: The model
Baseline w/o N and model Baseline demonstrate that the
baseline text recognition model with and without spatial nor-
malization network N, respectively. It can be observed that the
text recognition model can be benefited from introducing N
in Table VII and Table VI. But we notice that the gain is lim-
ited when the A is applied to non-geometric distortions such
as the setting in Table VII. Furthermore, we investigate how
the spatial normalization network A influences the domain
adaptation. As shown in the Table VI, the comparison pairs
(Baseline w/o N', GA w/o N) and (GA w/o N, GA) show
that the N plays an import role in global-level alignment,
while the comparison between LA w/o N and LA shows that
the local-level alignment get very limited benefits from N
However, the comparison pair (ASSDA w/o N, ASSDA)
validates that the N does boost the joint global-level and local-
level alignment.

2) Global-Level Alignment v.s. Local-Level Alignment:
We observe that the global-level alignment can help the
model to get more robust performance, after we diminish
the geometric shift by N. As shown in Table VII and
Table VI, the adaptation model with both global-level and
local-level alignment (ASSDA), ie. with Dg and Dy, per-
forms better than the adaptation model only with local-level
alignment (LA). It validates that the global-level alignment
can facilitate the sequence-to-sequence domain adaptation.
Furthermore, we also observe that the local-level alignment
plays a vital role in sequence-to-sequence domain adaption
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from the comparison pairs (Baseline w/o N, LA w/o N') and
(Baseline, LA) in Table VII and VI And the comparison pairs
between the local-level alignment and global-level alignment,
i,e. (LA w/o N, GA w/o N) and (LA, GA), validate that the
fine-grained character-level knowledge transfer between the
source and target sequence data is more effective and robust
than the global-level alignment. The comparison between
(LA w/o N, LA) also shows that N the has a negligible effect
on local-level alignment.

D. Algorithm Analysis

In this scenario, we firstly investigate the effect of different
alignment strategy, and then analyze the parameter sensi-
tiveness. Furthermore, we visualize the attention results, and
explore the effect of domain adaptation via feature visual-
ization. Finally, we make some discussions on the limitation
of ASSDA.

1) The Effect of Alignment Strategy: We conduct experi-
ments for investigating the effect of the domain alignment
strategy. In the ASSDA, the source and target distributions are
aligned in an adversarial manner, where 1, and 4; control the
alignment process. The alignment process is crucial to obtain
the effective information to exploit the unlabeled target data.
In our experiment, we set the value of 4, equal to the value
of 1;. We explore two different dynamic alignment strategy
to ensure the reliability of learning progress. Specifically,
the defined two alignment schemes are shown in Fig. 5, and
they denote the changing value of 1, and /; during the training
process, where i = iteration/total_iterations.

Since our designed alignment strategy aims to dynamically
mine the character which are more likely to be a valid charac-
ter, to verify its effectiveness, we design a fixed alignment
strategy, which learns the alignment with the fixed value
of 1, and 4;, as the competitor. The results are reported
in Table VIIL It can be observed that under the same setting
of experiment, The progressive strategy achieves better perfor-
mance compared to the fixed alignment strategy. Specifically,
the Progressive-2 alignment strategy yields an improvement of
10.52% compared with the fixed alignment strategy.

2) Parameter Sensitive Analysis: We evaluate the sensi-
tiveness of the hyper-parameter p. in the Eq. 12. Here,
we conduct the experiments on the ST — HT task. Specifi-
cally, we explore the different p. from {0,0.1,0.2, 0.4, 0.8},
respectively. The evaluation is conducted by changing one
parameter while keeping the other hyper-parameters fixed. The
pc in the gate function of Eq. 12 decides whether an attended
feature performs domain adaptation or not. Specifically, if the
probability that the current feature vector belongs to a valid
character is larger than p., the vector will be performed
domain adaptation, otherwise, it will be neglected as a noise.
From other perspective, if p. = 0, the gate function will not
work, which means performing sequence domain adaptation
on character-level feature without any guidance. While p. is
too large, the gate function will be too strict to select enough
valid features. Fig. 6 shows different gains of p. values. The
results experimentally prove that the gate function is important
to the overall performance.
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TABLE VI
COMPONENT ANALYSIS ON THE SYNTH—REAL SETTING. FOR ACCURACY, BIG VALUES INDICATE BETTER PERFORMANCE

Model Component ST —RT ST—IT
N D, Dy IIT5K SVT 1C03 IC13 IC15 CUTE
Baseline w/o N X X X 86.66 85.62 94.76 91.13 74.82 75.26
GA w/o N X X v 86.43 84.85 95.00 92.18 73.94 76.66
LA w/o N X v X 86.77 85.47 95.00 92.07 74.43 76.31
ASSDA w/o N X v v 86.57 85.94 94.54 92.53 74.43 75.61
Baseline v X X 87.40 87.02 95.12 92.88 78.07 74.22
GA v X v 87.83 87.02 95.12 93.58 77.86 75.61
LA v v X 87.83 87.48 95.23 93.58 78.91 76.31
ASSDA v v v 88.26 88.56 95.46 93.70 78.69 76.31
TABLE VII 0.6
COMPONENT ANALYSIS ON THE ST —HT SETTING. FOR CER AND WER,
SMALL VALUES INDICATE BETTER PERFORMANCE 505
Model N D, D, WER CER 8o
Baselinew/o N X X X 5629 30.08
GA wlo N X X v 56.59 28.89 3 01 o2 oa 08
LA w/o N X v X 48.97 23.83 o 'c )
ASSDA w/o N X v v 44.67 20.60
Baseline v X X 54.30 28.41 Fig. 6. The effect of model parameters p,.
GA v X v 52.41 25.73
LA v v X 48.58 22.99
ASSDA v/ /4378250199610 12 baseine
ASSDA
04 Progressive-1 015 Progressive-2
baseline
A =1-2(1- )’ — e
01 ASSDA
A
‘ baseline ASSDA
0.05
Fig. 7. Attention visualization on one irregular scene text from CUTE.

0 1 2 3 4 0 1 2 3 4
iterations 104 iterations «10%

(a) Progressive-1 (b) Progressive-2

Fig. 5. The scheme of alignment strategy.
TABLE VIII

ABLATION STUDIES FOR PROGRESSIVE ADAPTATION. FOR CER
AND WER, SMALL VALUES INDICATE BETTER PERFORMANCE

Method WER CER
Source-only 54.30 28.41
Fixed 50.69 30.53
Progressive-1 45.25 21.44
Progressive-2 43.78+1052 19 .96+84°

3) Visualization on the Attention Result: In this scenario,
we visualized the attention result at each time step. As shown
in Fig. 7, we randomly choose one irregular text image
from CUTESO. It can be seen that the model could focus
on the most relevant areas of one character at one specific
time. Consequently, we could get the fine-grained character-
level information, and then perform the character-level domain

The first column and the second column denote the attention results without
and with domain adaptation, respectively. The last column is to shown the
difference of the attention maps between the baseline model and ASSDA.

adaption. More interestingly, we find the ASSDA model can
learn more precise alignment, according to the two cases of
the last column in Fig. 7. These results again validate the
effectiveness of ASSDA.

4) Visualization on the Feature Distribution: To demon-
strate the domain adaptation effectiveness on different feature
level, we use the t-SNE tool to visualize the feature distrib-
ution of different domains in the task ST—HT. Specifically,
we visualize the domain distribution on global-level features
from the Baseline, global-level features from the ASSDA,
local-level features from the Baseline, and local-level features
from the ASSDA, respectively. As shown in the left part of
Fig. 8, we observe clear domain shifts between the source
and target domain, when the features are extracted from the
baseline model without any adaptation. While we can see
that the adapted features from ASSDA model are confused
at both global-level and local-level in the right part of Fig. 8.
It reveals that the proposed ASSDA has the ability to reduce
the domain shift at the different feature level. Here, the global-
level features are extracted from the whole sequence-like word
image, and the local-level features denote the fine-grained
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© (d)

Fig. 8. The t-SNE visualizations of domain distribution on (a) global-
level features from the Baseline, (b) global-level features from the ASSDA,
(c) local-level features from the Baseline, and (d) local-level features from the
ASSDA. Specifically, the feature distribution in the left and right are from the
Baseline and ASSDA, respectively. While, the top and bottom distribution
indicate the coarse global-level and local-level distributions, respectively.
In each image, the purple and blue dots denote the features from the source
domain and target domain, respectively.

character-level features. We notice that the coarse global-
level features (Fig. 8(a)(b)) cannot be separated according to
character class information, but character-level features are
class-separable. We think the phenomenon is reasonable, as the
coarse global-level features are the combination of variable-
length sequence-like images rather than one specific character.
As a result, we infer that the fine-grained local character-level
adaptation plays a vital role in boosting the adaptability of the
recognition model.

5) Limitation of the ASSDA: In this scenario, we discuss the
limitation of the proposed model. (1) The proposed ASSDA
model fails to consider the open-set problem. It’s noted that
the proposed ASSDA has one assumption that the source and
target domain share the same label space, and the domain
shifts are only from visual differences. (2) The proposed
model tries to align the local character-level distributions
between two domains based on the character information that
is captured by attention mechanism automatically. Therefore,
the performance of ASSDA may be limited due to the inaccu-
rate character region awareness. (3) Although, we introduce a
spatial normalization network, the ASSDA will fail when the
curve angle is too large, due to the complicated distortions
disturbed the capture of character-level information. Those
observations imply that robust scene text recognition still
remains a challenging problem waiting for solutions.

VI. CONCLUSION

In this paper, we present a novel ASSDA model for robust
text image recognition, which bridges the sequence-like text
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image recognition and domain adaptation. It’s capable of
aligning the cross-domain distribution on both global-level and
local-level. It could be generalized to reduce different types
of domain shifts, which include appearances and handwriting
style, etc. Comprehensive experimental results on several
datasets and extensive analyses have demonstrated the effec-
tiveness of our algorithm. An interesting open issue for future
research is to further adjust ASSDA framework to better deal
with various sequence domain shift.
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