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Abstract

Linear attention methods offer Transformers O(N') complexity but typically un-
derperform standard softmax attention. We identify two fundamental limitations
affecting these approaches: the restriction to convex combinations that only per-
mits additive information blending, and uniform accumulated weight bias that
dilutes attention in long contexts. We propose Zero-Sum Linear Attention (ZeroS),
which addresses these limitations by removing the constant zero-order term 1/t
and reweighting the remaining zero-sum softmax residuals. This modification
creates mathematically stable weights, enabling both positive and negative values
and allowing a single attention layer to perform contrastive operations. While
maintaining O(N') complexity, ZeroS theoretically expands the set of representable
functions compared to convex combinations. Empirically, it matches or exceeds
standard softmax attention across various sequence modeling benchmarks. The
code implementation is available at this link.

1 Introduction

The Transformer architecture [1]] has revolutionized sequence modeling across NLP, vision, speech,
and reinforcement learning [2H7]. While its self-attention mechanism offers exceptional modeling
flexibility, the quadratic O(/N?) complexity in both time and memory with sequence length N limits
its efficient implementation to long-context scenarios [8,9]. Researchers have developed numerous
linear-time attention mechanisms [8} [10-14] that preserve Transformer’s strengths while scaling to
longer sequences. Approaches include sparse attention patterns [[15H17]], kernel methods [8, |13} [14],
low-rank approximation [18}[19], and efficient factorizations [20, 21]. Despite reducing from O(N?)
to O(N), these variants often underperform standard softmax attention, raising the question: Why
do linear approximations save computation but sacrifice accuracy? Recent efforts to bridge this
gap typically: 1) hybridize linear attention with local quadratic windows [22} 23], 2) learn softmax
matrix low-rank projections [19}24], or 3) sharpen linear kernels through normalization and gating
(L1 [12] 25]]. While offer incremental gains, these approaches often compromise O(N) efficiency,
rely on task-specific hyperparameters, or introduce instabilities, limiting their practical use.

In this paper, we identify two fundamental limitations affecting linear and even softmax attention: 1)
Bottleneck of convex combination [26H28]): softmax attention produces convex combinations of value
vectors, with linear attention also aiming to achieve this primarily for numerical stability. However,
these combinations can only blend information additively, unable to express subtractive or contrastive
operations directly, forcing models to use multiple layers even for simple differencing tasks. 2)
Uniform weight bias and attention dilution [11, 12, [29]: In long contexts, attention mechanisms
incorporate a roughly uniform % component in their weight expansion, introducing a persistent
averaging effect that weakens focused attention and limits modeling of complex patterns. These
limitations stem from the Taylor expansion exp(q - k) = 1 + (¢, k) + 3(q,k)? + ..., where the
constant zero-order term enforces non-negativity for stability but creates an average-pooling bias that
diminishes high-order token interactions. Rather than designing complex kernels to approximate
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softmax while preserving the constant term, we propose a simpler solution: remove it. Subtracting
the uniform component creates naturally zero-sum weights that permit both positive and negative
values, enabling contrastive updates and sharper attention distributions while maintaining stability.

From this insight, we introduce ZeroS (Zero-Sum linear attention), achieving linear complexity
while matching or exceeding quadratic softmax attention performance through three key elements:
1) Zero-order subtraction: removing the uniform 1/¢ term from each softmax row to create stable
zero-sum weights; 2) Radial-angular decoupling: separating magnitude from direction by applying
learned gates to first-order (linear) and higher-order (non-linear) softmax residuals, then reintroducing
signed cos 6 terms to restore directional effects; 3) Linear-time implementation: using separable logits
and gating for the reweighted zero-sum softmax, combined with linearizable angular computations
via prefix sums, maintaining O(Nd?) runtime and O(d?) memory.

Our contributions include: 1) Identifying why the uniform zero-order softmax term limits attention
mechanisms and demonstrating that its removal is safe and beneficial. 2) Developing Zero-Sum
Linear Attention (ZeroS), a linear-time attention supporting negative weights with theoretical sta-
bility independent of sequence length. 3) Proving ZeroS offers greater expressivity than convex
combinations while maintaining numerical stability. 4) Demonstrating that ZeroS matches or exceeds
standard softmax attention on various benchmarks while maintaining linear time complexity.

2 Background

2.1 Preliminaries: Attention Mechanisms

We consider an input token sequence of length IV, represented by the feature matrix X € RN x4,
where each row x; € R'*? is the embedding at time step £. With Q = XW,, K = XW,, V =
XW,, an autoregressive (causal) single-head attention layer can be written in its matrix form as

Attn(X) =o(M @ (QKT)) VW,, X« X + Attn(LN(X)),

where W, W, W, W, ¢ R?¥4 are learned projections, LN(-) denotes layer normalization, and
M € R¥*N s the causal mask with M;; = 1{i > j} — oo - 1{i < j}, ensuring each position
attends only to itself and the past. When o is the row-wise softmax with a 1/ V/d factor, this represents
standard self-attention with O(IN?) complexity; replacing o by the linearized kernels yields the linear
attention variants that can be computed in O(N) [8l[14]]. Omitting the causal mask M reverts this to
encoder-only attention, attending to all pairs of positions.

Recurrent Form Attention admits an equivalent step-by-step formulation. At time ¢, let g; =

t . .
Wy, ki =x,Wy, v, =z,W,.Then the output o, € R™*?is o, = %

o(q,k) = exp(q k' /v/d) for vanilla attention. By choosing a kernel feature map ¢(-) such that
o(qs, ki) = ¢(q;) p(k;) T, the summations can be rearranged to maintain only the d x d hidden
state Y'_, ¢(k;)Tv;, avoiding the full N x N matrix QK. This yields the linear attention

d(ae) i d(ki) Tvs
¢>(th) er':.l ¢(kb)T . .
the decoder-only autoregression into a encoder-only global recurrence, summing over all positions.

where

formulation: o; =

. Replacing the summation limit ¢ with IV converts this from

2.2 The intuition from existing linear attention research

We begin with insights from previous research on linear attention to introduce two key elements
of our ZeroS structure: 1) radial-angular decoupling, and 2) zero-sum reweighted softmax. In

softmax attention, each value vector v; is 3551gned a welght %, fornnng a convex
i=1 1o

combination that ensures numerical stability by keeping outputs within the convex hull of {v,}
[26}127,130]]. Linear attention variants attempt to approximate this using weights of linearized kernel

form M [8 (11} [14]. However, without constraining the sign of ¢(q;)¢(k;), this reduces
>oim1 P(ae)p(ks)

to an affine combination that lacks the stability-ensuring bounds of convexity. While researchers
have addressed this using non-negative feature maps like 1+ELU and ReLU [8| [12} 311 32]], these
stability-ensuring modifications still underperform compared to standard softmax attention [8 [11} [14]].

Coupling Interaction Between Radial and Angular Components In softmax attention, the core
weight term exp(||q¢|||| k|| cos 6) is controlled by both vector magnitudes and their angle . Crucially,



when cosine flips from positive to negative, large positive values transform into very small ones, with
step ¢ and ¢ highly coupled within the exponential. In contrast, linear attention applies nonlinear
mappings ¢(-) to query and key [8, 121 [33]}, calculating ||#(q:)||||¢(k;)|| cos §’. Since these mappings
yield only positive values, angles between vectors become restricted to less than 90 degrees, and the
angular representation loses its flipping effect—cosine values merely serve as smooth gating signals
between (0, 1). Previous research shows minimal performance changes when replacing softmax
with sigmoid, ReLLU, or similar functions [34H39]], indicating that softmax attention’s performance
derives from modeling coupled angular and magnitude of (¢, ¢) pairs rather than from the exponential
property itself. Therefore, when constructing linear attention, we should reimplement these complex
interactions rather than attempting to approximate softmax or merely mimicking an inner product.

Convexity of Sum-to-One Weights Under this perspective, we revisit the convex combination
in softmax attention, which primarily serves numerical stability by preserving norm regardless
of sequence length. As weights become more uniform, output norm expectation decreases at
approximately 1/+/¢ with sequence length ¢ (assuming zero-mean vectors). However, these strictly
positive weights mean input signals v; can only contribute additively to outputs. In linear attention,
without methods to suppress historical weights, this accumulation leads to attention dilution [[11} 12}
29], where uniform signals increasingly dominate as sequence length grows. While some approaches
address this using local windows or convolutional methods [9} 31} 40]], these represent engineering
solutions rather than resolving fundamental limitations of positive weights. Studies [27, 41H43]] show
that with softmax weights, a single attention layer cannot express differential or contrastive operations
(even with just two tokens). The strictly positive convex combination inherently constrains ability to
compress complex operations, limiting parameter efficiency. To enable more flexible parameterization
with negative values, we must maintain numerical stability without relying on convex combinations’
norm-preserving property while satisfying linear-time requirements.

Flexible Weighting in Related Works Implementing both the angular flipping effect and expres-
siveness requires numerically stable modeling of negative weights. Previous research [28| 144]]
demonstrated that negative weights improve model performance, while Differential transformer [45]]
showed benefits from differencing two attention matrices to obtain flexible weights. In linear attention,
operations that reduce or delete historical state matrix elements outperform simple accumulation ap-
proaches [9} 114,131,146, 147]. In the following sections, we will show that our ZeroS method constructs
zero-sum weights based on softmax, improving performance while maintaining numerical stability
compared to both standard and linear attention variants. Compared to previous linear attention, ZeroS
enables more effective control of radial weights and decoupled angular components in (¢, ) pairs
from step ¢ information.

3 Methodology

In this section,we demonstrate that using softmax residual terms with zero-sum weights (eliminating
zero-order terms) and decoupling radial-angular components in linear attention achieves three key
objectives: 1) enabling numerically stable negative weights in a single attention layer for expressing
differential and contrastive operations, 2) capturing the essential length-angle interactions in attention
weights that allow positive-negative flipping effects, and 3) permitting the current step ¢ to effectively
influence shareable accumulated weights while maintaining linear time complexity. The overall
architecture of the final ZeroS block introduced in this section is shown in Fig. [1}

3.1 The Expansion of Softmax Function

Recent research has attempted to approximate softmax using Taylor expansions [48H51]]. For input
scalars {s;}!_;, with 5 = 1 Z;:l s; and ¢; = s; — §, the second-order Taylor expansion is:

1, 1.1 1 ¢
softmax(s;) = 5 + 50 + 5 (82 = 5 22 82) + O(llsI).
j=1

The zero-order term % ensures y . softmax(s;) = 1, while first-order terms reflect linear response,

and higher-order terms capture nonlinear interactions and competitive relationships between weights.
Computing second-order terms based on s; ; = q;k; would require O(d®) complexity [49], making
them impractical. Our approach differs: we use logits that depend only on step i, calculate full
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(a) Calculation of the deviation logits (b) Reweighted zero-sum softmax block (c) The overall architecture of ZeroS (Zero-Sum Linear Attention)

Figure 1: Ilustration of the zero-sum linear attention block, including the computation of deviation
logits and the reweighted zero-sum softmax operation

softmax, zero and first-order terms, derive higher-order terms through their differentiation, and
employ t-step-dependent gating factors to achieve interaction between (¢, ¢) pairs at different orders.

The zero-order baseline primarily provides accumulated magnitude measurement, contributing %—
level norm reduction and convexity properties. However, it enables no interaction between scores.
Eliminating this term creates zero-sum residual weights with both positive and negative values
reflecting interaction strength. While full softmax encodes higher-order competitive effects only
through positive weight magnitudes, zero-sum residual weights directly express these relationships
between vectors based on the positive and negative weights, emphasizing contrastive components.
Proposition 3.1 (Convex vs. Zero-Sum Span). Let {v;}!_; C R% and write C = {3, iv; -
a; >0, Y .o =1}, 2 ={>,wv; : >, w; = 0}, where we denote the (t — 1)-simplex by
A = {a € Rt: @i >0, Z o = 1} Then, letting vayg = Z Vi, D0, iV — Vayg 1 v €
Ai1} € {0, wiv; 2 Yo, wi = 0}, i.e. the zero-sum span of {vZ Vavg } strlctly contains the
deviations achievable by convex weights, with strictness whenever the v; are not all identical.

Corollary 3.2 (Expressive Gain of Zero-Sum Attention). In a residual block ©; — x; + ; Wi,
softmax weights w; = ozl vield head deviations in {Z QV; — Vayg & O € A;_1}; zero-order
subtraction w; = o; — ylelds head deviations in {)_, w;v; : Y, w; = 0}. Since {3, 0;v; —

Vavg} © {D o, wivi 1 Y, wl = 0}, zero-sum attention enlarges the set of deviation vectors the head
can praduce (and hence its expressivity), only without the uniform average direction.

Zero-sum weights can express more complex interactions after removing the zero-order term, with
expressivity reduction only in the orthogonal direction of v,yg. This direction typically represents the
lowest-cost basis since it requires only average pooling. We can recover this capability through multi-
ple attention heads and layer stacking. To strictly ensure this direction is not lost, our implementation
retains the zero-order term in the first layer, removing it in subsequent layers as described below.

3.2 Reweighted Zero-sum Softmax

We define the reweighted zero-sum softmax operation. For logit input s; ; at step ¢, we compute:
5 = % Z;Zl St,j, 0t = S¢,; — 5¢. Subtracting zero-order (1/t) and first-order (d; ; /t) terms from
softmax yields the residual:

= Rl 1S 52y,

C O Ye(s)  t

where Y, e:; = O and ), 8/t = 0. We gate these components using learned scalars g} =
. . 1 h _ . . h . . .
sigmoid(g; ) and oy = sigmoid(g;’), defining zero-sum weights:

t
Et’h § wtz—o
=1

This form assigns two gating weights: one for the first-order orthogonal direction and another for
all directions of second-order and above. For the first attention layer, we can optionally preserve

_ 16
Wt,5 = Oy
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“i + ol'e; ;, though experiments

the zero-order term using o = tanh(g{), giving w; ; = of § + o
show this has minimal impact across most tasks.

Remark. A key advantage of this formulation for linear-time attention is that even with logits
s¢,; = s; that are independent of ¢, we can still control interactions of different orders in the final
weights w; ; through the ¢-step gating mechanism o' across orthogonal directions from softmax
expansion. This gate reweighting approach w; ; = o} "7’ + ole; effectively replaces the traditional
linearization that decomposes exp(g.k;) into ¢(q:)d(k;).

Proposition 3.3 (Preservation of Affine Hull and Expressivity). Let {v;}i_; C R? and write
Vavg = % 22:1 Vi, Aj = V; — Vavg. A single head with full softmax (or full reweighted softmax
with the zero-order term kept) can produce any point in the affine hull

t t
Aﬁ'{vl,. ..,’Ut} = {vavg +ZO{Z' Az : ZO{,’ = 1}
i=1 i=1

A single head without the zero-order term (i.e. zero-sum weights) can produce any point in the linear

span
t t
Span{Aq,..., A} = {Z w; A : Zwi = O}.
i=1 i=1

Therefore, if you use one head (or one layer) that retains the zero-order term and then stack one or
more heads (layers) that subtract it, the Minkowski sum of their reachable sets is exactly

Aff{v;} + Span{A;} = Aff{v;}.

In other words, after the first full attention layer, it already cover the entire affine hull, and the
subsequent zero-sum attentions do not shrink that. The overall network can still express any affine
combination of the v;.

Residual Stream Alignment When value vectors {v; } are centered and i.i.d., zero-sum attention
produces o; = Zle we ;v; with )~ w,; = 0 and Efo¢] = 0. This aligns with decoder-only
Transformer’s residual stream ideology where x; < x; + Attn(x;) should provide pure updates

without constant bias. Subtracting the zero-order term naturally centers these residuals, improving
training stability.

We now show that the reweighted zero-sum softmax achieves the same level of numerical stability as
the original softmax.

Lemma 3.4 (Numerical Stability of Zero-Sum Softmax). Let w; ; be the reweighted zero-sum softmax
weights with ) . wy ; = 0, and assume each value vector satisfies ||v;|| < B. Then for any step t,

t
HE Wt ;U4
=1
1 19e,il ol

Moreover, since |wy;| < max(3, >4, L5 and §,p = O(1) under bounded logits, we have
max; |wy ;| = O(1/t) and hence ||, wy,v;|| = O(B), independent of t.

t
< max |wy ;| E vil| < Bt max|w;|.
i K3
i=1

With controllable logits generation methods independent of ¢, such as the scaled dot-product in
original softmax attention, the numerical stability of the above method remains well-controlled. This
allows us to employ zero-sum weights that permit negative values while still achieving numerically
stable outputs, even without the norm-preserving property of convex combinations.

Proposition 3.5 (Uniform Lipschitz Bound of Zero-Sum Softmax with decay factor 1/v/t). Assume
each value vector satisfies ||v;|| < B, each pre-softmax logit s, ;(x) € [—S,S] is Ls-Lipschitz in
the input &, each residual weight wy ; () obeys the scaling| wy ;(x) — wy;(x')] < L ||z — 2|,
for some constant L., depending only on S and the sigmoid gates. Let the head output be o(x) =
% 22:1 wy () v;, 22:1 wy,; () = 0. Then for any two inputs x, x’,

= H /H
xr T ||.
ﬁ

The zero-sum update is {5-Lipschitz in its inputs with constant O(1/+/t), ensuring stable gradients
and activations independent of sequence length.

lov(@) —ou(a)]| <



This proposition introduces a 1/+/¢ decay factor that ensures reweighted zero-sum softmax maintains
variance reduction similar to convex combinations, promoting training stability. However, since
linear attention methods typically apply Layer Normalization to control output variance, LayerNorm
effectively supersedes this factor and is sufficient to ensure gradient stability during training.

Reweighted Zero-sum Softmax in Linear Time To achieve linear-time computation, we simplify
logits from s; ; to s; by removing t-dependency. While we could use basic forms like s; = x; Wd*!
or quadratic forms s; = £; W W x| /d to emulate dot-products, we instead propose a design with
a more meaningful representation.

We want these logits to express the deviation of step ¢ relative to previous steps. We calculate the
negative inner product between each step’s vector u; = x; W, and its cumulative average. For better
assessment of initial steps, we introduce trainable parameters 1 € R'*? and 7 € R as a smoothing
prior, calculating deviation logits s; as:

1 _ e+ 23:1 Uu;
— where ; = ————— 27—~
Vd

S; = — uw;u,; , eT—f—i

Let r, ; represent the final computed reweighted softmax result:

_ B _exp(sy) 1 6y
5t,i—3i_3t75t,i—t7_;_ Pl
Zi:l exp(si)
O 4 ol (o} — o) ah
10t h t t t _ t
;= +opep; = ————exp(s;) + ———(s; — 54) — =
rt,z O t O t,1 22:1 eXp(Si) XP( z) t ( 7 t) £

where o7 = sigmoid(x; W}), o' = sigmoid(z; W), W}, W € R?*!. The terms dependent on
t and 7 are effectively separated, enabling linear-time computation through prefix sums.

3.3 ZeroS Linear Attention: Interaction Between Radial and Angular Components

The reweighted zero-sum softmax provides strong foundations for linear attention by yielding
numerically stable weights (including negative values) with computational simplicity while enabling
high-order (¢, %) interactions in token mixing. We leverage linear-time logit inputs that depend only
on step ¢ and implement effects on different softmax orders through step ¢ gating.

However, our earlier discussion showed that the angle-flipping effect in softmax attention’s
exp(||q||||%:] cos #) significantly impacts final weights. While reweighted zero-sum softmax ef-
fectively models length interactions through i-step logits and ¢-step gating, it lacks control over
directional influence when measuring vector differences in (¢,4) pairs. Since zero sum weights
provide inherent stability, no longer need to place cos 6 in the denominator normalizer, we can di-
rectly multiply the angular component (cos #) with the reweighted softmax radial component without
positivity constraints. This approach enables seamless integration with rotary positional embedding
(RoPE) [52]], making the angle term’s role in measuring relative distance more explicit.

Zero-Sum Linear Attention (ZeroS) We use normalized vectors k; = k;/||k;|| and ¢; = q:/||q:
with 7 ; as the radial component and cos ¢ as the angular component. ZeroS produces the output:

)

t
o; = Zrm cosf v;, cosl = thE:ZT
i=1
With RoPE’s block-diagonal rotary matrix applied, the angular term becomes cos 6’ = qth_ilAc: .
Both 7, ; and cos @ are centered values, preserving zero-sum properties in the weights 7, ; cos 6.
Though not strictly positive (unlike traditional radial components), r; ; captures magnitude effects
from step i, reflecting length-related interactions between (¢, ) pairs.

Linear-Time Scan With logits that depend only on step i (e.g. s; = —ﬁ w;u) with u; = ¢, W,
and u; = %ﬁ), the radial weight at time ¢ can be decomposed into the full softmax term, the
_ e 11 1< _
Oth-order baseline, and the 1st-order term: — T 78T g Z sj . Hence the higher-
Zj:l e \t/ ¢ t j=1
Oth

Full Ist
order zero-sum residual is Full — Oth — 1st. We realize ZeroS by gating the first-order zero-sum and



Table 1: Evaluation Results of ZeroS on the MAD benchmark.

Model | Compress Fuzzy Recall In-Context Recall Memorize Noisy Recall — Selective Copy | Average
Hyena 45.2 7.90 81.7 89.5 78.8 93.1 66.0
MultiHead Hyena 44.8 14.4 99.0 89.4 98.6 93.0 732
Mamba 52.7 6.70 90.4 89.5 90.1 86.3 69.3
GLA 38.8 6.90 80.8 63.3 81.6 88.6 60.0
DeltaNet 42.2 35.7 100 52.8 100 100 71.8
LinAttn 31.1 8.15 91.0 74.9 75.6 93.1 623
Transformer 51.6 29.8 94.1 85.2 86.8 99.6 74.5
ZeroS 44.0 14.9 99.9 88.1 96.1 97.8 73.5
ZeroS-SM 45.2 28.0 100 84.3 96.6 98.5 ‘ 75.4

the higher-order residual with o} = sigmoid (2, W}) and o} = sigmoid (¢, W), and optionally in
the first layer retaining the Oth-order baseline of = sigmoid(2; W) (with fixed of = 0 by default).

Using normalized directions §; = q;/||q¢|| and k; = k;/||ks||, we maintain the following prefix
scans at step t:

t t t t t
84 _ _ S; AT _ AT _ AT
Et = E e, Pt = E Si, Ft = E e ki v;, Gt = E S; ki v;, Ht = E kfz v;.
i=1 i=1 i=1 i=1 i=1

The output is then a gated activation of these scans by the current step’s angular vector g;:

. 1 1 P 1 1 P 1
Ot = qi O{l <&Ft - EGt + ( L )Ht) +Utl (th - ;Ht) =+ o'? EHt

2t t
0, .
a? (Full — Oth — 1st) o} (st restore) o, (optional Oth restore)
= gi(aFy + BiGy + v Hy),
where

h 1 h 0
Oétzo——t /Btzio—tio—t "yt:(ifl> h7&01+0—7t

E,’ t 2t/ 27t

This scan keeps only O(d?) state (F;, G;,H;) and updates in O(d?) per step, yielding overall
O(Nd?) time and O(d?) memory while implementing the zero-sum weighting. Moreover, our
reweighted zero-sum approach can also be directly applied to standard softmax attention. See section
for more details.

4 Experiments

ZeroS’s zero-sum formulation enhances the attention
layer’s expressivity for complex operations, particu-
larly evident in in-context learning tasks [37}53]]. We
evaluate both linear-time ZeroS and quadratic-time
ZeroS-SM on recent in-context learning benchmarks,
along with experiments on NLP, image, and time se- g
ries tasks. In all experiments, we directly replaced
the multi-head attention module with ZeroS under .| *=——*
original benchmark settings, preserving all other com-
ponents (MLP/GLU, embeddings, hyperparameters)
to ensure strict alignment with previous standards.

1000 2500 5000 10000 20000 0800
ning Examples

AWKV si & zers

Rettet = Transformer

We previously described the prefix-sum computation
of autoregressive ZeroS. For the encoder-only ZeroS,
the summation simply spans all timesteps. We use
the causal version of ZeroS for all datasets except image modeling. We provide a more detailed
description of the experimental datasets in Appendix [A.5] For simplicity, we do not apply first-layer
0-th order term addition in our experiments.

Figure 2: Evaluation of ZeroS on RegBench.



MAD We evaluate ZeroS on the MAD benchmark

[54], which tests sequence models on in-context tasks. Table 2: Evaluation Results on WikiText

As shown in Table [I] ZeroS outperforms other linear- %! | PPL (va) PPL (test) Params (M)
time models (Hyena, Mamba, GLA, DeltaNet, LinAttn f ];QUSH gg'ii 2286675 ﬁ'g
[9, 14} 131} I55]]), achieving performance closest to Trans-  performer 62.5 63.16 44.65
former, while ZeroS-SM further improves upon Trans-  cosFormer 26.53 21.06 44.65
) . Syn(D) 3131 32.43 46.75
former’s average score. Task-level analysis shows Ze-  gynwr) 3368 3478 46.75
roS significantly outperforms LinAttn on In-Context and élXILP %ggi gg-ég g-gg
Noisy Recall tasks, supporting our hyppthesm that zero- [ 3939 11.07 45.63
sum weights enhance algorithmic abilities. However, on ~ Gss 29.61 30.74 43.84
tasks like Compress and Memorize that rely less on com- ~ RWKV-4 24.31 23.07 46.23
! ’ v . LRU 29.86 3112 46.75
plex representations, ZeroS provides minimal gains. Un- 1NN 23.98 24.67 48.66
like DeltaNet, which actively deletes memory states, Ze- ?{"ég;az 2223-518 gg;g ii-gz
roS maintains strong memorization despite using negative  Tynsformer | 244 2478 44.65
weights, indicating that our ze.ro—order modifications pre- oo 2391 2461 2631
Serve sequence memory capacity. ZeroS-SM 23.62 24.17 44.69

MQAR We follow the setup of [56] for the MQAR task,

which evaluates models’ ability to learn induction heads for in-context associative recall. Using the
same hyperparameter sweep, Fig. [3]shows ZeroS performs comparably to vanilla attention across
most configurations.

Sequence Length: 64 Sequence Length: 128 Sequence Length: 256 Sequence Length: 512

0.8 //' —e— Attention

Hyena
0.6 RWKV
—— H3
0.4 —e— BaseConv
~e— HGRN1
0.2 —o— HGRN2
—8— ZeroS
0.0

64 128 256 512 64 128 256 512 64 128 256 512 64 128 256 512
Model Dimension Model Dimension Model Dimension Model Dimension

Accuracy

Figure 3: Performance evaluation on the MQAR benchmark, illustrating the relationship between
model dimension (x-axis) and accuracy (y-axis). ZeroS demonstrates consistent performance advan-
tages over other structures across all experimental configurations.

RegBench We evaluate ZeroS on Reg- Training Loss Validation Loss
Bench [57] following the original exper-
imental setup (Figure [2). RegBench tests
models’ ability to infer regular language a6
structures from examples. ZeroS outper- £
forms linear-time baselines including GLA,

RetNet [58], and RWKV [59]. 52
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4.1 Language Modeling Step Step
WikiText We conduct language modeling Figure 4: Performance Evaluation of ZeroS on OWT?2
on WikiText-103 following [60]’s setup,

with results in Table 2] ZeroS outperforms vanilla Transformer at this smaller scale, demonstrating
its efficiency. ZeroS-SM yields further improvements, showing enhanced reasoning capability from
the zero-order term removal.

OWT2 We evaluate ZeroS on OpenWebText2 (OWT2) [61] using
a 12-layer, 768-dimensional GPT-2 architecture with various token
layers (see Appendix[A.5). Figure[dshows ZeroS tracks much closer )

to vanilla Transformer than other linear methods like AFT [62] and formance on Inlli%lf E:t k.
GLA, while ZeroS-SM further improves upon vanilla Transformer  Model ~ Top-1 Acc Params ™)

Table 3: Comparative analy-
sis of image classification per-

performance. DeiT 72.20 5.7

TNN 72.29 6.4
Image Modeling Following HGRN2 [60], wee valuate ZeroS on ~ HGRNL 7340 o1
ImageNet by replacing the DeiT-Tiny architecture’s softmax atten- ~Zepos 7551 6.0




Table 4: Evaluation of the ZeroS performance on the Time Series Forecasting Benchmark

Models ZeroS GLA AFT iTransformer PatchTST DLinear
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0218 0.265 0.223 0.267 0.220 0.266 0.232 0274 0221 0261 0.233 0.282
Solar 0.192  0.256 0.204 0.266 0.198 0.259 0.219 0.284 0.202 0.254 0.216 0.277
ETThl 0414 0433 0418 0439 0409 0433 0454 0467 0413 0431 0422 0.436
ETTh2 0341 0392 0342 0390 0.337 0390 0374 0410 0330 0379 0426 0444
ETTml 0347 0387 0357 0.394 0348 0386 0373 0401 0346 0380 0.347 0.376
ETTm2 0245 0312 0250 0315 0246 0311 0265 0332 0247 0312 0.252 0.326

Table 6: Ablation Study on the MAD benchmark.

Model | Compress  Fuzzy Recall In-Context Recall Memorize Noisy Recall ~ Selective Copy ~ Average
ZeroS 44.0 14.9 99.9 88.1 96.1 97.8 73.5
ZeroS w/ 0-th 42.0 10.5 91.4 85.2 90.0 97.1 69.4
ZeroS w/o RWSM 36.3 10.6 91.8 81.7 89.7 95.3 67.6
ZeroS w/o Gating 39.7 135 96.3 83.0 94.6 97.8 70.8
ZeroS w/o Norm 39.1 123 89.0 87.0 91.7 97.1 69.4
ZeroS-SM 452 28.0 100 84.3 96.6 98.5 754

tion with our encoder-only implementation. As shown in Table 3, ZeroS outperforms previous 294
methods including TNN [63]] and HGRN1 [64] under comparable parameter budgets.

Time Series Following the setup in [65], we evaluate ZeroS on time series forecasting tasks. ZeroS
outperforms both efficient sequence models (GLA, AFT) and domain-specific approaches (iTrans-
former [66]], PatchTST [67]]) on most datasets.

4.2 Ablation Studies

We conduct ablation studies on MAD and Table 5: Ablation Study on WikiText-103
WikiText-103 to analyze key components of  Model | PPL (val) PPL (test) Params (M)
ZeroS. Reintroducing the 0-th order softmax —_ ¢ 23901 2461 1631
term reduces performance on In-Context Recall,  ZeroS w/ 0-th 24.05 24.74 46.31
Noisy Recall, and WikiText, confirming the rep-  ZeroS w/o RWSM 24.21 24.97 46.31

resentational advantage of zero-sum weights. _ZerS-SM 23.62 24.17 44.69

Replacing the reweighted zero-sum softmax

with standard softmax further degrades performance, highlighting the expressive gap between convex
combinations and our flexible zero-sum mechanism. Ablating the gating component causes moderate
performance drops across most tasks, suggesting it contributes broadly to model flexibility. Finally,
removing LayerNorm notably impacts performance on In-Context Recall but not on simpler tasks like
Memorize, indicating stable variance is particularly critical for algorithmic reasoning: consistent with
normalization’s role in linear attention mechanisms. See §A.3|for additional baselines and ablations.

5 Conclusion and Limitation

We introduced Zero-Sum Linear Attention (ZeroS), addressing fundamental limitations of linear
attention by removing the constant zero-order term from softmax and reweighting the resulting
zero-sum residuals. Our approach enables higher-order token interactions while maintaining O(N)
complexity, bridging the performance gap between linear and quadratic attention methods. Evalua-
tions across diverse tasks show ZeroS matches or exceeds standard softmax attention while offering
significant efficiency advantages, challenging the belief that expressivity-efficiency tradeoffs in
attention mechanisms are inevitable.

As for the limitation, our research prioritizes improving attention’s algorithmic expressivity rather
than providing engineering optimizations like GPU acceleration implementations found in Mamba
or GLA [9,[14]. Also, our resource constraints prevented large-scale model training and evaluation
on LLM benchmarks, which would involve numerous factors. This focused approach allowed us
to precisely identify ZeroS’s algorithmic improvements without requiring extensive engineering or
computational resources that are typically needed for optimizing large benchmark metrics. Addition-
ally, our evaluation of ZeroS primarily focuses on autoregressive tasks. Future work may explore its
capabilities on non-causal tasks to further extend its applicability.
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A Technical Appendices and Supplementary Material

A.1 Additional Theoretical Discussion

Proposition A.1 (Convex vs. Zero-sum Span). Let vy,...,v; € R? and denote their centroid by
Vavg = % Zzzl v;. Write the deviation matrix
dxt
AV = [V1 — Vavg, -+ Ut — Vayg | € R

Define the convex hull and zero-sum spaces

¢ t ¢ t
C:= {Zoziv,;:ozq;zo,zgi:l}, Z .= {wai:Zwi:O}.
i=1 i=1 i=1 i=1

Then
C = Vavg + {AVa T o€ At_l} C Vavg + {AVw cwelkh 1Tw= O} = Vavg + Z,
where Ay_q is the (t—1)-dimensional probability simplex.

Corollary A.2 (Expressive Capacity). Assume the v; are affinely independent and d > t — 1, so that
rank AV =t — 1. Then

dim(C) = ¢t —1, dim(2) = t—1,
but C is bounded, whereas Z is an unbounded linear subspace of the same dimension. Consequently

C € Vavg + 2, and zero-sum attention can realise outputs unattainable by any convex-combination
attention.

Proof sketch of Proposition[A.1|and Corollary[A.2]

1. Convex representation. For any o € Ay_1, ), v = Vayg + AV .
2. Zero-sum representation. If w € R? satisfies 17w = 0, then ZL w;v; = AV w.

3. Strict inclusion. The vector w = (1, —1,0,...,0) lies in the hyperplane 1 "w = 0 but not
in the simplex A;_1; hence vayg + AV w € vayg + 2\ C.

4. Dimensionality. Under affine independence and d > ¢ — 1, the matrix AV has rank ¢ — 1.
Linear images preserve dimension, giving the stated dimensions of C and Z and proving the
corollary.

O

A.1.1 Proof of Proposition 3.1 (Convex vs. Zero-Sum Span).

Let {v;}!_; C R and define

t ' . .
CZ{Zaivi:aiZO,ZaiZI}, Z:{Zwivizzwizo},
i=1 = — P

and Vayg = % 22:1 v;. For any y € C with weights o € A;_1,

t t
Y — Vavg = Z (Oéi — %)'UZ‘, with Z (ai — %) =0.

i=1 i=1
Hence the centered convex set equals

t t
. _ 1
Cdcv:{ § w;v; : § wifov wiz_f}v
=1 i=1

which is Z with extra lower bounds on the coefficients. Therefore Cq., C Z.

To see the inclusion is strict unless all v; are identical, pick j # k with v; # v}, and consider

v; — vy, € 2 (take w; = 1, wy, = —1, others 0). If v; — vy, € Cyev, we would have

aj—1=1 ap—-1=-1, o—1=0(¢ {4k},
implying a, = —1 + % < 0 fort > 2, a contradiction. Thus v; — v & Cdev, and Cgev € Z
whenever the v; are not all equal. If all v; coincide, both sets reduce to {0}. O
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A.1.2  Proof of Corollary 3.2 (Expressive Gain of Zero-Sum Attention).

In a residual head @; — @t + , Wiv;, the deviation (relative to the average direction) produced by
softmax weights « is

E Q;V; — Uayg € Cdev-
%

Subtracting the zero-order term corresponds to w; = a; — % with Zl w; = 0, hence deviations lie in
Z. By Proposition Caev S Z (for non-degenerate {v; }), so zero-sum attention strictly enlarges
the attainable deviation set and therefore the head’s expressivity. The only removed direction is the
uniform average v,yg, Which can be recovered across heads or layers. O

A.1.3  Proof of Proposition [3.3| (Preservation of Affine Hull and Expressivity).

t d _1 t _
Let {v;};_; C R Vavg = 3> ;-1 Vi» and Aj = v; — Vayg.

(1) Full softmax / with zero-order term. A single head with full softmax produces
t t
Reun = {Zaivi D a; >0, Zai = 1} = Conv{v;} C Aff{v;}.
i=1 i=1

(i1) Zero-sum (without zero-order term). If 2221 w; = 0, then

t t t t t
Zwivi = Z Wi (Vavg + Ag) = Uavgz w; + ZwiAi = ZwiAia
i=1 i=1 i=1 i=1 i=1

hence

t t
Riero-sum = { Zwﬂh‘ : sz = 0} = Span{Aj,..., A}
i=1 i=1

Conversely, for any s = 2221 u; A; € Span{A;}, leta = % 2221 u; and define w; = u; — u. Then

22:1 w; = 0and Zﬁzl Wiv; = 22:1 UiV —U 22:1 Uy = Zle ;i (V; = Vavg) = 22:1 uiAj = s.
Hence Span{A;} C R,ero-sum> and thus Rero-sum = Span{A;}.

(iii) Stacking and Minkowski sum. For any y € Aff{v;} we can write
Y = Vavg + (¥ — Vavg),
where v, € Conv{wv;} and, since ) |, A; = 0, we have y — v,y € Span{A;}. Therefore
Conv{wv;} + Span{A;} = Aff{v;}.

Combining (i)—(iii) gives the claimed reachable sets for single heads and their equality to the affine
hull when stacked. O

A.1.4 Proof of Lemma 3.4 (Numerical Stability of Zero-Sum Softmax).

Assume ||v;|| < B for all i. By the triangle inequality,

t
H E W5 U4
i=1

By the zero-sum softmax construction (see the main text), under bounded logits we have

t
<D lweal[|vil| < Bt max [w,;|.
=1

1 [0e4]  |pel _ 1
lwei| < max{;, et vl Oti = Sti— 1 St,j»

j=1
and &; ;, pr; = O(1). Hence max; |wy ;| = O(1/t), and therefore

t
H E Wi i U4
i=1

which is independent of . O

< Bt-0(3) = 0(B).
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A.1.5 Proof of Proposition (Uniform Lipschitz Bound with 1/./ Decay).

Let o;(z) =t~ Y/2 3w i(x) v; with ' w; () = 0 and ||v;|| < B. For any x, 2,

A= LIS /
lov(@) ~ o(@)]| = ﬁ\);(wt,xw) — wiil@))v;

t t
1 B
<= wei() —wei(@)] vl < =) |wei(®) — we (2]
Vi Vi

By the Lipschitz assumption on the weights, |w; ; () — wy ;(2')] < (L /t) || — ||, hence

¢
B L BL

o) — o) < — e — 2| = Y e —a'|].

for) ~ o) < 1 S o @l = P2 e

Thus the head is uniformly Lipschitz with constant BL,, //t. O

A.1.6 Implementation of ZeroS Softmax Attention (ZeroS-SM)

Zero-sum for Standard Softmax Attention (ZeroS-SM) As shown in Figure [5] our reweighted

zero-sum approach can be directly applied to standard softmax attention using logits s; ; = q;k, / Vd,
with matrix form:

S= idQKT+M, A = softmax(S), u=[1,4,..., ]T, S = diag(u) (S1y)

f )9
A = diag(u) (S—S1y), e=A — diag(u)1y1ly — A

2|~

W= (g'ly)0A + (g"1}) 0, O=WV

A.2 Runtime Efficiency of the ZeroS Implementation
In recurrent (scan) form, ZeroS maintains three d x d hidden-state bases
esi lA{iTVi, S; IA{ZTVZ‘, lA{;rVi,

and reads them out with query-dependent gates; the outputs are summed. While a single fused
CUDA kernel is not implemented, we obtain a practical implementation by invoking an existing
linear-attention scan three times with different key/value bases:

# prepare reweighted queries ql, g2, g3 from q ...
outl = run_linattn(ql, k * s_i_exp, v, mode=’fused_chunk’) # e~{s_i}

out2 = run_linattn(q2, k * s_i, v, mode=’fused_chunk’) # s_i
out3 = run_linattn(q3, k, v, mode=’fused_chunk’) # 1
out = outl + out2 + out3

We replace the attention layer in a GPT-2 style Transformer (hidden size = 768, 12 heads, 12 layers)
with various alternatives and evaluate at sequence length 1024. Baselines include implementations
from the same library: LinAttn, GatedLinAttn, HGRN2, RWKV6, RWKV7, and softmax attention
(naive and FlashAttention). All runs use a single NVIDIA L40S, batch size 8, FP32. We report
mean latency after warm-up. “Fwd” denotes full-sequence inference (no KV/hidden-state cache).
As shown in Table[7] Under this three-scan implementation, ZeroS attains latency, throughput, and
memory usage within the range of established linear-attention variants and close to FlashAttention on
this setup.

A.3 Additional Baselines and Ablations

Setup. We augment the main results with recent sequence-modeling baselines: Mamba2, Hawk,
GatedDeltaNet, and HedgeDog. The evaluation protocol, datasets, and metrics follow the main text.
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Model FwdLat (s) FwdStd TrainLat(s) TrainStd Thr.Fwd (tok/s) Thr.Train (tok/s) MemFwd (GB) MemTrain (GB)

Softmax Attn (naive) 0.1306 0.0006 0.3334 0.0009 62,740.89 24,574.18 9.61 10.34
RWKV7 0.0876 0.0016 0.2626 0.0010 93,491.90 31,199.35 9.81 10.61
RWKV6 0.0761 0.0005 0.2252 0.0010 107,653.00 36,382.92 9.49 9.62
ZeroS 0.0720 0.0008 0.1974 0.0011 113,855.38 41,491.29 7.48 7.61
HGRN2 0.0672 0.0013 0.1480 0.0009 121,955.16 55,336.55 6.14 6.43
LinAttn 0.0666 0.0010 0.1477 0.0009 122,949.71 55,447.86 579 5.90
Softmax Attn (FlashAttn) 0.0651 0.0014 0.1473 0.0008 125,836.28 55,620.75 545 5.56
GatedLinAttn 0.0600 0.0009 0.1331 0.0008 136,633.08 61,533.68 5.74 5.89

Table 7: Latency, throughput, and peak GPU memory on GPT-2 (768/12/12), sequence length 1024,
batch size 8, FP32 on a single L40S. “Fwd” = full-sequence inference without caches.

Model Compress FuzzyRecall In-ContextRecall Memorize NoisyRecall SelectiveCopy Average
ZeroS (Lin) 44.0 149 99.9 88.1 96.1 97.8 73.5
LinAttn 33.1 8.2 91.0 74.9 75.6 93.1 62.3
ZeroS (SoftmaxAttn) 452 28.0 100.0 84.3 96.6 98.5 75.4
SoftmaxAttn 51.6 29.8 94.1 85.2 86.8 99.6 74.5
Mamba2 43.6 21.1 96.4 86.9 96.7 93.3 73.0
Hawk 47.7 13.6 93.0 91.3 93.0 77.0 64.5
GatedDeltaNet 45.0 29.8 100.0 80.2 100.0 94.3 74.9
HedgeDog 432 17.9 55.9 83.4 46.0 98.4 57.4
Ablation Study

ZeroS 44.0 14.9 99.9 88.1 96.1 97.8 73.5
w/o Angular 39.5 8.5 42.8 54.5 44.8 63.3 422
Ang: w/o PosEmb 35.8 9.4 73.3 46.2 66.2 45.8 46.1
Ang: additive PosEmb 38.1 14.2 94.1 86.6 87.2 93.8 69.0
w/o Radial 35.9 9.6 34.8 86.3 86.5 92.3 65.9
Rad: u; (linear proj) 41.2 15.5 91.9 83.3 86.1 97.2 70.0
Rad: u; (quad form) 40.9 154 92.6 86.6 90.8 98.5 70.8
Rad: u; (2-distance) 40.1 14.8 97.6 82.5 93.6 97.8 71.1
Rad: u; (averaging) 41.0 15.0 99.9 93.3 89.6 98.5 73.0

Table 8: Additional baselines and ablations on six MAD tasks; higher is better.

Results. Table[§|reports task accuracies (%). ZeroS attains high scores on In-Context Recall and
Noisy Recall and yields a strong overall average. Ablations indicate that removing the angular
component substantially degrades performance; additive positional embeddings help but do not match
ROPE; and the default radial scoring (with negative similarity) achieves the best average among radial
variants.

A.4 Illustrative Zero-Sum Construction Examples

Setup. Let {vi};?:l C R4 A single softmax-attention layer produces o = Zi a;v; with a; > 0
and ), c; = 1, hence o € Conv({v;}). A single ZeroS layer can produce signed, zero-sum
combinations 0 = ), w;v; with ), w; = 0. Below we list simple sequence-to-sequence mappings
that are not representable by a single softmax-attention layer but are representable by a single ZeroS
layer.

Example: Two-token difference. Target o = v; —vs. Softmax requires a; = 1, as = —1 (invalid).
ZeroS: wy = 1, wy = —1, others 0.

t
Example: Difference from the mean. Targeto = v; — n Z v;. Softmax needs negative mass on

1=1
{v;}i>1 (invalid). ZeroS: wy =1 — % and wi>1 = f% (so >, w; =0).
t/2
Example: Alternating differences. For even ¢, target o = Z(vzi,l — Vvg;). Softmax cannot
i=1
realize alternating 4 weights in one layer. ZeroS: wg;—1 = 1, we; = —1 (others 0).

A.5 Additional Dateset Description
A.5.1 MOQAR
We adopt the Multi-Query Associative Recall (MQAR) task introduced by [56] to characterize

a model’s performance on repeated, input-dependent lookups over a large vocabulary in a single
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forward pass. In the classic associative recall (AR) problem, we store a small, static dictionary of
key-value pairs and issue a single, fixed-position query. MQAR generalizes AR by interleaving
multiple key-value pairs, each encoded as two consecutive tokens (k;,v;), and allows multiple query
tokens anywhere in a sequence of length V. Formally, given

x = (zo,..,oN-1), x;E€V
whenever x; = k; for some j < 7, the correct output is

Yi =V = T4
and the model must satisfy this for all 1 < ¢ < N. By requiring repeated lookups at arbitrary
positions, MQAR provides a sharp test of dynamic routing and associative recall, directly contrasting
these mechanisms with softmax attention’s flexibility and capacity to handle multiple simultaneous
queries.

A.5.2 REGBENCH

RegBench [57]] is a synthetic in-context learning benchmark that evaluates a model’s ability to
infer the structure of regular languages from only a few example strings provided in the prompt.

Each problem instance presents K € [10, 20] example strings {dgi), cee d(l?} drawn from the same
stochastic regular language L(*) defined by a probabilistic finite automaton (PFA). To construct the

PFA, RegBench samples a minimal deterministic finite automaton (DFA), the canonical formalization
of regular languages. RegBench draws
n ~ Uniform(4,12), ¢~ Uniform(4,18), m; ~ Uniform(1,4),

and then samples a language-specific alphabet 3 of size ¢ uniformly without replacement from a
global symbol set of size ¢pax = 18. Define the state set S = {S1,...,5,} U {So} with accepting
subset S, = {51, ...,S,}. For each S;, uniformly without replacement select m; symbols z; € X
and m; target states S; € S\ {S;} to form edges (S;, z;, S;), send all other symbols to Sy, and
minimize via Hopcroft’s algorithm to obtain the canonical DFA A’. The PFA inherits A’’s topology,
assigning

1
T(Si,z;,5;) = — T(S;,2',58") =0 otherwise,

sothat > <> . csT(s,a,8) =1, Vs € S.. From this PFA, K strings of length ¢ ~
Uniform(1, 50) are sampled from Sy by simulating (x¢,S¢) ~ T(St—1,,-) and concatenating
x1T9 - - - ¢¢. Models then perform greedy next-token predictions

Z; = arg max pg(x | dg;),

and we report DFA accuracy as in Akyiirek et al. (2024)

1 i
accuracy(pg, L;) = NT ZZ[I[@ e {x’ : Liy(2 | d(<;) > 0}],
d@ g

where NT is the total number of tokens in the test set and L;(z’ | dg) is the probability of predicting

2’ following context d(<7) in the language L,;. We consider DFA accuracy, the fraction of predictions

that correspond to valid transitions in the original DFA, as a direct measure of how faithfully the
model has internalized the underlying regular-language structure.

AS53 MAD

We evaluate our proposed architecture using the Mechanistic Architecture Design (MAD) framework,
a recently developed methodology for cost-effective evaluation of deep learning architectures [54].
MAD consists of a suite of capability-targeted benchmarks, including in-context recall, fuzzy recall,
selective copying, and compression, that probe fundamental sequence modeling capabilities. This
approach has been rigorously validated through extensive experimentation spanning over 500 language
models from 70M to 7B parameters, demonstrating a strong correlation between performance on these
targeted synthetic tasks and compute-optimal perplexity at scale. Through the employment of MAD,
which serves as a reliable predictor of large-scale performance, we identify performance advantages
without the need for prohibitive computational resources typically associated with architecture
validation.

A.5.4 WikiText-103
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WikiText-103 [68] is a large-scale language / [ Reweighted Zero-sum O
modeling dataset of over 103 million words SO BT
compiled from 23,805 Good and 4,790 Fea- i

tured Wikipedia articles that have been re- ©) W __(f
viewed by humans, represent broad cov- [ @] ’
erage, and meet common editorial stan- W,

dards. The dataset has long context win- X

dows, a large vocabulary of 267,735 types, /
and requires preservation of case, punctu- .

ation, and numerical information so that {aitiz

WikiText-103 accurately reflects the chal-

lenges of real-world text. Figure 5: Block Architecture of The ZeroS-SM Layer

A.5.5 OpenWebText2

OpenWebTethE] is a large-scale, cleaned and deduplicated web-text corpus created as an open
reproduction of OpenAl’'s WebText dataset: URLS are first extracted from all Reddit submissions with
a combined score greater than 3, then scraped, filtered, and deduplicated at both URL and document
levels (using MinHash-LSH) to remove low-quality or redundant content. The resulting “plug-and-
play” release comprises 17,103,059 documents (around 65.86 GB uncompressed), covering Reddit
submissions from 2005 through April 2020, and serves as a high-diversity, up-to-date pretraining
corpus for large language models. We use the code environment provided by nanoGP”[E] to implement
this dataset training.

A.5.6 Time Series

We evaluate our module on the time series forecasting benchmark datasets below, following the
experimental setup of [65]. (1) Weather [69ﬂ 21 meteorological variables (e.g., temperature,
humidity) collected every 10 minutes in 2020 from a weather station in Germany. (2) Solar [70ﬂ
Solar power outputs recorded every 10 minutes in 2006 from 137 photovoltaic plants in the U.S. (3)
ETT [71ﬂ Transformer load and temperature data sampled at 15-minute (ETTm1/ETTm?2) and
hourly (ETTh1/ETTh2) intervals from July 2016 to July 2018, including 7 key operational features.

A.6 Additional Description of Experimental Settings

Our detailed experimental setup is available at the provided code repository. All experiments
introduced in this paper can be run on a single Nvidia RTX 4090. For faster training, we parallelize
experiments across multiple GPUs. In all benchmarks, we replace the multi-head attention layers
with ZeroS layers without modifying any other settings. We do not apply first-layer O-th order term
correction or the 1/+/¢ variance scaling in any of our experiments.

A.7 Impact Statement

This paper introduces an efficient attention mechanism for transformer-based models. As a fun-
damental architectural improvement, ZeroS primarily affects upstream model capabilities rather
than specific applications. The positive impacts include potential reductions in computational costs
when processing long sequences. Like most foundational ML research, this work could indirectly
contribute to both beneficial and potentially harmful applications depending on how downstream
models implement it. However, as an architectural component rather than a deployed system, ZeroS
itself poses minimal direct societal concerns.

'https://openwebtext2.readthedocs.io/en/latest
"https://github.com/karpathy/nanoGPT
*https://www.bgc- jena.mpg.de/wetter/
*http://www.nrel.gov/grid/solar-power-data.html
https://github.com/zhouhaoyi/ETDataset
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s scope, as shown in section 2-4.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Yes, as shown in last section of the main text.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Yes, the paper make sure the assumptions and proof are accurate.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Yes. Please see the provided anonymous code repository.
Guidelines:

* The answer NA means that the paper does not include experiments.

22



* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we have listed all the code environments used in the experiment, which
includes an introduction to the data that was applied.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we fully inherited all the code from the benchmark code environment used,
without making any modifications to the hyperparameters. This paper, as a simple extension
to the softmax attention and linear attention modules, does not specify any additional
hyperparameters.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We fully rely on the scores generated by the referenced benchmark experimen-
tal environments. In experiments such as MAD and RegBench, they conduct large-scale
hyperparameter searches and select the optimal results. Error bars are not applicable to these
scores.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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10.

Justification: Yes, all tasks used in this paper can be trained on the single Nvidia RTX 4090
GPU that we used. We accelerated the experiments by running multiple tasks in parallel,
and we did not have any large-scale tasks that involved using multiple GPUs for distributed
training for a single task.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Yes, this study fully complies with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes, we include a impact statement section in the appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we have provided a complete list of all environments used in the experi-
mental section, where all related assets information can be found.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we have presented the complete code we used in an anonymous code
repository.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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