
Erwin: A Tree-based Hierarchical Transformer for Large-scale Physical Systems

Maksim Zhdanov 1 Max Welling 1 2 Jan-Willem van de Meent 1

Abstract
Large-scale physical systems defined on irregular
grids pose significant scalability challenges for
deep learning methods, especially in the presence
of long-range interactions and multi-scale cou-
pling. Traditional approaches that compute all
pairwise interactions, such as attention, become
computationally prohibitive as they scale quadrati-
cally with the number of nodes. We present Erwin,
a hierarchical transformer inspired by methods
from computational many-body physics, which
combines the efficiency of tree-based algorithms
with the expressivity of attention mechanisms.
Erwin employs ball tree partitioning to organize
computation, which enables linear-time attention
by processing nodes in parallel within local neigh-
borhoods of fixed size. Through progressive
coarsening and refinement of the ball tree struc-
ture, complemented by a novel cross-ball inter-
action mechanism, it captures both fine-grained
local details and global features. We demonstrate
Erwin’s effectiveness across multiple domains,
including cosmology, molecular dynamics, PDE
solving, and particle fluid dynamics, where it con-
sistently outperforms baseline methods both in
accuracy and computational efficiency.

1. Introduction
Scientific deep learning is tackling increasingly computa-
tionally intensive tasks, following the trajectory of com-
puter vision and natural language processing. Applications
range from molecular dynamics (MD) (Arts et al., 2023) and
computational particle mechanics (Alkin et al., 2024b) to
weather forecasting (Bodnar et al., 2024), where simulations
often involve data defined on irregular grids with thousands
to millions of nodes, depending on the required resolution
and complexity of the system.

1AMLab, University of Amsterdam 2CuspAI. Correspondence
to: Maksim Zhdanov <m.zhdanov@uva.nl>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

MHSA MHSA

layer 1

layer 2

layer 3

runtime vs. size runtime receptive field

MHSA

M
H

SA

Figure 1. Top: Ball tree attention over a molecular graph. Multi-
head self-attention (MHSA) is computed in parallel at fixed hi-
erarchy levels (bold circles). In the following layers, the tree is
progressively coarsened to learn global features, while the partition
size is fixed. Bottom: Computational advantages of our model.

Such large-scale systems pose a significant challenge to ex-
isting methods that were developed and validated at smaller
scales. For example, in computational chemistry, models are
typically trained on molecules with tens of atoms (Kovács
et al., 2023), while molecular dynamics simulations often
exceed thousands of atoms. This scale disparity might result
in prohibitive runtimes that render models inapplicable in
high-throughput scenarios such as protein design (Watson
et al., 2023) or screening (Fu et al., 2022).

A key challenge in scaling to larger system sizes is that
computational methods that work well at small scales break
down at larger scales. For small systems, all pairwise inter-
actions can be computed explicitly, allowing deep learning
models to focus on properties like equivariance (Cohen &
Welling, 2016). However, this brute-force approach be-
comes intractable as the system size grows. At larger scales,
approximations are required to efficiently capture both long-
range effects from slowly decaying potentials and multi-
scale coupling (Majumdar et al., 2020). As a result, models
validated only on small systems often lack the architectural
components necessary for efficient scaling.

1

Erwin Transformer

This problem has been extensively studied in computational
many-body physics (Hockney & Eastwood, 2021), where
the need for evaluating long-range potentials for large-scale
particle systems led to the development of sub-quadratic
tree-based algorithms (Barnes & Hut, 1986; Carrier et al.,
1988). These methods are based on the intuition that distant
particles can be approximated through their mean-field ef-
fect rather than individual interactions (Pfalzner & Gibbon,
1996). The computation is then structured using hierarchical
trees to efficiently organize operations at multiple scales.
While highly popular for numerical simulations, these tree-
based methods have seen limited adoption in deep learning
due to poor synergy with GPU architectures.

Transformers (Vaswani et al., 2017), on the other hand,
employ the highly optimized attention mechanism, which
comes with the quadratic cost of computing all-to-all inter-
actions. In this work, we combine the efficiency of hierarchi-
cal tree methods with the expressivity of attention to create
a scalable architecture for processing large-scale particle
systems. Our approach leverages ball trees to organize com-
putation at multiple scales, enabling both local accuracy and
global feature capture while maintaining linear complexity
in the number of nodes.

The main contributions of the work are the following:

• We introduce ball tree partitioning for efficient point
cloud processing, enabling linear-time self-attention
through localized computation within balls at different
hierarchical levels.

• We present Erwin, a hierarchical transformer that pro-
cesses data through progressive coarsening and re-
finement of ball tree structures, effectively capturing
both fine-grained local interactions and global features
while maintaining computational efficiency.

• We validate Erwin’s performance across multiple large-
scale physical domains:

– Capturing long-range interactions (cosmology)
– Computational efficiency (molecular dynamics)
– Expressivity on large-scale phenomena (PDE

benchmarks, turbulent fluid dynamics)
achieving state-of-the-art performance in both compu-
tational efficiency and prediction accuracy.

2. Related Works: sub-quadratic attention
One way to avoid the quadratic cost of self-attention is
to linearize attention by performing it on non-overlapping
patches. For data on regular grids, like images, the Swin
Transformer (Liu et al., 2021) achieves this by limiting at-
tention to local windows with cross-window connections
enabled by shifting the windows. However, for irregular
data such as point clouds or non-uniform meshes, one first
needs to induce a structure that will allow for patching. Sev-

eral approaches (Liu et al., 2023; Sun et al., 2022) transform
point clouds into sequences, most notably PointTransformer
v3 (PTv3) (Wu et al., 2024b), which projects points into vox-
els and orders them using space-filling curves (e.g., Hilbert
curve). While scalable, these curves introduce artificial
discontinuities that can break local spatial relationships.

Particularly relevant to our work are hierarchical attention
methods. In the context of 1D sequences, approaches like
the H-transformer (Zhu & Soricut, 2021) and Fast Multipole
Attention (Kang et al., 2023) approximate self-attention
through multi-level decomposition: tokens interact at full
resolution locally while distant interactions are computed
using learned or fixed groupings at progressively coarser
scales. For point clouds, OctFormer (Wang, 2023) converts
spatial data into a sequence by traversing an octree, ensuring
spatially adjacent points are consecutive in memory. While
conceptually similar to our approach, OctFormer relies on
computationally expensive octree convolutions, whereas our
utilization of ball trees leads to significant efficiency gains.

Rather than using a hierarchical decomposition, another line
of work proposes cluster attention (Janny et al., 2023; Alkin
et al., 2024a; Wu et al., 2024a). These methods first group
points into clusters and aggregate their features at the cluster
centroids through message passing or cross-attention. After
computing attention between the centroids, the updated
features are then distributed back to the original points.
While these approaches yield the quadratic cost only in the
number of clusters, they introduce an information bottleneck
at the clustering step that may sacrifice fine-grained details
and fail to capture features at multiple scales - a limitation
our hierarchical approach aims to overcome.

Beyond attention, several alternatives have been developed
for processing large-scale systems with irregular geome-
tries. Message-passing neural networks (Gilmer et al., 2017)
typically address scalability through multi-level graph rep-
resentations (Lam et al., 2023; Cao et al., 2023; Valencia
et al., 2025). Additionally, recent works have explored
sub-quadratic convolution-based architectures like Hyena
(Moskalev et al., 2025) and state-space models (Zhang et al.,
2025), which offer promising alternatives for efficient pro-
cessing of geometric data without the computational over-
head of attention mechanisms.

3. Background
Our work revolves around attention, which we aim to lin-
earize by imposing structure onto point clouds using ball
trees. We formally introduce both concepts in this section.

3.1. Attention

The standard self-attention mechanism is based on the scaled
dot-product attention (Vaswani et al., 2017). Given a set X

2

Erwin Transformer

of N input feature vectors of dimension C, self-attention is
computed as

Q, K, V = XWq, XWk, XWv

Att(Q,K,V) = softmax

(
QKT

√
C ′

+ B

)
V

(1)

where Wq,Wk,Wv ∈ RC×C′
are learnable weights and

B ∈ RN×N is the bias term.

Multi-head self-attention (MHSA) improves expressivity
by computing attention H times with different weights and
concatenating the output before the final projection:

MHSA(X) = [Y1, · · · ,YH]WO

Yi = Att(XWi
q,XWi

k,XWi
v)

(2)

where [·, · · · , ·] denotes concatenation along the feature di-
mension, and Wi

q,W
i
k,W

i
v ∈ RC×(C′/H) and WO ∈

RC×C′
are learnable weights.

The operator explicitly computes interactions between all
elements in the input set without any locality constraints.
This yields the quadratic computational cost w.r.t. the input
set size O(N2). Despite being heavily optimized (Dao,
2024), this remains a bottleneck for large-scale applications.

3.2. Ball tree

A ball tree is a hierarchical data structure that recursively par-
titions points into nested sets of equal size, where each set is
represented by a ball that covers all the points in the set. As-
sume we operate on the d-dim. Euclidean space

(
Rd, || · ||2

)
where we have a point cloud (set) P = {p1, ...,pn} ⊂ Rd.

Definition 3.1 (Ball). A ball is a region bounded by a hy-
persphere in Rd. Each ball is represented by the coordinates
of its center c ∈ Rd and radius r ∈ R+:

B = B(c, r) = {z ∈ Rd | ||z− c||2 ≤ r}. (3)

We will omit the parameters (c, r) for brevity from now on.

Definition 3.2 (Ball Tree). A ball tree T on point set P is a
hierarchical sequence of partitions {L0, L1, ..., Lm}, where
each level Li consists of disjoint balls that cover P . At the
leaf level i = 0, the nodes are the original points:

L0 = {{pj} | pj ∈ P}

For each subsequent level i > 0, each ball B ∈ Li is formed
by merging two balls at the previous level B1, B2 ∈ Li−1:

Li = {{B1 ∪B2} | B1, B2 ∈ Li−1} (4)

such that its center is computed as the center of mass:

cB =
|B1|c1 + |B2|c2
|B1|+ |B2|

and its radius is determined by the furthest point it contains:

rB = max{||p− cB ||2 | p ∈ B1 ∪B2}

where |B| denotes the number of points contained in B.

To construct the ball tree, we recursively split the data points
into two sets starting from P . In each recursive step, we
find the dimension of the largest spread (i.e., the max −
min value) and split at its median (Pedregosa et al., 2012),
constructing covering balls per Def.3.2. For details, see
Appendix Alg.11.

Tree Completion To enable efficient implementation, we
want to work with perfect binary trees, i.e., trees where all
internal nodes have exactly two children and all leaf nodes
appear at the same depth. To achieve this, we pad the leaf
level of a ball tree with virtual nodes, yielding the total
number of nodes 2m, where m = ceil(log2(n)).

3.2.1. BALL TREE PROPERTIES

In the context of our method, there are several properties of
ball trees that enable efficient hierarchical partitioning:

Proposition 3.3 (Ball Tree Properties). The ball tree T
constructed as described satisfies the following properties:

1. The tree is a perfect binary tree.

2. At each level i, each ball contains exactly 2i leaf nodes.

3. Balls at each level cover the point set⋃
B∈Li

B = P ∀i ∈ {0, ...,m}.

Proposition 3.4 (Contiguous Storage). For a ball tree
T = {L0, L1, ..., Lm} on point cloud P = {p1, ...,pn},
there exists a bijective mapping π : {1, ..., n} → {1, ..., n}
such that points belonging to the same ball B ∈ Li have
contiguous indices under π.

As a corollary, the hierarchical structure at each level can
be represented by nested intervals of contiguous indices:

Example. Let P = {p1, ...,p8}, then a ball tree T =
{L0, L1, L2, L3} is stored after the permutation π as

L3

L2

L1

L0 = π(P) pa pb pc pd pe pf pg ph

1Note that since we split along coordinate axes, the resulting
structure depends on the orientation of the input data and thus
breaks rotation invariance. We will rely on this property in Sec-
tion 4.1 to implement cross-ball connections.

3

Erwin Transformer

The contiguous storage property, combined with the fixed
size of balls at each level, enables efficient implementation
through tensor operations. Specifically, accessing any ball
B ∈ Li simply requires selecting a contiguous sequence of
2i indices. For instance, in the example above, for i = 2,
we select a:d and e:h to access the balls. Since the balls
are equal in size, we can simply reshape L0 to access any
level. This representation makes it particularly efficient to
implement our framework’s core operations - ball attention
and coarsening/refinement - which we will introduce next.

Another important property of ball trees is that while they
cover the whole point set, they are not required to partition
the entire space. Coupled with completeness, it means that
at each tree level, the nodes are essentially associated with
the same scale. This contrasts with other structures such as
octrees that cover the entire space and whose nodes at the
same level can be associated with regions of different sizes:

Ball tree Oct-tree

Figure 2. Ball tree vs. octree construction. Colors highlight the
difference in scales for nodes including the same number of points.

4. Erwin Transformer
Following the notation from the Background Section 3.2,
we consider a point cloud P = {p1, ...,pn} ⊂ Rd. Addi-
tionally, each point is now endowed with a feature vector
yielding a feature set X = {x1, ...,xn} ⊂ RC .

On top of the point cloud, we build a ball tree T =
{L0, ..., Lm}. We initialize Lleaf := L0 to denote the cur-
rent finest level of the tree. As each leaf node contains a
single point, it inherits its feature vector:

Xleaf = {xB = xi | B = {pi} ∈ Lleaf} (5)

4.1. Ball tree attention

Ball attention For each ball attention operator, we specify
a level k of the ball tree where each ball B ∈ Lk contains 2k

leaf nodes. The choice of k presents a trade-off: larger balls
capture longer-range dependencies, while smaller balls are
more resource-efficient. For each ball B ∈ Lk, we collect
the leaf nodes within B:

leavesB = {B′ ∈ Lleaf | B′ ⊂ B} (6)

along with their features from Xleaf :

XB = {xB′ ∈ Xleaf | B′ ∈ leavesB} (7)

We then compute self-attention independently on each ball2:

X ′
B = BAtt(XB) := Att(XBWq, XBWk, XBWv)

(8)
where weights are shared between balls and the output X ′

B

maintains row correspondence with XB .

Computational cost As attention is computed indepen-
dently for each ball B ∈ Lk, the computational cost is
reduced from quadratic to linear. Precisely, for ball atten-
tion, the complexity is O(|B|2 · n

|B|), i.e., quadratic in the
ball size and linear in the number of balls:

Attention O(n2) Ball Attention O(n)

Figure 4. For highlighted points, standard attention computes inter-
actions with all other points in the point cloud, while ball attention
only considers points within their balls.

Positional encoding We introduce positional information
to the attention layer in two ways. First, we augment the fea-
tures of leaf nodes with their relative positions with respect
to the ball’s center of mass (relative position embedding):

RPE : XB = XB + (PB − cB)Wpos (9)

where PB contains positions of leaf nodes, cB is the center
of mass, and Wpos is a learnable projection. This allows
the layer to incorporate geometric structure within each ball.

Second, we introduce a distance-based attention bias:

BB = −σ2||cB′ − cB′′ ||2, B′, B′′ ∈ leavesB (10)

with a learnable parameter σ ∈ R (Wessels et al., 2024).
The term decays rapidly as the distance between two nodes
increases, which enforces locality and helps to mitigate
potential artifacts from the tree building, particularly in
cases where distant points are grouped together.

Cross-ball connection To increase the receptive field of
our attention operator, we implement cross-ball connections
inspired by the shifted window approach in Swin Trans-
former (Liu et al., 2021). There, patches are displaced
diagonally by half their size to obtain two different image
partitioning configurations. This operation can be equiva-
lently interpreted as keeping the patches fixed while sliding
the image itself.

2For any set of vectors X , we abuse notation by treating X as
a matrix with vectors as its rows.

4

Erwin Transformer

point cloud P ball tree, level Lk

coarsened tree ball tree, level Lk+1 refinement

coarsening

rotate ball tree

original balls leaves ”rotated” balls

Erwin Transformer

Encoder Decoder
Bottleneck

Embedding

Point Cloud

Ball Tree

MPNN

L
N

or
m

+
R

PE

A
tte

nt
io

n

L
N

or
m

Sw
iG

L
U

ErwinBlock ×D

ErwinLayer ×S

C
oa

rs
en

in
g

Figure 3. Overview of Erwin. Left: A sequence of two ball attention layers with intermediate tree coarsening. In every layer, attention is
computed on partitions of size 16, which correspond to progressively higher levels of hierarchy. Center (top): Coarsening and refinement
of a ball tree. Center (bottom): Building a tree on top of a rotated configuration for cross-ball interaction. Right: Architecture of Erwin.

Following this interpretation, we rotate the point cloud and
construct the second ball tree Trot = {Lrot

0 , ..., Lrot
m }, which

induces a permutation πrot of leaf nodes (see Fig. 3, center).
We can then compute ball attention on the rotated config-
uration by first permuting the features according to πrot,
applying attention, and then permuting back:

X ′
B = π−1

rot (BAtt (πrot (XB))) (11)

By alternating between the original and rotated configura-
tions in consecutive layers, we ensure the interaction be-
tween leaf nodes in otherwise separated balls.

Tree coarsening/refinement For larger systems, we are
interested in coarser representations to capture features at
larger scales. The coarsening operation allows us to hier-
archically aggregate information by pooling leaf nodes to
the centers of containing balls at l levels higher (see Fig.
3, top, l = 1). Suppose the leaf level is k. For every ball
B ∈ Lk+l, we concatenate features of all interior leaf nodes
along with their relative positions with respect to cB and
project them to a higher-dimensional representation:

xB =

(⊕
B′∈leavesB

[xB′ , cB′ − cB]

)
Wc (12)

where
⊕

denotes leaf-wise concatenation, and Wc ∈
RC′×2l(C+d) is a learnable projection that increases the fea-
ture dimension to maintain expressivity. After coarsening,
balls at level k+l become the new leaf nodes, Lleaf := Lk+l,
with features Xleaf := {xB | B ∈ Lk+l}. To highlight the
simplicity of our method, we provide the pseudocode3:

3We use einops (Rogozhnikov, 2022) primitives.

coarsening ball tree
x = rearrange([x, rel.pos], "(n 2l) d → n (2l d)") @ Wc

pos = reduce(pos, "(n 2l) d → n d", "mean")

The inverse operation, refinement, allocates information
from a coarse representation back to finer scales. More
precisely, for a ball B ∈ Lk, its features are distributed back
to the nodes at level Lk−l contained within B as:

{xB′ | B′ ∈ Lk−l} = [xB , PB − cB] Wr (13)

where PB contains positions of all nodes at level k−l within
ball B with center of mass cB , and Wr ∈ R2lC×(C′+d) is
a learnable projection. After refinement, Lleaf and Xleaf are
updated accordingly. In pseudocode:

refining ball tree
x = [rearrange(x, "n (2l d) → (n 2l) d"), rel.pos] @ Wr

4.2. Model architecture

We are now ready to describe the details of the main model
to which we refer as Erwin4 (see Fig. 3) - a hierarchical
transformer operating on ball trees.

Embedding At the embedding phase, we first construct
a ball tree on top of the input point cloud and pad the leaf
layer to complete the tree, as described in Section 3.2. To
capture local geometric features, we employ a small-scale
MPNN, which is conceptually similar to PointTransformer’s
embedding module using sparse convolution. When input
connectivity is not provided (e.g., mesh), we utilize the ball
tree structure for a fast nearest neighbor search.

4We pay homage to Swin Transformer as our model is based
on rotating windows instead of sliding, hence Rwin → Erwin.

5

Erwin Transformer

Figure 5. Left: Computational cost of Erwin. We split the total
runtime into building a ball tree and running a model. The input
is a batch of 16 point clouds, each of size n. We fit a power law
which indicates close to linear scaling. Right: Receptive field
of MPNN vs Erwin, n = 800. A node is in the receptive field
if changing its features affects the target node’s output. MPNN
consists of 6 layers, each node connected to 16 nearest neighbours.

ErwinBlock The core building block of Erwin follows a
standard pre-norm transformer structure: LayerNorm fol-
lowed by ball attention with a residual connection, and a
SwiGLU feed-forward network (Shazeer, 2020). For the
ball attention, the size 2k of partitions is a hyperparameter.
To ensure cross-ball interaction, we alternate between the
original and rotated ball tree configurations, using an even
number of blocks per ErwinLayer in our experiments.

Overall architecture Following a UNet structure (Ron-
neberger et al., 2015; Wu et al., 2024b), Erwin processes
features at multiple scales through encoder and decoder
paths (Fig. 3, right). The encoder progressively coarsens the
ball tree while increasing feature dimensionality to maintain
expressivity. The coarsening factor is a hyperparameter that
takes values that are powers of 2. At the decoder stage,
the representation is refined back to the original resolution,
with skip connections from corresponding encoder levels
enabling multi-scale feature integration.

5. Experiments
The code is available at https://github.com/
maxxxzdn/erwin. We summarize datasets in Table 1
and provide implementation details in Appendix B.

Table 1. Summary of benchmark datasets. † indicates varying size,
for which we report the average number of nodes.

GEOMETRY BENCHMARKS #DIM #NODES

POINT CLOUD ELASTICITY 2D 972
COSMOLOGY 3D 5,000

MD† 3D+TIME 890

STRUCTURED PLASTICITY 2D+TIME 3,131
AIRFOIL 2D 11,271

PIPE 2D 16,641

UNSTRUCTURED SHAPE-NET CAR 3D 32,186
EAGLE† 2D+TIME 3,388

64 512 2, 048 8, 192
Training set size

0.6

0.7

0.8

0.9

1.0

1.1

1.2

T
es

t
M

S
E

Scaling with training set size

SEGNN (lmax = 1)

SEGNN (lmax = 2)

NequIP (lmax = 1)

NequIP (lmax = 2)

Erwin-S (Ours)

Erwin-M (Ours)

PointTransformer v3

MPNN

equivariant non-equivariant

Figure 6. Test mean-squared error (MSE) on the predicted veloci-
ties as a function of training set size for the cosmology task, 5 runs
per point. Point transformers indicate favourable scaling surpass-
ing graph-based models with sufficiently many training samples.

Computational cost To experimentally evaluate Erwin’s
scaling, we learn the power-law5 form Runtime = C ·nβ by
first applying the logarithm transform to both sides and then
using the least squares method to evaluate β. The result is an
approximately linear scaling with β=1.054 with R2=0.999,
see Fig. 5. Ball tree construction accounts for <5% of the
overall time (see Tables 7,8), proving the efficiency of our
method for linearizing attention for point clouds.

Receptive field One of the theoretical properties of our
model is that with sufficiently many layers, its receptive
field is global. To verify this claim experimentally, for an
arbitrary target node, we run the forward pass of Erwin
and MPNN and compute gradients of the node output with
respect to all input nodes’ features. If the gradient is non-
zero, the node is considered to be in the receptive field of
the target node. The visualization is provided in Fig. 5,
right, where we compare the receptive field of our model
with that of MPNN. As expected, the MPNN has a limited
receptive field, as it cannot exceed N hops, where N is
the number of message-passing layers. Conversely, Erwin
implicitly computes all-to-all interactions, enabling it to
capture long-range interactions in the data.

5.1. Cosmological simulations

To demonstrate our model’s ability to capture long-range
interactions, we use the cosmology benchmark (Balla et al.,
2024), which consists of large-scale point clouds represent-
ing potential galaxy distributions.

Dataset The dataset is derived from N-body simulations
that evolve dark matter particles from the early universe
to the present time. After the simulation, gravitationally
bound structures (halos) are identified, from which the 5,000
heaviest ones are selected as potential galaxy locations. The
halos form local clusters through gravity while maintaining

5We only use data for n ≥ 1024 to exclude overhead costs.

6

https://github.com/maxxxzdn/erwin
https://github.com/maxxxzdn/erwin

Erwin Transformer

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Speedup over MPNN (medium), times

0.69

0.70

0.71

0.72

0.73

T
es

t
N

L
L

Performance vs. Runtime

Erwin (Ours)

PointTransformer v3

MPNN

PointNet++43M

19M

4M

46M

26M

6M

0.8M

0.2M

0.1M

7M

3M

1M

Figure 7. Test negative log-likelihood (NLL) of the predicted ac-
celeration distribution for the molecular dynamics task (averaged
over 3 runs). The baseline MPNN is taken from (Fu et al., 2022).
The size of the markers reflects the number of parameters.

long-range correlations that originated from interactions in
the early universe, reflecting the initial conditions.

Task The input is a point cloud X ∈ R5000×3, where
each row corresponds to a galaxy and each column to x, y, z
coordinate respectively. The task is a regression problem
to predict the velocity of every galaxy Y ∈ R5000×3. We
vary the size of the training dataset from 64 to 8,192, while
the validation and test datasets have a fixed size of 512. The
models are trained using the mean squared error between
predicted and ground truth velocities.

Results The results are shown in Fig. 6. We compare
against multiple equivariant (NequIP (Batzner et al., 2021),
SEGNN (Brandstetter et al., 2022)) and non-equivariant
(MPNN (Gilmer et al., 2017), PTv3 (Wu et al., 2024b))
baselines. In the small data regime, graph-based equivariant
models are preferable. However, as the training set size in-
creases, their performance plateaus. We note that this is also
the case for non-equivariant MPNNs, suggesting the issue
might arise from failing to capture medium to large-scale
interactions, where increased local expressivity has mini-
mal impact. Conversely, transformer-based models scale
favorably with training set size and eventually surpass graph-
based models, highlighting their ability to capture both small
and large-scale interactions. Our model demonstrates par-
ticularly strong performance and significantly outperforms
other baselines for larger training sets.

5.2. Molecular dynamics

Molecular dynamics (MD) is essential for understanding
physical and biological systems at the atomic level but re-
mains computationally expensive even with neural network
potentials due to all-atom force calculations and femtosec-
ond timesteps required to maintain stability and accuracy.
Fu et al. (2022) suggested accelerating MD simulation
through coarse-grained dynamics with an MPNN. In this
experiment, we take a different approach and instead oper-

Table 2. Ablation on the cosmology task. Increasing window size
improves performance at the cost of slower runtime (Erwin-S).

BALL SIZE 256 128 64 32
TEST LOSS 0.595 0.603 0.612 0.620
RUNTIME, MS 229.6 165.2 135.3 126.0

Table 3. Ablation study on architectural choices: using MPNN in
embedding, RPE, and cross-ball connection via rotating trees.

MODEL
TEST LOSS

MD SHAPENET-CAR

W/O 0.738 30.39
+ MPNN 0.720 30.49
+ RPE 0.715 30.02
+ ROTATING TREE 0.712 15.85

ate on the original representation but improve the runtime
by employing our hardware-efficient model. Therefore, the
question we ask is how much we can accelerate a simulation
w.r.t. an MPNN without compromising the performance.

Dataset The dataset consists of single-chain coarse-
grained polymers (Webb et al., 2020; Fu et al., 2022) sim-
ulated using MD. Each system includes 4 types of coarse-
grained beads interacting through bond, angle, dihedral, and
non-bonded potentials. The training set consists of poly-
mers with repeated bead patterns while the test set polymers
are constructed by randomly sampling bead sequences, thus
introducing a challenging distribution shift. The training
set contains 100 short trajectories (50k τ), while the test set
contains 40 trajectories that are 100 times longer.

Task We follow the experimental setup from Fu et al.
(2022). The model takes as input a polymer chain of N
coarse-grained beads. Each bead has a specific weight and
is associated with the history {ẋt−16∆t, ..., ẋt−∆t} of (nor-
malized) velocities from 16 previous timesteps at intervals
of ∆t = 5τ . The model predicts the mean µt ∈ RN×3

and variance σ2
t ∈ RN×3

+ of (normalized) acceleration for
each bead, assuming a normal distribution. We train us-
ing the negative log-likelihood loss between predicted and
ground truth accelerations computed from the ground truth
trajectories.

Results The results are given in Fig. 7. As baselines, we
use MPNN (Gilmer et al., 2017) as well as two hardware-
efficient architectures: PointNet++ (Qi et al., 2017) and
PTv3 (Wu et al., 2024b). Notably, model choice has mini-
mal impact on performance, potentially due to the absence
of long-range interactions as the CG beads do not carry
any charge. Furthermore, it is sufficient to only learn local
bonded interactions. There is, however, a considerable im-
provement in runtime for Erwin (1.7-2.5 times depending
on the size), which is only matched by a smaller MPNN or
PointNet++, both having significantly higher test loss.

7

Erwin Transformer

Table 4. RMSE on PDE benchmarks from Li et al. (2023b). Transformer-
based models are taken as baselines from Luo et al. (2025).

MODEL
RMSE

ELASTICITY PLASTICITY AIRFOIL PIPE

LNO (2024) 0.69 0.29 0.53 0.31
GALERKIN (2021) 2.40 1.20 1.18 0.98
HT-NET (2022) / 3.33 0.65 0.59
OFORMER (2023C) 1.83 0.17 1.83 1.68
GNOT (2023) 0.86 3.36 0.76 0.47
FACTFORMER (2023D) / 3.12 0.71 0.60
ONO (2024) 1.18 0.48 0.61 0.52
TRANSOLVER++ (2025) 0.52 0.11 0.48 0.27
ERWIN (OURS) 0.34 0.10 2.57 0.61

Table 5. Test MSE for ShapeNet-Car pressure
prediction. Baseline results are taken from
Bleeker et al. (2025).

MODEL MSE

POINTNET (2017) 43.36
GINO (2023B) 35.24
UPT (2024A) 31.66
TRANSOLVER (2024A) 19.88
GP-UPT (2025) 17.02
PTV3-S (2024B) 19.09± 0.67
PTV3-M (2024B) 17.42± 0.38
ERWIN-S (OURS) 15.85± 0.19
ERWIN-M (OURS) 15.43± 0.45

5.3. PDE benchmarks and airflow pressure

Deep learning models have emerged as surrogate solvers of
partial differential equations (PDEs), learning to approxi-
mate solutions from data (Li et al., 2021; Wu et al., 2024a).
While their advantages over traditional numerical methods
remain unclear (McGreivy & Hakim, 2024), the task it-
self serves as a surrogate for large-scale applications like
weather forecasting (Price et al., 2025) and fluid dynamics
(Bleeker et al., 2025), where conventional solvers become
computationally prohibitive. Furthermore, in this task, we
are interested in the model’s ability to scale to large domains
while capturing complex patterns in underlying physics.

Dataset We benchmark on multiple datasets taken from Li
et al. (2023a). Each dataset is defined either on point cloud
(Elasticity) or structured mesh (Plasticity, Airfoil, Pipe).
Additionally, we evaluate our model on airflow pressure
modeling (Umetani & Bickel, 2018; Alkin et al., 2024a). It
consists of 889 car models, each car represented by 3,586
surface points in 3D space. Airflow was simulated around
each car for 10s (Re = 5× 106) and averaged over the last
4 s to obtain pressure values at each point.

Task For the PDE benchmarks, we follow the pipeline
from Wu et al. (2024a) and minimize the relative L2 error;
see Appendix B for details. For ShapeNet-Car, the task is
to estimate the surface pressure Y ∈ R3388×1 given surface
points X ∈ R3388×3. We train by optimizing the mean
squared error between predicted and ground truth pressure.

PDE benchmarks The results are given in Table 4, where
we compare against other transformer-based methods. Er-
win achieves state-of-the-art performance on 2 out of 4 tasks.
Interestingly, it dramatically underperforms on the Airfoil
task, which indicates a failure mode. We speculate that this
is related to a specific structure of the data - the density
of the mesh decreases dramatically moving away from the
center of mass. This means that points across different balls
have considerably varying density, which poses a challenge.

ShapeNet-Car See Table 5 for results. Both Erwin and
PTv3 achieve significantly lower test MSE compared to
other models6. We note that the best performing configura-
tion of Erwin and PTv3 did not include any coarsening, thus
operating directly on the original point cloud. This indicates
that the task favors the ability of a model to capture fine ge-
ometric details. In comparison, other approaches introduce
information loss through compression - UPT (Alkin et al.,
2024a) and Transolver (Wu et al., 2024a) involve pooling to
the latent space, while GINO (Li et al., 2023b) interpolates
the geometry onto regular grids and back.

5.4. Turbulent fluid dynamics

In the last experiment, we demonstrate the expressivity of
our model by simulating turbulent fluid dynamics. The prob-
lem is notoriously challenging due to multiple factors: the
inherently nonlinear behavior of fluids, the multiscale and
chaotic nature of turbulence, and the presence of long-range
dependencies. Moreover, the geometry of the simulation do-
main and the presence of objects introduce complex bound-
ary conditions, thus adding another layer of complexity.

Dataset We use EAGLE (Janny et al., 2023), a large-scale
benchmark of unsteady fluid dynamics. Each simulation
includes a flow source (drone) that moves in 2D environ-
ments with different boundary geometries, producing air-
flow. The time evolution of velocity and pressure fields
is recorded along with dynamically adapting meshes. The
dataset contains 600 different geometries of 3 types, with ap-
proximately 1.1 million 2D meshes averaging 3,388 nodes
each. The total dataset includes 1,184 simulations with 990
time steps per simulation. The dataset is split with 80% for
training and 10% each for validation and testing.

Task We follow the original experimental setup of the
benchmark. The input is the velocity V ∈ RN×2 and pres-

6The baseline results for the ShapeNet-Car task, except for
PTv3, were taken from Bleeker et al. (2025).

8

Erwin Transformer

Figure 8. The norm of the velocity field at different steps of the
rollout trajectories.

sure P ∈ RN×2 fields evaluated at every node of the mesh
at time step t, along with the type of the node. The task is
to predict the state of the system at the next time step t+ 1.
The training is done by predicting a trajectory of states of
length 5 and optimizing the loss

L =

5∑
i=1

(
MSE(Vt+i, V̂t+i) + α MSE(Pt+i, P̂t+i)

)
,

where α = 0.1 is the parameter that balances the importance
of the pressure field over the velocity field.

Results For comparison, we include the baselines from
the original benchmark: MeshGraphNet (MGN; Pfaff et al.,
2021), GAT (Velickovic et al., 2018), DilResNet (DRN;
Stachenfeld et al., 2021) and EAGLE (Janny et al., 2023)7.
The first two baselines are based on message-passing, while
DilResNet operates on regular grids, hence employing in-
terpolation for non-uniform meshes. EAGLE uses message-
passing to pool the mesh to a coarser representation with
a fixed number of clusters, on which attention is then com-
puted. The quantitative results are given in Table 6 and
unrolling trajectories are shown in Fig. 8, 9. Erwin demon-
strates strong results on the benchmark and outperforms
every baseline, performing especially well at predicting
pressure. In terms of inference time and memory consump-
tion, Erwin achieves substantial gains over EAGLE, being 3
times faster and using 8 times less memory.

5.5. Ablation study

We also conducted an ablation study to examine the effect
of increasing ball sizes on the model’s performance in the
cosmology experiment; see Table 2. Given the presence of
long-range interactions in the data, larger window sizes (and
thus receptive fields) improve model performance, albeit at
the cost of increased computational runtime. Our architec-
tural ablation study on the MD task (Table 3) reveals that
using an MPNN at the embedding step produces substantial

7We additionally trained UPT (Alkin et al., 2024a), but were
not able to obtain competitive results in our initial experiments.

Table 6. RMSE on velocity V and pressure P fields across different
prediction horizons (mean ± std over 5 runs). Inference runtime
and memory use are computed for a batch of 8, avg. 3,500 nodes.

HORIZON +1 +50 TIME MEM.
FIELD / UNIT V P V P (MS) (GB)

MGN 0.081 0.43 0.592 2.25 40 0.7
GAT 0.170 64.6 0.855 163 44 0.5
DRN 0.251 1.45 0.537 2.46 42 0.2
EAGLE 0.053 0.46 0.349 1.44 30 1.5
ERWIN 0.044 0.31 0.281 1.15 11 0.2
(OURS) ±0.001 ±0.01 ±0.001 ±0.06

improvements, likely due to its effectiveness in learning
local interactions. At the same time, that did not generalize
to ShapeNet-Car, where the most decisive factor was includ-
ing cross-ball interactions, highlighting the importance of
capturing fine-grained details in this task.

6. Conclusion
We present Erwin, a hierarchical transformer that uses ball
tree partitioning to process large-scale physical systems with
linear complexity. Erwin achieves state-of-the-art perfor-
mance in cosmology, turbulent fluid dynamics, and, partially,
on standard PDE benchmarks, demonstrating its effective-
ness across diverse physical domains. The efficiency of
Erwin makes it a suitable candidate for tasks that require
modeling large particle systems, such as computational
chemistry (Fu et al., 2024) or diffusion-based molecular
dynamics (Jing et al., 2024).

Limitations and Future Work Because Erwin relies on
perfect binary trees, we need to pad the input set with virtual
nodes, which induces computational overhead for ball atten-
tion computed over non-coarsened trees (first ErwinBlock).
This issue can be circumvented by employing learnable
pooling to the next level of the ball tree, which is always
full, ensuring the remaining tree is perfect. Whether we can
perform such pooling without sacrificing expressivity is a
question that we leave to future research.

Erwin relies on cross-ball interaction and coarsening to
capture long-range interactions. Both mechanisms have in-
herent limitations: the former requires multiple steps for
signals to propagate between balls, while the latter sacri-
fices fine-grained detail. A promising approach to address
these issues is adapting sparse attention methods such as
Native Sparse Attention (Yuan et al., 2025). This frame-
work aligns naturally with Erwin’s ball tree structure and
would enable learning distant interactions while preserving
full resolution. Finally, Erwin is neither permutation nor
rotation equivariant, although rotation equivariance can be
incorporated without compromising scalability, such as via
Geometric Algebra Transformers (Brehmer et al., 2023) or
Fast Euclidean Attention (Frank et al., 2024).

9

Erwin Transformer

Acknowledgements
We are grateful to Evgenii Egorov and Ana Lučić for their
feedback and inspiration. MZ acknowledges support from
Microsoft Research AI4Science. JWvdM acknowledges
support from the European Union Horizon Framework Pro-
gramme (Grant agreement ID: 101120237).

Impact statement
The broader implications of our work are primarily in
moderate- to large-scale scientific applications, such as
molecular dynamics or computational fluid dynamics. We
believe that efficient and expressive architectures like Er-
win could become a foundation for resource-intensive deep
learning frameworks and therefore help in better understand-
ing the physical systems governing our world.

References
Alkin, B., Fürst, A., Schmid, S., Gruber, L., Holzleitner,

M., and Brandstetter, J. Universal physics transformers:
A framework for efficiently scaling neural operators. In
Conference on Neural Information Processing Systems
(NeurIPS), 2024a.

Alkin, B., Kronlachner, T., Papa, S., Pirker, S., Lichteneg-
ger, T., and Brandstetter, J. Neuraldem – real-time sim-
ulation of industrial particulate flows. arXiv preprint
arXiv:2411.09678, 2024b.

Arts, M., Satorras, V., Huang, C.-W., Zuegner, D., Federici,
M., Clementi, C., Noé, F., Pinsler, R., and Berg, R. Two
for one: Diffusion models and force fields for coarse-
grained molecular dynamics. Journal of chemical theory
and computation, 19, 09 2023. doi: 10.1021/acs.jctc.
3c00702.

Balla, J., Mishra-Sharma, S., Cuesta-Lázaro, C., Jaakkola,
T. S., and Smidt, T. E. A cosmic-scale benchmark for
symmetry-preserving data processing. arXiv preprint
arXiv:2410.20516, 2024.

Barnes, J. and Hut, P. A hierarchical O(N log N) force-
calculation algorithm. Nature, 324(6096):446–449, 1986.
doi: 10.1038/324446a0.

Batzner, S. L., Musaelian, A., Sun, L., Geiger, M., Mailoa,
J. P., Kornbluth, M., Molinari, N., Smidt, T. E., and
Kozinsky, B. E(3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature
Communications, 13, 2021.

Bleeker, M., Dorfer, M., Kronlachner, T., Sonnleitner, R.,
Alkin, B., and Brandstetter, J. Neuralcfd: Deep learning
on high-fidelity automotive aerodynamics simulations.
CoRR, abs/2502.09692, 2025.

Bodnar, C., Bruinsma, W. P., Lucic, A., Stanley, M., Brand-
stetter, J., Garvan, P., Riechert, M., Weyn, J., Dong, H.,
Vaughan, A., Gupta, J. K., Tambiratnam, K., Archibald,
A., Heider, E., Welling, M., Turner, R. E., and Perdikaris,
P. Aurora: A foundation model of the atmosphere. arXiv
preprint arXiv:2405.13063, 2024.

Brandstetter, J., Hesselink, R., van der Pol, E., Bekkers,
E. J., and Welling, M. Geometric and physical quantities
improve E(3) equivariant message passing. In Interna-
tional Conference on Learning Representations (ICLR),
2022.

Brehmer, J., de Haan, P., Behrends, S., and Cohen, T. S.
Geometric algebra transformer. In Conference on Neural
Information Processing Systems (NeurIPS), 2023.

Cao, S. Choose a transformer: Fourier or galerkin. In
Conference on Neural Information Processing Systems
(NeurIPS), 2021.

Cao, Y., Chai, M., Li, M., and Jiang, C. Efficient learning of
mesh-based physical simulation with bi-stride multi-scale
graph neural network. In International Conference on
Machine Learning (ICML), 2023.

Carrier, J., Greengard, L., and Rokhlin, V. A fast adaptive
multipole algorithm for particle simulations. SIAM Jour-
nal on Scientific and Statistical Computing, 9(4):669–686,
1988. doi: 10.1137/0909044.

Cohen, T. and Welling, M. Group equivariant convolu-
tional networks. In International Conference on Machine
Learning (ICML), 2016.

Dao, T. Flashattention-2: Faster attention with better paral-
lelism and work partitioning. In International Conference
on Learning Representations (ICLR), 2024.

Frank, J. T., Chmiela, S., Müller, K., and Unke, O. T. Eu-
clidean fast attention: Machine learning global atomic
representations at linear cost. CoRR, abs/2412.08541,
2024.

Fu, X., Xie, T., Rebello, N. J., Olsen, B. D., and Jaakkola,
T. Simulate time-integrated coarse-grained molecular
dynamics with multi-scale graph networks. Trans. Mach.
Learn. Res., 2023, 2022.

Fu, X., Xie, T., Rosen, A. S., Jaakkola, T. S., and Smith,
J. Mofdiff: Coarse-grained diffusion for metal-organic
framework design. In International Conference on Learn-
ing Representations (ICLR), 2024.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning
(ICML), 2017.

10

Erwin Transformer

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S.,
Cheng, Z., Song, J., and Zhu, J. GNOT: A general neural
operator transformer for operator learning. In Interna-
tional Conference on Machine Learning (ICML), 2023.

Hockney, R. and Eastwood, J. Computer Simulation Using
Particles. CRC Press, 2021. ISBN 9781439822050.
URL https://books.google.nl/books?id=
nTOFkmnCQuIC.

Janny, S., Béneteau, A., Nadri, M., Digne, J., Thome, N.,
and Wolf, C. EAGLE: large-scale learning of turbulent
fluid dynamics with mesh transformers. In International
Conference on Learning Representations (ICLR), 2023.

Jing, B., Stärk, H., Jaakkola, T. S., and Berger, B. Genera-
tive modeling of molecular dynamics trajectories. arXiv
preprint arXiv:2409.17808, 2024.

Kang, Y., Tran, G., and Sterck, H. D. Fast multipole atten-
tion: A divide-and-conquer attention mechanism for long
sequences. arXiv preprint arXiv:2310.11960, 2023.

Kovács, D. P., Moore, J. H., Browning, N. J., Batatia, I.,
Horton, J. T., Kapil, V., Witt, W. C., Magdău, I.-B., Cole,
D. J., and Csányi, G. Mace-off23: Transferable machine
learning force fields for organic molecules, 2023.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger,
P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-
Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G.,
Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., and
Battaglia, P. Learning skillful medium-range global
weather forecasting. Science, 382(6677):1416–1421,
2023.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A. M., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. In International Conference on Learning Represen-
tations (ICLR), 2021.

Li, Z., Huang, D. Z., Liu, B., and Anandkumar, A. Fourier
neural operator with learned deformations for pdes on
general geometries. JMLR, 24:388:1–388:26, 2023a.

Li, Z., Kovachki, N. B., Choy, C. B., Li, B., Kossaifi, J., Otta,
S. P., Nabian, M. A., Stadler, M., Hundt, C., Azizzade-
nesheli, K., and Anandkumar, A. Geometry-informed
neural operator for large-scale 3d pdes. In Conference
on Neural Information Processing Systems (NeurIPS),
2023b.

Li, Z., Meidani, K., and Farimani, A. B. Transformer for
partial differential equations’ operator learning. Trans.
Mach. Learn. Res., 2023c.

Li, Z., Shu, D., and Farimani, A. B. Scalable transformer
for PDE surrogate modeling. In Conference on Neural
Information Processing Systems (NeurIPS), 2023d.

Liu, X., Xu, B., and Zhang, L. Ht-net: Hierarchical trans-
former based operator learning model for multiscale pdes.
CoRR, abs/2210.10890, 2022.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In International Con-
ference on Computer Vision (ICCV), 2021.

Liu, Z., Yang, X., Tang, H., Yang, S., and Han, S. Flat-
former: Flattened window attention for efficient point
cloud transformer. In Conference on Computer Vision
and Pattern Recognition(CVPR), 2023.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations (ICLR), 2019.

Luo, H., Wu, H., Zhou, H., Xing, L., Di, Y., Wang, J., and
Long, M. Transolver++: An accurate neural solver for
pdes on million-scale geometries. CoRR, abs/2502.02414,
2025.

Majumdar, S., Sun, J., Golding, B., Joe, P., Dudhia, J.,
Caumont, O., Gouda, K. C., Steinle, P., Vincendon, B.,
Wang, J., and Yussouf, N. Multiscale forecasting of high-
impact weather: Current status and future challenges.
Bulletin of the American Meteorological Society, 102:
1–65, 10 2020. doi: 10.1175/BAMS-D-20-0111.1.

McGreivy, N. and Hakim, A. Weak baselines and reporting
biases lead to overoptimism in machine learning for fluid-
related partial differential equations. Nature Machine
Intelligence, 6(10), 2024.

Moskalev, A., Prakash, M., Xu, J., Cui, T., Liao, R., and
Mansi, T. Geometric hyena networks for large-scale
equivariant learning. In International Conference on
Machine Learning (ICML), 2025.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., VanderPlas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in python. arXiv preprint
arXiv:1201.0490, 2012.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. Learning mesh-based simulation with
graph networks. In International Conference on Learning
Representations (ICLR), 2021.

Pfalzner, S. and Gibbon, P. Many-Body Tree Methods in
Physics. Cambridge University Press, 1996.

11

https://books.google.nl/books?id=nTOFkmnCQuIC
https://books.google.nl/books?id=nTOFkmnCQuIC

Erwin Transformer

Price, I., Sanchez-Gonzalez, A., Alet, F., Andersson, T. R.,
El-Kadi, A., Masters, D., Ewalds, T., Stott, J., Mohamed,
S., Battaglia, P. W., Lam, R. R., and Willson, M. Proba-
bilistic weather forecasting with machine learning. Na-
ture, 637(8044):84–90, 2025.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. Pointnet++: Deep
hierarchical feature learning on point sets in a metric
space. In Conference on Neural Information Processing
Systems (NeurIPS), 2017.

Rogozhnikov, A. Einops: Clear and reliable tensor ma-
nipulations with einstein-like notation. In International
Conference on Learning Representations (ICLR), 2022.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In
International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI), 2015.

Shazeer, N. GLU variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Stachenfeld, K. L., Fielding, D. B., Kochkov, D., Cranmer,
M. D., Pfaff, T., Godwin, J., Cui, C., Ho, S., Battaglia,
P. W., and Sanchez-Gonzalez, A. Learned coarse mod-
els for efficient turbulence simulation. arXiv preprint
arXiv:2112.15275, 2021.

Sun, P., Tan, M., Wang, W., Liu, C., Xia, F., Leng, Z., and
Anguelov, D. Swformer: Sparse window transformer
for 3d object detection in point clouds. In European
Conference on Computer Vision (ECCV), 2022.

Umetani, N. and Bickel, B. Learning three-dimensional
flow for interactive aerodynamic design. ACM Trans.
Graph., 37(4):89, 2018. URL https://doi.org/
10.1145/3197517.3201325.

Valencia, M. L., Pfaff, T., and Thuerey, N. Learning distri-
butions of complex fluid simulations with diffusion graph
networks. In International Conference on Learning Rep-
resentations (ICLR), 2025.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Conference on Neural Information
Processing Systems (NeurIPS), pp. 5998–6008, 2017.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations
(ICLR), 2018.

Wang, P.-S. Octformer: Octree-based transformers for
3D point clouds. ACM Transactions on Graphics (SIG-
GRAPH), 42(4), 2023.

Wang, T. and Wang, C. Latent neural operator for solving
forward and inverse PDE problems. In Conference on
Neural Information Processing Systems (NeurIPS), 2024.

Watson, J. L., Juergens, D., Bennett, N. R., Trippe, B. L.,
Yim, J., Eisenach, H. E., Ahern, W., Borst, A. J., Ragotte,
R. J., Milles, L. F., Wicky, B. I. M., Hanikel, N., Pellock,
S. J., Courbet, A., Sheffler, W., Wang, J., Venkatesh, P.,
Sappington, I., Torres, S. V., Lauko, A., Bortoli, V. D.,
Mathieu, E., Ovchinnikov, S., Barzilay, R., Jaakkola, T.,
DiMaio, F., Baek, M., and Baker, D. De novo design of
protein structure and function with rfdiffusion. Nature,
620:1089 – 1100, 2023.

Webb, M., Jackson, N., Gil, P., and de Pablo, J. Tar-
geted sequence design within the coarse-grained polymer
genome. Science Advances, 6:eabc6216, 10 2020. doi:
10.1126/sciadv.abc6216.

Wessels, D. R., Knigge, D. M., Papa, S., Valperga, R.,
Vadgama, S. P., Gavves, E., and Bekkers, E. J. Ground-
ing continuous representations in geometry: Equivariant
neural fields. arXiv preprint arXiv:2406.05753, 2024.

Wu, H., Luo, H., Wang, H., Wang, J., and Long, M. Tran-
solver: A fast transformer solver for pdes on general
geometries. In International Conference on Machine
Learning (ICML), 2024a.

Wu, X., Jiang, L., Wang, P., Liu, Z., Liu, X., Qiao, Y.,
Ouyang, W., He, T., and Zhao, H. Point transformer V3:
simpler, faster, stronger. In Conference on Computer
Vision and Pattern Recognition(CVPR), 2024b.

Xiao, Z., Hao, Z., Lin, B., Deng, Z., and Su, H. Improved op-
erator learning by orthogonal attention. In International
Conference on Machine Learning (ICML), 2024.

Yuan, J., Gao, H., Dai, D., Luo, J., Zhao, L., Zhang, Z.,
Xie, Z., Wei, Y. X., Wang, L., Xiao, Z., Wang, Y., Ruan,
C., Zhang, M., Liang, W., and Zeng, W. Native sparse
attention: Hardware-aligned and natively trainable sparse
attention, 2025.

Zhang, T., Yuan, H., Qi, L., Zhang, J., Zhou, Q., Ji, S.,
Yan, S., and Li, X. Point cloud mamba: Point cloud
learning via state space model. In Association for the
Advancement of Artificial Intelligence, AAAI, 2025.

Zhu, Z. and Soricut, R. H-transformer-1d: Fast one-
dimensional hierarchical attention for sequences. In
Conference on Neural Information Processing Systems
(NeurIPS), pp. 3801–3815. Association for Computa-
tional Linguistics, 2021.

12

https://doi.org/10.1145/3197517.3201325
https://doi.org/10.1145/3197517.3201325

Erwin Transformer

Algorithm 1 BUILDBALLTREE

input Array of data points D in Rd

output Ball tree node B

if |D| = 1 then
Create leaf node B containing single point in D
return B

end if

Find dimension of greatest spread
δ ← argmaxi∈1,...,d(maxx∈D xi −minx∈D xi)

Find the median point along δ
p← median{xδ | x ∈ D}
Points left of median along δ
L← {x ∈ D | xδ ≤ pδ}
Points right of median along δ
R← {x ∈ D | xδ > pδ}

Recursively construct children
B.child1 ← BUILDBALLTREE(L)
B.child2 ← BUILDBALLTREE(R)

return B

A. Implementation details

Ball tree construction The algorithm used for construct-
ing ball trees (Pedregosa et al., 2012) can be found in Alg. 1.
Note that this implementation is not rotationally equivariant
as it relies on choosing the dimension of the greatest spread,
which in turn depends on the original orientation. Examples
of ball trees built in our experiments are shown in Fig. 9.

MPNN in the embedding Erwin employs a small-scale
MPNN in the embedding. More precisely, given a graph
G = (V,E) with nodes vi ∈ V and edges eij ∈ E, we
compute multiple layers of message-passing as proposed in
(Gilmer et al., 2017):

mij = MLPe(hi,hj ,pi − pj), message

mi =
∑

j∈N (i)

mij , aggregate (14)

hi = MLPh(hi,mi), update

where hi ∈ RH is a feature vector of vi, and N (i) denotes
the neighborhood of vi. The motivation for using an MPNN
is to incorporate local neighborhood information into the
model. Theoretically, attention should be able to capture
this information as well; however, this might require sub-
stantially increasing the feature dimension and the number
of attention heads, which would be prohibitively expen-
sive for a large number of nodes in the original level of a

ball tree. In our experiments, we consistently maintain the
size of MLPe and MLPh to be small (H ≤ 32) such that
embedding accounts for less than 5% of total runtime.

B. Experimental details
In this section, we provide comprehensive experimental
details regarding hardware specifications, hyperparameter
choices, and optimization procedures.

B.1. Hardware and Software

All experiments were conducted on a single NVIDIA RTX
A6000 GPU with 48GB memory and 16 AMD EPYC™
7543 CPUs. Erwin and all baselines except those for cos-
mology were implemented in PyTorch 2.6. For the cosmol-
ogy benchmark, SEGNN, NequIP, and MPNN baselines
were implemented in JAX as provided by the original bench-
mark repository. Training times for Erwin varied by task:
cosmology (5-10 minutes depending on training set size),
molecular dynamics (2-4 hours depending on model size),
PDE benchmarks (8 hours for Elasticity, 48 hours for oth-
ers), ShapeNet-Car (2 hours), and EAGLE (48 hours).

B.2. Training Details

All models were trained using the AdamW optimizer
(Loshchilov & Hutter, 2019) with weight decay 10−5. The
learning rate was tuned in the range 10−4 to 10−3 to mini-
mize loss on the respective validation sets with cosine decay
to 10−7. Gradient clipping by norm with value 1.0 was
applied across all experiments. Early stopping was used
only for ShapeNet-Car and molecular dynamics tasks, while
all other models were trained until convergence. In every
experiment, we normalize inputs to the model. Hyperpa-
rameter optimization was performed using grid search with
single trials.

B.3. Dataset Splits and Evaluation

Dataset splits followed the original benchmarks:

• Cosmology: Training set varied from 64 to 8192 exam-
ples, with validation and test sets of 512 examples each

• Molecular Dynamics: 100 short trajectories for training,
40 long trajectories for testing

• PDE Benchmarks: 1000 training / 200 test examples
(except Plasticity: 900/80)

• ShapeNet-Car: 700 training / 189 test examples

• EAGLE: 1184 trajectories with 80%/10%/10% split

For statistical significance, we ran each experiment 5 times
and report mean and standard deviation for cosmology,
molecular dynamics, ShapeNet-Car, and EAGLE. PDE ex-
periments were run once due to computational constraints.

13

Erwin Transformer

ball size 512 ball size 256 ball size 128

Figure 9. Examples of ball trees built on top of data. Partitions at different levels of ball trees are shown. Top: A polypeptide from the
molecular dynamics task. Center: A domain from the EAGLE dataset. Bottom: A car surface from the ShapeNet-Car dataset.

B.4. Evaluation Metrics

For RMSE computation, we use the relative L2 error:
RMSE := ∥f(x) − y∥/∥y∥. For molecular dynamics, we
randomly sample 16 history points from each trajectory
and predict one future point. Acceleration is predicted by
the neural network based on history and compared against
ground truth computed using forward differences. Model
performance is evaluated using negative log-likelihood loss
between predicted and ground truth accelerations.

B.5. Baseline Implementations

All baseline results were taken from official implementa-
tions or reported values:

• Cosmology: Official JAX implementation (Balla
et al., 2024), code from https://github.com/
smsharma/eqnn-jax

• ShapeNet-Car: Results from Bleeker et al. (2025), code
from https://github.com/ml-jku/UPT

• PDE Benchmarks: Results from Luo et al. (2025),
https://github.com/thuml/Transolver

• EAGLE: Original implementation (Janny et al.,
2023), https://github.com/eagle-dataset/
EagleMeshTransformer

• Molecular Dynamics: MPNN and PointNet++ imple-
mented by us, other models taken from official codebases.

• PTv3: https://github.com/Pointcept/
PointTransformerV3

B.6. Computational Efficiency

Table 7 shows the inference time breakdown for Erwin on
NVIDIA RTX A6000 with batch size 16. Ball tree con-
struction (Table 8) consistently accounts for less than 5% of
total runtime, demonstrating the efficiency of our optimized
implementation compared to standard libraries.

Table 7. Erwin runtime with torch.compile

NODES PER BATCH RUNTIME (MS)

16 × 2048 4096 8192 16384

FWD 17.3 31.6 79.7 189
FWD + BWD 26.4 45.4 114 232

Table 8. Ball tree construction on 16 AMD EPYC™ 7543 CPUs.

NODES PER BATCH, RUNTIME (MS)

16 × 2048 4096 8192 16384

SKLEARN + JOBLIB 16.3 21.2 24.1 44.0
OURS 0.73 1.54 3.26 6.98

SPEED-UP 22.3× 13.8× 7.4× 6.3×

B.7. Further details per experiment

Cosmological simulations We follow the experimental
setup of the benchmark. The training was done for 5,000
epochs with batch size 16 for point transformers and batch
size 8 for message-passing-based models. The implementa-
tion of SEGNN, NequIP, and MPNN was done in JAX and

14

https://github.com/smsharma/eqnn-jax
https://github.com/smsharma/eqnn-jax
https://github.com/ml-jku/UPT
https://github.com/thuml/Transolver
https://github.com/eagle-dataset/EagleMeshTransformer
https://github.com/eagle-dataset/EagleMeshTransformer
https://github.com/Pointcept/PointTransformerV3
https://github.com/Pointcept/PointTransformerV3

Erwin Transformer

taken from the original benchmark repository (Balla et al.,
2024). We maintained the hyperparameters of the baselines
used in the benchmark. For Erwin and PTv3, the hyperpa-
rameters are provided in Table 9. In Erwin’s embedding, we
conditioned messages on Bessel basis functions rather than
the relative position, which significantly improved overall
performance.

Molecular dynamics All models were trained with batch
size 32 for 50,000 training iterations with an initial learning
rate of 5 ·10−4. We fine-tuned the hyperparameters of every
model on the validation dataset (reported in Table 11).

PDE benchmarks The baseline results and experimental
setups are taken from Luo et al. (2025). We adjusted batch
size, ball size, and the number of attention heads per block
for the best performance. The hidden dimensionality of Er-
win was adjusted such that the overall number of parameters
is around 106, which is comparable with other baselines.
Constrained by the parameter size, the same configuration
worked the best; see Table 12 for details.

Airflow pressure modeling We take the results of base-
line models from Bleeker et al. (2025). Both Erwin and
PTv3 were trained with batch size 32 for 1,000 epochs, and
their hyperparameters are given in Table 10. We tuned the
number of blocks, the number of message-passing steps,
hidden dimensionality, and ball size per block for the best
performance. When experimenting with pooling, we found
that not involving any coarsening significantly improves
model performance; hence, we used stride 1 in each block.

Turbulent fluid dynamics Baseline results are taken from
(Janny et al., 2023), except for runtime and peak memory us-
age, which we measured ourselves. Erwin was trained with
batch size 12 for 4,000 epochs. We tuned hidden dimen-
sionality and ball size per block for the lowest validation
loss.

15

Erwin Transformer

Table 9. Model architectures for the cosmological simulations task.
For varying sizes of Erwin, the values are given as (S/M).

Model Parameter Value

PTv3 Grid size 0.01
Enc. depths (2, 2, 6, 2)
Enc. channels (32, 64, 128, 256)
Enc. heads (2, 4, 8, 16)
Enc. patch size 64
Dec. depths (2, 2, 2)
Dec. channels (64, 64, 128)
Dec. heads (2, 4, 8)
Dec. patch size 64
Pooling (2, 2, 2)

Erwin MPNN dim. 32
Channels 32-512/64-1024
Window size 64
Enc. heads (2, 4, 8, 16)
Enc. depths (2, 2, 6, 2)
Dec. heads (2, 4, 8)
Dec. depths (2, 2, 2)
Pooling (2, 2, 2, 1)

Table 10. Model architectures for the airflow pressure task.

Model Parameter Value

PTv3 Grid size 0.01
Enc. depths (2, 2, 2, 2, 2)
Enc. channels 24-384
Enc. heads (2, 4, 8, 16, 32)
Enc. patch size 256
Dec. depths (2, 2, 2, 2)
Dec. channels 48-192
Dec. heads (4, 4, 8, 16)
Dec. patch size 256

Erwin MPNN dim. 8
Channels 96
Window size 256
Enc. heads (8, 16)
Enc. depths (6, 2)
Dec. heads (8,)
Dec. depths (2,)
Pooling (2, 1)
MP steps 1

Table 11. Model architectures for the molecular dynamics task.
For models of varying sizes, the values are given as (S/M/L).

Model Parameter Value

MPNN Hidden dim. 48/64/128
MP steps 6
MLP layers 2
Message agg-n mean

PointNet++ Hidden dim. 64/128/196
MLP layers 2

PTv3 Grid size 0.025
Enc. depths (2, 2, 2, 6, 2)
Enc. channels 16-192/24-384/64-1024
Enc. heads (2, 4, 8, 16, 32)
Enc. patch size 128
Dec. depths (2, 2, 2, 2)
Dec. channels 16-96/48-192/64-512
Dec. heads (4, 4, 8, 16)
Dec. patch size 128

Erwin MPNN dim. 16/16/32
Channels (16-256/32-512/64-1024)
Window size 128
Enc. heads (2, 4, 8, 16, 32)
Enc. depths (2, 2, 2, 6, 2)
Dec. heads (4, 4, 8, 16)
Dec. depths (2, 2, 2, 2)
Pooling (2, 2, 2, 2, 1)

Table 12. Model architectures for the PDE benchmarks.

Model Parameter Value

Erwin MPNN dim. 64
Channels 64
Window size 256
Enc. heads (8, 8)
Enc. depths (6, 6)
Dec. heads (8, 8)
Dec. depths (6)
Pooling (1, 1)

16

Erwin Transformer

Figure 10. The norm of the velocity field at different steps of the rollout trajectories, predicted by Erwin.

Ground truth

Prediction

t = 5 t = 30

Normalized RMSE

t = 55 t = 80 t = 105

0

5

10

0.0

0.2

0.4

Ground truth

Prediction

t = 5 t = 30

Normalized RMSE

t = 55 t = 80 t = 105

0

5

10

0.0

0.2

0.4

17

Erwin Transformer

Figure 11. The norm of the pressure field at different steps of the rollout trajectories, predicted by Erwin.

Ground truth

Prediction

t = 5 t = 30

Normalized RMSE

t = 55 t = 80 t = 105

0

20

40

60

0.0

0.2

0.4

Ground truth

Prediction

t = 5 t = 30

Normalized RMSE

t = 55 t = 80 t = 105

0

20

40

60

0.0

0.2

0.4

18

