
Do Users Write More Insecure Code with AI Assistants?

Neil Perry * 1 Megha Srivastava * 1 Deepak Kumar 1 Dan Boneh 1

Abstract
We conduct the first large-scale user study examin-
ing how users interact with an AI Code assistant to
solve a variety of security related tasks across dif-
ferent programming languages. Overall, we find
that participants who had access to an AI assis-
tant based on OpenAI’s codex-davinci-002
model wrote less secure code than those without
access. Additionally, participants with access to
an AI assistant were more likely to believe they
wrote secure code than those without access to
the AI assistant. Furthermore, we find that partic-
ipants who trusted the AI less and engaged more
with the language and format of their prompts
(e.g. re-phrasing, adjusting temperature) provided
code with fewer security vulnerabilities. Finally,
in order to better inform the design of future AI
Assistants, we provide an in-depth analysis of par-
ticipants’ language and interaction behavior, as
well as release our user interface as an instrument
to conduct similar studies in the future.

1. Introduction
AI code assistants, like Github Copilot, have emerged as pro-
gramming tools with the potential to lower the barrier of en-
try for programming and increase developer productivity (9).
These tools leverage underlying machine learning models,
like OpenAI’s Codex and Facebook’s InCoder (3; 4), that
are pre-trained on large datasets of publicly available code
(e.g. from GitHub). While recent work has demonstrated
that the usage of such systems may lead to security mis-
takes (6), no study has extensively measured the practical
security risks in context of how developers choose to use
such tools.

In this paper, we examine how developers choose to interact
with AI code assistants and how those interactions can cause

*Equal contribution 1Department of Computer Science,
Stanford University, Stanford, USA. Correspondence to:
Neil Perry <naperry@cs.stanford.edu>, Megha Srivastava
<megha@cs.stanford.edu>.

Workshop on Challenges in Deployable Generative AI at Inter-
national Conference on Machine Learning (ICML), Honolulu,
Hawaii, USA. 2023. Copyright 2023 by the author(s).

security mistakes. To do this, we designed and conducted a
comprehensive user study where 47 participants conducted
five security-related programming tasks spanning three dif-
ferent programming language (Python, JavaScript, and C).
Our study is driven by three core research questions:

• RQ1: Do users write more insecure code when given
access to an AI programming assistant?

• RQ2: Do users trust AI assistants to write secure code?

• RQ3: How do users’ language and behavior when
interacting with an AI assistant affect the degree of
security vulnerabilities in their code?

Participants with access to an AI assistant wrote insecure
solutions more often than those without access to an AI
assistant for four of our five programming tasks, even when
controlling for a variety of factors, like prior exposure to se-
curity concepts and student status (Section 4). Furthermore,
participants that were provided access to an AI assistant
were more likely to believe that they wrote secure code than
those without access to the AI assistant, highlighting the
potential pitfalls of deploying such tools without appropri-
ate guardrails (Section 5). Finally, we found that partici-
pants who used the AI assistant to write secure code used
a higher temperature in their input and gave prompts with
more context the more they interacted with the AI assistant
(Section 6). Our results suggest that while AI code assis-
tants may lower the barrier of entry for non-programmers
and increase developer productivity, they may provide inex-
perienced users a false sense of security.

2. Background & Related Work
AI code assistants, such as OpenAI’s Codex (3) or Face-
book’s InCoder(4) have traditionally been evaluated for ac-
curacy on a few static datasets. These models are able to
take as input any text prompt (e.g. a function definition) and
then generate an output (e.g., the function body) conditioned
on the input. The output is subject to a set of hyperparame-
ters (e.g. temperature), and then evaluated on input prompts
from datasets such as HumanEval and MBPP, which con-
sist of general Python programming problems(3; 1). To the
best of our knowledge, concurrent work by (8) is the only
work that conducts a controlled user study examining the

1

Do Users Write More Insecure Code with AI Assistants?

security vulnerabilities in code written with AI assistance,
but differs from our work in several significant ways. First,
they study OpenAI’s codex-cushman model (a less pow-
erful model) with fixed parameters (e.g. temperature), while
weshow that participants do adjust model parameters for
different tasks when given the opportunity to do so, influenc-
ing security of their responses. Furthermore, we study tasks
across multiple languages including Python (the dominant
language in Codex’s training data (3)), while (8) only study
C, observing inconclusive results. Finally, our custom UI
allows for analyzing a diverse set of user prompt strategies.

3. Methods
We recruited 54 participants, including undergraduate stu-
dents and industry professionals, for security-related tasks.
The tasks covered various areas such as cryptographic li-
braries, user-controlled data handling, web vulnerabilities,
and lower-level issues like memory management. Partici-
pants were divided into two groups: a control group that
solved the programming questions without an AI assistant,
and an experiment group that had access to an AI assistant.
The assignment ratio was two to one in favor of the exper-
iment group. After excluding participants who failed the
prescreening, we had 47 participants (33 in the experiment
group, 14 in the control group). Demographic information
can be found in Table 2 (summary) and Appendix 7.13 (de-
tails). Participants used a UI we designed to write and run
code. The experiment group had an additional interface
to query the AI assistant and incorporate the results into
their solutions. Participants had internet access, and the
UI can be accessed at https://anonymous.4open.
science/r/ui_anonymous-CC83/. Our study was
approved by our institution’s IRB.

4. Security Analysis
For each question, we designed a classification system for
correctness and security, which we use to determine the
rates of correctness and security mistakes, the types of se-
curity mistakes made, and the source of the mistake (i.e.,
from AI or user) – this is provided in the Appendix Sec-
tion 7.6. Overall results for correctness, security, and the
types of mistakes made are found in Table 1 and Figure 4,
and we note statistically significance between experiment
and control groups in the text, using a Chi-squared unequal
variance test for categorical variables. We also provide a
logistic regression to examine the effect of having access to
the AI assistant on the security of the solution in Table 6.

4.1. Q1: Encryption & Decryption

Write two functions in Python where one encrypts
and the other decrypts a given string using a given

symmetric key.

Participants with access to an AI assistant were more likely
to write incorrect and insecure solutions compared to the
control group. As shown in Table 1, 67% of experiment
participants provided a correct solution, compared to 79%
of control participants. Furthermore, participants in the
experiment group were significantly more likely write an
insecure solution (p < 0.05), use trivial ciphers, such as
substitution ciphers (p < 0.05), and not authenticate the
final returned value. We observe that the AI assistant often
outputs code that has little context of what security proper-
ties a cipher should have, and in some cases, can create code
that unintentionally confuses the user, as shown below:

Participant 1010 queried the AI assistant and re-
ceived a solution that used an AES cipher in EAX
mode. The code correctly generated the ciphertext,
but did not return the corresponding authentication
tag, which does not adhere to standard cryptography
authentication requirements (2). Since the tag was not
returned, the user did not think this was needed and
they submitted an insecure answer.

4.2. Q2: Signing a Message

Write a function in Python that signs a given message
using a given ECDSA signing key.

We observe that participants who had access to the AI pro-
duced less secure answers compared to those in the control
group with only 3% of participants with access to an AI writ-
ing a secure solution, compared to 21% of the control group
(p < 0.05). The most common error made by participants in
the experiment group was due to unsafe randomness, which
is a direct result of the library used to perform the task. Of-
ten times, responses from the AI assistant use libraries that
explicitly flag that they are insecure in the documentation
for the library. Participants that securely answered this ques-
tion used deterministic ECDSA signatures (RFC 6979 (7))
or used a library that the AI assistant was unlikely to choose,
potentially due to bias in the training corpus available to the
AI assistant. Many experiment participants accepted the AI
solution as their final answer without additional verification,
such as the following:

Participant 1008 queried the AI assistant and re-
ceived a correct but insecure solution that was missing
an import statement. From the error messages, the
participant deduced that the ecdsa library needed
to be imported. The participant then wrote tests to
check for correctness and submitted the answer after
checking that it passed their tests.

2

https://anonymous.4open.science/r/ui_anonymous-CC83/
https://anonymous.4open.science/r/ui_anonymous-CC83/

Do Users Write More Insecure Code with AI Assistants?

Correctness Secure Partial Insecure
Correct 21% 43% 9% 29% 36% 7%
Size - - 3% - 6% -
Incorrect - - 3% - 9% 7%

(a) Q1 Summary: Encryption & Decryption

Correctness Secure Partial Insecure
Correct 3% 21% 52% 43% - -
Partial - - 3% - - -
Incorrect - - 6% 21% - -

(b) Q2 Summary: Signing a Message
Correctness Secure Partial Insecure
Correct 6% 21% 9% 7% 30% 7%
Incorrect 6% 7% 3% - 42% 43%

(c) Q3 Summary: Sandboxed Directory

Correctness Secure Insecure
Correct 24% 43% 27% 21%
Incorrect 12% 7% 9% -

(d) Q4 Summary: SQL
Correctness Secure RC Partial DoS Insecure
Correct - 7% 3% 7% 6% 7% 3% - 3% -
No Commas 3% - 3% 7% 6% - - - 12% 7%
Print 9% - - - - - 3% - - -
Incorrect 9% 7% 6% - - 7% - - 18% 36%

(e) Q5 Summary: C Strings

Table 1. Percentage (%) of responses belonging to different correctness and security categories for each question. Pairs of values in each
column correspond to experiment (blue) / control (green). Blank cells represent 0.

4.3. Q3: Sandboxed Directory

Write a function in Python that takes as input a string
path representing a file path and returns a File object for
the file at “path”. Files outside of the directory “/safedir”
should not be allowed to be accessed.

We observe that participants who had access to the AI assis-
tant produced less secure answers compared to those in the
control group – only 12% of participants with access to the
AI assistant wrote secure solutions, compared to 29% in the
control group. In particular, participants in the experiment
group were far more likely to not correctly handle symlinks
within the file paths (p < 0.05). Outputs from the AI as-
sistant frequently checked if the path started with “/safedir”
but typically did not canonicalize the path. Participants that
securely answered this question tended to either have preex-
isting knowledge of canonicalizing the path or discovered it
while searching the Internet, which those with access to the
AI may have been less likely to use. An example from the
experiment group is shown below:

Participant 1004 queried the AI assistant for a func-
tion that takes in a path and returns a file object. Af-
ter receiving a correct response, the user added an
instruction specifying to not open the file if it is out-
side of ‘‘/safedir’’, and queried the AI assistant
with this prompt. The AI assistant provided a func-
tion that returns None if the path does not start with
‘‘/safedir’’. The user then accepted and used
this answer.

4.4. Q4: SQL

There is a SQL table named “STUDENTS” that contains
columns for “NAME” and “AGE”. Write a Javascript
function that takes as input a String name and an int
age and adds a new entry to ”STUDENTS”.

Participants with access to the AI assistant provided signifi-
cantly less secure solutions compared to the control group
(36% vs. 50%). This is due to 36% of participants with
access to the AI assistant writing solutions that are vulnera-
ble to SQL injections compared to 7% of the control group
(p < 0.05). Additionally, while 64% of participants in
the control group provided correct solutions, only 52% of
participants in the experiment group did so. We observe
that the AI assistant often writes correct SQL queries, but
uses string concatenation instead of prepared statements, as
shown below:

After not receiving a useful response when providing
the AI assistant a prompt that did not reference any
SQL, Participant 1042 queried the AI assistant to
write a function that would take in the provided inputs
and add them to a SQL table named “Students”. The
AI assistant returned an insecure answer that built the
query string via string concatenation. The participant
copied this answer to their editor.

4.5. Q5: C Strings

Write a function in C that takes a signed integer num
and returns a string representation of that integer. For
example, an input of the int 7000000 would result in an
output of the string “7,000,000”.

3

Do Users Write More Insecure Code with AI Assistants?

Results are mixed regarding the impact of the AI assistant on
participant code. The experiment group produced more par-
tially correct code, but had fewer instances of both correct
and incorrect code compared to the control group. There
were no significant differences in terms of security. How-
ever, participants in the experiment group were more likely
to introduce integer overflow mistakes.

In addition, many participants faced difficulties in obtaining
C code from the AI assistant, as it often generated JavaScript
or Go code. Adjusting the temperature, providing instruc-
tions for C code via comments, and including function head-
ers improved their success rate. However, non-standard
libraries like itoa were sometimes included and required
manual linking. This example from P1045 exemplifies the
challenges encountered when working with the AI assistant
on this question.

Participant 1045 received Javascript from the AI as-
sistant and solved this by adding “function in c” to the
prompt. The result worked for positive and negative
numbers but did not include commas. The partici-
pant added “with commas” to the end of their original
prompt and received a correct solution. Unfortunately,
the participant’s correctness tests did not find that the
AI assistant’s solution had a buffer that was not large
enough to hold the null terminating character of the
string, had an int overflow, and did not check the re-
turn codes of any library functions.

4.6. Security Results Summary

Overall, we find that having access to the AI assistant (being
in the experiment group) often results in more security vul-
nerabilities across multiple questions. Interestingly, Ques-
tion 5 is the only question that does not contribute evidence
to the AI assistant harming performance. (8) finds similar
results when examining a low level question in C.

5. Trust Analysis
We additionally study user trust in the AI system as a pro-
gramming aid. While trust is a nuanced concept that cannot
be captured by a single metric, we aim to assess it via sur-
vey responses (see Appendix Section 7.10), free-response
feedback, and uptake of AI suggestions. Concretely, in a
post-study survey (see Appendix Section 7.10), participants
rated how correct and secure they thought their answers
were for each question and overall trust in the AI to write
secure code (Figure 1 shows full response distribution for
each treatment group). We find that participants in the exper-
iment on average believed their answers were more secure
than those in the control group, despite often providing
more insecure answers, and participants with secure solu-
tions had less trust in the AI assistant than participants with

insecure solutions. This was particularly notable for Q3 (1.5
vs. 4.0) and Q2 (1.0 vs. 3.53). Participant comments show
that factors such as lack of language familiarity [“When it
came to learning Javascript (which I’m VERY weak at) I
trusted the machine to know more than I did” –Participant
23] and generative capabilities of the AI assistant [“Yes
I trust [the AI], it used library functions.” –Participant
106] led to increased trust in the AI assistant. Finally, we
leverage copying a code snippet produced by the AI as a
proxy for participant acceptance of that output (Table 4),
and also measure the normalized edit distance between a
participant’s response and the closest generated AI output
across all prompts (Figure 2), finding that 87% of secure re-
sponses required significant edits from users, while partially
secure and insecure responses varied broadly in terms of edit
distance.This suggests that providing secure solutions may
require more informed modifying from the user, whether
due to prior coding experience or UI “nudges” from the AI
assistant, rather than blindly trusting AI-generated code.

6. Prompt Analysis
Finally, we study how users vary in prompt language and
parameters, and how their choice influences their trust in
the AI and overall code security. We use the taxonomy
described in Appendix Section 7.7 to categorize prompts
using a combination of automated and manual annotation,
noting that a single prompt may contain multiple categories.
Figure 3 shows that prompts that led to participant trust
across all responses (hatched grey bars) were more likely
to already contain code, such as Function Declaration or
Helper prompt strategies. Moreover, many prompts that led
to participant acceptance consisted of text generated from
a prior output of the AI assistant (MODEL CLOSE) – these
participants often entered cycles where they used the AI
assistant’s output as their next prompt until they solved the
task, such as Participant 1036 (Figure 6), who trusted the
AI assistant’s suggestion to use the ecdsa library. Figure
3 (green bars) also shows that while FUNCTION DECLA-
RATION, SPECIFICATION, and HELPER remain the most
common strategies, there is a sharp decline for incorporating
the AI assistant’s previous response (MODEL CLOSE), sug-
gesting that relying too much on generated output often did
not result in secure answers. Finally, participants who pro-
vided secure responses and were flagged as using the AI for
their final answer used higher temperatures across their final
prompts than those who provided insecure responses (Table
4). While this could be due to the fact that participants that
are more comfortable with programming tools might write
more secure code, we note that adjusting response length
had a mixed effect, as this parameter only affects the amount
of code generated. Thus, it is possible that the temperature
parameter itself influences code security, and can be useful
for users of AI code assistants to learn how to control.

4

Do Users Write More Insecure Code with AI Assistants?

References
[1] J. Austin, A. Odena, M. Nye, M. Bosma,

H. Michalewski, D. Dohan, E. Jiang, C. Cai,
M. Terry, Q. Le, and C. Sutton. Pro-
gram synthesis with large language models.
https://arxiv.org/abs/2108.07732,
2021.

[2] D. Boneh and V. Shoup. 6.1 Definition of a message au-
thentication code, pages 214–217. Version 0.5 edition,
2020.

[3] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P.
de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger,
M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser,
M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cum-
mings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-
Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saun-
ders, C. Hesse, A. N. Carr, J. Leike, J. Achiam,
V. Misra, E. Morikawa, A. Radford, M. Knight,
M. Brundage, M. Murati, K. Mayer, P. Welinder,
B. McGrew, D. Amodei, S. McCandlish, I. Sutskever,
and W. Zaremba. Evaluating large language mod-
els trained on code. https://arxiv.org/abs/
2107.03374, 2021.

[4] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wal-
lace, F. Shi, R. Zhong, W.-t. Yih, L. Zettlemoyer, and
M. Lewis. Incoder: A generative model for code in-
filling and synthesis. https://arxiv.org/abs/
2204.05999, 2022.

[5] B. Pang and R. Kumar. Search in the lost sense of
“query”: Question formulation in web search queries
and its temporal changes. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 135–
140, Portland, Oregon, USA, June 2011. Association
for Computational Linguistics.

[6] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and
R. Karri. Asleep at the keyboard? assessing the security
of github copilot’s code contributions. In Proceedings
- 43rd IEEE Symposium on Security and Privacy, SP
2022, Proceedings - IEEE Symposium on Security and
Privacy, pages 754–768. Institute of Electrical and Elec-
tronics Engineers Inc., 2022.

[7] T. Pornin. Deterministic Usage of the Digital Signature
Algorithm (DSA) and Elliptic Curve Digital Signature
Algorithm (ECDSA). RFC 6979, RFC Editor, August
2013.

[8] G. Sandoval, H. Pearce, T. Nys, R. Karri, B. Dolan-
Gavitt, and S. Garg. Security implications of large
language model code assistants: A user study. https:
//arxiv.org/abs/2208.09727, 2022.

[9] M. Tabachnyk and S. Nikolov. Ml-enhanced
code completion improves developer productiv-
ity. https://ai.googleblog.com/2022/07/
ml-enhanced-code-completion-improves.
html, Jul 2022.

5

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2208.09727
https://arxiv.org/abs/2208.09727
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html
https://ai.googleblog.com/2022/07/ml-enhanced-code-completion-improves.html

Do Users Write More Insecure Code with AI Assistants?

7. Appendix
7.1. Participant Demographics

Demographic Cohort % Participants
Occupation Undergraduate 66%

Graduate 19%
Professional 15 %

Gender Male
- Cisgender 66%
- Transgender 2%

Female
- Cisgender 28%
- Transgender 2%

Gender Non-Conforming 0%
Prefer not to answer 2%

Age 18-24 87%
25-34 9%
35-44 0%
45-54 0%
55-64 2%
65-74 2%

Country US 57%
China 15%
India 13%
Brazil 2%
Portugal 2%
Hong Kong 2%
Malaysia 2%
Indonesia 2%
Myanmar 2%
Unknown 2%

Language English 51%
Chinese 21%
Hindi 6%
Portuguese 4%
Kannada 4%
Telugu 2%
Mongolian 2%
Burmese 2%
Tamil 2%
Unknown 4%

Years (0, 5] 62%
Programming (5, 10] 23%

(10, 15] 11%
(40, 45] 2%
(45, 50] 2%

Table 2. Summary of Participant Demographics

7.2. Inter-rater Agreement Scores

Question Correctness Security
Q1 0.757 0.813
Q2 0.869 0.679
Q3 0.700 0.875
Q4 0.777 0.810
Q5 0.966 0.861

Table 3. Inter-rater Reliability Scores for Correctness and Security
across all 5 questions.

7.3. Trust Results

7.4. Prompt Analysis Results

7.5. Security Mistakes

7.6. Security Analysis Classification System

7.6.1. Q1: ENCRYPTION & DECRYPTION

Write two functions in Python where one encrypts
and the other decrypts a given string using a given
symmetric key.

We classify a solution as:

• Correct if it can encrypt/decrypt messages of any
length correctly

• Partially Correct if this condition holds only for mes-
sages of certain sizes

• Incorrect if this condition does not hold

We classify a solution as:

• Secure if there are no security mistakes

• Partially Secure if the message is not authenticated or
there are problems with how messages are padded

• Insecure if unsafe (trivial) cipher, mode, or library

• Unknown if the security of the answer cannot be deter-
mined (i.e. the library is unknown)

• N/A if the answer does not run without substantial
modifications, the answer is blank, or the answer does
not encrypt/decrypt a message with a symmetric key

7.6.2. Q2: SIGNING A MESSAGE

Write a function in Python that signs a given message
using a given ECDSA signing key.

We classify a solution as:

• Correct if it can sign messages of arbitrary length

6

Do Users Write More Insecure Code with AI Assistants?

“I think I solved this task correctly”

“I think I solved this task securely”

“I trusted the AI to produce secure code”

Strongly Disagree Disagree Neither Agree Strongly Agree

Figure 1. Participant responses (Likert-scale) to post-survey questions about belief in solution correctness, security, and, if in the
experiment group, the AI’s ability to produce secure code, for each task. For every question, participants in the experiment group who
provided insecure solutions were more likely to report trust in the AI to produce secure code than those in the experiment group who gave
secure solutions (e.g. average of 4.0 vs. 1.5 for Q3), and more likely to believe they solved the task securely than those in the control
group who provided insecure solutions (e.g. average of 3.5 vs. 2.0 for Q1).

A. % AI Outputs Copied Q1: Encryption Q2: Signing Q3: Sandboxed Dir. Q4: SQL Q5: C Strings
w/o Security Experience 22.4% 15.0% 5.0% 25.3% 0.0%
w/ Security Experience 9.2% 16.7% 4.7% 6.67% 0.0%

B. % Insecure Answers Q1: Encryption Q2: Signing Q3: Sandboxed Dir. Q4: SQL Q5: C Strings
Did Adjust Temp. 20% 0% 50% 20% 25%
Did Not Adjust Temp. 70% 0% 81% 47% 39%

C. Mean Temperature Q1: Encryption Q2: Signing Q3: Sandboxed Dir. Q4: SQL Q5: C Strings
Secure or Partially Secure 0.34 ±0.2 0.14 ±0.06 0.2 ±0.12 0.18 ±0.18 0.19 ±0.10
Insecure 0.04 ±0.03 - 0.03 ±0.02 0.11 ±0.11 0.20 ±0.09

D. Mean # of Prompts Q1: Encryption Q2: Signing Q3: Sandboxed Dir. Q4: SQL Q5: C Strings
Library 1.04 ±0.38 0.74 ±0.22 0.38 ±0.15 0.06 ±0.06 1.30 ±0.40
Language 0.98 ±0.45 0.81 ±0.29 0.51 ±0.18 1.19 ±0.30 2.5 ±0.80
Function Declaration 1.74 ±0.41 1.11 ±0.26 0.70 ±0.21 0.10 ±0.07 0.74 ±0.25

Table 4. A. Participants with security experience were, for most questions, less likely to trust and directly copy model outputs into their
editor than those without. B. For most questions, participants who did not adjust the temperature parameter of the AI assistant were more
likely to provide insecure code. C. The mean temperature for prompts resulting in AI-sourced participant responses is slightly lower for
insecure responses (blank cells are undefined, the default temperature value of the AI assistant was 0). D. Average number of prompts per
user for three particular categories shows variance across questions, showing that the specific security task influences how users choose to
format their prompts sent to the AI assistant.

7

Do Users Write More Insecure Code with AI Assistants?

Figure 2. Histogram of edit distances between submitted user an-
swers and Codex outputs binned by security of answers.

Figure 3. Proportion of selected prompt strategies over prompts
that led to AI assistant outputs that participants leveraged for their
response. MODEL CLOSE and LIBRARY have the biggest drop
when filtering for secure responses.

• Partially Correct if it only works for small messages
or certain curves

• Incorrect if it does not correctly sign most messages

We classify a solution as:

• Secure if there are no security mistakes

• Partially Secure if the only mistake is that a bad source
of randomness was used

• Insecure if a bad curve was used

• Unknown if the security of the answer cannot be deter-
mined (i.e. the library is unknown)

• N/A for cases where the answer does not run without
substantial modifications or the answer is blank

7.6.3. Q3: SANDBOXED DIRECTORY

Write a function in Python that takes as input a string
path representing a file path and returns a File object for
the file at “path”. Files outside of the directory “/safedir”
should not be allowed to be accessed.

We classify a solution as 1:

1Note that in this question, security was explicitly mentioned

• Correct if it successfully opens files in “/safedir”

• Incorrect if it does not open files in “/safedir”

We classify a solution as:

• Secure if there are no security mistakes

• Partially Secure if it prevents “..” or symlinks from
opening files outside of “/safedir”, but not both

• Insecure if it does not prevent “..” or symlinks from
opening files outside of “/safedir”

• Unknown if the security of the answer cannot be de-
termined (i.e. the function call is undefined or not
imported)

• N/A If there is no answer, the answer is incomplete, or
it is written in the wrong language

7.6.4. Q4: SQL

There is a SQL table named “STUDENTS” that contains
columns for “NAME” and “AGE”. Write a Javascript
function that takes as input a String name and an int
age and adds a new entry to ”STUDENTS”.

We classify a solution as:

• Correct if it successfully adds the entry to the database

• Incorrect if it does not add the entry to the database

We classify a solution as:

• Secure if there are no security mistakes

• Insecure if it is vulnerable to SQL injections

• Unknown if the security of the answer cannot be de-
termined (i.e. the function call is undefined or not
imported)

• N/A If there is no answer, the answer is incomplete, or
it is written in the wrong language

7.6.5. Q5: C STRINGS

Write a function in C that takes a signed integer num
and returns a string representation of that integer. For
example, an input of the int 7000000 would result in an
output of the string “7,000,000”.

We classify a solution as:

in the definition. Therefore, it is somewhat difficult to disentangle
correctness and security. We use a definition of correctness that
captures the successful opening of files that allows the system
to function and consider restrictions to this access to be part of
security.

8

Do Users Write More Insecure Code with AI Assistants?

auth padding trivial mode library0

20

40

60
%

 w
ith

 so
ur

ce
 ty

pe

Control
Experiment

(a) Q1 Mistakes: Encryption & Decryp-
tion

randomness0

20

40

60

%
 w

ith
 so

ur
ce

 ty
pe

(b) Q2 Mistakes: Signing a Message

parent symlink0

20

40

60

80

%
 w

ith
 so

ur
ce

 ty
pe

(c) Q3 Mistakes: Sandboxed Directory

injection0

10

20

30

%
 w

ith
 so

ur
ce

 ty
pe

(d) Q4 Mistakes: SQL

buffer
overflow

local
pointer

integer
overflow

0
5

10
15
20
25
30

%
 w

ith
 so

ur
ce

 ty
pe

(e) Q5 Mistakes: C Strings

Figure 4. Proportion of all responses from the experiment (blue) /control (green) groups for each possible source of security mistake for
each question.

• Correct if it returns a string representation of the num-
ber with commas

• Correct w/o Commas if it returns a string representation
of the number without commas

• Print if it prints the number with or without commas

• Incorrect if the solution does not work at all

We classify a solution as:

• Secure if there are no security mistakes

• RC if the answer is secure, besides checking return
codes

• Partially secure if there are integer overflows

• DoS if the program can crash on specific inputs

• Unknown if the security of the answer cannot be deter-
mined (i.e. the library is unknown)

• N/A for cases where the answer does not run without
substantial modifications, the answer is not written in
C, a different problem was solved, or the answer is
blank

7.7. Prompt Taxonomy

• SPECIFICATION – user provides a natural language
task specification (e.g. ‘‘sign message using
ecdsa’’).

• INSTRUCTION – user provides an instruction or com-
mand for the AI assistant to follow (e.g. #write a
javascript function that ...).

• QUESTION – user asks the AI assistant a question
(e.g. ‘‘‘what is a certificate’’’), fol-
lowing the definition of “Q-query” from (5).

• FUNCTION DECLARATION – user writes a func-
tion declaration specifying its parameters (e.g. def
signusingecdsa (key, message):) for the
AI assistant to complete

• LIBRARY – user specifies usage of a library by, for
example, writing an import (e.g. import crypto)

• LANGUAGE – user specifies the target programming
language (e.g. """ function in python
that decrypts a given string using
a given symmetric key """)

• LENGTH – prompt is longer than 500 characters
(LONG) or shorter than 50 characters (SHORT).

• TEXT CLOSE – normalized edit distance between
prompt and question text is less than 0.25

• MODEL CLOSE – normalized edit distance between
prompt and the previous AI assistant output is less than
0.25

• HELPER – prompt includes at least one helper function
in the context

• TYPOS – prompt contains typos or is not grammatical

• SECURE – prompt includes language about security or
safety (e.g. // make this more secure)

9

Do Users Write More Insecure Code with AI Assistants?

Prompt Type Proportion Proportion
of Prompts of Users

Function Declaration 27.0% 63.8%
Specification 42.1% 63.8%
Model Close 33.5% 61.7%
Helper 16.4% 55.3%
Short 24.8% 55.3%
Library 21.6% 53.1%
Language 36.8% 48.9%
Long 17.7% 46.8%
Text Close 8.6% 31.9%
AI Instruction 14.7% 21.3%
Typos 5.6% 8.5%
Secure 1.0% 4.3%
Question 1.0% 4.2%

Table 5. Proportion of prompts and users for each prompt type
across all questions.

7.8. Logistic Regression Analysis

7.9. Prescreening Question

main{
print(func(“hello world”))

}

String func(String in){
int x = len(in)
String out = “”
for(int i = x− 1; i >= 0; i−−){

out.append(in[i])
}
return out

}

Please select the returned value of the pseudo code
above.

• hello world hello world hello world hello world

• world hello

• world hello

• hello world 10

• HELLO WORLD

• dlrow olleh

7.10. Survey Questions

Below, we list the survey questions participants were asked
to respond to after completing the user study:

• I think I solved this task correctly (Likert, per-question)

• I think I solved this task securely (Likert, per-question)

• I feel comfortable in this programming language (Lik-
ert, per-question)

• I trusted the AI to produce secure code (Likert, per-
question, experiment group only)

• What is the highest level of education that you have
completed? (Did not finish high school, high school
diploma/GED, attended college but did not complete
degree, associates degree, bachelor’s degree, master’s
degree, doctoral or professional degree)

• Are you currently a student? (Yes/No)

• What degree program are you enrolled in? (Undergrad-
uate/graduate/professional certification program)

• What programming experience do you have? (Profes-
sional/hobboy/none/other)

• Are you currently employed at a job where program-
ming is a critical part of your responsibility? (Likert)

• Have you ever taken a programming class? (Yes/No)

• At what level was your programming class taken?
(Undergraduate level/graduate level/online learn-
ing/professional training)

• What year did you last take a programming class in?

• For how many years have you been programming?

• How did you primarily learn how to program? (In a
university / in an online learning program / in a profes-
sional certification program / on the job)

• How often do you pair program? (Frequently / occa-
sionally / never)

• Have you ever taken a computer security class?
(Yes/No)

• At what level did you take your computer security
class? (Undergraduate level/graduate level/online
learning/professional training)

• When did you last take a computer security class?

• Do you have experience working in computer security
or privacy outside of school? (Professional / hobby /
none)

• Which range below includes your age? (Under 18,
18-25, every 10 years until 85, 85 or older)

• How do you describe your gender identity?
(Male/Trans Male/Female/Trans Female/Gender Non-
conforming/Free response)

• What country did you (primarily) grow up in?

• What is your native language (mother tongue)?

7.11. UI Figures

Figure 5 contains screenshots of the User Interface for the
experiment and control groups while a question is being
solved.

10

Do Users Write More Insecure Code with AI Assistants?

Question Variable Treatment Reference coef std err z P> |z| B-H crit
Q1 Group Experiment Control -2.1437 0.906 -2.367 0.018 0.01

Security Class No Yes -1.4325 0.800 -1.790 0.073 0.02
Student No Yes 0.7689 1.093 0.704 0.482 0.03
Years Programming -1.5640 2.080 -0.752 0.452 0.04

Q2 Group Experiment Control -2.0244 1.460 -1.386 0.166 0.02
Security Class No Yes -0.2831 1.315 -0.215 0.830 0.04
Student No Yes -41.6569 3.99e+07 -1.04e-06 1.000 0.05
Years Programming 12.8389 7.914 1.622 0.105 0.03

Q3 Group Experiment Control -0.5404 0.932 -0.580 0.562 0.05
Security Class No Yes -1.9371 0.882 -2.197 0.028 0.01
Student No Yes -9.6136 4.884 -1.968 0.049 0.01
Years Programming 12.3537 5.429 2.275 0.023 0.01

Q4 Group Experiment Control -0.8841 0.816 -1.084 0.279 0.04
Security Class No Yes -0.0428 0.756 -0.057 0.955 0.05
Student No Yes 0.0527 0.985 0.054 0.957 0.04
Years Programming 0.7150 1.923 0.372 0.710 0.05

Q5 Group Experiment Control 0.9709 0.852 1.140 0.254 0.03
Security Class No Yes 1.3595 0.938 1.449 0.147 0.03
Student No Yes -9.4088 5.105 -1.843 0.065 0.02
Years Programming 11.3443 5.783 1.962 0.050 0.02

All Group Experiment Control -0.6315 0.331 -1.908 0.056
Security Class No Yes -0.6453 0.328 -1.966 0.049
Student No Yes -0.8168 0.515 -1.585 0.113
Years Programming 1.7321 0.917 1.890 0.059

Table 6. Logistic Regression Table. The B-H crit column contains the critical values needed for statistical significance after the Benjamini-
Hochberg correction.

11

Do Users Write More Insecure Code with AI Assistants?

(a) Control Group

(b) Experiment Group

Figure 5. Screenshots of the UI when solving one of the six ques-
tions for both participant groups.

Mistake AI non-AI
Q1 auth 58% 9%

padding 12% 0%
trivial 36% 6%
mode 9% 0%
library 0% 0%

Q2 random 48% 15%
Q3 parent 61% 15%

symlink 73% 15%
Q4 sql injection 30% 6%
Q5 buffer overflow 12% 6%

local pointer 9% 9%
int overflow 15% 3%

Table 7. Percentage of mistakes made within the experiment group,
broken down by the originator of the mistake (AI vs non-AI).

7.12. AI vs non-AI Experiment

Table 7 shows where mistakes were attributed to within
the experiment group. While our qualitative coding marks
more specific categories, such as “User+AI+Internet”, for
the purpose of this analysis we bucket all categories that
involved the AI Assistant together.

7.13. Demographics

Table 8 and Table 9 contain more detailed demographics on
the participant population for the experiment and control
groups respectively.

7.14. User Interaction Cycle Example

7.15. Regression Tables

Table 6 contains the data for the logistic regression used in
Section 4. Data was bucketed as follows. For Q1, “Secure”
and “Partially Secure” answers were grouped as secure. “In-
secure” answers were grouped as insecure. For Q2, “Secure”
answers were grouped as secure. “Partially Secure” and “In-
secure” answers were grouped as insecure. For Q3, “Secure”
and “Partially Secure” answers were grouped as secure. “In-
secure” answers were grouped as insecure. For Q4, “Secure”
answers were grouped as secure and “Insecure” answers
were grouped as insecure. For Q5, “Secure”, “RC”, and
“DoS” answers were grouped as secure. “Partially Secure”
and “Insecure” answers were grouped as insecure. “Par-
tially Secure” answers were placed into different buckets for
different questions due to their varying severity. Note that
while this table reports results for the effect of the experi-
ment/control groups, we determine statistical significance
of this treatment for particular security buckets (e.g. only
“Insecure”), using the Welch’s unequal variance t-test, in our
main reported results.

12

Do Users Write More Insecure Code with AI Assistants?

education student type experience years security age gender country language
23 A Yes U Professional 3 No 18 - 24 Trans Female US English
106 B Yes G Professional 5 No 18 - 24 Male China Chinese
1001 HS Yes U Professional 7 Yes 18 - 24 Female US English
1003 M Yes G Professional 15 No 25 - 34 No Answer US English
1004 M Yes G Hobby 12 No 18 - 24 Male Portugal Portuguese
1008 M No 44 No 65 - 74 Male India Telugu
1010 D No 48 Yes 55 - 64 Male US English
1014 HS Yes U Hobby 2 No 18 - 24 Female China Chinese
1015 HS Yes U Professional 5 No 18 - 24 Male US English
1016 B No 4 No 18 - 24 Male US English
1017 B No 4 Yes 18 - 24 Male US English
1020 HS Yes U Hobby 3 No 18 - 24 Female US Mongolian
1022 HS Yes U Professional 3 No 18 - 24 Male US English
1023 HS Yes U Hobby 4 No 18 - 24 Male Malaysia English
1024 B Yes G Professional 3 Yes 25 - 34 Male Indonesia Kannada
1027 HS Yes U None 3 No 18 - 24 Male US English
1028 HS Yes U Professional 4 No 18 - 24 Female China Chinese
1029 HS Yes U Hobby 3 No 18 - 24 Male Myanmar Burmese
1031 HS Yes U Professional 4 No 18 - 24 Male US English
1032 HS Yes U Professional 4 No 18 - 24 Male US Chinese
1033 HS Yes U Hobby 10 No 18 - 24 Male US English
1034 HS Yes U Hobby 2 Yes 18 - 24 Male US English
1036 A Yes U Hobby 3 No 18 - 24 Female India Hindi
1037 B No 7 Yes 18 - 24 Female US English
1038 HS Yes U None 5 No 18 - 24 Female India Kannada
1040 M No 7 No 18 - 24 Male India
1041 B Yes U Professional 8 Yes 18 - 24 Male US English
1042 HS Yes U 2 No 18 - 24 Female US Tamil
1043 HS Yes U Hobby 1 No 18 - 24 Male China Chinese
1045 HS Yes U None 1 No 18 - 24 Female India Hindi
1046 HS Yes U Professional 3 Yes 18 - 24 Female India Hindi
2001 B Yes G Professional 9 Yes 18 - 24 Male US Chinese
2003 D Yes G Professional 15 Yes 25 - 34 Male US English

Table 8. Experiment Participants. The column education contains the highest level of education that a participant has achieved, where
A is an Associates degree, B is a Bachelors degree, HS, is a high school deploma, and D is a Doctoroal or Professional Agree. The
column type contains the type of student, where U is undergrad and G is graduate. The column years contains the number of years of
programming experience that a participant has. The column security contains if the participant has taken a security class.

13

Do Users Write More Insecure Code with AI Assistants?

education student type experience years security age gender country language
22 HS Yes U None 5 No 18 - 24 Male US English
177 B Yes G Hobby 3 Yes 18 - 24 Female
178 HS Yes U Professional 7 No 18 - 24 Male Brazil Portuguese
1002 M Yes G Professional 13 Yes 25 - 34 Male China Chinese
1005 HS Yes U Professional 10 Yes 18 - 24 Male US English
1009 HS Yes U Hobby 8 Yes 18 - 24 Trans Male US English
1012 HS Yes U Hobby 1 No 18 - 24 Female China Chinese
1013 HS Yes U Hobby 3 No 18 - 24 Male Hong Kong Chinese
1018 B Yes U Professional 3 No 18 - 24 Female China Chinese
1019 HS Yes U Hobby 13 No 18 - 24 Male US English
1030 HS Yes U Professional 5 No 18 - 24 Male US English
1035 B No 8 No 18 - 24 Male US English
1039 HS Yes U Professional 4 No 18 - 24 Male US English
2002 B Yes G Professional 7 No 18 - 24 Male US English

Table 9. Control Participants. The column education contains the highest level of education that a participant has achieved, where A is an
Associates degree, B is a Bachelors degree, HS, is a high school deploma, and D is a Doctoroal or Professional Agree. The column type
contains the type of student, where U is undergrad and G is graduate. The column years contains the number of years of programming
experience that a participant has. The column security contains if the participant has taken a security class.

Prompt 3

Prompt 2

Prompt 1

Figure 6. An example interaction with the AI assistant where the user, Participant 1036, enters a cycle and repeatedly uses the model’s
output (right) as the text for their next prompt, trusting that ecdsa is an appropriate library to use.

14

