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Abstract

Vision Transformers naturally accommodate sparsity, yet standard tokenization methods
confine features to discrete patch grids. This constraint prevents models from fully exploiting
sparse regimes, forcing awkward compromises. We propose Subpixel Placement of Tokens
(SPoT), a novel tokenization strategy that positions tokens continuously within images,
effectively sidestepping grid-based limitations. With our proposed oracle-guided search,
we uncover substantial performance gains achievable with ideal subpixel token positioning,
drastically reducing the number of tokens necessary for accurate predictions during inference.
SPoT provides a new direction for flexible, efficient, and interpretable ViT architectures,
redefining sparsity as a strategic advantage rather than an imposed limitation.
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Figure 1: (Left) A standard ViT splits the image into a fixed grid of non-overlapping patches. (Right)
With SPoT, an adaptively chosen subset of subpixel-precise patches are extracted.

1 Introduction

Sparsity—the fine art of doing more with less—is an attractive prospect in systems design and modeling. As
models grow ever larger, sparse features alleviates the computational demands of a model to provide lower
latency, lower memory overhead, and higher throughput—all important properties for real-time applications.
Incidentally, sparse selection of features offers inherent interpretability and transparency for increasingly
complex models (Tibshirani, 1996). Clever adaptations of the Vision Transformer (ViT) (Dosovitskiy et al.,
2021) architecture have shown that this family of models can handle sparse inputs remarkably well (Liu
et al., 2023; Chen et al., 2023; Rao et al., 2021; Yin et al., 2022; Bolya et al., 2023), accelerating inference
by selectively processing a reduced subset of the input. Sparsification has even indirectly inspired entirely
new paradigms for efficient unsupervised training in the form of masked image modeling (MIM) (He et al.,
2022; Zhou et al., 2022; Oquab et al., 2024).

However, in carefully studying the fine print of Dosovitskiy et al.’s (2021) work, one notes an insistence
on aligning features with an underlying grid, mirroring the structure inherited by its language counter-
part (Vaswani et al., 2017; Devlin et al., 2019) where inputs are naturally represented as sequences of

Code available at: https://github.com/dsb-ifi/SPoT
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Figure 2: Grids cannot align every salient region. (a) A 5 × 5 patch grid (gray) with three optimal
region placements for sparse feature selection. The green patch is well aligned (A), yellow straddles two
cells (B), and red lies on a corner (C) and leaks into four cells. Translating the grid only swaps which peak
is misaligned—one patch is always bad. (b) Our subpixel tokenizer drops fixed-size windows (green squares)
directly on each peak, eliminating the alignment trade-off while still allowing conventional grid tokens when
they are well aligned.

discrete tokens. This discretization might seem natural—after all, are not pixels fundamentally discrete?
Our hypothesis is that this adherence turns sparsity into an awkward dance; forcing the selection of entire
tiles, even if the true optimal feature set hides in-between rigid lines. Like eating soup with a fork: possible,
but decidedly inefficient and frustrating.

We propose a simple remedy with Subpixel Placement of Tokens (SPoT). By allowing patches to occupy
continuous subpixel positions instead of constraining features to a discrete grid, we expand our modeling
toolkit to include gradient based search and sampling for discovering optimal sparse feature sets. Figure 1
succinctly illustrates the core idea, while the example in Figure 2 shows the limitations of a discrete grid-based
approach in reducing tokens while preserving predictive quality. Our contributions include:

• We propose SPoT, a novel tokenization framework placing features at continuous subpixel positions,
significantly enhancing the robustness and efficiency of ViTs.

• We introduce Oracle-guided Neighbourhood search (SPoT-ON) to empirically quantify optimal subpixel
positions, showing that carefully selected sparse placements outperform dense grids with only ∼ 12.5% of
the original tokens, and that regions discovered with one model improve performance in another.

• We systematically investigate spatial priors for subpixel token placement, and find that dense regimes
prefer coverage, while sparse regimes benefit from center bias and saliency-driven priors.

2 Sparse Visual Bag-of-Words and ViTs

At first glance it might seem like a ViT is designed to process an image globally via partitioning an image into
patches. However, there is nothing in the transformer architecture that requires a discrete partition. Because
self-attention is permutation-invariant, a ViT encoder effectively treats its input tokens as an unordered
multiset; a visual bag-of-words, analogous to BERT (Devlin et al., 2019). This observation suggests we need
not restrict tokens to a grid, leading to our formulation of sparse feature selection for ViTs.

We denote a ViT encoder as gθ : I × Ω → Rd, where I is a dataset of source images, and Ω is a space of
positions from which to sample image features. For example, with standard tokenization Ωgrid is a fixed,
discrete set of non-overlapping square patches tiling the image with a fixed window size on a grid of pixels.
The sparse feature selection (SFS) problem can then be formulated as

min
ϕ

ES∼pϕ

[
L(gθ(I, S), y)

]
s.t. S ⊆ Ω, |S| ≪ |Ω|. (1)
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In other words, we are looking for a probability distribution pϕ over subsets of Ω that minimizes a loss
function L1. We note that for the discrete non-overlapping case of Ωgrid, there is an implicit assumption
that sampling of S is done without replacement, since sampling the same feature more than once is unlikely
to improve model performance. Three specific issues arise from the ViT sparse sampling problem;

1. Interdependence: Transformers process tokens as a set. This means that the marginal distribution of
one token is dependent on the inclusion of other tokens. Furthermore, the optimal distribution pϕ for a
given image may vary depending on the choice of number of tokens.

2. Combinatorial search: The discrete nature of Ωgrid means that selecting a subset of tokens is combina-
torial knapsack problem. This makes search difficult and gradient methods intractable, particularly since
cardinality-constrained subset selection is NP-hard (Nemhauser and Wolsey, 1978).

3. Misalignment: By quantizing patches to a fixed grid, key patterns for discriminating an image could be
missed in SFS. Concretely, if the grid imposed by Ωgrid is misaligned with key features in the image, SFS
could be challenging, as a central shape or texture may be spread over multiple patches, making subset
selection more challenging.

These issues hinder efficient optimization of SFS under standard tokenization.

3 Subpixel Placement of Tokens: SPoT

We propose a more flexible tokenization scheme to tackle SFS problems in ViTs. Instead of considering Ω
as a fixed discrete partition, we instead imagine Ωsubpix = [0, H − 1] × [0, W − 1] as a continuous space of
subpixel positions from which to select features within a H × W image. Put simply, we parametrize a subset
of positions S = {s1, . . . , sm} as a set of points of interest from which to extract features from within an
image. By sampling tokens from continuous subpixel positions, our tokenizer directly addresses the intrinsic
misalignment issue imposed by traditional grid-based methods, as illustrated in Figure 2. To tackle the
combinatorial search problem, we use a bilinear interpolation function q and window size k, such that each
subpixel position si = (h, w) provides an extracted feature

Iq(si; k) = Iq(h − k
2 :h + k

2 , w − k
2 :w + k

2 ). (2)

This allows us to formulate SFS as a continuous, probabilistic optimization problem rather than an intractable
discrete subset-selection. The key insight is that our novel tokenizer allows us to (1) investigate placing
different priors on pϕ, and (2) use gradient based optimization to search for S by way of gradients through
Iq. Since we select q to be bilinear, its partial derivatives w.r.t. s exist everywhere except at pixel boundaries,
so gradients propagate cleanly back to the placements {s1, . . . , sm}. We note that subpixel tokens do not
impose any constraint on non-overlapping patches.

Since Ωgrid ⊆ Ωsubpix, patch tokenization is just a special case of our tokenization method. This means that
models can be evaluated with the exact same features as a standard patch-based ViT by letting S = Ωgrid.
Our tokenizer extends existing work showing that more generalized tokenizers can be constructed to be mod-
ularly commensurable to standard ViT models, and we adopt their kernelized positional embedding (Aasan
et al., 2024).

3.1 Spatial Priors

By allowing subpixel freedom in token placement, we lose the implicit spatial prior that discrete grids
naturally encode. Hence the shift to a continuous domain raises a dilemma: in sparse regimes, what should
guide our choice of token positions? An appropriately selected prior enables efficient sparse representations
while preserving performance, whereas an ill-suited one may lead to substantial degradation. We compare
several spatial priors, each encoding different assumptions about feature importance and spatial distribution,
illustrated in Figure 3:

1Typically standard cross-entropy is used for L.
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Figure 3: Different sampling priors which can be employed with SPoT. The Sobol prior (not figured)
produces uniform quasirandom placements with explicit constraints on coverage.

• Uniform: randomly samples locations with no spatial bias, assuming all regions are equally important.

• Gaussian: randomly samples locations with a central bias, which encodes a prior belief that subjects are
typically centered in images.

• Sobol: provides quasirandom sampling aimed at uniform coverage while reducing overlap (Sobol, 1967).

• Isotropic: deterministically distributes tokens evenly in a subpixel grid, emphasizing coverage.

• Center: deterministically distributes tokens evenly with slight central-bias, commonly seen in classifica-
tion datasets (Szabó and Horváth, 2022).

• Salient: encodes object-centric bias by placing tokens based on regions identified as visually salient from
a pretrained saliency model (Lüddecke and Ecker, 2022).

Moreover, we highlight that a prior could be learned to suit a particular problem. However, we note that
interdependency requires a more complex parametric family than a univariate spatial distribution. We
therefore leave this step as future work, and focus on the proposal of the continuous positions of tokens and
its evaluation.

3.2 Oracle Neighborhoods: SPoT-ON

In addition to investigating spatial priors, we also look to directly explore differentiable optimization for
token placement. To probe for ideal choices of S = {s1, . . . , sm}, we optimize a constrained version of the
SFS problem given by equation 1 directly for each image. We freeze the encoder gθ, and directly apply
gradient search to optimize

arg min
S

[
L(gθ(I, S), y)

]
s.t. S ⊆ Ωsubpix, |S| = m (3)

for a set number of tokens m with initial positions S0 ∼ pϕ sampled from a chosen prior pϕ. This provides an
Oracle Neighborhood (ON) adjustments of the initial placements for SPoT. SPoT-ON reveals ideal locations
for classifying each image, which allows us to ascertain the existence of an optimal set of positions S for each
image, and estimate an upper bound on performance gain from effective token sampling. We specify that
SPoT-ON incurs a higher computational cost for classification, and is not intended as a practical solution
for inference. Rather, it acts as a tool for analyzing the nature of sparse ViTs, demonstrating the potential
of learnable token positions.

4 Experiments: Case Studies

We examine SPoT by adapting two standard ViT models (Steiner et al., 2021), trained on ImageNet-21k and
ImageNet-1k (CLS-IN21k, CLS-IN1k) and a self-supervised Masked Autoencoder (MAE-IN1k) (He et al.,
2022). All models utilize the ViT-B/16 architecture (Dosovitskiy et al., 2021). Supervised models initialize
weights from TIMM (Wightman, 2019), while MAE uses official pre-trained weights. To integrate our
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Table 1: Accuracy of grid-constrained and off-grid
patch representations in extreme sparse setting with
12.5% of tokens. The grid-based configuration mim-
ics the discrete patch selection of standard ViTs.
The off-grid configuration permits subpixel place-
ment in continuous space. Results demonstrate that
allowing continuous positioning enhances represen-
tational quality under sparse token regimes. We
also report the performance of the initially sampled
points without oracle supervision (SPoT).

Method lr Steps Acc@1 (%)
SPoT – – 61.7
Grid
SPoT-ON 3e-3 5 66.2
SPoT-ON 1e-2 10 74.0
Subpixel
SPoT-ON 3e-3 5 90.2
SPoT-ON 1e-2 10 90.9

Table 2: Accuracy (%) for different spatial initial-
ization priors in extreme sparse setting with 25 to-
kens. We show out-of-the-box SPoT performance
(Acc@1) and achievable increase in performance us-
ing SPoT-ON (Oracle ∆).

Prior k-NN (%) Acc@1 (%) Oracle ∆
SPoT CLS-IN21k
Uniform 45.23±0.10 44.05 ↑ 34.22
Gaussian 45.27±0.10 45.22 ↑ 32.83
Sobol 46.48±0.20 43.67 ↑ 35.83
Isotropic 48.19 46.85 ↑ 34.85
Center 52.18 52.45 ↑ 31.07
Salient 56.83±0.26 55.71 ↑ 31.90
SPoT MAE-IN1k
Uniform 49.72±0.13 56.71 ↑ 31.44
Gaussian 49.49±0.33 57.58 ↑ 29.63
Sobol 53.54±0.39 60.62 ↑ 29.40
Isotropic 54.56 61.72 ↑ 29.21
Center 55.61 62.83 ↑ 26.70
Salient 60.80±0.08 66.13 ↑ 26.59

subpixel tokenizer, each model undergoes a 50-epoch retrofitting step on ImageNet-1k (Deng et al., 2009),
after which the MAE-based model is further fine-tuned for classification over 100 epochs, aligning with its
original protocol (He et al., 2022). Additional details are given in Section 5.2. We explore the effectiveness
and properties of our approach through four targeted case studies addressing grid limitations, object-centric
priors, oracle guidance preferences, and transferability of guided placements.

4.1 Are Grids an Inherent Limitation of ViTs?

In our first case study, we investigate whether moving away from fixed-grid token representations toward
subpixel placements in continuous space enhances representational quality. Traditional grid-based represen-
tations restrict tokens to fixed intervals, which often require multiple patches to cover important features
adequately, as illustrated in Figure 2. Subpixel placement, on the other hand, allows tokens to align precisely
with these features, potentially enabling more efficient representations with a sparse set of tokens.

To investigate grid versus off-grid representations, we design an experiment using SPoT-ON to directly
compare continuous subpixel placement with discrete, grid-based positioning, all under a fixed token budget
of 12.5% of the standard 196 in ViT-B/16 architectures. For the discrete setting, the learned subpixel
positions were mapped to their nearest locations on a standard 14 × 14 token grid, mimicking a conventional
ViT configuration. We consider two optimization configurations: one with a learning rate of 3 × 10−3 over
5 optimization steps, and another with a higher learning rate of 1 × 10−2 over 10 steps.

The results in Table 1 clearly demonstrate the advantage of subpixel placement, which achieves at least a
16.9 percentage point improvement in accuracy over the grid-constrained method. Interestingly, increasing
both the learning rate and the number of optimization steps allows the grid-based approach to discover
more effective token positions. Nevertheless, the constraints of discrete, grid-based positioning hinders per-
formance, even under more aggressive optimization. The consistent performance gains highlights significant
benefits of continuous, subpixel token placement in resource constrained settings.

Finding 1: Off-grid token placement enables greater flexibility and yields substantially better perfor-
mance than grid-based approaches under sparse token settings.
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4.2 Do Object-Centric Priors Improve Predictions?

To investigate spatial priors and how they interact with oracle supervision in the sparse setting, we initialize
our adaptive sampler using the spatial priors introduced Section 3.1. Each initialization defines the starting
coordinates S0 of token placements, which are subsequently refined by SPoT-ON to minimize classification
loss with a learning rate of 3 × 10−3 over 5 optimization steps.

Table 2 reports the resulting downstream accuracy for both supervised and self-supervised backbones in
the sparse setting with a token budget of 25 tokens (12.5% of original). We observe that sampling from
saliency heatmaps yields the highest performance both out-of-the-box and after oracle supervision. This
aligns with common intuition, object-centric features are more relevant to the classification task. The center
grid prior also shows higher performance, very likely due to the center bias in ImageNet images. Finally,
grid-based initializations (e.g., regular grid, center grid, and Sobol) consistently lead to higher accuracy than
the uniform random and Gaussian-stochastic priors, as these result in overlapping placements that are less
efficient than structured alternatives.

Comparing these results to Table 5, we see that the benefit of object centric sampling disappears for higher
token budgets. Instead, the best performing prior is the regular grid, which ensures broad spatial coverage
rather than concentrating solely on the object. This reveals a surprising inductive bias—coverage is more
critical than object-centricity for classification under high token budgets. We hypothesize that this is because
the information provided by object-focused features quickly saturates, and with higher token budgets the
model benefits from the broader context provided by even coverage of the image.

Finding 2: Object-centric priors yield higher performance in sparse regimes. In dense regimes, even and
structured coverage provides better performance.

4.3 Does Oracle Guidance Prefer Salient Regions?

Intuitively, object-centric priors should help a classifier, but do they actually steer our oracle-guided tok-
enizer? We investigate whether oracle gradient search in SPoT-ON moves tokens towards pixels with higher
class saliency.

We design an experiment as follows; starting with a isotropic prior, we optimize trajectories s(0), . . . , s(t) via
oracle gradient search following equation 3. Our goal is to measure the shift of token placements toward
higher-saliency regions between the initial position s(0) and the final position s(t). Given a saliency mask
M , we compute a score for placements s by

score(s) = 1
k2

k2∑
i=1

Mq(s; k)i. (4)

The relative saliency gain for each trajectory is given by

RSG = score(s(t)) − score(s(0))
score(s(0)) . (5)

Table 3 shows the result of averaging relative saliency gains over ImageNet1k, showing that there is a slight
gain in saliency scores for each of our three models. However, the results are not significant enough to claim
that saliency alone guides the placements during the oracle search.

We illustrate four examples with different trajectories in Fig. 4, which sheds more light on the behavior of
SPoT-ON. While trajectories are drawn to discriminative regions, such as spots on a ladybug (left) or hands
of a clock (center right), other placements seem more arbitrary, and even loop back on themselves. The
oracle often positions tokens close to—rather than on—the object; providing context that self-attention can
exploit. Hence, interdependency rather than saliency alone, drives the final placements.

6
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Figure 4: Illustration of oracle placements with 25 tokens with SPoT-ON. By optimizing our oracle-
neighborhood search equation 3 all the way through the model, the oracle discovers optimal placement of
points, yielding an accuracy of 90.9% on ImageNet1k with only ∼ 12.5% of the tokens. Trajectories are
colored starting with dark purple for initial points, with endpoints colored bright yellow.

Finding 3: While oracle gradient search yields a slight bias toward higher-saliency pixels, the results
are not highly significant. The results suggest that token interdependency — as opposed to pure object
saliency — is a predominant factor for optimal placements.
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Table 3: Quantitative analysis on object-seeking behavior with SPoT-ON. For each region, we compute
the average saliency in a 16 × 16 window centered on each point. We compare the saliency scores of initial
placements compared to oracle placements, and compute the relative saliency gain (RSG) over ImageNet1k.

RSG (%)

Backbone 25 Tok. 49 Tok. 100 Tok. 196 Tok.

CLS-IN21k ↑ 0.34 ↑ 0.33 ↑ 0.47 ↓ 0.14
CLS-IN1k ↑ 0.77 ↑ 0.77 ↑ 0.75 ↓ 1.53

MAE-IN1k ↑ 0.49 ↑ 0.54 ↑ 0.51 ↓ 0.08

Table 4: Transfer properties of SPoT-ON positions between models, in the sparse setting with a 12.5%
token budget. We optimize oracle positions using gradient optimization for a source model, initialized with
the isotropic prior. We then evaluate the discovered points in an independently trained target model. Each
model sees a significant increase in performance, even from points derived from an independent model.

Acc@1 (%) (25 Tokens)

Source → Target Original Transfer ∆

CLS-IN1k → CLS-IN21k 46.85 54.06 ↑ 7.21
MAE-IN1k → CLS-IN21k 46.85 56.71 ↑ 9.86
CLS-IN21k → CLS-IN1k 33.52 37.91 ↑ 4.39
MAE-IN1k → CLS-IN1k 33.52 39.19 ↑ 5.67
CLS-IN21k → MAE-IN1k 61.72 68.50 ↑ 6.78
CLS-IN1k → MAE-IN1k 61.72 67.81 ↑ 6.09

4.4 Do Oracle Guided Placements Transfer?

If discovered token placements with oracle guidance captures structure rather than model-specific quirks, a
placement learned by one model should benefit another. To test this, we investigate transferability of token
placements. Given two independently trained models, gA, gB , we independently optimize two feature sets;
SA, SB , respectively, following equation 3. Both feature sets are initialized with the same isotropic spatial
prior S0. Then, for target labels y, we compute the difference in accuracy from the initial placements S0 to
the optimized placements with the alternate model, i.e.,

∆ = E[gA(I, S0) = y] − E[gA(I, SB) = y], (6)

with symmetrical computations for model gB on SA. The results can be found in Table 4. Our experiments
show that placements discovered with one model transfers to yield improvement in performance in a different,
independently trained model.

Finding 4: Discovered positions via SPoT-ON generalize between models; a set of placements optimized
via one model will improve results with another independently trained model in sparse regimes.

5 Extended Experimental Results

We present the performance of SPoT under varying sparsity configurations and compare it against baseline
models, including the supervised backbones from TIMM (Wightman, 2019) and the officially fine-tuned
MAE model (He et al., 2022). For clarity, all baselines are denoted as ViT-B/16 in Table 5. To evaluate the
baselines under sparsity constraints, we apply PatchDropout (Liu et al., 2023), which randomly drops input
patches during inference.

The results in Table 5 reveal several noteworthy observations. First, the self-supervised MAE model (He
et al., 2022) consistently outperforms its supervised counterparts under sparse configurations. This advan-
tage is likely due to its pre-training objective, which inherently involves reconstructing inputs from partial
observations, thereby fostering robustness to patch dropout. Second, we observe that under full-token condi-
tions, SPoT achieves marginally higher performance than both the supervised and self-supervised baselines.
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Table 5: Classification top-1 and kNN accuracies for supervised and and self-supervised models using
different token priors. We find that center-bias in spatial priors is beneficial in sparse regimes, while coverage
becomes more important as token budgets increase.

25 Tokens 49 Tokens 100 Tokens 196 Tokens

Model Prior Oracle Acc@1 kNN Acc@1 kNN Acc@1 kNN Acc@1 kNN

CLS-IN21k
ViT-B/16 Patch Grid 24.72 27.86 56.29 57.19 78.75 78.77 85.11 83.96
SPoT-B/16 Uniform 44.05 45.23 67.77 66.38 79.64 78.03 83.76 81.85
SPoT-B/16 Gaussian 45.22 45.27 68.64 66.96 79.75 77.74 83.45 81.48
SPoT-B/16 Sobol 43.67 46.48 69.02 68.60 81.63 79.35 84.66 82.62
SPoT-B/16 Isotropic 46.85 48.19 70.61 70.29 82.20 80.73 85.15 83.42
SPoT-B/16 Center 52.45 52.18 69.22 68.16 80.84 78.56 84.01 82.23
SPoT-B/16 Salient ✓ 55.71 56.65 72.89 72.38 79.91 80.56 84.56 82.59
SPoT-ON-B/16 Isotropic ✓ 81.70 70.65 94.28 88.58 95.97 92.92 96.12 93.52

CLS-IN1k
ViT-B/16 Patch Grid 9.24 12.05 41.05 44.38 71.22 71.41 79.14 77.64
SPoT-B/16 Uniform 29.87 33.88 60.64 60.84 74.44 73.18 79.38 77.36
SPoT-B/16 Gaussian 29.27 33.07 60.47 60.23 74.37 72.82 79.02 77.00
SPoT-B/16 Sobol 30.67 35.23 64.42 63.88 76.45 75.18 79.96 78.17
SPoT-B/16 Isotropic 33.52 37.84 66.18 66.25 77.58 76.29 80.61 79.04
SPoT-B/16 Center 39.91 42.47 63.04 62.65 75.41 73.63 79.32 77.71
SPoT-B/16 Salient ✓ 39.83 43.72 66.32 66.00 74.36 75.25 79.54 78.03
SPoT-ON-B/16 Isotropic ✓ 73.99 74.42 94.21 90.11 95.79 93.61 96.04 93.97

MAE-IN1k
ViT-B/16 Patch Grid 55.43 48.85 70.69 67.15 79.53 78.41 83.60 82.07
SPoT-B/16 Uniform 56.71 49.72 73.22 65.85 80.53 74.76 82.78 78.21
SPoT-B/16 Gaussian 57.58 49.49 72.51 65.59 80.31 74.52 82.55 77.90
SPoT-B/16 Sobol 60.62 53.54 75.71 68.71 82.19 76.24 83.51 79.09
SPoT-B/16 Isotropic 61.72 54.56 76.84 70.02 82.76 77.24 83.89 79.53
SPoT-B/16 Center 62.83 55.61 74.63 67.31 81.06 75.20 82.97 78.54
SPoT-B/16 Salient ✓ 66.13 60.80 77.10 72.24 81.46 77.25 81.64 79.13
SPoT-ON-B/16 Isotropic ✓ 90.93 79.73 94.87 87.87 96.09 90.76 96.24 91.28

This suggests that even in dense settings, additional gains can be realized by leveraging the flexibility in-
troduced by subpixel representations. Third, as the level of sparsity increases, SPoT consistently surpasses
all baselines, regardless of spatial prior. Notably, performance is further improved with priors that pro-
mote spatial coverage, compared to stochastic uniform sampling, which demonstrates the importance of an
appropriate token placement scheme under sparsity constraints.

In Figure 5 we show image throughput versus accuracy, comparing SPoT with the baselines across varying
sparsity levels. As sparsity increases, throughput improves significantly, albeit with an associated trade-off
in accuracy. Notably, SPoT achieves the most favorable trade-off, maintaining substantially more of the
full-model accuracy while enabling higher throughput than competing approaches. Further, we observe only
slight variation in throughput between the models at each sparsity level, indicating that SPoT incurs very
minimal computational overhead compared to baselines. We also include our oracle-guided variant SPoT-ON
in the figure, which illustrates a ceiling on achievable performance when placements are ideally sampled.

5.1 Robustness and Sensitivity Analysis

To thoroughly validate the semantic relevance of optimized subpixel token placements, we conduct tar-
geted robustness analyses. Specifically, we evaluate performance under intentionally adversarial condi-
tions—including inverse priors favoring irrelevant regions such as backgrounds or image boundaries, and
gradient ascent adversarially maximizing loss or randomized label assignments. Our results in Table 6
demonstrate substantial performance degradation in all these adversarial scenarios, strongly suggesting that
our token placement mechanism indeed leverages meaningful semantic cues rather than trivial spatial corre-
lations or easily exploitable priors.
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Figure 5: We show ImageNet1k accuracy vs. throughput with 5 models at four sparsity levels. The ceiling
denotes performance unlikely to be achieved given the intrinsic label noise in ImageNet (Beyer et al., 2020).
The gap highlights the margin between SPoT with optimal configuration and SPoT-ON, illustrating possible
performance gain through better token placement.

Table 6: Analysis on harmful spatial priors and adversarial oracles in sparse regimes. The background prior
samples from inverse saliency maps; the boundary prior samples with image edge bias. Ascent shows accuracy
under worst-case token placements, discovered via SPoT-ON. Label obfuscation optimizes placements for
randomized labels. Each case is compared with baseline SPoT performance using the isotropic prior—the
performance drop is shown to the right of each score.

Acc@1 (%) (25 Tokens)

Backbone Backgrd. Boundary Ascent Lab.Obf.

CLS-IN21k 40.80↓ 6.85 10.68↓ 36.17 13.75↓ 33.09 1.17↓ 45.69
CLS-IN1k 20.06↓ 13.46 4.15 ↓ 29.37 5.90 ↓ 27.82 2.68↓ 33.52

MAE-IN1k 31.89↓ 29.83 10.83↓ 50.89 16.54↓ 45.18 1.11↓ 60.61

Importantly, the gradient–ascent oracle still receives the correct labels, so its sharp accuracy collapse shows
that semantically aligned token positions are indispensable—simply keeping the right supervision is not
enough if the tokens are pushed onto irrelevant regions. In contrast, the near-chance performance under label-
obfuscation demonstrates that the model does not easily adapt to arbitrary image–label pairings, confirming
that our selector grounds predictions in genuine object evidence rather than flexible location–label shortcuts.
Background sampling leads to reduced performance; however, we posit that the token set still captures some
object edges, providing the model with useful information. This hypothesis is reinforced by the significantly
larger performance drop observed when sampling with a strong bias toward image boundaries. Adversarial
optimization shows a similarly extreme drop, indicating that good token placements are not trivial.

5.2 Retrofitting and Finetuning Details

Table 7 details the training configurations for the three backbone variants: CLS-IN1k, CLS-IN21k, and
MAE-IN1k. The official TIMM (Wightman, 2019) model card names are listed below each corresponding
subtable for reference. All protocols use isotropic sampling and run for 50 epochs on 224 × 224 images on
the ImageNet-1k dataset (Deng et al., 2009). Layer-wise learning rate decay (LLRD) is employed with a
slightly more aggressive parameter in the MAE retrofitting, while the MAE finetuning follows the original
protocol outlined by He et al. (2022), with minor exceptions2.

2Cosine warmup in lr-scheduler, starting from 1 × 10−7 with peak learning rate of 1 × 10−3, and gradient clipping set to 3.
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Table 7: Training protocols for retrofitting. We use the same training protocols as He et al. (2022) for
MAE finetuning.

(a) CLS-IN1k Retrofitting

config value

sampler isotropic
batch size 2048
epochs 50
dataset ImageNet1k
img.size 224 × 224
loss fn. CE (0.1 smooth.)
optimizer AdamW
momentum 0.9, 0.99
lr.sched. cos.decay (5 w.u.)
lr 6e−5
dropout path 0.1
opt. ϵ 1e−8
augment rrc / randaug(15, .5)
mixup α 0.8
cutmix α 1.0
llrd 0.65

vit_base_patch16_224.augreg_in1k

(b) CLS-IN21k Retrofitting

config value

sampler isotropic
batch size 2048
epochs 50
dataset ImageNet1k
img.size 224 × 224
loss fn. CE (0.1 smooth.)
optimizer AdamW
momentum 0.9, 0.99
lr.sched. cos.decay (5 w.u.)
lr 6e−5
dropout path 0.2
opt. ϵ 1e−8
augment rrc / randaug(15, .5)
mixup α 0.8
cutmix α 1.0
llrd 0.65

vit_base_patch16_224.augreg2_in21k_ft_in1k

(c) MAE-IN1k Retrofitting

config value

sampler isotropic
batch size 4096
epochs 50
dataset ImageNet1k
img.size 224 × 224
loss fn. MSE
optimizer AdamW
momentum 0.9, 0.95
lr.sched. cos.decay (5 w.u.)
lr 3e−3
dropout path 0
opt. ϵ 1e−8
augment rrc
mixup alpha 0.8
cutmix 1.0
llrd 0.75

mae_vit_base_patch16_in1k

Evaluation Protocol. Our evaluation protocol closely follows existing works (Oquab et al., 2024; He et al.,
2022; Zhou et al., 2022). We use bicubic interpolation and a crop ratio of 0.875 in our evaluations. All models
are trained with standard ImageNet normalization, noting that the TIMM baselines (Wightman, 2019) adopt
the convention of using a flat normalization of µRGB = σRGB = (0.5, 0.5, 0.5). Our kNN evaluation protocol
was adapted from Caron et al.’s (2021) work.

6 Related Work

Leveraging sparsity to reduce computational overhead is a well-established research direction. Previous work
introduced sparsity through masking during pre-training, in self-supervised (He et al., 2022) and language-
supervised contexts (Li et al., 2023). Liu et al. (2023) applied sparsity at the fine-tuning stage by initially
upsampling images and subsequently randomly dropping patches, thus enhancing efficiency and reducing
computational complexity. Distinct from training-centric sparsity approaches, our work induces sparsity
during inference by retrofitting ViTs with a subpixel tokenizer, significantly improving throughput. Another
line of research explores inference-time sparsity via selective pruning to either discard (Chen et al., 2023; Rao
et al., 2021; Yin et al., 2022) or merge (Bolya et al., 2023) tokens based on different heuristics. In contrast,
our approach achieves sparsity by sampling rather than selectively pruning tokens during inference.

Recently, other works have explored non-grid based tokenization. One interesting line of research
looks to leverage subobject tokenization, which extracts fine-grained segmentations as opposed to square
patches (Aasan et al., 2024; Chen et al., 2024). Other works apply learnable clustering into the transformer
architecture via cross-attention operators (Fan et al., 2024; van Steenkiste et al., 2024), while Nguyen et al.
(2025) proposed to tokenize each individual pixel. Deformable patches was first proposed in relation to object
detection (Xia et al., 2022), but was further extended to general purpose modeling in ElasticViT (Pardyl
et al., 2025), which proposed elastic windows as local augmentations in standard classification tasks. These
are defined as stochastic patch perturbations in scale, position, and erasure via patch dropout. Put simply,
ElasticViT relaxes the traditional patch grid of ViTs by randomly shifting, rescaling, and dropping patches
during training.

ElasticViT differs from SPoT in key aspects. First, we relax the discrete grid assumption not by perturb-
ing existing patch positions, but rather by directly sampling arbitrary continuous-valued points within the
image. Conversly, ElasticViT uses discrete pixel positions, and does not adapt a continuous subpixel ap-
proach. Second, we do not explicitly train our model to handle sparse inputs; instead, our method’s inherent
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Table 8: Comparing ElasticViT to SPoT in sparse regimes.
Acc@1 (%) / Number of Tokens

Model 39 59 78 98 118 137 157 176 196

ElasticViT 67.17 72.65 75.47 77.47 78.18 79.73 80.81 81.31 82.04
SPoT-MAE-IN1k 71.81 77.86 80.47 81.89 82.55 83.05 83.34 83.52 83.85

robustness to sparse token configurations naturally arises from training on continuously sampled points.
Nevertheless, comparing our method to ElasticViT is insightful, as their approach is explicitly trained to
handle continuous-valued positions and sparse token scenarios. Table 8 compares SPoT with ElasticViT’s
officially reported results, demonstrating that SPoT consistently outperforms ElasticViT across all evaluated
sparse configurations.

7 Conclusion

We proposed SPoT for extracting features at continuous subpixel positions, and used oracle-guided gradient
search to probe the nature of optimal token placements and ideal spatial sampling priors. Our case studies
showed that the flexibility of continuous off-grid placements improves performance out-of-the-box, especially
in sparse token budget settings. SPoT-ON provided an estimate of best-case performance from optimal
token placement. Although placements are guided via an oracle, these optimal features exist independently
of how they were discovered, revealing a performance gap that better informed priors could help bridge.
While we focused on analyzing the effects of subpixel tokenization under varying sparsity configurations
with different spatial priors, the development of learnable spatial priors is a next step towards narrowing
the oracle performance gap. We emphasize that our study with SPoT on different spatial priors focused on
classification on ImageNet, and optimal placements may vary for different datasets and downstream tasks.

By enabling continuous token positioning, SPoT facilitates gradient-based optimization of token placement,
which can be advantageous in resource-constrained environments where sparsification is beneficial. Although
we limit our scope to employ an oracle to determine optimal token placements, exploring oracle-independent
strategies represents a compelling direction for future research. Specifically, integrating efficient saliency-
driven objectives or heuristics during inference could potentially enhance throughput efficiency while main-
taining competitive performance compared to models utilizing a full token budget. Further improvements
may also be seen by allowing the model to adjust the patch window size dynamically during training. More-
over, while the scope of this work is towards modeling in sparse regimes, our results indicate that continuous
subpixel token placements provide a novel research direction for ViTs on a more general level.
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