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ABSTRACT

Integrating hyperbolic representations with Deep Reinforcement Learning (DRL)
has recently been proposed as a promising approach for enhancing generaliza-
tion and sample-efficiency in discrete control tasks. In this work, we extend hy-
perbolic RL to continuous control by introducing a novel hyperbolic actor-critic
model. Empirically, our simple implementation outperforms its Euclidean coun-
terpart, with significant gains on 16/24 tasks from the DeepMind Control Suite
with pixel inputs. Notably, in the low-data regime, our method even outperforms
several pre-trained unsupervised RL agents. Our findings show that hyperbolic
representations provide a valuable inductive bias for continuous control.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has shown great promise in solving continuous control tasks
in high-dimensional environments (Yarats et al., 2021; Lillicrap et al., 2015). However, one of the
biggest challenges in this field remains learning meaningful representations of observational data
that can be used to train a policy efficiently. Recently, several methods have been proposed to
address this challenge, such as training DRL agents with auxiliary tasks (Jaderberg et al., 2016) and
using data augmentation (Yarats et al., 2021). Despite these advancements, these approaches only
encode representations in a Euclidean space, limiting their ability to capture the underlying structure
of the data. In contrast, recent studies have demonstrated the potential of non-Euclidean spaces in
providing a stronger inductive bias and improving sample efficiency in DRL (Cetin et al., 2022;
Mondal et al., 2022). In this work, we incorporate hyperbolic geometry as an inductive bias to learn
better representations for DRL, aiming to improve the agents’ performance and sample efficiency in
continuous control tasks.

The motivation behind using hyperbolic spaces for learning better representations in DRL stems
from their ability to encode hierarchical structures, such as trees, with minimal distortion (Sarkar,
2012)1. Given that the evolution of a Markov Decision Process (MDP) can be structured as a tree,
with states represented as vertices and the transition dynamics of the MDP defining edges between
states, using a hyperbolic inductive bias may facilitate learning representations that hierarchically
evolve alongside the MDP. By leveraging hyperbolic geometry in this way, we aim to improve the
sample efficiency and overall performance of DRL agents trained on continuous control tasks. As
naively adapting the method proposed by Cetin et al. (2022) for discrete control struggles to learn
effective policies, we propose an alternative approach that outperforms its Euclidean counterpart
across 24 tasks from the DeepMind Control Suite (DMC) (Tassa et al., 2018) and several pre-trained
unsupervised RL agents (Laskin et al., 2021) in the low-data regime.

2 METHOD

We integrate our hyperbolic layer into an actor-critic agent — the dominant RL framework for
continuous control (Schulman et al., 2017; Haarnoja et al., 2018). Specifically, we adapt DrQv2
(Yarats et al., 2021), an extension of DDPG (Lillicrap et al., 2015) that uses data augmentation for

∗Correspondence to: omar.salemohamed@mila.quebec.
1As a full treatment of hyperbolic geometry and its applications to deep learning are well beyond the scope

of this paper, we point interested readers to Ganea et al. (2018) and Nickel & Kiela (2017) for more information.

1

mailto:omar.salemohamed@mila.quebec


Published as a Tiny Paper at ICLR 2023

0 1 2 3 4 5 6 7
Normalized Return

drqv2

hyper_encoder

Knowledge-based

Competence-based

Data-based

(a) @100k Frames

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Normalized Return

drqv2

hyper_encoder

drqv2_sn

hyper_actor_critic

(b) @1M Frames

Figure 1: (a) Our hyper encoder method compared with its Euclidean counterpart (DrQv2) and
pretrained unsupervised RL agents evaluated on the URL Benchmark (A.3). (b) Average asymptotic
normalized return across 24 DMC tasks. In addition to DrQv2, we compare our results with
hyper actor critic (Cetin et al., 2022) and DrQv2 with spectral normalization. On every exper-
iment, we train each agent with 5 seeds. Results are normalized with the DrQv2 performance.

better sample efficiency. Following Cetin et al. (2022), we first try two independent mappings to
hyperbolic space2, replacing the final layer of both the actor and critic networks. However, we find
that this version (hyper actor critic) severely underperforms its Euclidean counterpart. Instead,
we find placing the hyperbolic latent representation at the last shared layer of the feature encoder
(hyper encoder) to be the most effective approach. This change allows gradient signals from both
the actor and critic models to optimize the hyperbolic representations, which we hypothesize might
attenuate the noise magnitude in the initially noisy RL training signal. We provide results com-
paring the alternative architectures we explored in A.2. We also apply spectral normalization and
rescaling to the convolution layers before the hyperbolic layer, following the S-RYM regularization
procedure (Cetin et al., 2022). We find S-RYM helps mitigate training instabilities induced by the
non-stationarity of the RL objective combined with the gradient instabilities inherent to employing
hyperbolic representations (Ganea et al., 2018; López & Strube, 2020).

3 EXPERIMENTS

Low-data regime (100k Frames). We use the Unsupervised RL Benchmark (URLB) (Laskin et al.,
2021) to compare our method in the low-data regime with unsupervised RL agents that have been
pretrained for 500k frames. See A.3 for more details about the benchmark and the URL agents.

Asymptotic experience regime (1M Frames). In the asymptotic regime, we evaluate our method
with 24 tasks from the DeepMind Control Suite (Tassa et al., 2018) with varying levels of difficulty.
We provide an overview of the selected tasks in A.1 as well as task-specific results in A.3 & A.4.
We compare our method to hyper actor critic Cetin et al. (2022) as well as two (Euclidean)
baselines: DrQv2 and DrQv2 with spectral normalization. We include the latter as spectral nor-
malization has also been shown to improve DRL agents(Gogianu et al., 2021). We use the default
training and model hyper-parameters from Laskin et al. (2021), and for the hyperbolic layer, we use
the hyper-parameters from Cetin et al. (2022).

As shown in Figure 1, the performance gains hold across the low-data and asymptotic regimes,
validating that hyperbolic geometry provides DRL with a powerful inductive bias that facilitates
recovering effective representations for continuous control. The results from the low-data regime
are particularly surprising given that the URL agents have seen 5x more data during pre-training.

4 CONCLUSION AND FUTURE WORK

We introduce a novel actor-critic architecture that leverages hyperbolic representations and demon-
strate its effectiveness for continuous control. Future work includes further investigating the learned
representations’ generalization capability and designing a hyperbolic intrinsic reward objective that
incentivizes hierarchical exploration. These directions will help unlock the full potential of hy-
perbolic representations for DRL and advance our understanding of how to develop better DRL
algorithms for complex environments.

2We implement the hyperbolic layer closely following Cetin et al. (2022), we point the interested reader to
their work for a thorough description of its properties.
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Federico López and Michael Strube. A fully hyperbolic neural model for hierarchical multi-class
classification, 2020. URL https://arxiv.org/abs/2010.02053.

Arnab Kumar Mondal, Vineet Jain, Kaleem Siddiqi, and Siamak Ravanbakhsh. EqR: Equivari-
ant representations for data-efficient reinforcement learning. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 15908–15926. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/mondal22a.html.

Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical rep-
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A APPENDIX

A.1 DEEPMIND CONTROL SUITE TASKS

In Table 1 we provide an overview of the 24 dense and sparse-reward tasks from the DeepMind Con-
trol Suite (Tassa et al., 2018) that we use to evaluate our method. The Unsupervised RL Benchmark
(URLB) (A.3) is composed of a subset of 12 of these tasks.

Task Traits Difficulty dim(Action Space) URLB
Cartpole Balance balance, dense easy 1 ✗
Cartpole Balance Sparse balance, sparse easy 1 ✗
Cup Catch swing, catch, sparse easy 2 ✗
Finger Spin rotate, dense easy 2 ✗
Pendulum Swingup swing, sparse easy 1 ✗
Walker Stand stand, dense easy 6 ✓
Walker Walk walk, dense easy 6 ✓
Acrobot Swingup diff. balance, dense medium 1 ✗
Finger Turn Hard turn, sparse medium 2 ✗
Hopper Hop move, dense medium 4 ✗
Quadruped Flip flip, dense medium 12 ✓
Quadruped Run run, dense medium 12 ✓
Quadruped Stand stand, dense medium 12 ✓
Quadruped Walk walk, dense medium 12 ✓
Reacher Easy reach, dense medium 2 ✗
Walker Run run, dense medium 6 ✓
Walker Flip flip, dense medium 6 ✓
Humanoid Stand stand, dense hard 21 ✗
Humanoid Walk walk, dense hard 21 ✗
Humanoid Run run, dense hard 21 ✗
Jaco Reach Top Left reach, dense hard 9 ✓
Jaco Reach Top Right reach, dense hard 9 ✓
Jaco Reach Bottom Left reach, dense hard 9 ✓
Jaco Reach Bottom Right reach, dense hard 9 ✓

Table 1: A description of the 24 tasks used from the DeepMind Control Suite (Tassa et al., 2018).
Table adapted from Yarats et al. (2021).

A.2 HYPERBOLIC ACTOR-CRITIC ARCHITECTURE

We build our hyper actor-critic method by adapting DrQv2 which is built on top of DDPG and
leverages data augmentation for better sample-efficiency. While we chose a DDPG backbone for
ease of experimentation and sample-efficiency, there is nothing unique to our method with respect
to this architecture and we believe our method can be easily integrated in a similar fashion to other
on and off-policy actor-critic methods such as PPO (Schulman et al., 2017) and SAC (Haarnoja
et al., 2018).

Following Cetin et al. (2022), we first try adding the hyperbolic layer to both the actor and critic
networks. However, we find that this version (hyper actor critic) underperforms its Euclidean
counterpart across all tasks, suggesting a different approach is necessary to design a hyperbolic agent
for continuous control. Consequently, we experimented with using a hyper layer exclusively for the
actor-head (hyper actor), analogously for the critic-head (hyper critic), and finally, placing it
immediately after the CNN feature encoder (hyper encoder), shared by both the actor and critic
networks. While hyper actor performed favorably to hyper actor critic and hyper critic,
we found hyper encoder to be the best performing method. We compare the performance of
these alternative architectures across 12 tasks from DMC in Figure 2.
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Figure 2: Performance curves of different hyper-actor critic architectures we experimented with.

A.3 UNSUPERVISED REINFORCEMENT LEARNING BENCHMARK (URLB)

In order to better understand the extent of the performance improvement of hyper encoder in
the low-data regime, we compare our method to several unsupervised reinforcement learning (URL)
baselines. We run experiments with the 8 agents presented in the Unsupervised RL Benchmark
(Laskin et al., 2021) and refer to their work for an overview of each agent. Briefly, each agent has
its own intrinsic objective that it leverages to perform unsupervised (reward-free) RL for up to 500k
frames. For example, ICM (Pathak et al., 2017) learns a transition model of the environment which
it utilizes to discover novel states in the absence of task-specific reward. After a reward-free pre-
training stage, each agent is trained for 100k frames on a task with reward. This transfer setting has
been shown to be an effective approach to improve sample-efficiency in the low data regime (Laskin
et al., 2021).

Figure 3 plots the returns of each agent across the 12 tasks presented in URLB (see A.1 for an
overview of the 12 DeepMind Control Suite tasks that compose URLB). In Figure 1(a), we use
the same categorization scheme (Data-based, Competence-based, Knowledge-based) presented in
URLB to group the different URL agents based on their instrinsic objective. However, we exclude
the Disagreement, State Marginal Matching (smm), APT (icm apt) agents from the statistics cal-
culated in Figure 1(a) as our results show that these algorithms underperform the DrQv2 baseline
trained from scratch.
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Figure 3: 100k performance curves of URL agents after 500k frames of task-agnostic training with
intrinsic rewards.
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A.4 PERFORMANCE CURVES FOR 24 TASKS FROM DEEPMIND CONTROL SUITE TASSA
ET AL. (2018)
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Figure 4: Performance curves of agents from Figure 1(b) after 1M frames of training.

8


	Introduction
	Method
	Experiments
	Conclusion and future work
	Appendix
	DeepMind Control Suite Tasks
	Hyperbolic Actor-Critic Architecture
	Unsupervised Reinforcement Learning Benchmark (URLB)
	Performance curves for 24 tasks from DeepMind Control Suite tassa2018deepmind


