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Abstract

Just like weights, bias terms are learnable parameters in many popular machine learning
models, including neural networks. Biases are believed to enhance the representational
power of neural networks, enabling them to tackle various tasks in computer vision. Never-
theless, we argue that biases can be disregarded for some image-related tasks such as image
classification, by considering the intrinsic distribution of images in the input space and de-
sired model properties from first principles. Our empirical results suggest that zero-bias
neural networks can perform comparably to normal networks for practical image classifica-
tion tasks. Furthermore, we demonstrate that zero-bias neural networks possess a valuable
property known as scalar (multiplicative) invariance. This implies that the network’s pre-
dictions remain unchanged even when the contrast of the input image is altered. We further
extend the scalar invariance property to more general cases, thereby attaining robustness
within specific convex regions of the input space. We believe dropping bias terms can be
considered as a geometric prior when designing neural network architecture for image clas-
sification, which shares the spirit of adapting convolutions as the translational invariance
prior.

Keywords: Geometric structure; Invariance; Zero Bias; Robustness; Expressive power.

1. Introduction

Using bias terms in neural networks is a common practice. Its theoretical foundation goes
back to the invention of artificial neural networks, which are loosely inspired by biological
neurons. Biological neurons have some thresholds to determine whether they should ”fire”
(produce an output that goes to other neurons) (Jain et al., 1996; Yang and Wang, 2020;
Hassabis et al., 2017). These thresholds are essentially the same thing as bias terms. From
the representation learning perspective, the bias term is widely believed to increase the
representational power of neural networks and thus is always needed when designing neural
networks to solve a broad array of tasks in computer vision (Wang et al., 2019; Montavon
et al., 2018; Alzubaidi et al., 2021).

In this work, we challenge the commonly-held beliefs of the necessity of including bias
terms in neural networks to solve image classification tasks. Our geometric observations
suggest the intrinsic distribution of images should incorporate directionality, as suggested in
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Figure 1. With this property holding, bias terms should not affect models’ representational
power and performance, even for large modern CNN models such as ResNets (He et al.,
2015b). Indeed, several recent works like SphereFace (Liu et al., 2017a) and SphereNet (Liu
et al., 2017b) achieve strong performance in real-world tasks by ignoring the bias term
and designing angular-inspired losses. Moreover, Hesse et al. (2021) reports that removing
bias terms only has a minor impact on predictive accuracy. Our thorough experimental
results also support this argument. In addition, we show that neural networks will possess

(a) Image classes can be
thought of as manifolds
in n-dimensional input
space.

(b) Image classes can be
conceptualized as corn-
shaped if considering
the varying contrast.

(c) An image specifes a direc-
tion in input space, and
copies of that image with
varying contrast lie along
the same direction.

Figure 1: The directionality manifests in the intrinsic distribution of images.

an intriguing property - scalar (multiplication) invariance after dropping bias terms. We
then extend scalar invariance to CNNs as well as ResNets. This property allows zero-bias
networks to perfectly generalize to inputs with different levels of contrast without any data
augmentation, which normal neural networks (with biases) usually fail to do so. Based on
the scalar invariance property, we further derive more general robustness guarantees that
could verify even certain convex regions of input space. In contrast, normal neural networks
are highly combinatorial in nature, making such guarantees hardly exist.

We summarize our contributions as follows: (1) We show that the basic building blocks
of neural networks are scalar multiplication associative if the bias is ignored. This, in turn,
assures the scalar invariant property of convolutional neural networks. By adapting batch
normalization-free methods, we can extend scalar invariance to ResNets. We also con-
duct experiments on a few popular image classification benchmarks to validate the scalar
invariant property; (2) Based on the scalar invariant property, we propose two additional ro-
bustness properties that verify inputs along certain lines (interpolations) and convex regions
of the input space. Empirical validation of the interpolation robustness guarantee is done
using image examples from benchmarks such as MNIST and CIFAR-10; (3) Our geometric
observations suggest the intrinsic distribution of images should incorporate directionality.
Under this property, scalar invariant neural networks should have the same representational
power as normal neural networks, thus delivering comparable performances.
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2. Scalar Invariant Neural Networks

2.1. Preliminary

A neural network consists of an input layer, hidden layers, and an output layer. For con-
volutional neural networks, some of the hidden layers are called convolution layers which
perform convolution operations on their input tensors with convolution kernels. The out-
putted tensors are passed to an activation function, commonly ReLU, before downsampling
through pooling layers. After that, the input tensor is flattened out so that a fully con-
nected network can process it and calculate the final prediction. For classification tasks,
the final prediction is represented by a probability distribution over all classes using some
activation functions such as Softmax. To further investigate the scalar invariant property,
we formally denote the input tensor as X and a convolutional neural network as N . Then
N is composed of convolutional layers Fi, pooling layers Pi, and fully connected layers Lj ,
where i, j ∈ N. And we denote the final activation function as A and ReLU as R. We think
of layers and activation functions as transformations on the input X, then the output of
the network before the final activation function A is represented by:

O(X) = Lj ◦ R ◦ ... ◦ R ◦ L1︸ ︷︷ ︸
j Linear layers

◦Pi ◦ R ◦ Fi... ◦ P1 ◦ R ◦ F1︸ ︷︷ ︸
i Convolutional layers

◦X (1)

And the final prediction class is determined by the one with the highest probability over
all classes C, that is:

N (X) = argmax
c∈C

{A ◦ O(X)} (2)

2.2. Scalar Associative Transformations

We consider the operation inside a convolution layer F with a kernel K, it is easy to show
the associative property with scalar multiplication hold for convolution operations. More
formally, let s be a positive scalar s.t. s ∈ R+, then we have:

F ◦ (sX) =
∑
m

∑
n

sX(i+m, j + n)K(m,n) = s
∑
m

∑
n

X(i+m, j + n)K(m,n) = s(F ◦X)

(3)
In addition, the above property also holds for pooling layers P, including max pooling

and average pooling. Since both the max and average operation should preserve the scalar
multiplication. The same argument also applies to the ReLU function. So we have:

P ◦ (sX) = s(P ◦X) and R ◦ (sX) = s(R ◦X) (4)

Finally, passing the input X to a fully connected layer L can be thought of as applying a
linear transformation (W,B) on X. If we set the bias term B to 0, we will have the scalar
associative property. That is:

L ◦ (sX) = (sX)WT = sXWT = s(L ◦X) (5)

Note our proofs also use the commutative property which generally holds for matrix and
vector multiplications with a scalar. Put together, by setting biases to zeros, we have the
scalar (multiplication) associative property holds for the output function, i.e., (O(sX) =
sO(X)).
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2.3. Scalar Invariant Convolutional Neural Networks

Now we consider how to calculate the final prediction of the network N . For classification
tasks, the last activation function A is usually Softmax. If we multiply the input X with
a scalar s (s ∈ R+) and pass the product to Softmax, it is equivalent to changing the
temperature of the distribution. Note that the rank of candidate classes remains the same
despite the change in the shape of the distribution. In other words, the predicted class by
the network N is scalar (multiplication) invariant:

argmax
c

esO(X)c∑
c∈C

esO(X)c
= argmax

c

eO(X)c∑
c∈C

eO(X)c
(6)

Put together with the scalar associative property of the output function O(·), we have a
scalar invariant neural network:

N (sX) = argmax
c

{A ◦ O(sX)} = argmax
c

{A ◦ O(X)} = N (X) (7)

The concept of scalar invariant neural networks generalizes beyond just convolutional neural
networks. In fact, as long as hidden layers perform scalar associative (and commutative)
transformations and the last activation function preserves the highest probable candidate
under scalar multiplication, the neural network will be scalar invariant. Since an image
input X represents a direction in the input space and we have proved that zero-bias neural
networks could yield the same prediction along that direction, we could restate this property
as directional robustness property.

Lemma 1 (Directional robustness property) For any input X to a zero-bias neural
network N , the prediction remains the same when X is multiplied by any positive scalar s.
Formally, we have N (sX) = N (X) ∀s ∈ R+.

2.4. Scalar Invariant ResNet

We briefly discussed the most simple architecture of convolutional neural networks in the
previous section. However, in addition to those basic layers we mention before, modern
powerful CNNs also employ extra layers and techniques to address over-fitting and gradient
exploding/vanishing issues. For example, ResNet (He et al., 2015b) adopts Dropout (Sri-
vastava et al., 2014), Additive Skip Connection (He et al., 2015b) and Batch Normalization
(Ioffe and Szegedy, 2015) which contributes enormously to its success. First, as dropout
layers are disabled during the inference phase, it has no impact on the scalar invariant prop-
erty. Second, it is trivial to show skip connection is also scalar multiplication associative if
the corresponding residual branch G is also scalar multiplication associative.

sX + G(sX) = s(X + G(X)) ∀s ∈ R+ (8)

Lastly, we consider Batch Normalization, which is performed through a normalization trans-
formation that fixes the means and variances of inputs to each layer. Let us useXB to denote
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a mini-batch of the entire training set. Then we have the batch normalization transforma-
tion as follows:

BN (XB) = γX̂B + β (9)

where γ and β are learnable parameters, and X̂B is the normalized input, represented by

X̂B =
XB−µB√
(σB)

2
+ϵ

, ϵ is an arbitrarily small constant. Clearly, we observe that the scalar

associative/invariant property doesn’t hold for the normalization step, because:

γ(sX) + β = γ
(sX) − µB√(

σB
)2

+ ϵ
+ β ̸= s(γX + β) (10)

Thus, in order to achieve scalar invariance, we can adopt two approaches. Firstly, for
small neural networks that do not have severe gradient explosion/vanishing issues, we can
drop BN layers. Secondly, for larger neural networks, we can consider some alternatives
to batch normalization. There exists a line of work on exploring efficient residual learning
without normalization such as Instance Normalization (Ulyanov et al., 2016), Fixup (Zhang
et al., 2019), X -DNNs (Hesse et al., 2021), and NFNets (Brock et al., 2021a,b). The majority
of these approaches can be easily adapted to achieve scalar invariance, further information
can be found in Appendix B.

Table 1: As expected, zero-bias neural networks achieve perfect scalar invariance on testing
accuracies, while normal neural networks are generally not robust against decreas-
ing the contrast of the input image. Results are replicated thrice and averaged to
reduce stochasticity effects, with all variances being below 0.5.

Scalar multiplier
1 0.25 0.15 0.125 0.1 0.075 0.05 0.025 0.01 0.001 0.0001

MNIST FCN
w/ bias 88.12 87.07 84.46 82.57 79.52 74.76 65.82 42.84 16.34 10.28 10.28
w/o bias 88.27 88.27 88.27 88.27 88.27 88.27 88.27 88.27 88.27 88.27 88.27

Fashion-MNIST CNN
w/ bias 89.10 67.10 40.12 32.52 24.16 17.91 12.46 10.12 10.00 10.00 10.00
w/o bias 89.02 89.02 89.02 89.02 89.02 89.02 89.02 89.02 89.02 89.02 89.02

CIFAR-100 ResNet18
w/ bias 67.62 19.86 8.20 6.11 4.16 2.58 1.69 1.06 1.01 1.01 1.01
w/o bias 67.33 67.33 67.33 67.33 67.33 67.33 67.33 67.33 67.33 67.33 67.33

ImageNet (Deng et al., 2009) ResNet50
w/ bias 75.37 66.72 57.84 53.62 47.27 37.61 21.81 3.39 0.21 0.10 0.10
w/o bias 73.82 73.82 73.82 73.82 73.82 73.82 73.82 73.82 73.82 73.82 73.82

2.5. Scalar Invariance Evaluation

In this section, we conduct a series of experiments to verify the scalar invariance property of
zero-bias neural networks and their normally trained counterparts. We train both types of
neural networks using the same configuration, except for the option of using bias, on several
popular image classification benchmarks. More training details can be found in Appendix
C. We further demonstrate the effect of scalar invariance by evaluating their accuracy on
test sets multiplied by different scalars, ranging from 1 to 0.0001. The results, which are
presented in Table 1, suggest that zero-bias networks and normal networks achieve similar
accuracies when the scalar is set to 1. However, when the contrast/scalar multiplier of the
input image decreases, normal networks show a lack of robustness as their accuracy declines
at varying rates. In contrast, zero-bias networks achieve scalar invariance as expected, and
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their performance remains unchanged regardless of the varying contrast of input images.
We also train both types of models using augmented training sets that involve multiplication
of the scalars used in test evaluation. We find that with-bias models trained on augmented
data still perform poorly when the scalar multiplier is extremely small, such as 0.001 and
0.0001. For larger scalar ranges from 0.25 to 0.01, with-bias models are merely comparable
to zero-bias models. These results demonstrate a significant advantage of zero-bias networks
in terms of data efficiency.

3. Interesting Robustness Properties

(a) Core-shape unbounded regions
of zero-bias neural networks are
formed by hyper-planes that pass
through the origin.

(b) Any point lying
on the line be-
tween x1 and x2
should yield the
same prediction
as x1 and x2.

(c) Any point ly-
ing inside the
convex region
formed by in-
puts xi should
yield the same
prediction as xi.

Figure 2: Zero-bias neural networks exhibit unique robustness properties when inputs share
the same neural activation pattern and are predicted identically by the neural
network.

Despite achieving remarkable success in a wide range of tasks, neural networks have
been proven not robust under even small perturbations to the input (Carlini et al., 2019;
Akhtar and Mian, 2018), which accelerates the study of neural network verification and
attacks. We find that zero-bias networks exhibit some interesting robustness guarantees
that are rarely identified in common neural networks.

Given that these guarantees of robustness are closely tied to specific regions within the
input space, it is pertinent to explore how zero-bias neural networks divide the geometry
of the input space. When the bias terms are eliminated, the hyperplanes defined by each
neuron will originate from the origin. When these hyperplane arrange together, they create
multiple core-shaped unbounded regions that differ from the typical convex regions formed
by normal neural networks, as illustrated in Figure 2(a). To better illustrate the interesting
robustness properties of zero-bias networks, we first introduce the notion of neural activation
patterns (Geng et al., 2023).
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Definition 2 (Neural activation pattern) A Neural Activation Pattern (NAP) of a
neural network N is a tuple Px := (A,D), where A and D are collections of all activated
and deactivated neurons respectively when passing x through N .

Theorem 3 (Interpolation robustness property) For any two inputs X1 and X2 that
have the same prediction and neural activation pattern by network N , i.e., N (X1) = N (X2)
and PX1 = PX2, their linear interpolation also yield the same prediction, that is, N (λX1 +
(1− λ)X2) = N (X1) = N (X2), where λ ∈ [0, 1].

Assuming that two points share the same prediction and neural activation pattern, it can
be proven that their interpolation will also share the same prediction and neural activation
pattern. Please refer to Appendix A for detailed proof. What’s even more interesting is
that this property can be extended to the multiple inputs setting, where a convex region
can provide robustness assurance.

Theorem 4 (Convex region robustness property) Let {Xi | i ∈ {1, 2, . . . , n}} be a
collection of inputs that have the same prediction and neural activation pattern by network
N , we denote the convex polygon formed by vertices Xi as M. Then, for any point m
that lies inside the polygon M, m also yield the same prediction as Xi, that is, N (m) =
N (Xi) ∀m ∈ M ∀i ∈ {1, 2, ..., n}.

As m can always be represented by some linear combination of vertices {Xi}, the convex
region robustness property holds as the direct result of Theorem 3. In contrast, such
guarantees hardly exist on normal neural networks due to their highly combinatorial nature.
Furthermore, recent research has shown that ignoring bias can enhance the robustness of
models, as demonstrated in Diffenderfer and Kailkhura (2021); Diffenderfer et al. (2021).

To test the interpolation robustness property, we conducted experiments using visual
examples sourced fromMNIST and CIFAR-10. Following neural network training, we search
for image pairs that shared the same prediction and neural activation pattern. We then
interpolate 1000 images between each pair and confirm that each interpolation yields the
same prediction, as expected. Please refer to Appendix D for some examples of our findings.

However, it is important to note that such robustness guarantees are rarely identified
in larger and more accurate neural networks. For example, with the small neural networks
used in our experiments comprising only 30 neurons and achieving accuracies of 32.27%
and 29.6% on MNIST and CIFAR-10, respectively, we can easily identify many qualified
pairs. In larger networks with accuracies of around 80%, we still find a few qualified pairs.
However, in even larger networks with accuracies of over 90%, we are unable to find any
examples of the interpolation robustness property. This is due to the fact that as the
number of neurons grows, the input space becomes more scattered, reducing the likelihood
of two or more inputs sharing the same neural activation pattern. While this seems like a
new No Free Lunch Theorem in terms of the trade-off between interpolation robustness and
accuracy, we believe there are methods to improve model accuracy while still maintaining
these robustness guarantees. For example, we could design new training objectives to control
the diminishing margin between hyperplanes of networks. We leave this for future work.
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Figure 3: Geometric insights into the expressive power of zero-bias networks and normal
networks. (a) Dir 1 and Dir 2 stay within unbounded regions of the zero-bias
network. (b) Dir 1 and Dir 2 traverse multiple convex regions of the with-bias
network. (c) Normal networks can fit data in Dir 1 whereas zero-bias networks
fail to do so. (d) Both normal and zero-bias networks can fit data in Dir 2.

4. Geometric Insights on Expressiveness

It is a widely held belief that eliminating bias from neural networks can diminish their
representational power, ultimately affecting the accuracy of models. For instance, Xu et al.
(2021) shows that neural networks linearize outside of their training regime once omitting
the biases. To this end, we provide geometric insights to show that zero-bias networks are
comparable with normal networks in expressive capabilities for image classification tasks.

Since a neural network can be thought of as a piece-wise (linear) function defined over
many convex polytopes (Hanin and Rolnick, 2019a,b), we plot linear regions of a simple 3-
layer neural network and its zero-bias counterpart on a simple 2D input space to study their
representational power in Figure 3. Our aim is to illustrate how these networks perform
on two simple binary classification tasks characterized by Dir (Direction) 1 and Dir 2. In
Dir 1, points along the same direction are not labelled identically, whereas points along
Dir 2 are assigned to the same class, i.e., satisfying directionality. Note that in this study,
we say a model can fit a specific point if its prediction logit function (before Sigmoid) is
negative for • and positive for +. While zero-bias networks have a more limited expressive
capacity compared to normal networks, being restricted to linear functions originating from
the origin, they can effortlessly fit Dir 2, as shown in Figure 3(d). This is due to the fact
that all points in the predicted logit fall below 0. However, in the absence of directionality
- Dir 1, shown in Figure 3(c), the points in the predicted logit scatter across the 0 line
(as they belong to different classes). A linear function starting from the origin could never
fit this case. On the other hand, normal networks, with their highly expressive piece-wise
functions, can fit both Dir 1 and Dir 2.

In conclusion, our observations on the expressive power of the two types of neural
networks are consistent with our experimental findings in Section 2.5. Moreover, we propose
that directionality can serve as a powerful geometric prior in image classification, akin to
the translational invariance prior employed in CNNs.
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5. Related work

5.1. Invariance in Neural Networks

Studying invariance in machine learning as well as neural networks has attracted much
attention as real-world data such as images often exhibit rich invariant structures. Incor-
porating such invariance properties as prior knowledge (inductive bias) could expand the
expressive power of the network without much increase in the number of parameters, which
usually leads to better performance. For instance, Convolutional Neural Networks have a
stronger geometric prior - translation invariance (Bronstein et al., 2021; Bouvrie, 2006). In
addition, Group equivariant Convolutional Neural Networks (G-CNNs) adapt group convo-
lution layers to achieve great results on images generated by translations, reflections, and
rotations (Cohen and Welling, 2016). Similar work also focuses on studying the invariance
of neural network’s outputs under group actions on its inputs (Kondor and Trivedi, 2018;
Lyle et al., 2020; Bloem-Reddy and Teh, 2020).

Given the scale invariant nature of images, there is also a line of work studies how to
improve the consistency of models’ prediction on varying scale images (Xu et al., 2014;
Ghosh and Gupta, 2019; Perantonis and Lisboa, 1992; Zhang et al., 2017b). However, the
most related invariance to our work is illumination invariance which has a great impact
on many real-world applications. For example, Ramaiah et al. (2015) uses convolutional
neural networks for face recognition under non-uniform illumination. Maddern et al. (2014)
studies illumination invariant transform to improve visual localization, mapping, and scene
classification for autonomous road vehicles. Despite absolute invariance being considered
hard to achieve and most works usually failing to guarantee it, our work shows that absolute
invariance under scalar multiplication can be achieved with zero-bias neural networks.

5.2. Zero-bias Neural Networks

Although zero-bias neural networks do not appear as much as normal neural networks in the
machine-learning literature due to potential reductions in models’ expressive capability, they
have been used in some real-world applications such as facial expression recognition (Khor-
rami et al., 2015), identification of Internet-of-Things devices (Liu et al., 2021b), RF signal
surveillance (Liu et al., 2021a), and anomaly data detection (Zhang et al., 2021). There
are several reasons for choosing zero-bias neural networks over normal neural networks: (1)
Their incremental learning fashion and better decision fairness; (2) Better interpretabil-
ity without losing accuracy, which challenges the common first impression of the weaker
expressive capability of zero-bias models; (3) More reliable and robust performance. Al-
though these works achieve some success with zero-bias neural networks, none of them dive
deeper to analyze these advantages formally. Our work explores zero-bias from an invariant
perspective for the first time, to our best knowledge, identifying scalar multiplication in-
variance in zero-bias models, proving some rigorous robust guarantees, and explaining their
comparable accuracy based on geometric sights of image distribution.

6. Conclusion

In this paper, we study how neural networks behave after removing bias terms, with a focus
on image classification. We prove that, by simply dropping bias terms, the prediction of
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neural networks achieves absolute invariance under varying contrast of the input image.
Moreover, derived from the scalar invariance property, we show that zero-bias networks
are robust on certain lines and convex regions of the input space. Although it is commonly
believed that bias improves models’ expressive capability and thus is always needed, we show
that it can be completely ignored for image classification tasks if we consider directionality,
an important property of the intrinsic distribution of images. Finally, we believe dropping
bias terms shares the spirit of adapting convolutions as a strong prior in designing neural
network architecture in computer vision. We consider this work as a preliminary step
towards comprehending zero-bias networks and intend to further explore their robustness,
fairness, and generalization ability in our future research.
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Appendix A. Proof of Interpolation Robustness Property

Theorem 3(Interpolation robustness property) For any two inputs X1 and X2 that
have the same prediction and neural activation pattern by network N , i.e., N (X1) = N (X2)
and PX1 = PX2, their linear interpolation also yield the same prediction, that is, N (λX1 +
(1− λ)X2) = N (X1) = N (X2), where λ ∈ [0, 1].

Proof We show the interpolation robustness property holds for fully connected neural
networks without bias. For more complicated neural networks such as CNN, the property
also holds as long as all transformations before the output layer are scalar associative
(Lemma 1). Consider a FCN N composed of J number of fully connected layers Lj

and some ReLU layers R. We think of layers and activation functions as transformations
on the input X, then the output of the network O(λX1 + (1 − λ)X2) before the softamx
function is represented by:

O(λX1 + (1− λ)X2) = LJ ◦ R ◦ ... ◦ R ◦ L1 ◦ (λX1 + (1− λ)X2) (11)

For any fully connected layer Lj , we have:

Lj◦(λX1+(1−λ)X2) = (λX1+(1−λ)X2)WT
j = λXW T

j +(1−λ)X2WT
j = λLj◦X1+(1−λ)Lj◦X2

(12)

On the other hand, we have X and Y falling into the same neural activation pattern.
Since the linear region corresponding to the neural activation pattern is convex, the inter-
polation of X1 and X2, λX1 + (1 − λ)X2, also lies in the same neural activation pattern.
Furthermore, we have:

R ◦ L1 ◦ (λX1 + (1− λ)X2) = λR ◦ L1 ◦X1 + (1− λ)R ◦ L1 ◦X2

R ◦ L2 ◦ (λR ◦ L1 ◦X1 + (1− λ)R ◦ L1 ◦X2) = λR ◦ L2 ◦ R ◦ L1 ◦X + (1− λ)R ◦ L2 ◦ R ◦ L1 ◦X2

...

O(λX1 + (1− λ)X2) = λO(X1) + (1− λ)O(X2), by Lemma1
(13)

Given that N (X1) = N (X2), the index/class of the highest logit of O(X1) and O(X2)
must be the same, that is:

argmax
c

O(X1)c = argmax
c

O(X2)c (14)

Since multiplying a positive scalar to the operand won’t change the output of theargmax
operator, we have:

argmax
c

λO(X1)c = argmax
c

(1− λ)O(X2)c = argmax
c

O(X1)c = argmax
c

O(X2)c (15)

Note that the index/class of the highest logit of λO(X1)c and (1 − λ)O(X2)c are the
same, the index/class of the highest logit of their addition is also the same as λO(X1)c and
(1− λ)O(X2)c. Then it follows that:

argmax
c

O(λX1 + (1− λ)X2)c = argmax
c

O(X1)c = argmax
c

O(X2)c (16)
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Since the softmax function will preserve the ranking of logits, we have:

argmax
c

eO(λX1+(1−λ)X2)c∑
c∈C

eO(λX1+(1−λ)X2)c
= argmax

c

eO(X1)c∑
c∈C

eO(X1)c
= argmax

c

eO(X2)c∑
c∈C

eO(X2)c
(17)

Finally, this can be restated as:

N (λX1 + (1− λ)X2) = N (X1) = N (X2) (18)
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Appendix B. Batch Normalization Free Methods

Fixup enables training deep residual networks with comparable performance in terms of
convergence, generalization, etc, without normalization. More specifically, this method
rescales the standard initialization of residual branches by taking the network architecture
into account. The key steps of Fixup initialization are described as follows:

1. Initialize the last layer of each residual branch and the classification layer to 0.

2. Initialize other layers using a standard method (He et al., 2015a), and scale only the

weight layers inside residual branches by L− 1
2m−2 , where L and m are the numbers of

residual blocks and layers inside a residual branch respectively.

3. Add a scalar multiplier before each convolution, linear, and element-wise activation
layer in each residual branch, the multiplier is initialized at 1 1.

It is obvious that the above initialization steps perform some transformations on the weights
of neural networks instead of the input, and the scalar multiplier is scalar associative which
ensures the trained ResNet is scalar invariant.
NFNet aims to overcome the same challenge of developing ResNet variants without nor-
malization layers yet is comparable to batch-normalized ResNets in many aspects. The
effect of standard batch normalization operation within each residual block can be sum-
marized as: 1) downscales the input by a factor proportional to its standard deviation; 2)
increases the variance of the input signal by an approximately constant factor. By mim-
icking the effect of batch normalization, the residual blocks can be written in the form of
Xl+1 = Xl + αGl(Xl/βl), where Xl denotes the input to the lth residual block and Gl(·)
denotes the lth residual branch. Moreover, the network should be designed such that:

• Gl(·) is parameterized to be able to preserve variance at initialization, i.e., V ar(Gl(z)) =
V ar(z) for all l.

• βl is a fixed scalar, set it to be
√

V ar(Xl), the expected empirical standard deviation
of Xl at initialization.

• α is a hyperparameter that controls the growth rate of variance between blocks.

Since both α and β are fixed scalar during the inference phase. The modified residual
blocks are scalar associative since sXl + αGl(sXl/βl) = s(Xl + αGl(Xl/βl)). We conclude
the NFNet method also ensures scalar invariance.

1. We intentionally ignore the scalar bias (initialized at 0) presented in the original paper to ensure scalar
invariance.
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Appendix C. Training Details

Our ResNet50 model, as shown in Table 1, is trained for 100 epochs on the training split of
ImageNet (Howard, 2019) using a NVIDIA A100 (40GB) GPU. We follow the same cosine
annealing learning rate scheduler from Hesse et al. (2021) with an initial learning rate of
0.1 and use a mixup interpolation proposed in Zhang et al. (2017a) with an interpolation
strength α = 0.7 and a batch size of 256, where each epoch takes approximately 40 minutes
to complete. Our model is trained with SGD using a 0.9 momentum, and a 1e-4 weight
decay. To remove the bias, we mainly employ the Fixup approach and utilize code from two
sources 23, which are released under the Apache 2.0 and BSD 3-Clause licenses, respectively.
In the CIFAR-100 experiment, we utilize a variant of ResNet18 in which we intentionally
omitted the Batch Normalization layers. We train the models with a batch size of 128 for
40 epochs, using the same other hyperparameters.

In accordance with the information provided in Table 1, our FCN and CNN models are
trained using the following configurations: The FCN model undergoes 20 epochs of training
on the training split of the MNIST dataset, utilizing a learning rate of 0.01 and a batch size
of 512. On the other hand, the CNN model is trained for 20 epochs on the training split
of the Fashion-MNIST dataset, employing a learning rate of 0.01 and a batch size of 128.
Both models are trained with Adadelta optimizer.

2. https://github.com/visinf/fast-axiomatic-attribution
3. https://github.com/hongyi-zhang/Fixup

https://github.com/visinf/fast-axiomatic-attribution
https://github.com/hongyi-zhang/Fixup
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Appendix D. Interpolation Robustness Examples

In this section, we show some interpolation of images from MNIST and CIFAR10 datasets.
Based on our experiments, we observe that sharing the same neural activation pattern is a
more stringent condition than having the same prediction label. To enforce this constraint,
we opt for smaller networks with fewer neurons. However, this can lead to lower accuracy.
To provide a visual illustration of the result, we present some examples of correctly predicted
images in Figure 4, and examples of incorrectly predicted images in Figure 5.

= 0.00 pred=0 = 0.20 pred=0 = 0.40 pred=0 = 0.50 pred=0 = 0.60 pred=0 = 0.80 pred=0 = 1.00 pred=0

= 0.00 pred=2 = 0.20 pred=2 = 0.40 pred=2 = 0.50 pred=2 = 0.60 pred=2 = 0.80 pred=2 = 1.00 pred=2

= 0.00 pred=automobile = 0.20 pred=automobile = 0.40 pred=automobile = 0.50 pred=automobile = 0.60 pred=automobile = 0.80 pred=automobile = 1.00 pred=automobile

= 0.00 pred=deer = 0.20 pred=deer = 0.40 pred=deer = 0.50 pred=deer = 0.60 pred=deer = 0.80 pred=deer = 1.00 pred=deer

Figure 4: The left-most and right-most images are from the original MNIST (first five rows)
and CIFAR10 (the last five rows) dataset, whereas synthesized/interpolated im-
ages are in the middle. For instance, the middle image in the first row is generated
by adding (α = 0.5) times the left image to (1 − α) times the right image. The
interpolated images have the predictions same as the ground truth.
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= 0.00 pred=8 = 0.20 pred=8 = 0.40 pred=8 = 0.50 pred=8 = 0.60 pred=8 = 0.80 pred=8 = 1.00 pred=8

= 0.00 pred=2 = 0.20 pred=2 = 0.40 pred=2 = 0.50 pred=2 = 0.60 pred=2 = 0.80 pred=2 = 1.00 pred=2

= 0.00 pred=ship = 0.20 pred=ship = 0.40 pred=ship = 0.50 pred=ship = 0.60 pred=ship = 0.80 pred=ship = 1.00 pred=ship

= 0.00 pred=frog = 0.20 pred=frog = 0.40 pred=frog = 0.50 pred=frog = 0.60 pred=frog = 0.80 pred=frog = 1.00 pred=frog

Figure 5: The left-most and right-most images are from the original MNIST (first five rows)
and CIFAR10 (the last five rows) dataset, whereas synthesized/interpolated im-
ages are in the middle. For instance, the middle image in the first row is generated
by adding (α = 0.5) times the left image to (1 − α) times the right image. The
synthesized/interpolated images have the predictions different from the ground
truth.
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