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ABSTRACT

Current techniques for Out-of-Distribution (OoD) detection predominantly rely on
quantifying predictive uncertainty and incorporating model regularization during
the training phase, using either real or synthetic OoD samples. However, methods
that utilize real OoD samples lack exploration and are prone to overfit the OoD
samples at hand. Whereas synthetic samples are often generated based on features
extracted from training data, rendering them less effective when the training and
OoD data are highly overlapped in the feature space. In this work, we propose a
Wasserstein-score-based generative adversarial training scheme to enhance OoD
detection accuracy, which, for the first time, performs data augmentation and ex-
ploration simultaneously under the supervision of limited OoD samples. Specif-
ically, the generator explores OoD spaces and generates synthetic OoD samples
using feedback from the discriminator, while the discriminator exploits both the
observed and synthesized samples for OoD detection using a predefined Wasser-
stein score. We provide theoretical guarantees that the optimal solutions of our
generative scheme are statistically achievable through adversarial training in em-
pirical settings. We then demonstrate that the proposed method outperforms state-
of-the-art techniques on various computer vision datasets and exhibits superior
generalizability to unseen OoD data.

1 INTRODUCTION

Deep Neural Networks (DNNs) have been recently deployed in various real applications demon-
strating their efficacious capacities in learning inference tasks, such as classification (He et al., 2016;
Huang et al., 2016), object detection (Girshick, 2015; Redmon et al., 2016), and machine translation
(Tan et al., 2020; Zhang & Zong, 2020). Most of these tasks, however, assume that training and test-
ing samples have the same data distribution (Krizhevsky et al., 2017; He et al., 2015; Drummond &
Shearer, 2006) under which DNN models are trained in a closed-world manner (Yang et al., 2021).
This assumption might not hold in practical applications where control over testing samples is lim-
ited. Several researchers have relaxed the former statement by assuming that testing samples can be
essentially different from samples in the training distribution. We refer to those testing samples as
OoD samples (i.e. Out-of-Distribution) whereas those coming from the training data distribution as
InD samples (i.e. In-Distribution). This motivates the problem of training DNNs that can effectively
classify InD samples while simultaneously detecting OoD samples. One practical application arises
in self-driving vehicles (Tambon et al., 2022; Yang et al., 2021) for which a reliable DNN control
system is expected to identify scenarios that are far from what has been observed during training
stages and prompt warning to the driver rather than blindly react to them. This renders OoD detec-
tion crucial for reliable machine learning models in real-world applications. In this paper, we focus
on solving the problem of training DNN classifiers that can effectively identify OoD samples while
maintaining decent classification performance for InD data.

Most existing works on OoD detection for DNN models leverage the predictive uncertainty of the
pre-trained DNNs to separate InD and OoD samples in a predefined score space (Liang et al., 2020;
Lee et al., 2018; Hendrycks & Gimpel, 2016; Liu et al., 2020). In particular, these methods adopt
score functions that quantify the uncertainty of the predictions and project these scores to different
extrema in the score continuum, representing low and high predictive uncertainty, respectively. For
instance, Hendrycks & Gimpel (2016) retrieved the maximum softmax probability (MSP) among all
classes as the uncertainty score for an incoming sample whereas Liu et al. (2020) utilized the energy
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Table 1: Summary of OoD detection methods

Method
Family Examples Score

Function
OoD-aware

Training
Real
OoD

OoD Space
Exploration

Theoretical
Justification

Calibration

MSP (Hendrycks & Gimpel, 2016);
ODIN (Liang et al., 2020);

Maha (Lee et al., 2018);
Energy (Liu et al., 2020)

3 7 7 7 7

Virtual outlier
generation

VOS (Du et al., 2022);
GAN-Synthesis (Lee et al., 2017)

3 3 7 3 7

OoD-based
methods

Energy + Finetune (Liu et al., 2020);
WOOD (Wang et al., 2021)

3
3

3
3

3
3

7
7

7
3

Guided OoD
exploration SEE-OoD 3 3 3 3 3

score of samples to achieve InD/OoD separations. To extract more information from the pre-trained
models and reduce unnecessary noises, Liang et al. (2020) calibrated the output probability by tem-
perature scaling (Hinton et al., 2015; Pereyra et al., 2017). Lee et al. (2018), however, operated
directly on the features and defined the confidence score based on Mahalanobis distances. With a
well-calibrated score function, such methods can perform OoD detection on pre-trained DNNs by
simply adding an additional module without the need for re-training.

Despite being computationally efficient, these calibration-based methods only operate in the infer-
ence phase by manipulating the output of the pre-trained models, whose parameters are already fixed
after training. This may result in relatively poor performance as they fail to exploit the capacity of
DNNs in InD/OoD separation tasks. One potential approach for resolving this issue is to incorpo-
rate OoD detection in the training objective and regularize the classifier in the training stage using
virtual outliers generated based on InD data. For instance, Lee et al. (2017) used GANs (Good-
fellow et al., 2020) to generate InD boundary samples and proposed a training scheme that jointly
optimizes the classification objective and retains a model less confident about the generated virtual
outliers. Similarly, Du et al. (2022) modeled InD data as a multivariate Gaussian distribution and
sampled virtual outliers from their tails. These samples are then used in a regularization framework
for classification and OoD detection. A major drawback of such methods is that the generation of
boundary outliers is heavily coupled with the features learned on InD data. This arises when InD
and OoD data are heavily overlapped in feature spaces. In such scenarios, generating outliers purely
based on low-density features without any supervision from real OoD data can return virtual outliers
that are not good representatives of real OoD samples.

Avoiding the issue of unsupervised generation of OoD samples, several works have studied problem
instances in which empirical knowledge about OoD data is available. In fact, many real applications
allow for identifying potential OoD samples based on training data. For instance, in face recognition
applications (Yu et al., 2020), it is reasonable to assume that images with no human faces are OoD
data. In such settings, several methods that exploit given OoD samples to learn InD/OoD separation
while training for classification were proposed. We refer to such methods that are directly trained
or fine-tuned on both InD and real OoD data as OoD-based methods. For example, Liu et al. (2020)
fine-tuned a pre-trained model on real OoD data to achieve InD/OoD separation in the energy score
space. More recently, Wang et al. (2021) proposed the WOOD detector, which uses a Wasserstein-
distance-based (Rüschendorf, 1985; Villani, 2008) score function and is directly trained on both InD
and OoD data to map them to high and low confidence scores, respectively. With a sufficient training
OoD sample size, WOOD (Wang et al., 2021) achieves state-of-the-art OoD detection performance
on multiple benchmark experiments on computer vision datasets.

A major limitation for existing OoD-based methods is that learning such InD/OoD score mapping
can be challenging when the number of real OoD samples in training is limited. In such cases, the
model is prone to over-fit OoD data samples which can result in low OoD detection accuracy for
unseen data. One plausible solution is to combine OoD-based methods with data augmentation tech-
niques like transformation and perturbation (Shorten & Khoshgoftaar, 2019; Lemley et al., 2017).
Although data augmentation can mitigate the over-fitting problem of these OoD-based methods, the
augmented data can still suffer from a poor representation of the OoD space. Table 1 provides a
thorough overview of the drawbacks and advantages of each of the aforementioned method.
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Motivated by these drawbacks, we propose a generative adversarial approach that utilizes real OoD
data for supervised generation of OoD samples that can better explore the OoD space. Our proposed
approach tackles the two drawbacks of existing methods, that is, improves virtual outlier generation
methods by utilizing real OoD samples for a supervised OoD generation scheme; and simultaneously
augments OoD data with exploration to overcome the issue of poor and insufficient OoD samples
in OoD-based methods. The main idea is to iteratively exploit OoD samples to explore OoD spaces
using feedback from the model. Specifically, we introduce a Supervised-Exploration-based gener-
ative adversarial training approach for Enhanced Out-of-Distribution (SEE-OoD) detection, which
is built on the Wasserstein-score function (Wang et al., 2021). The generator is designed to explore
potential OoD spaces and generate virtual OoD samples based on the feedback provided by the dis-
criminator, while the discriminator is trained to correctly classify InD data and separate InD and
OoD in the Wasserstein score space. Our contributions can be summarized as the following:

• We propose a Wasserstein-score-based (Wang et al., 2021) generative adversarial training
scheme where the generator explores OoD spaces and generates virtual outliers with the
feedback provided by the discriminator, while the discriminator exploits these generated
outliers to separate InD and OoD data in the predefined Wasserstein score space. (Sec. 2.2)
• We provide several theoretical results that guarantee the effectiveness of our proposed

method. We show that at optimality, the discriminator is expected to perfectly separate
InD and OoD (including generated virtual OoD samples) in the Wasserstein score space.
Furthermore, we establish a generalization property for the proposed method. (Sec. 2.3)
• We introduce a new experimental setting for evaluating OoD detection methods: Within-

Dataset OoD detection, where InD and OoD are different classes of the same dataset, and
is a more challenging task for DNNs compared to the commonly used Between-Dataset
OoD separation tasks (Liang et al., 2020; Wang et al., 2021). We then demonstrate the
effectiveness of our method on multiple benchmark experiments with different settings on
image datasets. (Sec. 3)

2 METHODOLOGY

We present our method for OoD detection under the supervised classification framework, where
a well-trained neural network model is expected to correctly classify InD data while effectively
identifying incoming OoD testing samples. In general, we denote the distributions for InD data and
OoD data as PInD(x, y) and POoD(x), where x and y represent inputs and labels, respectively. Note
that for OoD data, we only have the marginal distribution of inputs POoD(x) as there are no labels
for them. For simplicity purposes, we use d to denote the dimension of inputs. For instance, in the
context of computer vision, x ∈ Rd is a flattened tensor of an image that has C channels, H pixels
in height, and W pixels in width. The corresponding dimension of inputs is d = C × H × W .
Throughout this paper, the number of classes of InD data is denoted by K and labels are represented
by the setKInD = {1, ...,K}. Under this framework, the classic OoD detection problem is equivalent
to finding a decision function F : Rd 7−→ {0, 1} such that:

F(x) =

{
0, (x, y) ∼ PInD(x, y)

1, x ∼ POoD(x)
, (1)

where the decision function F(·) can be constructed by combining a DNN classification model with
well-defined score functions that return different values for InD and OoD data. In this paper, we
follow previous literature (Yang et al., 2021; Liang et al., 2020; Du et al., 2022) and define OoD data
as data that does not come from the training distribution (i.e. InD).

2.1 WASSERSTEIN-DISTANCE-BASED SCORE FUNCTION

In this work, we adopt the Wasserstein score function introduced by Wang et al. (2021) to quantify
the uncertainty of the model predictions. Given a cost matrix M ∈ RK×K and a classification func-
tion f : Rd 7−→ RK that maps an input sample to a discrete probability distribution of predictions,
the Wasserstein score for an input sample x is defined by:

S(f(x);M) := min
k∈KInD

W (f(x), ek;M) = min
k∈KInD

infP∈Π(f(x),ek)

〈
P,M

〉
, (2)

3



Under review as a conference paper at ICLR 2024

where W (p1, p2;M) is the Wasserstein distance (Rüschendorf, 1985; Cuturi, 2013) between two
discrete marginal probability distributions p1 and p2 under the cost matrix M , ek ∈ RK is the
K-dimensional one-hot vector where only the kth element is one, and P is a joint distribution that
belongs to the set of all possible transport plans Π(f(x), ek) := {P ∈ RK×K+ |P1K = ek, P1>K =
f(x)}, where 1K is the all-one vector. In this work, we stick to the classic binary cost matrix Mb

(Frogner et al., 2015) where transporting an equal amount of probability mass between any two
different classes yields the same costs; that is, Mb = 1K×K − IK where 1K×K is the all-ones
matrix with dimension K ×K and IK is the K-dimensional identity matrix. Detailed descriptions
on the definition of Wasserstein distance and cost matrix selection can be found in Appendix A.1.
Remark 1. Under the binary cost matrixMb, the Wasserstein score of an input sample x ∈ Rd given
a classifier function f : Rd 7−→ RK is equivalent to S(f(x);Mb) = 1 − ‖f(x)‖∞. Consequently,
the minimum Wasserstein score is attained when f(x) is any one-hot vector, reflecting its high
predictive confidence, while the maximum is achieved when f(x) outputs the same probability for
each class, implying high predictive uncertainty.

This justifies the reasons for using the Wasserstein score function to quantify the predictive un-
certainty. For an ideal classifier, we expect InD samples to have lower Wasserstein scores, which
indicates classifiers’ high confidence when assigning them to one of theK classes. In contrast, OoD
samples should have higher scores, reflecting the high uncertainty of classifying them into any one
of the classes. Then, given a cost matrix M , a well-trained classifier f(·), and a threshold η, the
score-based detector for an incoming sample x can be formalized below in the same manner as in
previous works (Liang et al., 2020; Wang et al., 2021):

F(x; f,M, η) = 1[S(f(x);M) > η] =

{
0, S(f(x);M) ≤ η
1, S(f(x);M) > η

=

{
0, ‖f(x)‖∞ ≥ 1− η
1, ‖f(x)‖∞ < 1− η , (3)

where the last equality holds under the pre-defined Mb. The decision threshold η ∈ [0, 1] is chosen
to satisfy a pre-specified True Negative Rate (TNR) at the inference phase, which is defined as the
proportion of InD samples that are correctly classified as InD by the detector. We next inherit the
score function defined in Eq. (3) in an adversarially generative formulation for jointly training InD
classification and InD/OoD separation.

2.2 SUPERVISED-EXPLORATION-BASED OUT-OF-DISTRIBUTION DETECTION

In this section, we introduce a Wasserstein-score-based generative adversarial scheme for training
classification models that can detect OoD samples, where the generator aims at exploring the poten-
tial OoD spaces with the feedback provided by the discriminator, while the discriminator exploits
the advantages of these generated points to separate InD and OoD samples. In this paper, we de-
note the discriminator as D(x; θD) where it outputs a K-dimensional predicted discrete probability
distribution for the input image x. The generator is represented by G(z; θG) where it maps an n-
dimensional noise vector z ∈ Rn that is drawn from some prior distribution Pz to the data space.
Note that D and G are essentially two different neural networks that are parameterized by θD and
θG, respectively. By convention, we assume that θD and θG belong to a subset of the unit ball (Arora
et al., 2017). The overall minimax objective function for our method is as follows, where we slightly
abuse the notation and use D and G without writing out their parameters explicitly,

min
D

max
G
L(D,G) = min

D
max
G

E(x,y)∼PInD(x,y)

[
− log(D(x)>ey)

]︸ ︷︷ ︸
(1) InD Classification

− βOoD Ex∼POoD(x) [S(D(x);Mb)]︸ ︷︷ ︸
(2) OoD Wasserstein Score Mapping

+ βz Ez∼Pz [S(D(G(z));Mb)]︸ ︷︷ ︸
(3) OoD Adversarial Training

, (4)

where βOoD, βz > 0 are the hyperparameters that balance the losses of the generator and discrimina-
tor. In this paper, a multivariate Gaussian distribution with zero mean and identity covariance matrix
In is chosen as the default prior. This minimax objective function can be understood and decom-
posed into two parts: (1) aims at training the discriminator to achieve high classification accuracy on
InD data while simultaneously assigning low Wasserstein scores to them, while (2) and (3) together
emulate the original GAN formulation (Goodfellow et al., 2020; Arjovsky et al., 2017) but in the
Wasserstein score space, where G and D are trained to explore and generate virtual OoD samples
while mapping OoD data to high Wasserstein scores. Unlike existing methods that generate outliers
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without recourse to observed OoD data (Du et al., 2022; Lee et al., 2017), our method allows for the
explorative generation of synthetic samples. In the iterative optimization process, the discriminator
gradually learns the Wasserstein score mapping of InD and OoD samples, while the generator uti-
lizes this knowledge as guidance to generate samples that retain a high Wasserstein score. Moreover,
as the proposed SEE-OoD operates on the Wasserstein score space rather than the data space, the
generated OoD samples do not necessarily resemble the target distribution (i.e. observed OoD) in
the data space, which encourages our model to explore OoD spaces beyond the observed samples.

To solve the presented optimization problem, we propose an iterative algorithm that alternatively
updates D and G using minibatch stochastic gradient descent/ascent outlined in Algorithm 1. Af-
ter training, the discriminator D is then utilized to construct a threshold-based decision function
F(x;D,Mb, η) = 1[S(D(x);Mb) > η] for OoD detection. The decision threshold η is chosen such
that Ex∼PInD(x)F(x;D,Mb, η) = α, with 1−α ∈ [0, 1] representing the probability that an incoming
InD sample is correctly identified as InD by the detector (i.e. TNR).

2.3 THEORETICAL RESULTS

In this section, we provide theoretical guarantees that demonstrate the effectiveness of our method.
Theorem 1. For a given discriminator D̄, let G?

D̄
be the optimal solution among all possible real-

valued functions that map Rn to Rd, then the Wasserstein scores of the generated data are lower
bounded by the Wasserstein scores of OoD data, that is,

Ez∼Pz

[
S(D̄(G?D̄(z));Mb)

]
≥ Ex∼POoD(x)

[
S(D̄(x);Mb)

]
. (5)

Theorem 1 guarantees that for any discriminator D, the generated synthetic data at optimal G re-
tain desired high Wasserstein scores. We next show that at optimality, the discriminator perfectly
classifies the InD data and separates InD and OoD data in the Wasserstein score space.
Theorem 2. Let D and G belong to the sets of all possible real-valued functions, in particular,
neural networks, such that D : Rd 7−→ RK and G : Rn 7−→ Rd, respectively. Then, under
optimality, D? and G? possess the following properties:

D?(x) =

{
ey, (x, y) ∼ PInD(x, y)
1
K1K , x ∼ POoD(x)

and G? ∈ {G : D?(G(z)) =
1

K
1K ,∀z ∼ Pz}. (6)

Furthermore, if the discriminator D is α-Lipschitz continuous with respect to its inputs x, where the
Lipschitz constant α > 0. Then, at optimality, G?(z) 6∼ PInD(x), ∀z ∈ Pz; that is, the probability
that the generated samples are In-Distribution is zero.
Remark 2. In practice, these optimal solutions can be obtained in over-parameterized settings. The
purpose of these theoretical results is to give intuition on the dynamics of our min-max objective.

Note that we use the notation x 6∼ P0 to say that f0(x) = 0, where f0 is the corresponding prob-
ability density function of P0. Theorems 1 and 2 assure that, at optimality, G generates samples
with high Wasserstein scores that do not belong to InD. These promising properties ensure that our
generated OoD samples never overlap with InD samples in the data space, which does not hold in
previous works on virtual outlier generation (Du et al., 2022; Lee et al., 2017). Therefore, the syn-
thetic OoD samples generated by our model will only enhance the discriminator’s understanding of
the OoD space without undermining its classification performance in the InD space.

We now provide a generalization result that shows that the desired optimal solutions provided in
the Theorems 2 can be achieved in empirical settings. Motivated by the neural network distance
introduced by Arora et al. (2017) to measure the difference between the real and generated distribu-
tions in GANs, we define a generalized neural network loss for the proposed generative adversarial
training framework, which quantifies the loss of the outer minimization problem for three distribu-
tions under a given set of measuring functions and can be easily generalized to a family of objective
functions. Examples on the applications of neural network loss can be found in Appendix B.3.
Definition 1. LetF : Rd 7−→ RK be a class of functions that projects the inputs to aK-dimensional
probability vector, such that f ∈ F implies 1K(·)− f ∈ F . Let Φ = {φ1, φ2, φ3 : RK 7−→ R} be a
set of convex measuring functions that map a probability vector to a scalar score. Then, the neural
network loss w.r.t. Φ among three distributions p1, p2, and p3 supported on Rd is defined as

LF,Φ(p1, p2, p3) = inf
D∈F

E
x∼p1

[φ1(D(x))] + E
x∼p2

[φ2(D(x))] + E
x∼p3

[φ3(1K −D(x))].
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Figure 1: A 2D numerical illustration of the intuition behind SEE-OoD. In this figure, we present
the Wasserstein score heatmaps of the WOOD (Wang et al., 2021) detector and two possible so-
lution states of SEE-OoD after training, where brighter colors represent higher Wasserstein scores
(i.e. OoD) and the shaded boundary is the InD/OoD decision boundary under 95% TNR. Details
regarding this simulation study can be found in Appendix C.

For instance, in the context of SEE-OoD, three probability distributions p1, p2, and p3 correspond
to PInD,POoD, and PG, respectively. With careful selection of measuring functions as introduced in
Appendix B.3, the neural network loss recovers the outer minimization objective in Eq. (4) for a
fixed G. The following Theorem 3 shows that the neural network loss generalizes well in empirical
settings, and Corollary 1 guarantees that when taking the iterative training of D and G into account,
the theoretical optima introduced in Theorem 2 is statistically achievable through training.
Theorem 3. Let p1, p2, and p3 be three distributions and p̂1, p̂2, and p̂3 be the empirical versions
with at leastm samples each. Suppose the measuring functions φi ∈ Φ areLφi -Lipschitz continuous
and take values in [li, ui] for i ∈ {1, 2, 3}. Let the discriminator D be L-Lipschitz continuous with
respect to its parameter θD whose dimension is denoted by p. Then, there exists a universal constant

C such that when the empirical sample size m ≥ maxi

{
Cp(ui−li)2 log (LLφip/ε)

ε2

}
, we have with

probability at least 1− exp(−p) over the randomness of p̂1, p̂2, and p̂3,

|LF,Φ(p1, p2, p3)− LF,Φ(p̂1, p̂2, p̂3)| ≤ ε (7)

Corollary 1. In the setting of Theorem 3., suppose that {G(i)}Ni=0 be the N generators in the N–
iterations of the training, and assume logN ≤ p and logN � d. Then, there exists a universal

constant C such that when m ≥ maxi

{
Cp(ui−li)2 log (LLφip/ε)

ε2

}
, with probability at least 1 −

exp(−p), for all t ∈ [N ],

|LF,Φ(PInD,POoD,PG(t))− LF,Φ(P̂InD, P̂OoD, P̂G(t))| ≤ ε. (8)

2.4 NUMERICAL ILLUSTRATION

We provide a small-scale simulation study to visually illustrate our proposed approach. To shed light
on the mechanisms underpinning our method, we specifically explore two distinct hyperparameter
configurations, as depicted in Figure 1. In the first setting, the hyperparameter is chosen such that
βOoD > βz and nd > ng , leading to a dominant discriminator throughout the training process. We
observe that after training, the discriminator assigns high Wasserstein scores only if the input x ∈ R2

is close to the training OoD samples. In this case, the generator augments the limited OoD data by
exploring regions close to them, therefore the proposed method can be understood as a WOOD
detector (Wang et al., 2021) with our proposed explorative data augmentation. The middle panel
in Figure 1 shows the Wasserstein score heatmap obtained under this setting, where the proposed
SEE-OoD detector results in larger OoD rejection regions around OoD samples compared to the
WOOD method, whose Wasserstein score heatmap is given by the left panel in Figure 1.

In the second setting, we set βOoD < βz and nd < ng . In this scenario, the generator is dominant
so it can fool the discriminator even when the generated data are not in the vicinity of the observed
OoD samples. Thus, in the iterative training process, the generator keeps exploring OoD spaces,
while the discriminator learns to project more regions, that the generator has explored, to high
Wasserstein scores. This case is demonstrated by the right panel of Figure 1, where the generated
samples are far away from observed OoD samples and the OoD region is larger than that of WOOD.
This demonstrates the effectiveness of exploration and the advantages of the proposed generative
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Algorithm 1: SEE-OoD: BInD, BOoD, and BG are minibatch sizes; βOoD, βz ∈ R+ are regularization
parameters; n ∈ Z+ is the dimension of the Gaussian noise; ηD, ηG ∈ R+ are learning rates, nd, ng ∈ Z+

and the number of ascent/descent updates for D and G per iteration.

for number of training iterations do
for number of discriminator updates nd do
• Randomly sample BInD InD samples {(x(i)

InD, y
(i)
InD)}BInD

i=1 from PInD(x, y).
• Randomly sample BOoD OoD samples {x(i)

OoD}
BOoD
i=1 from POoD(x).

• Generate BG samples {G(z(i))}BG
i=1, where z(i) ∼ N (0n, In),∀i ∈ {1, ..., BG}.

• Forward propagation to compute L(D,G) and update D by stochastic gradient descent:

θD ←− θD − ηD∇θD

[
1

BInD

BInD∑
i=1

− logD(x
(i)>
InD ) e

y
(i)
InD

− βOoD
1

BOoD

BOoD∑
i=1

S(D(x
(i)
OoD);Mb) + βz

1

BG

BG∑
i=1

S(D(G(z(i)));Mb)

]
end for
for number of generator updates ng do
• Generate BG samples {G(z(i))}BG

i=1, where z(i) ∼ N (0n, In),∀i ∈ {1, ..., BG}.
• Forward propagation on current D and update G by stochastic gradient ascent:

θG ←− θG + ηG∇θG

[
βz

1

BG

BG∑
i=1

S(D(G(z(i)));Mb)

]
end for

end for

adversarial scheme over naive OoD-based methods. Here, the generated data shown in the figure
only reflects the final state of the generator after training. In fact, the generator will generate different
OoD samples according to the feedback provided by the discriminator in each iteration.

That said, it should be noted that the dynamics between the discriminator and generator are difficult
to control through hyperparameter manipulation when dealing with real-world datasets. Indeed, the
choice of the parameters is often dataset-dependent. Nevertheless, this numerical simulation aims to
provide insights into the mechanisms behind our method. We will showcase in the next section that
the proposed method achieves state-of-the-art OoD detection and generalization performance on a
wide variety of real dataset experiments.

3 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed SEE-OoD, we conducted several experiments and
compared the results to state-of-the-art baseline methods. Our experiments considered various com-
puter vision datasets, including MNIST (LeCun & Cortes, 2010), FashionMNIST (Xiao et al., 2017),
CIFAR-10 (Krizhevsky, 2009), and SVHN (Netzer et al., 2011). We divide the experiments into two
types: (1) Between-Dataset separation, where InD and OoD data are sampled from two different
datasets; and (2) Within-Dataset separation, where InD and OoD data are sampled from different
classes in the same dataset. The setting in the second task is closer to real-world scenarios and makes
the OoD detection task more challenging as data from the same dataset are generally expected to be
more akin to each other. For example, for defect classification systems in manufacturing, a poten-
tial OoD sample can be an unknown type of defect that did not show up in training but possesses
similar features as those pre-known defects. Details of InD and OoD dataset pairs used for various
experiments can be found in Table 2. We also test our methods in two possible real scenarios: (I) the
observed OoD data is balanced (i.e. all OoD classes are observed and each class has a comparable
amount of samples) and (II) the observed OoD data is imbalanced (i.e. only few classes are ob-
served). Specifically, the first regime corresponds to cases with good empirical knowledge of OoD
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Table 2: InD/OoD dataset pair configuration. Note that for Within-Dataset type experiment, a dataset
is split into InD and OoD based on the labels specified in the table.

Type Experiment Dataset InD
Dataset

OoD
Dataset

Training Sample Size
(InD)

Testing Sample Size
(InD/OoD)

Within-Dataset
MNIST [2,3,6,8,9] [1, 7] 29807 4983/2163

FashionMNIST [0, 1, 2, ..., 7] [8, 9] 48000 8000/2000
SVHN [0, 1, 2, ..., 7] [8, 9] 63353 22777/3255

Between-Dataset MNIST-FashionMNIST MNIST FashionMNIST 60000 10000/10000
CIFAR-10-SVHN CIFAR-10 SVHN 60000 10000/26032

Figure 2: Results for Regime I experiments. The first row shows the TPR (i.e. detection accuracy)
under 95% TNR for three of five experiments introduced in Table 2, whereas the second row shows
the TPR under 99% TNR. Complete results can be found in Appendix E.

data but limited samples, whereas the second regime imitates the setting where neither the empirical
knowledge nor the samples are sufficient.

We select the state-of-the-art classification network DenseNet (Huang et al., 2016) as the backbone
model for the discriminator and design the generator with a series of transposed convolution blocks
(Long et al., 2015; Radford et al., 2015; Noh et al., 2015). Details about model architectures and
training hyperparameters can be found in Appendix D. In all experiments, the number of training
OoD samples is carefully controlled and increased gradually in order to understand the difference
between OoD-based methods and the proposed SEE-OoD. We then report the True Positive Rate
(TPR) of OoD detection at 95% (or 99%) True Negative Rate (TNR), which is interpreted as the
probability that a positive sample (i.e. OoD) is classified as OoD when the TNR is as high as 95%
(or 99%). In addition, we conduct three Monte Carlo replications to investigate the randomness
and instability that are commonly found in adversarial training and calculate the mean of absolute
deviation (MAD) of the metrics to quantify the methods’ robustness.

3.1 REGIME I: OBSERVING Balanced OOD SAMPLES

Under the first regime, all OoD classes are observed in the training stage and the OoD training set
is aggregated by sampling an equal amount of data from each OoD class. We notice that in both
Between-Dataset and the more challenging Within-Dataset OoD detection tasks, the proposed SEE-
OoD detector and those OoD-based methods (i.e. WOOD (Wang et al., 2021) & Energy Finetune
(EFT) (Liu et al., 2020)) achieve better performance than the methods that rely on calibration and
virtual outlier generation. This makes sense as introducing real OoD data provides more informa-
tion to the training process and allows it to be done in a supervised manner. Figure 2 presents the
experimental results for Regime I experiments, and it is clear that the proposed SEE-OoD outper-
forms WOOD and EFT significantly in all three settings. We also find that as more OoD samples

8
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Figure 3: Results for Regime II experiments. For both experiments, only class 8 of the OoD classes
is observed during the training stage, and the TPR under both 95% and 99% TNR are reported.
Complete experimental results can be found in Appendix E.

are included in the training stage, the performance (i.e. TPR) of the proposed detector increases at
a faster rate compared to other methods, implying that the proposed method utilizes and exploits
the OoD samples in a more effective way. For instance, in the FashionMNIST Within-Dataset ex-
periments, we identify that the proposed SEE-OoD achieves perfect separation (i.e. 100% TPR) of
InD/OoD when observing only 23 samples for each class. In comparison, WOOD and EFT detectors
can not achieve comparable detection accuracy, even with 213 samples for each class, which also
indicates that there is a performance cap for WOOD and EFT. One potential justification is that these
methods only focus on observed OoD data without exploring the OoD spaces. Furthermore, as we
start tolerating fewer false positives (i.e. higher TNR), the advantages of the proposed SEE-OoD
are more obvious, implying that the decision boundary learned by SEE-OoD is tighter and the score
distributions between InD and OoD are more separable.

3.2 REGIME II: OBSERVING Imbalanced OOD SAMPLES

In Regime II, we conduct Within-Dataset experiments on FashionMNIST and SVHN datasets, where
only OoD samples from class 8 are provided in the training stage. Recall that in these two exper-
iments, the OoD classes are both 8 and 9 (see Table 2 for details). In the inference stage, samples
from both classes will be presented for testing, and an OoD detector with good generalization power
is expected to not only identify samples from the seen class (i.e. class 8) but also those from the
unseen OoD class (i.e. class 9) as OoD data. In Figure 3, we observe that in both experiments, the
proposed SEE-OoD detector demonstrates a significant performance gain over the baseline meth-
ods. One can also observe that for baseline methods, observing more OoD samples in the training
stage no longer benefits the detector after a certain point. For instance, in the SVHN experiments,
the proposed SEE-OoD achieves nearly perfect TPR under the 95% TNR whenever 26 or more OoD
samples are observed. In comparison, the detection performance of WOOD and EFT stops increas-
ing with respect to the OoD sample size after reaching about 85% and 91% TPR, respectively. This
bottleneck was not encountered in Regime I as both OoD classes 8 and 9 were observed. Our experi-
ments show that while baseline methods suffer from lower detection performance when OoD classes
are missing during training, our proposed method can still achieve near-perfect detection in the pres-
ence of sufficient OoD samples. This comparison confirms that the SEE-OoD detector benefits from
the iterative exploration of OoD spaces in the training phase and exhibits better generalizability than
baselines that are trained or finetuned solely based on existing OoD data.

4 CONCLUSIONS

In this paper, we propose a Wasserstein-score-based generative adversarial training scheme to en-
hance OoD detection. In the training stage, the proposed method performs data augmentation and
exploration simultaneously under the supervision of existing OoD data, where the discriminator
separates InD and OoD data in the Wasserstein score space while the generator explores the poten-
tial OoD spaces and augments the existing OoD dataset with generated outliers. We also develop
several theoretical results that guarantee that the optimal solutions are statistically achievable in
empirical settings. We provide a numerical simulation example as well as a comprehensive set of
real-dataset experiments to demonstrate that the proposed SEE-OoD detector achieves state-of-the-
art performance in OoD detection tasks and generalizes well towards unseen OoD data. The idea
of exploration with supervision using generative models with feedback from OoD detectors creates
many possibilities for future research in Out-of-Distribution learning.
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A WASSERSTEIN-DISTANCE-BASED SCORE FUNCTION

A.1 DEFINITION OF WASSERSTEIN DISTANCE

Definition A.1. (Wasserstein Distance restated) Let p1 and p2 be two K-dimensional discrete
marginal probability distributions, then the Wasserstein Distance between them is defined as

W (p1, p2;M) = infP∈Π(p1,p2)

〈
P,M

〉
,

where
〈
·, ·
〉

denotes the Frobenius dot-product, P is a joint distribution of p1 and p2 that belongs
to the set of all possible transport plans Π(p1, p2) := {P ∈ RK×K+ |P1K = p2, P1>K = p1},
and M is the cost matrix that specifies the transport cost between any two classes and 1K is the
K-dimensional all-one vector.

A.2 INTUITION BEHIND WASSERSTEIN-DISTANCE-BASED SCORE

The intuition behind using a score function is to quantify the predictive uncertainty of the output
of DNN classification models, assuming that the difference between output probability distribu-
tions reflects the dissimilarities of the inputs. Hence the first step in tackling OoD problems is
to find a good quantification of the dissimilarity between the output probability distributions. In
this paper, the Wasserstein distance between discrete probability distributions, also known as the
optimal transport distance (Villani, 2008; Cuturi, 2013), is utilized to measure the dissimilarity of
two different distributions and construct the score function. Compared to Jensen-Shannon (JS) and
Kullback-Leibler (KL) divergence, the Wasserstein distance is known to be more compatible with
gradient-based methods because of its smoothness (Weng, 2019; Wang et al., 2021) and is widely
used in previous literature in generative models and OoD detection (Villani, 2008; Wang et al., 2021;
Arjovsky et al., 2017; Cuturi, 2013).

A.3 COST MATRIX SELECTION

The cost matrix of the optimal transport problem under a discrete setting specifies the cost to trans-
form probability mass from one class to another class (Villani, 2008; Wang et al., 2021), and hence
its selection is usually application-specific and sometimes relies on good empirical knowledge. In
this paper, we tackle the problem of OoD detection under a supervised classification framework and
use computer vision datasets for which different classes within the dataset are treated with equal im-
portance. Therefore, there is no reason to choose cost matrix other than the binary cost matrix Mb,
where the transition of the same amount of probability density between any two different classes
yields the same cost.

However, for real-world applications, users may hold valuable empirical knowledge about the rela-
tionship between different classes in the InD datasets. For example, for sign classification tasks that
are common in self-driving cars, it is common to assume that a sign with the label crosswalk ahead
is relatively closer to a sign with label stop sign ahead than to a sign with label highway, resulting
in a lower transport cost. This motivates engineers to select their own cost matrix when utilizing the
Wasserstein distance or deploying the proposed method into real-world industries according to their
understanding of the applications.

B OMITTED REMARKS AND PROOFS

B.1 PROOFS FOR REMARK 1.

Remark B.1. (Remark 1 restated) Under the binary cost matrix Mb, the Wasserstein score of an
input sample x ∈ Rd given a classifier function f : Rd 7−→ RK is equivalent to S(f(x);Mb) =
1 − ‖f(x)‖∞. Consequently, the minimum Wasserstein score is attained when f(x) is any one-hot
vector, reflecting its high predictive confidence, while the maximum is achieved when f(x) outputs
the same probability for each class, implying high predictive uncertainty.
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Proof. We first identify that the only possible joint probability distribution P that satisfies the con-
dition P ∈ Π(f(x), ek) := {P ∈ RK×K+ |P1K = f(x), P1>K = ek} is the following:

P ?k =
[
0K , ..., f(x)︸︷︷︸

kth column

, ...,0K

]
∈ RK×K+ ,

where the kth column is the predicted class probability vector f(x) and all other columns are 0K .
Then, the proposed Wasserstein score function can be rewritten as the following:

S(f(x);M) := min
k∈KInD

W (f(x), ek;M) = min
k∈KInD

〈
P ?k ,M

〉
.

Under binary cost matrix Mb = 1K×K − IK ; the Frobenius dot-product between Mb and P ?k can
be further reduced to 1− fk(x), where fk(x) is the kth element of the predicted probability vector
f(x). Therefore, the Wasserstein score function is equivalent to

S(f(x);Mb) = min
k∈KInD

〈
P ?k ,Mb

〉
= min
k∈KInD

1− fk(x) = 1− ‖f(x)‖∞.

And as we know that the infinity norm of a probability vector is bounded, that is, 1
K ≤ ‖f(x)‖∞ ≤

1, it follows that the maximum Wasserstein score of 1− 1
K is attained when f(x) = 1

K1K , whereas
the minimum is achieved when f(x) = ek, ∀k ∈ KInD. This completes the proof.

B.2 PROOFS FOR REMARK B.2

Remark B.2. Given the binary cost matrix Mb, the Wasserstein score function S : RK 7−→ R,
which maps a predicted probability vector to a scalar score, is Lipschitz continuous w.r.t. its inputs.

Proof. By Remark 1, we know that S(f(x);Mb) = 1− ‖f(x)‖∞. Let u,v ∈ RK be two arbitrary
probability distributions, then we have the following:

|S(u;Mb)− S(v;Mb)| = | max
k∈KInD

vk − max
k∈KInD

uk|
(?)

≤ max
k∈KInD

|vk − uk| = ‖v − u‖∞

= max
k∈KInD

|uk − vk| ≤
√ ∑
k∈KInD

(uk − vk)2 = ‖u− v‖2,

where we use the fact that the infinity norm of a vector is bounded above by its l2-norm and
the derivation of the (?) step is provided below. Without losing generality, we assume that
maxk∈KInD vk ≤ maxk∈KInD uk (i.e. ‖v‖∞ ≤ ‖u‖∞) and let kv denote the index of the largest
value in v. Then, we have the following:

| max
k∈KInD

vk − max
k∈KInD

uk| = max
k∈KInD

vk − max
k∈KInD

uk = vkv − max
k∈KInD

uk

≤ vkv − ukv ≤ max
k∈KInD

vk − uk ≤ max
k∈KInD

|vk − uk|.

Note that in the other case where ‖v‖∞ ≥ ‖u‖∞, this can be easily derived using the same line of
reasoning. Thus, under the Euclidean metric space, the Wasserstein score function S(f(x);Mb) is
shown to be 1-Lipschitz continuous. This completes the proof.

B.3 DEFINITION OF Neural Network Loss & EXAMPLE

Definition B.1. (Definition 1 restated) Let F : Rd 7−→ RK be a class of functions that projects
the inputs to a K-dimensional probability vector, such that f ∈ F implies 1K(·) − f ∈ F . Let
Φ = {φ1, φ2, φ3 : RK 7−→ R} be a set of convex measuring functions that map a probability vector
to a scalar score. Then, the neural network loss w.r.t. Φ among three distributions p1, p2, and p3

supported on Rd is defined as

LF,Φ(p1, p2, p3) = inf
D∈F

E
x∼p1

[φ1(D(x))] + E
x∼p2

[φ2(D(x))] + E
x∼p3

[φ3(1K −D(x))] .
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EXAMPLE 1. The neural network loss can be easily applied to our method by setting the three
distributions p1, p2, and p3 to PInD, POoD, and PG, respectively. Unlike POoD and PG, PInD is a joint
distribution of x and y; however, we can simply decompose the marginal of PInD into K different
classes according to its labels y, which results in a set of K different distributions {PyInD}Ky=1 that
are all supported on Rd. Similarly, we replace the measuring function φ1 with a set of function
{φ1i}Ki=1, where φ1i(x) = − log (x)[i]. In other words, p1 can be understood as the union of
{PyInD}Ky=1, whereas the measuring function φ1 is conditioned on the distribution where x is drawn
from. However, in either interpretation, this matches the first term in the definition seamlessly.
According to the minimax objective function, we further identify that φ2(x) = βOoD‖x‖∞ and
φ3(x) = βz‖x‖∞. Therefore, we have illustrated that with careful selection of the measuring
functions, the neural network loss can recover the original objective function when G is fixed.

EXAMPLE 2. Our proposed loss-measure, neural network loss, can be generalized to other settings
by keeping the first term as detailed in Example 1 and setting φ2 and φ3 to be any score function
that quantifies the predictive confidence of a discrete probability vector.

B.4 PROOFS FOR THEOREM 1.

Theorem B.1. (Theorem 1 restated) For a given discriminator D̄, let G?
D̄

be the optimal solution
among all possible real-valued functions that map Rn to Rd, then the Wasserstein scores of the
generated data are lower bounded by the Wasserstein scores of OoD data, that is,

Ez∼Pz

[
S(D̄(G?D̄(z));Mb)

]
≥ Ex∼POoD(x)

[
S(D̄(x);Mb)

]
.

Proof. For a given discriminator D̄, the optimization objective can be rewritten as the following:

arg max
G

E(x,y)∼PInD(x,y)[− log(D(x)>ey)]− βOoDEx∼POoD(x)S(D(x)) + βzEz∼PzS(D(G(z)))

= arg max
G

βzEz∼PzS(D(G(z))) + C.

The above problem aims at finding G that generates synthetic data with the maximum possible
Wasserstein score. Hence, assuming that the distribution of observed OoD samples can be learned
by the generator, we directly get the desired result.

B.5 PROOFS FOR THEOREM 2.

Theorem B.2. (Theorem 2. restated) LetD andG belong to the sets of all possible real-valued func-
tions, in particular, neural networks, such that D : Rd 7−→ RK and G : Rn 7−→ Rd, respectively.
Then, under optimality, D? and G? possess the following properties:

D?(x) =

{
ey , (x, y) ∼ PInD(x, y)
1
K1K ,x ∼ POoD(x)

and G? ∈ {G : D?(G(z)) =
1

K
1K ,∀z ∼ Pz}.

Furthermore, if the discriminator D is α-Lipschitz continuous with respect to its inputs x, where the
Lipschitz constant α > 0. Then, at optimality, G?(z) 6∼ PInD(x), ∀z ∈ Pz; that is, the probability
that the generated samples are In-Distribution is zero.

Proof. We begin the proof by deriving the optimal solutions D? and G? in this minimax game. To
find the optimal solution, we first evaluate the optima for G given D?. For given D?, by Remark 1,
we obtain

arg max
G

βzEz∼PzS(D?(G(z))) = arg max
G

βzEz∼Pz‖(D?(G(z)))‖∞.

Knowing that the infinity norm of a probability vector is lower bounded by 1
K , we get G? = {G :

D?(G(z)) = 1
K1K}. Now, let us focus on the outer minimization problem and find the optimal

states for the discriminator D?. Let fInD : Rd 7−→ R and fOoD : Rd 7−→ R denote the marginal
probability density functions of PInD and POoD, respectively. Correspondingly, let XInD = {x :
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fInD(x) > 0} and XOoD = {x : fOoD(x) > 0} denote the set of all possible points with positive
density in the two distributions. Using our previous arguments on G? and Remark 1, we obtain

arg min
D

E(x,y)∼PInD(x,y)[− log(D(x)>ey)]− βOoDEx∼POoD(x)[S(D(x);Mb)] + (1− 1

K
)

= arg min
D

E(x,y)∼PInD(x,y)[− log(D(x)>ey)]− βOoDEx∼POoD(x)[1− ‖D(x)‖∞]

= arg min
D

E(x,y)∼PInD(x,y)[− log(D(x)>ey)] + βOoDEx∼POoD(x)‖D(x)‖∞

= arg min
D

∫
(x,y)∼PInD(x,y)
x∈XInD\XOoD

− log(D(x)>ey) dydx + βOoD

∫
x∈XOoD\XInD

‖D(x)‖∞ dx

+

∫
(x,y)∼PInD(x,y)
x∈XInD∩XOoD

− log(D(x)>ey) + βOoD ‖D?(x)‖∞ dydx︸ ︷︷ ︸
Overlapping sets between XInD and XOoD (4)

.

However, it is reasonable to assume that XInD ∩ XOoD is a zero-measure set as alluded in previous
works (Liang et al., 2020; Du et al., 2022). If a sample belongs to both distributions, then it is
meaningless to distinguish whether it is from InD or OoD, which also breaks the definition of OoD
(Yang et al., 2021) and trivializes the OoD detection task. In addition, we observe that when the
classification performance is not notoriously terrible, which is a valid assumption as the intersection
of InD and OoD is assumed to be a zero-measure set, the integrand of (4) is bounded. Thus, the
term (4) vanishes and the optimal value can be attained whenD? satisfies the following conditions:

D?(x) =


ey, (x, y) ∼ PInD(x, y)
1
K1K , x ∼ POoD(x)
1
K1K , x = G?(z),∀z ∼ Pz

.

Note that the third condition has nothing to do with the outer minimization problem but it must be
true under optimality. It is noteworthy that unlike classic GAN formulations (Goodfellow et al.,
2020) where a unique optimal solution exists, in this minimax game, the best responses of D and
G are actually sets; this is intuitive because the Wasserstein score calculation can be thought of as a
lossy compression of information, rendering the optimal solutions to be possibly not unique.

Now, we will show that at optimality, the generated data G?(z) will never fall into the In-
Distribution, which is equivalent to showing that fInD(G?(z)) = 0, ∀z ∼ Pz. Now suppose that
xg = G?(z0) for z0 ∼ Pz and xg ∼ PInD, then the condition xg ∈ XInD (?) must hold. However, by
Lipschitz continuity assumption of the discriminator D? and Remark B.2., the following must hold
for arbitrary points x ∈ XInD:

‖S(D?(xg))− S(D?(x))‖ ≤ ‖D?(xg)−D?(x)‖2 ≤ α‖xg − x‖2.
Now plug in the optimal D? of the discriminator, and we have that

‖xg − x‖2 ≥
1

α

(
1− 1

K

)
> 0,

which demonstrates that such x 6= xg, ∀x ∈ XInD. This contradicts with our assumption (?)
that xg ∈ XInD, implying that fInD(G?(z)) = 0,∀z ∼ Pz, which is an equivalent statement of
G?(z) 6∼ PInD,∀z ∼ Pz. This completes the proof.

B.6 PROOFS FOR THEOREM 3.

Theorem B.3. (Theorem 3. restated) Let p1, p2, and p3 be three distributions and p̂1, p̂2, and
p̂3 be the empirical versions with at least m samples each. Suppose the measuring functions
φi ∈ Φ are Lφi -Lipschitz continuous and take values in [li, ui] for i ∈ {1, 2, 3}. Let the dis-
criminator D be L-Lipschitz continuous with respect to its parameter θD whose dimension is de-
noted by p. Then, there exists a universal constant C such that when the empirical sample size

m ≥ maxi {
Cp(ui−li)2 log (LLφip/ε)

ε2 }, we have with probability at least 1 − exp(−p) over the ran-
domness of p̂1, p̂2, and p̂3,

|LF,Φ(p1, p2, p3)− LF,Φ(p̂1, p̂2, p̂3)| ≤ ε.
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Proof. We prove the result using Chernoff bound. Here we slightly abuse the notation by omitting
the subscript of parameter θD when representing the discriminator; that is, we use Dθ to denote the
discriminator D where θD is its parameter that is bounded in a p-dimensional unit ball. We aim to
show that with high probability, for every possible discriminator Dθ,∣∣∣∣ E

x∈p1
[φ1(Dθ(x))]− E

x∈p̂1
[φ1(Dθ(x))]

∣∣∣∣ ≤ ε/3, (I-1)∣∣∣∣ E
x∈p2

[φ2(Dθ(x))]− E
x∈p̂2

[φ2(Dθ(x))]

∣∣∣∣ ≤ ε/3, (I-2)

and
∣∣∣∣ E
x∈p3

[φ3(1K −Dθ(x))]− E
x∈p̂3

[φ3(1K −Dθ(x))]

∣∣∣∣ ≤ ε/3. (I-3)

Then, with the above statements to be true, for optimal discriminator D?
θ , we obtain

LF,Φ(p̂1, p̂2, p̂3) = E
x∼p̂1

[φ1(D?
θ(x))] + E

x∼p̂2
[φ2(D?

θ(x))] + E
x∼p̂3

[φ2(1K −D?
θ(x))]

≤ E
x∼p1

[φ1(D?
θ(x))] + E

x∼p2
[φ2(D?

θ(x))] + E
x∼p3

[φ2(1K −D?
θ(x))]

+

∣∣∣∣ E
x∈p1

[φ1(D?
θ(x))]− E

x∈p̂1
[φ1(D?

θ(x))]

∣∣∣∣
+

∣∣∣∣ E
x∈p2

[φ2(D?
θ(x))]− E

x∈p̂2
[φ2(D?

θ(x))]

∣∣∣∣
+

∣∣∣∣ E
x∈p3

[φ2(1K −D?
θ(x))]− E

x∈p̂3
[φ2(1K −D?

θ(x))]

∣∣∣∣
≤ LF,Φ(p1, p2, p3) + ε.

The other direction is similar. Now it suffices to show that the claimed bounds (I-1), (I-2), and
(I-3) are correct. We prove (I-1) as an example (proof of the other two is identical). Let X be a
finite set such that every point in the parameter space θD ∈ ΘD is within distance ε/12LLφ1 of
a point in X . Standard construction of such ε/12LLφ1–net yields an X that satisfies log |X | ≤
O(p log(LLφ1p/ε)) (Haussler & Welzl, 1986). Therefore, for all θD ∈ X , by Chernoff bound, we
can have that

P

[∣∣∣∣ E
x∈p1

[φ1(Dθ(x))]− E
x∈p̂1

[φ1(Dθ(x))]

∣∣∣∣ ≥ ε

6

]
≤ 2e

− ε2m
18(u1−l1)2 .

Therefore, when m ≥ Cp(u1−l1)2 log (LLφ1p/ε)

ε2 for a sufficiently large constant C, we can union
bound over all θD ∈ X that with at least 1− exp(−p) probability, for all θD ∈ X we have that∣∣∣∣ E

x∈p1
[φ1(Dθ(x))]− E

x∈p̂1
[φ1(Dθ(x))]

∣∣∣∣ ≤ ε

6
.

By the construction ofX and the Lipschitz continuity assumption, we know that for every θD ∈ ΘD,
we can always find a θD ′ ∈ X , such that ‖θD − θD ′‖ ≤ ε/12LLφ1

. Then, it follows that∣∣∣∣ E
x∈p1

[φ1(Dθ(x))]− E
x∈p̂1

[φ1(Dθ(x))]

∣∣∣∣ ≤ ∣∣∣∣ E
x∈p1

[φ1(Dθ′(x))]− E
x∈p̂1

[φ1(Dθ′(x))]

∣∣∣∣
+

∣∣∣∣ E
x∈p1

[φ1(Dθ(x))]− E
x∈p1

[φ1(Dθ′(x))]

∣∣∣∣
+

∣∣∣∣ E
x∈p̂1

[φ1(Dθ(x))]− E
x∈p̂1

[φ1(Dθ′(x))]

∣∣∣∣
≤ ε/6 + ε/12 + ε/12

≤ ε/3.
This completes the proof for (I-1) and the proofs for (I-2) and (I-3) follow from the same line of
reasoning. The only difference is that the constant may be changed correspondingly when using
different measuring functions. Therefore, when combining these three proofs together, it suffices
to find their intersection, which provides us with the condition shown in the theorem that m ≥
maxi {

Cp(ui−li)2 log (LLφip/ε)

ε2 } for sufficiently large C. This completes the proof.
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Figure C.1: (Figure 1 revisited) A 2D numerical illustration of the intuition behind SEE-OoD. In
this figure, we present the Wasserstein score heatmaps of the WOOD (Wang et al., 2021) detector
and two possible solution states of SEE-OoD after training, where brighter colors represent higher
Wasserstein scores (i.e. OoD) and the shaded boundary is the InD/OoD decision boundary under
95% TNR.

B.7 PROOFS FOR COROLLARY 1.

Corollary B.2. (Corollary 1 restated) In the setting of Theorem 3., suppose that {G(i)}Ni=0 be theN
generators in the N–iterations of the training, and assume logN ≤ p and logN � d. Then, there

exists a universal constant C such that when m ≥ maxi {
Cp(ui−li)2 log (LLφip/ε)

ε2 }, with probability
at least 1− exp(−p), for all t ∈ [N ],

|LF,Φ(PInD,POoD,PG(t))− LF,Φ(P̂InD, P̂OoD, P̂G(t))| ≤ ε.

Proof. The proof to this corollary is trivial as it follows from the proof of Theorem 3. The only
difference here is that the generator distribution changes as the training goes on. However, we have
fresh samples for every generator distribution P̂G(t) so this does not change our proof.

C NUMERICAL ILLUSTRATION

DATA GENERATION PROCESS. In this numerical simulation, both InD and OoD data are drawn
from bivariate normal distributions with a diagonal covariance matrix. Respectively, three clusters
of InD data are drawn from N (µi,Σi) with µ1 = [4, 3]>, µ2 = [3, 5]>, and µ3 = [3, 1]>, and
Σi = 0.32I2, ∀i = 1, 2, 3. The OoD data are drawn from N (µOoD,ΣOoD) where µOoD = [1.5, 6]>

and ΣOoD = 0.32I2. For each cluster of InD and OoD data, 1000 training and 1000 testing data
points are generated for this simulation study. However, to emulate scarce sample settings, only
two OoD training samples are provided during the training stage, while all training samples for InD
data are included. During the inference phase, all testing InD and OoD samples are presented to the
trained detector.

TRAINING CONFIGURATION. As for classifier/discriminator architecture, a two-layer fully con-
nected neural network with ReLU activation and a hidden dimension of 128 is used for both
our method and the WOOD (Wang et al., 2021) baseline method. The generator architecture is
symmetric to that of the discriminator but has an input dimension of n = 2 for the noise vec-
tor. The hyperparameters (βOoD, βz, nd, ng, ηd, ηg) of the proposed SEE-OoD detector are set to
(1, 0.001, 2, 1, 0.0001, 0.0001) and (1, 100, 1, 3, 0.0001, 0.001) in setting I (center plot) and setting
II (right plot), respectively. As for WOOD, β is set to 1 and the learning rate is set to 0.001. Both
methods are trained with an Adam (Kingma & Ba, 2014) optimizer with β1 = 0.5, β2 = 0.999, and
no learning rate decay.

ANALYSIS OF RESULTS. In the figure, the Wasserstein score of each point assigned by the detec-
tor is color-coded, where a brighter color represents a higher score. Intuitively, for an ideal OoD
detector, we would expect to see darker regions around InD samples (i.e. low Wasserstein scores)
while brighter regions in all other places (i.e. high Wasserstein scores). In this example, both meth-
ods achieve perfect InD/OoD separation (i.e. 100% TPR) given the complexity of bivariate normal
variables is relatively low. The resulting OoD regions under 95% TNR on the test samples for both
methods are indicated by the shaded areas in the figure. However, in both scenarios, our method
provides a larger OoD rejection region with higher confidence and a tighter decision boundary. This
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sheds light on the effectiveness of the generative adversarial training that we proposed and provides
a straightforward illustration of the intuitions behind our method.

D EXPERIMENTAL SETUP

D.1 MODEL ARCHITECTURE

DISCRIMINATOR. In this paper, we adopt the state-of-the-art classification model DenseNet
(Huang et al., 2016) as the backbone for the discriminator, and specifically, we follow the con-
figuration mentioned in (Wang et al., 2021; Huang et al., 2016) to use it with bottleneck blocks and
set the depth, growth rate, and dropout rate to 100, 12, and 0, respectively. One difference is that we
set the window size of the final average pooling layer from 8 to 7 so that the model is compatible
with both 28-pixel and 32-pixel images without the need for cropping. As for other details of the
architecture, we refer the audience to the original DenseNet paper (Huang et al., 2016).

GENERATOR. We design a CNN-based generator using combinations of transposed convolution
layers, batch normalization layers, and pooling layers, where we use DC-GANs (Radford et al.,
2015) as a reference. In our case, we design our generator to be more complex than that used by
Lee et al. (2017) to make sure its capacity is sufficient for generating complicated images. Detailed
configuration of the generator architecture and the output sizes of intermediate layers are provided in
the following table. Note that the input to the generator is a batch of B n-dimensional noise vectors
that are drawn from some known prior distribution Pz.

Table 3: Detailed generator architecture. In the table below, B denotes the batch size, n is the
input noise dimension, and the transposed convolutional block is represented in the format: Trans-
posed Conv2D-[kernel size]-[stride]-[padding]. In addition, the pooling layer is represented as:
AvgPooling2D-[window size]. Note that the architecture may be different depending on the dimen-
sion of the generated targets. The output size and configuration of each block for 3-channel images
(i.e. SVHN & CIFAR-10) are provided, whereas those for grayscale images (i.e. MNIST & Fash-
ionMNIST) are presented in the parentheses.

Layers / Blocks Output Size CNN Configuration / Description

Transformation B × n× 1× 1 Reshape the input noise vectors

CNN Block 1 B × 512× 4× 4 Transposed Conv2D-4-1-0 + ReLU + BatchNorm

CNN Block 2 B × 256× 8× 8 Transposed Conv2D-4-2-1 + ReLU + BatchNorm

CNN Block 3 B × 128× 16(15)× 16(15) Transposed Conv2D-4(3)-2-1 + ReLU + BatchNorm

CNN Block 4 B × 64× 32(29)× 32(29) Transposed Conv2D-4(3)-2-1 + ReLU + BatchNorm

CNN Block 5 B × 3(1)× 64(57)× 64(57) Transposed Conv2D-4(3)-2-1 + ReLU + BatchNorm

Pooling Layer B × 3(1)× 32(28)× 32(28) AvgPooling2D-2 + tanh activation

D.2 DISCUSSION ON HYPERPARAMETER

In this section, we report the hyperparameters for both baseline methods and the proposed SEE-OoD
detector. In general, as mentioned in Section 3, the hyperparameters of these baseline methods are
either chosen based on systematic tunings or borrowed from the original papers, while in our meth-
ods, the hyperparameters are decided based on the intuitions drawn from the simulation examples
because the parameter spaces are too large to perform systematic tuning like grid search effectively.

D.2.1 BASELINES

MAHA & ODIN. For Maha and ODIN, we borrow the hyperparameter tuning procedure from the
original papers (Lee et al., 2018; Liang et al., 2020). For both methods, the magnitude of perturba-
tion noise is chosen from {0, 0.0005, 0.001, 0.0014, 0.002, 0.0024, 0.005, 0.01, 0.05, 0.1, 0.2}. For
ODIN, the temperature scaling constant is chosen from {1, 10, 100, 1000}. The final hyperparam-
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eter is chosen based on the validation experiment, which is performed on a separate validation set
that consists of 1000 InD/OoD data pairs. We refer the audience to the original papers for details.

WOOD. For the WOOD (Wang et al., 2021) method, we stick to the hyperparameter that is used in
the original paper as the dataset pairs and model architectures that are used in this paper are similar
to those experimented with in WOOD. Specifically, we set β = 0.1, BInD = 50, and BOoD = 10,
and the model is trained for 100 epochs using an Adam (Kingma & Ba, 2014) optimizer with a
learning rate of 0.001, β1 = 0.9, and β2 = 0.999 for all experiments.

VOS. For VOS (Du et al., 2022), we borrow the hyperparameters from the original paper. When
sampling from the tails (i.e. ε-likelihood region) of the class-conditional Gaussian distributions, the
likelihood value ε is chosen based on the smallest likelihood in a pool of 10K samples. Furthermore,
the InD queue size is set to 1K. In addition, the loss weight β is set to 0.1, and the regularization
on virtual outliers is introduced at epoch 40. In terms of optimization, the model is trained for 100
epochs using an SGD optimizer with a learning rate of 0.1, Nesterov momentum µ = 0.9, and
weight decay λ = 0.0001. For more details regarding the meanings and intuitions behind these
hyperparameters, we refer the audience to Appendix C of the original paper.

GAN-SYNTHESIS. To train a classifier with joint confidence loss (Lee et al., 2017), which we
refer to as the GAN-synthesis method in this paper, we select the regularization weight in the
second term of the joint confidence loss (i.e. KL divergence regularization term) from the set
{0.001, 0.01, 0.1, 1, 2}. The classifier is trained using an SGD optimizer with a learning rate of
0.1, Nesterov momentum µ = 0.9, and weight decay λ = 0.0001 for 100 epochs, where the learn-
ing rate decays by a factor of 0.1 at the 50th and 75th epoch and the training and validation batch
size are both set to 128. In addition, Lee et al. (2017) uses an auxiliary GAN (Goodfellow et al.,
2020) to synthesize virtual outliers. We stick to the GAN architecture that is introduced in the origi-
nal paper, and both the discriminator and the generator are optimized with an Adam (Kingma & Ba,
2014) optimizer with a learning rate of 0.001, β1 = 0.5 and β2 = 0.999.

ENERGY & ENERGY + FINETUNING & OE. According to Liu et al. (2020), the energy score can
be used in a parameter-free manner by simply setting T = 1. As for the Energy + Finetuning (EFT)
method, we finetune the pre-trained model using an SGD optimizer with a learning rate of 0.001,
Nesterov momentum µ = 0.9, and weight decay λ = 0.0005 for 100 epochs, where the training and
validation batch size are both set to 128 and the margin parameters are min = −25 and mout = −7.
For OE, we also follow the experimental setup introduced in Liu et al. (2020).

In addition, DenseNet (Huang et al., 2016) with the same configuration as introduced in Appendix
D.1 is used as the backbone classifier for all baseline methods for fair comparison. For methods that
require pre-training, the classification model is trained for 300 epochs with an SGD optimizer with
a learning rate of 0.1, Nesterov momentum µ = 0.9, and weight decay λ = 0.0001. The learning
rate is scheduled to decrease by 0.1 at the 150th and 225th epochs.

D.2.2 SEE-OOD

In this section, we present the parameters of interest of the proposed SEE-OoD detector.

METHOD PARAMETERS. We set βOoD = 0.1, βz = 0.001, nd = ng = 1, and n = 96 to balance
the loss between each term in the objective function in the training process. We have found that
setting nd > 1 or ng > 1 may slightly improve performances in some scenarios; however, we stick
to nd = ng = 1 for all experiments because the multistep update scheme increases the training cost
significantly whereas the performance gain is usually negligible. Note that real dataset experiments
are very different from the aforementioned 2D numerical simulation due to the complexity of the
dataset; hence βOoD > βz does not necessarily imply a dominant discriminator after training. In fact,
for real dataset experiments, it is difficult to precisely control the underlying dynamics between the
generator and the discriminator by manipulating the hyperparameters. However, one huge advantage
of our method over others is that the SEE-OoD detector is guaranteed to explore OoD spaces and
improve OoD detection performance regardless of the equilibrium states it finally achieves.

OPTIMIZATION PARAMETERS. Both the discriminator and the generator of the proposed SEE-
OoD are trained with an Adam (Kingma & Ba, 2014) optimizer with β1 = 0.5 and β2 = 0.999.
Details about learning rates ηd, ηg are presented in Table 4 below. Typically, batch sizes are set to
BInD = 64, BOoD = 32, and BG = 64. In our experiments, for scenarios where the observed OoD

19



Under review as a conference paper at ICLR 2024

sample size (i.e. NOoD) is small, we use BInD = 50, BOoD = 10, and BG = 50 to impose more
stochasticity in the iterative training process. Note that when the OoD batch size is greater than the
number of observed OoD samples, we simply take BOoD = min{BOoD, NOoD}, where the quan-
tity NOoD = # of observed sample per class × # of observed classes. This convention enables us to
present the hyperparameters in a more elegant way without taking into accountNOoD. For simplicity
purposes, we denote these two different batch size combinations byBn andBs, representing normal
and scarce sample cases, respectively. More details about batch sizes can also be found in Table 4.

Table 4: SEE-OoD optimization parameters. In this table, all of the optimization parameters of
interest are presented in a tuple form (Batch size, ηd, ηg , Nepochs) for simplicity. Note that NOoD =
# of observed sample per class× # of observed classes, where # of observed classes varies based on
different experiment datasets and regimes while # of observed sample per class is controlled and
manipulated in all experiments.

Experiment Dataset Regime Optimization Parameters (Batch size, ηd, ηg , Nepochs)

MNIST I (Bs, 0.001, 0.005, 16)

FashionMNIST I (Bn, 0.001, 0.001, 16)

II (Bn, 0.001, 0.001, 16)

SVHN I (Bn, 0.001, 0.001, 16) if NOoD ≥ 32; otherwise (Bs, 0.001, 0.005, 16)

II (Bn, 0.001, 0.001, 16) if NOoD ≥ 32; otherwise (Bs, 0.001, 0.005, 16)

MNIST-FashionMNIST I (Bn, 0.001, 0.001, 16)

CIFAR10-SVHN I (Bn, 0.001, 0.001, 16)

E EXPERIMENTAL RESULTS

In this section, we report all experimental results in tabular form. For OoD-based methods WOOD
(Wang et al., 2021) and the proposed SEE-OoD, we also report the MAD of Monte Carlo repetitions.
The TPRs under both 95% and 99% TNR thresholds and AUROC are reported for all methods. In
convention, when reporting the results, (1) TPR or AUROC that is greater than 99.99% is rounded
to 100%, and (2) MAD that is lower than 0.01% is reported as< 0.01%. Furthermore, for Regime II
experiments, we only report the results for methods that utilize OoD samples in the training stage. In
terms of classification accuracy, all methods in all experiments achieve state-of-the-art performance
after sufficient training, which is not surprising as DenseNet is known to perform well in image
classification tasks. The tabular results can be found starting in next page.

One exception is about the GAN-synthesis method (Lee et al., 2017) in CIFAR10-SVHN Between-
Dataset experiments, where the result is not applicable (i.e. N/A). For this method, we conducted
systematic hyperparameter tunings based on the instructions provided in the original paper but this
method fails to converge when we utilize DenseNet as the backbone for the classification model,
which is also used for all other experiments. One conjecture on this phenomenon is that instead of
tuning hyperparameters, one may also need to carefully balance the capacity and expressive power
between the backbone classifier and the auxiliary GAN used to generate boundary samples; hence
if one dominates over the other, it may be difficult to learn a classification model. Nonetheless,
experimental results in other settings are promising enough to show the advantages of our methods
over the baselines.
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E.1 REGIME I EXPERIMENTAL RESULTS

E.1.1 MNIST WITHIN-DATASET EXPERIMENT

Table 5: TPR for MNIST Within-Dataset OoD detection

TNR Method
Number of observed OoD samples for EACH OoD class

4 8 16 32 64 128 256 512 1024 2048 4096

95%

ODIN 98.88

Maha 86.16

Energy 99.10

VOS 98.94

GAN-Synthesis 99.30

OE 98.31 99.00 98.33 99.22 99.48 99.62 99.36 99.24 99.70 99.66 99.86

Energy + FT 99.86 99.88 99.74 99.84 99.80 99.94 99.88 99.98 100.0 100.0 100.0

WOOD 99.69
(<0.01)

99.66
(<0.01)

99.68
(<0.01)

99.92
(<0.01)

99.75
(<0.01)

99.94
(<0.01)

99.92
(<0.01)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

SEE-OoD 100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

99.23
(1.03)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

99%

ODIN 90.63

Maha 60.43

Energy 92.63

VOS 87.56

GAN-Synthesis 91.29

OE 94.82 96.47 94.94 96.77 97.21 98.47 98.55 99.04 99.70 99.66 99.86

Energy + FT 97.29 97.93 97.39 98.63 98.59 99.24 99.28 99.70 99.82 99.90 99.96

WOOD 98.26
(0.29)

98.84
(0.22)

98.89
(0.22)

99.49
(<0.01)

98.92
(0.12)

99.66
(<0.01)

99.65
(<0.01)

99.85
(<0.01)

99.98
(<0.01)

99.98
(<0.01)

100.0
(0.0)

SEE-OoD 100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

99.97
(<0.01)

100.0
(0.0)

100.0
(0.0)

99.11
(1.19)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

Table 6: AUROC for MNIST Within-Dataset OoD detection

Method
Number of training OoD samples for EACH OoD class

4 8 16 32 64 128 256 512 1024 2048 4096

ODIN 99.49

Maha 96.19

Energy 99.48

VOS 99.36

GAN-Synthesis 99.52

OE 98.94 99.29 98.92 99.45 99.59 99.69 99.60 99.52 99.76 99.79 99.90

Energy + FT 99.87 99.90 99.86 99.93 99.93 99.96 99.96 99.98 99.99 99.99 100.0

WOOD 99.73
(<0.01)

99.75
(<0.01)

99.80
(< 0.01)

99.92
(<0.01)

99.88
(<0.01)

99.94
(<0.01)

99.92
(<0.01)

99.95
(<0.01)

99.97
(<0.01)

99.97
(<0.01)

99.96
(<0.01)

SEE-OoD 100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(<0.01)

100.0
(0.0)

100.0
(0.0)

99.91
(0.01)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)
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E.1.2 FASHIONMNIST WITHIN-DATASET EXPERIMENT

Table 7: TPR for FashionMNIST Within-Dataset OoD detection

TNR Method
Number of training OoD samples for EACH OoD class

4 8 16 32 64 128 256 512 1024 2048 4096

95%

ODIN 68.60

Maha 55.90

Energy 65.25

VOS 59.54

GAN-Synthesis 41.81

OE 43.10 44.71 53.50 60.89 67.29 73.85 72.14 76.59 78.50 95.74 89.56

Energy + FT 75.34 84.80 90.99 93.95 95.55 97.03 96.33 96.90 97.29 97.84 98.58

WOOD 72.33
(3.24)

78.25
(0.97)

88.52
(1.16)

93.90
(0.90)

95.88
(<0.01)

96.78
(0.36)

98.18
(0.24)

98.60
(0.17)

99.17
(<0.01)

99.40
(0.13)

99.47
(<0.01)

SEE-OoD 79.37
(3.06)

99.85
(0.10)

99.95
(<0.01)

100.0
(0.0)

100.0
(0.0)

99.98
(<0.01)

99.97
(<0.01)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

99%

ODIN 40.40

Maha 38.60

Energy 35.74

VOS 32.12

GAN-Synthesis 21.08

OE 12.79 12.65 19.69 23.90 28.67 34.27 33.75 39.52 40.80 49.57 55.02

Energy + FT 56.96 64.96 76.54 84.71 87.65 91.59 90.99 93.03 94.88 96.20 96.88

WOOD 49.43
(0.69)

63.81
(1.81)

81.00
(0.97)

89.93
(1.09)

92.82
(1.08)

94.90
(0.37)

96.10
(0.17)

97.30
(<0.01)

97.95
(0.17)

98.67
(0.11)

98.87
(0.11)

SEE-OoD 47.53
(1.91)

98.33
(1.11)

99.75
(0.33)

99.98
(<0.01)

100.0
(0.0)

99.97
(<0.01)

99.83
(0.22)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

Table 8: AUROC for FashionMNIST Within-Dataset OoD detection

Method
Number of training OoD samples for EACH OoD class

4 8 16 32 64 128 256 512 1024 2048 4096

ODIN 93.27

Maha 83.18

Energy 93.30

VOS 89.08

GAN-Synthesis 87.21

OE 84.77 88.30 90.38 92.49 93.61 95.02 94.14 94.49 95.18 96.20 96.94

Energy + FT 94.72 96.61 97.98 98.64 99.00 99.35 98.96 99.08 99.29 99.44 99.60

WOOD 94.27
(1.32)

95.67
(0.15)

97.43
(0.16)

98.45
(0.29)

99.10
(<0.01)

99.05
(<0.01)

99.04
(0.26)

99.27
(<0.01)

99.24
(0.25)

99.32
(0.22)

99.18
(<0.01)

SEE-OoD 97.21
(0.14)

99.94
(<0.01)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(<0.01)

100.0
(<0.01)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)
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E.1.3 SVHN WITHIN-DATASET EXPERIMENT

Table 9: TPR for SVHN Within-Dataset OoD detection

TNR Method
Number of training OoD samples for EACH OoD class

4 8 16 32 64 128 256 512 1024 2048 4096

95%

ODIN 70.38

Maha 21.55

Energy 72.72

VOS 65.93

GAN-Synthesis 34.41

OE 63.99 62.70 68.60 71.71 75.33 79.57 83.78 84.76 88.60 91.09 93.76

Energy + FT 81.54 81.87 86.08 87.96 91.24 92.60 94.22 94.84 95.58 96.59 97.60

WOOD 59.91
(0.79)

69.20
(3.36)

73.03
(0.31)

83.95
(1.71)

86.66
(1.98)

90.33
(0.48)

94.23
(0.54)

95.55
(0.39)

97.13
(0.21)

97.48
(<0.01)

98.10
(<0.01)

SEE-OoD 59.01
(6.55)

95.45
(1.52)

98.64
(0.85)

99.61
(0.19)

99.88
(0.12)

99.76
(0.29)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

99%

ODIN 38.27

Maha 5.10

Energy 38.53

VOS 25.59

GAN-Synthesis 9.97

OE 18.65 18.99 22.06 27.80 34.07 38.43 41.90 48.33 55.48 59.11 62.58

Energy + FT 53.52 54.35 61.81 66.94 72.69 76.37 79.42 81.32 86.02 88.17 89.86

WOOD 18.74
(0.76)

38.99
(0.40)

49.89
(3.22)

67.19
(1.49)

74.23
(3.30)

81.48
(0.38)

86.81
(1.13)

90.37
(0.85)

93.33
(0.47)

94.22
(0.29)

95.63
(<0.01)

SEE-OoD 18.41
(4.31)

75.59
(3.43)

90.96
(5.07)

98.01
(0.72)

99.50
(0.15)

99.26
(0.72)

99.92
(0.11)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

Table 10: AUROC for SVHN Within-Dataset OoD detection

Method
Number of training OoD samples for EACH OoD class

4 8 16 32 64 128 256 512 1024 2048 4096

ODIN 93.65

Maha 69.62

Energy 94.37

VOS 93.30

GAN-Synthesis 85.07

OE 93.05 92.77 93.98 94.46 95.12 95.93 96.11 95.78 96.36 96.94 97.68

Energy + FT 96.47 96.58 97.41 97.79 98.22 98.54 98.71 98.75 98.95 99.08 99.29

WOOD 87.36
(0.37)

89.68
(<0.01)

93.66
(0.88)

95.96
(0.77)

97.34
(0.29)

97.21
(0.12)

98.62
(<0.01)

98.57
(<0.01)

99.09
(<0.01)

99.05
(<0.01)

99.08
(<0.01)

SEE-OoD 93.14
(0.95)

99.02
(0.10)

99.66
(<0.01)

99.91
(<0.01)

99.96
(<0.01)

99.95
(<0.01)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)
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E.1.4 MNIST-FASHIONMNIST BETWEEN-DATASET EXPERIMENT

Table 11: TPR for MNIST-FashionMNIST Between-Dataset OoD detection

TNR Method
Number of training OoD samples for EACH OoD class

4 8 16 32 64 128 256 512 1024 2048 4096

95%

ODIN 94.68

Maha 100.0

Energy 77.72

VOS 81.03

GAN-Synthesis 96.61

OE 100.0 99.99 100.0 100.0 99.99 99.99 100.0 100.0 100.0 100.0 100.0

Energy + FT 99.99 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

WOOD 100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

SEE-OoD 100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

99%

ODIN 66.61

Maha 100.0

Energy 35.98

VOS 46.38

GAN-Synthesis 76.09

OE 97.98 98.58 99.25 99.21 99.54 99.70 99.73 99.84 99.90 100.0 100.0

Energy + FT 99.73 99.81 99.93 99.95 100.0 99.98 100.0 100.0 100.0 100.0 100.0

WOOD 99.91
(<0.01)

99.95
(<0.01)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

SEE-OoD 100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

Table 12: AUROC for MNIST-FashionMNIST Between-Dataset OoD detection

Method
Number of training OoD samples for EACH OoD class

4 8 16 32 64 128 256 512 1024 2048 4096

ODIN 98.05

Maha 100.0

Energy 91.42

VOS 95.31

GAN-Synthesis 98.17

OE 99.86 99.89 99.92 99.94 99.95 99.96 99.96 99.98 99.99 99.99 99.99

Energy + FT 99.98 99.99 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

WOOD 100.0
(<0.01)

100.0
(<0.01)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

SEE-OoD 100.0
(<0.01)

100.0
(<0.01)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)
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E.1.5 CIFAR10-SVHN BETWEEN-DATASET EXPERIMENT

Table 13: TPR for CIFAR10-SVHN Between-Dataset OoD detection

TNR Method
Number of training OoD samples for EACH OoD class

4 8 16 32 64 128 256 512 1024 2048 4096

95%

ODIN 81.47

Maha 88.13

Energy 78.10

VOS 80.84

GAN-Synthesis N/A

OE 87.94 98.50 90.23 84.64 89.05 92.47 90.76 93.66 95.94 96.71 97.25

Energy + FT 98.67 99.01 99.33 99.64 99.54 99.79 99.83 99.92 99.97 99.96 100.0

WOOD 95.82
(0.57)

96.72
(0.31)

97.53
(0.20)

98.20
(0.01)

99.00
(<0.01)

98.95
(0.15)

98.90
(0.01)

99.17
(0.16)

99.46
(0.13)

99.51
(<0.01)

99.56
(<0.01)

SEE-OoD 99.09
(0.51)

99.78
(0.15)

99.75
(0.16)

100.0
(0.0)

100.0
(0.0)

99.92
(0.01)

99.97
(<0.01)

99.96
(<0.01)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

99%

ODIN 61.15

Maha 70.20

Energy 43.90

VOS 44.01

GAN-Synthesis N/A

OE 70.77 71.95 69.00 54.65 63.84 69.69 67.32 71.17 78.15 80.45 83.54

Energy + FT 96.50 97.13 97.76 97.97 98.43 99.15 99.37 99.65 99.88 99.89 99.91

WOOD 90.27
(2.33)

94.35
(0.65)

95.87
(0.17)

97.38
(0.32)

98.17
(<0.01)

98.24
(0.14)

98.12
(0.30)

98.61
(0.18)

99.05
(0.16)

99.02
(0.17)

99.15
(<0.01)

SEE-OoD 98.42
(0.60)

99.51
(0.41)

99.62
(0.25)

99.98
(<0.01)

100.0
(0.0)

99.90
(0.01)

99.96
(<0.01)

99.81
(0.03)

100.0
(0.0)

100.0
(0.0)

99.91
(<0.01)

Table 14: AUROC for CIFAR10-SVHN Between-Dataset OoD detection

Method
Number of training OoD samples for EACH OoD class

4 8 16 32 64 128 256 512 1024 2048 4096

ODIN 95.04

Maha 95.72

Energy 91.66

VOS 96.77

GAN-Synthesis N/A

OE 98.13 98.35 98.41 97.67 98.16 98.66 98.53 98.82 99.16 99.26 99.39

Energy + FT 99.76 99.81 99.88 99.90 99.91 99.95 99.97 99.98 99.99 99.99 99.99

WOOD 99.19
(<0.01)

99.39
(<0.01)

99.55
(<0.01)

99.62
(<0.01)

99.82
(<0.01)

99.78
(<0.01)

99.80
(<0.01)

99.85
(<0.01)

99.89
(<0.01)

99.91
(<0.01)

99.92
(<0.01)

SEE-OoD 99.86
(<0.01)

99.97
(<0.01)

99.97
(<0.01)

100.0
(0.0)

100.0
(0.0)

99.97
(0.0)

99.97
(0.0)

99.99
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)
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E.2 REGIME II EXPERIMENTAL RESULTS

E.2.1 FASHIONMNIST WITHIN-DATASET EXPERIMENT

Table 15: TPR for Regime II FashionMNIST Within-Dataset OoD detection

TNR Method
Number of training OoD samples for SELECTED OoD class (i.e. class 8)

4 8 16 32 64 128 256 512 1024 2048 4096

95%

OE 37.15 39.40 41.93 42.76 46.59 49.84 51.46 51.91 53.06 53.83 53.95

Energy + FT 69.40 70.08 71.23 70.35 70.38 69.77 70.15 72.64 76.09 72.50 70.32

WOOD 50.07
(3.01)

52.08
(0.29)

56.60
(1.43)

59.92
(1.18)

65.88
(3.94)

62.18
(0.74)

62.98
(1.18)

62.57
(1.49)

65.33
(0.81)

68.00
(0.13)

66.15
(2.30)

SEE-OoD 48.28
(6.41)

71.27
(7.74)

97.98
(1.99)

96.82
(3.24)

98.83
(1.52)

97.25
(2.70)

97.93
(2.76)

100.0
(0.0)

100.0
(0.0)

99.08
(1.06)

99.18
(1.09)

99%

OE 12.06 11.52 13.91 16.68 20.54 22.00 23.85 25.60 27.75 29.87 34.89

Energy + FT 49.61 50.23 51.97 53.81 56.04 55.23 55.59 57.04 58.90 56.30 55.64

WOOD 26.23
(3.18)

38.43
(0.99)

41.30
(0.80)

46.05
(0.57)

49.45
(0.77)

50.07
(0.39)

50.72
(0.86)

51.83
(0.36)

53.83
(0.40)

53.30
(0.37)

53.52
(0.72)

SEE-OoD 15.08
(4.88)

33.80
(5.97)

85.97
(8.54)

86.75
(9.67)

94.02
(7.64)

94.50
(4.97)

95.65
(5.77)

100.0
(0.0)

100.0
(0.0)

97.18
(3.06)

97.62
(2.51)

Table 16: AUROC for Regime II FashionMNIST Within-Dataset OoD detection

Method
Number of training OoD samples for SELECTED OoD class (i.e. class 8)

4 8 16 32 64 128 256 512 1024 2048 4096

OE 84.00 84.09 84.73 83.77 83.67 83.72 83.21 84.20 83.88 83.86 82.33

Energy + FT 92.61 92.56 93.08 92.94 92.97 92.99 93.12 93.78 94.85 94.39 92.78

WOOD 88.07
(1.87)

87.38
(0.23)

87.67
(0.95)

89.24
(1.36)

90.29
(0.16)

91.74
(1.22)

89.33
(1.04)

89.78
(0.67)

92.35
(1.65)

93.73
(0.36)

89.82
(2.25)

SEE-OoD 92.90
(0.49)

96.13
(0.10)

99.52
(0.17)

97.76
(1.93)

99.77
(<0.01)

99.60
(0.20)

99.69
(<0.01)

100.0
(0.0)

100.0
(0.0)

99.84
(<0.01)

99.85
(<0.01)
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E.2.2 SVHN WITHIN-DATASET EXPERIMENT

Table 17: TPR for Regime II SVHN Within-Dataset OoD detection

TNR Method
Number of training OoD samples for SELECTED OoD class (i.e. class 8)

4 8 16 32 64 128 256 512 1024 2048 4096

95%

OE 57.79 61.69 62.27 67.62 71.49 76.93 76.84 78.86 81.38 80.61 83.41

Energy + FT 75.79 79.82 81.57 85.65 88.14 91.55 90.91 91.83 92.41 90.63 91.24

WOOD 52.04
(0.90)

57.09
(1.34)

64.13
(3.48)

67.44
(1.87)

75.77
(0.68)

78.60
(2.08)

79.98
(1.08)

84.28
(1.99)

85.73
(1.18)

86.25
(1.02)

88.13
(0.79)

SEE-OoD 46.35
(1.98)

42.68
(4.90)

84.64
(2.91)

92.25
(3.80)

98.42
(1.32)

98.96
(0.92)

99.67
(0.23)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

100.0
(0.0)

99%

OE 16.01 16.90 18.65 20.40 26.61 31.00 33.49 37.63 39.54 42.49 45.87

Energy + FT 41.97 48.73 51.00 58.31 64.49 70.38 69.43 73.58 75.33 72.69 73.70

WOOD 13.50
(0.26)

16.82
(0.42)

23.71
(3.72)

32.44
(0.76)

48.04
(2.34)

54.25
(1.66)

55.90
(3.17)

62.43
(3.77)

66.84
(4.21)

68.14
(0.86)

69.25
(0.41)

SEE-OoD 12.46
(0.23)

11.83
(2.56)

52.57
(4.61)

65.48
(9.10)

92.30
(4.72)

95.13
(5.37)

98.17
(1.22)

100.0
(0.0)

99.95
(<0.1)

100.0
(0.0)

99.96
(<0.1)

Table 18: AUROC for Regime II SVHN Within-Dataset OoD detection

Method
Number of training OoD samples for SELECTED OoD class (i.e. class 8)

4 8 16 32 64 128 256 512 1024 2048 4096

OE 91.03 92.48 92.90 93.70 94.59 95.15 95.19 94.94 94.83 94.07 94.76

Energy + FT 95.25 96.13 96.41 97.20 97.70 98.15 98.16 98.14 98.25 97.63 97.76

WOOD 82.89
(0.83)

86.80
(1.82)

88.99
(<0.01)

90.93
(0.13)

92.25
(0.46)

94.45
(0.11)

95.76
(0.52)

96.10
(0.52)

96.33
(<0.01)

96.23
(<0.01)

96.78
(0.11)

SEE-OoD 89.87
(0.52)

89.53
(0.29)

97.36
(0.60)

98.55
(0.52)

99.63
(<0.01)

99.77
(0.12)

99.91
(<0.01)

100.0
(0.0)

100.0
(<0.01)

100.0
(0.0)

100.0
(<0.01)
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