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Abstract

Distributionally robust optimization (DRO) can improve the robustness and fairness1

of learning methods. In this paper, we devise stochastic algorithms for a class2

of DRO problems including group DRO, subpopulation fairness, and empirical3

conditional value at risk (CVaR) optimization. Our new algorithms achieve faster4

convergence rates than existing algorithms for multiple DRO settings. We also5

provide a new information-theoretic lower bound that implies our bounds are tight6

for group DRO. Empirically, too, our algorithms outperform known methods.7

1 Introduction8

Commonly, machine learning models are trained to optimize the average performance. However,9

such models may not perform equally well among all demographic subgroups due to a hidden bias in10

the training set or distribution shift in training and test phases [Hovy and Søgaard, 2015; Hashimoto11

et al., 2018; Martinez et al., 2021; Duchi and Namkoong, 2021]. Biases in datasets are also directly12

related to fairness concerns in machine learning [Buolamwini and Gebru, 2018; Jurgens et al., 2017].13

Recently, various algorithms based on distributionally robust optimization (DRO) have been proposed14

to address these problems [Hovy and Søgaard, 2015; Hashimoto et al., 2018; Hu et al., 2018; Oren et15

al., 2019; Williamson and Menon, 2019; Sagawa et al., 2020; Curi et al., 2020; Zhang et al., 2021;16

Martinez et al., 2021; Duchi and Namkoong, 2021]. However, these algorithms are often highly17

tailored to each specific DRO formulation. Furthermore, it is often unclear whether these proposed18

algorithms are optimal in terms of the convergence rate. Are there a unified algorithmic methodology19

and a lower bound for these problems?20

Contributions. In this paper, we study a general class of DRO problems, which includes group21

DRO [Hu et al., 2018; Oren et al., 2019; Sagawa et al., 2020], subpopulation fairness [Martinez et22

al., 2021], conditional value at risk (CVaR) optimization [Curi et al., 2020], and many others. Let23

Θ ⊆ Rn be a convex set of model parameters and `(θ; z) : Θ→ R+ be a convex loss of the model24

with parameter θ with respect to data point z. The data point z may be drawn from one out of m25

distributions P1, . . . , Pm which are accessible via a stochastic oracle that returns an i.i.d. sample26

z ∼ Pi. Let Q be a convex subset of the probability simplex in Rm that contains the uniform vector,27

i.e., (1/m, . . . , 1/m) ∈ Q. Our DRO formulation is as follows:28

min
θ∈Θ

max
q∈Q

m∑
i=1

qi E
z∼Pi

[`(θ; z)]. (1)

If Q are the probability simplex and scaled k-set polytope, we can recover group DRO [Sagawa et29

al., 2020] and subpopulation fairness [Martinez et al., 2021], respectively. Moreover, we formulate30

a new, more general fairness concept based on weighted rankings with Q being a permutahedron,31

which includes these special cases; see Section 2 for details.32
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Table 1: Summary of convergence results for group DRO. Here, m denotes the number of groups, n
the dimension of θ, G the Lipschitz constant of loss function `, D the diameter of feasible set Θ, M
the range of loss function `, and T the number of calls to stochastic oracle.

reference convergence rate E[εT ] iteration complexity lower bound

[Sagawa et al., 2020] O
(
m
√

G2D2+M2 logm
T

)
O(m+ n) + proj. onto Θ

Ω
(√

G2D2+M2m
T

)
(Theorem 5)

Ours (Theorem 2) O
(√

G2D2+M2m logm
T

)
O(m+ n) + proj. onto Θ

Ours (Theorem 3) O
(√

G2D2+M2m
T

)
O(m+ n) + proj. onto Θ
+ solving scalar equation

For our general DRO, we devise an efficient stochastic gradient algorithm. Furthermore, we show that33

it achieves the information-theoretic optimal convergence rate for group DRO. Our main technical34

contributions are as follows;35

• We provide a generic stochastic gradient algorithm for our general DRO. By specializing it36

in the group DRO setting, we provide two algorithms (GDRO-EXP3 and GDRO-TINF)37

that improve the rate of Sagawa et al. [2020] by a factor of Ω(
√
m) with the almost same38

complexity per iteration; see Table 1. Furthermore, our generic algorithm can be specialized39

to improve the convergence rate of Curi et al. [2020] for subpopulation fairness (a.k.a.40

empirical CVaR optimization). Finally, we show that our algorithm runs efficiently if Q is a41

permutahedron, which includes all aforementioned subclasses.42

• We prove a matching information-theoretic lower bound for the convergence rate of group43

DRO. This implies that no algorithm can improve the convergence rate of GDRO-TINF44

(up to a constant factor). To the best of our knowledge, this is the first information-theoretic45

lower bound for group DRO.46

• Our experiments on real-world and synthetic datasets show that our algorithms also empiri-47

cally outperform the known algorithm, supporting our theoretical analysis.48

1.1 Our techniques49

Algorithms. The core idea of our algorithms is stochastic no-regret dynamics [Hazan, 2016]. We50

regard DRO (1) as a two-player zero-sum game between a player who picks θ ∈ Θ and another player51

who picks q ∈ Q. The two players iteratively update their solution using online learning algorithms;52

in particular, we will use online gradient descent (OGD) [Zinkevich, 2003] and online mirror descent53

(OMD) [Cesa-Bianchi and Lugosi, 2006] for the θ-player and q-player, respectively. In addition, we54

need to estimate gradients for both players, since the objective function of our DRO is stochastic and55

we cannot obtain exact gradients.56

The convergence rate of stochastic no-regret dynamics depends on the expected regret of OGD and57

OMD. To obtain the optimal convergence rate, we must carefully choose the regularizer in OMD as58

well as gradient estimators, exploiting the structure of our DRO. In particular, we need to balance59

the variance of gradient estimators and the diameter terms in both OGD and OMD. This is the most60

challenging part of the algorithm design. Inspired by adversarial multi-armed bandit algorithms,61

we design gradient estimators for no-regret dynamics of OGD and OMD in our DRO. Indeed, our62

algorithms for group DRO (GDRO-EXP3 and GDRO-TINF) are based on adversarial multi-armed63

bandit algorithms, EXP3 [Auer et al., 2003] and Tsallis-INF [Zimmert and Seldin, 2021], respectively,64

hence the name. Although each building block (OGD, OMD, and gradient estimators) is fairly known65

in the literature, we need to put them together in the right combination to obtain the optimal rate.66

Lower bound. For the lower bound, we carefully design a family of group DRO instances for which67

any algorithm requires a certain number of queries to achieve a good objective value. To bound68

the number of queries, we use information-theoretic tools such as Le Cam’s lemma and bound the69

Kullback-Leibler divergence between Bernoulli distributions. Such tools are also used at the heart of70

lower bounds for stochastic convex optimization [Agarwal et al., 2012] and adversarial multi-armed71

bandits [Auer et al., 2003], but the connection to those settings is much more subtle here, and our72

construction is specifically designed for group DRO-type problems.73
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1.2 Related work74

DRO is a wide field ranging from robust optimization to machine learning and statistics [Goh and Sim,75

2010; Bertsimas et al., 2018], whose original idea dates back to Scarf [1958]. Popular choices of the76

uncertainty set in DRO include balls around an empirical distribution in Wasserstein distance [Esfahani77

and Kuhn, 2018; Blanchet et al., 2019], f -divergence [Namkoong and Duchi, 2016; Duchi and78

Namkoong, 2021], χ2-divergence [Staib et al., 2019], and maximum mean discrepancy [Staib and79

Jegelka, 2019; Kirschner et al., 2020].80

DRO algorithms have been mainly studied for the offline setting, i.e., algorithms can access all data81

points of the empirical distribution. Note that our DRO is not offline because the group distributions82

are given by the stochastic oracles. Namkoong and Duchi [2016] proposed stochastic gradient83

algorithms for offline DRO with f -divergence uncertainty sets. Curi et al. [2020] used no-regret84

dynamics for empirical CVaR minimization. Their algorithm invokes sampling from k-DPP in each85

iteration, which is more computationally demanding than our algorithm. Furthermore, our algorithm86

gets rid of an O(logm) factor in the convergence rate using the Tsallis entropy regularizer; see87

Theorem 4. Qi et al. [2021]; Jin et al. [2021] devised stochastic gradient algorithms for several DRO88

with non-convex losses.89

Agarwal et al. [2012] gave a lower bound for stochastic convex optimization, which is a special case90

of our DRO with only one distribution. Recently, Carmon et al. [2021] showed a lower bound for91

minimax problem minx maxmi=1 fi(x) for non-stochastic Lipschitz convex fi. Our lower bound deals92

with the stochastic functions, so this result does not apply.93

In this paper, we assume that the group information is given in advance. However, the group94

information might not be easy to define in practice. Bao et al. [2021] propose a simple method to95

define groups for classification problems based on mistakes of models in the training phase. Their96

method often generates group DRO instances with large m. Our algorithms are more efficient for97

such group DRO thanks to the better dependence on m in the convergence rate.98

No-regret dynamics is a well-studied method for solving two-player zero-sum games [Cesa-Bianchi99

and Lugosi, 2006]. For non-stochastic convex-concave games, one can achieve O(1/T ) convergence100

via predictable sequences [Rakhlin and Sridharan, 2013]. This result does not apply to our setting101

because our DRO is a stochastic game.102

Notations. Throughout the paper, m denotes the number of distributions (groups) and n denotes103

the dimension of a variable θ. For a positive integer m, we write [m] := {1, . . . ,m}. The orthogonal104

projection onto set Θ is denoted by projΘ. The ith standard unit vector is denoted by ei and the105

all-one vector is denoted by 1. The probability simplex in Rm is denoted by ∆m.106

2 Examples contained in our general DRO107

In this section, we show how several DRO formulations in the literature can be phrased in our general108

DRO formulation (1). In addition, we propose a novel fairness constraint based on weighted rankings109

using our general DRO.110

Group DRO. When Q equals the probablility simplex, we obtain group DRO [Hu et al., 2018;111

Oren et al., 2019; Sagawa et al., 2020]:112

min
θ∈Θ

m
max
i=1

E
z∼Pi

[`(θ; z)]. (2)

That is, group DRO aims to minimize the expected loss in the worst group, thereby ensuring better113

performance across all groups.114

Empirical CVaR, Subpopulation fairness, Average top-k worst group loss. Group DRO may115

yield overly pessimistic solutions. For instance, the groups might be automatically generated by other116

algorithms (such as one in Bao et al. [2021]) and there might exist a few “outlier” groups that make117

the group DRO objective trivial.118

For such a case, we can restrict Q to a small subset of the probability simplex so that the solution119

cannot put large weights on a few outlier groups. Especially, let Q =
{
q ∈ ∆m : 0 ≤ qi ≤ 1

pm

}
for120
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some parameter p ∈ (0, 1), i.e., Q is a scaled k-set polytope. The intuition behind the choice of Q121

is that, by limiting the largest entry of q to 1/pm, DRO would optimize the expected loss over the122

worst p-fraction subgroups of m groups. Therefore, if the fraction of outlier groups is sufficiently123

small compared to p, then p-fraction subgroups must contain “inlier” groups as well. Therefore, it is124

likely that DRO with Q finds solutions more robust than group DRO.125

When Pi is the Dirac measure of data zi, then the resulting DRO is empirical CVaR optimization [Curi126

et al., 2020]. In the fairness context, the same problem is called subpopulation fairness [Williamson127

and Menon, 2019; Martinez et al., 2021; Duchi and Namkoong, 2021].128

If p = m/k for some positive integer k, the resulting DRO is the average top-k worst group129

loss [Zhang et al., 2021]:130

min
θ∈Θ

1

k

k∑
i=1

L↓i (θ),

where L↓i (θ) denotes the the ith largest population group loss of θ. More precisely, let Li(θ) =131

Ez∼Pi [`(θ; z)] for i ∈ [m] and sort them in the non-increasing order: L↓1(θ) ≥ · · · ≥ L↓m(θ).132

Weighted ranking of group losses. The aforementioned DRO formulations are special cases of the133

following DRO, which we call the weighted ranking of group losses. Let α ∈ ∆m be a fixed vector134

with non-increasing entries. Let Q be the permutahedron of α, the convex hull of (ασ(1), . . . , ασ(m))135

for all permutations σ of [m]. Then, the resulting DRO is136

min
θ∈Θ

m∑
i=1

αiL
↓
i (θ).

Group DRO corresponds to α = (1, 0, . . . , 0) and the average top-k worst group losses corresponds137

to α = (1/k, . . . , 1/k︸ ︷︷ ︸
k times

, 0, . . . , 0). Another example that is contained in none of the above examples is138

lexicographic minimax fairness [Diana et al., 2021]. The goal of lexicographical minimax fairness139

is to find θ ∈ Θ such that the sequence (L↓1(θ), . . . , L↓m(θ)) is lexicographically minimum. This140

corresponds to α with sufficiently varied entries, i.e., α1 � α2 � · · · � αm.141

3 Algorithms142

In this section, we describe our algorithms. First, we present a generic algorithm for our general143

DRO (1) and provide a unified convergence analysis in Section 3.1. Then, we specialize it into two144

concrete algorithms for group DRO (2) in Section 3.2. We sketch algorithms for the average of top-k145

group losses and weighted ranking of group loss in Section 3.3.146

3.1 Algorithm for the general case147

We present our algorithm for geranal DRO (1). At a high level, our algorithm can be regarded as148

stochastic no-regret dynamics. Let us denote L(θ, q) :=
∑m
i=1 qiEz∼Pi [`(θ; z)]. Imagine that the149

θ-player and q-player run online algorithms Aθ and Aq , respectively, to solve the minimax problem150

minθ∈Θ maxq∈Q L(θ, q). That is, for t = 1, . . . , T ,151

• θt ∈ Θ and qt ∈ Q are determined by Aθ and Aq , respectively.152

• Both players feed gradient estimators ∇̂θ,t and ∇̂q,t to Aθ and Aq, respectively. Here,153

E[∇̂θ,t] = ∇θL(θt, qt) and E[∇̂q,t] = ∇qL(θt, qt).154

Let155

εT := max
q∈Q

L(θ̄1:T , q)−min
θ∈Θ

max
q∈Q

L(θ, q)

be the optimality gap of the averaged iterate θ̄1:T = 1
T

∑T
t=1 θt. We can bound the expected156

convergence rate E[εT ] via regrets Rθ and Rq of these online algorithms (see Appendix A for a157

formal definition), i.e.,158

E[εT ] ≤ E[Rθ(T )] + E[Rq(T )]

T
. (3)
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We can obtain hence the convergence rate of the above algorithms by investigating the expected regret159

bounds of these online algorithms.160

To get a concrete algorithm, we must specify the online algorithms Aθ,Aq as well as the gradient161

estimators ∇̂θ,t, ∇̂q,t. We use OGD and OMD as Aθ and Aq , respectively. We construct the gradient162

estimators by sampling it ∼ qt and z ∼ Pit and setting ∇̂θ,t = ∇θ`(θt; z) and ∇̂q,t = `(θt;z)
qt,it

eit .163

This leads to Algorithm 1. There, Ψ : Q → R denotes the regularizer of OMD and ηθ,t and ηq164

denote the step sizes of OGD and OMD, respectively. 1 It turns out that this combination of online165

algorithms and gradient estimators yields the best convergence rate (for group DRO) because the166

expected regrets of both players are optimal.167

Algorithm 1 Algorithm for general DRO (1)

Require: initial solution θ1 ∈ Θ, number of iterations T , step sizes ηθ,t > 0 (t ∈ [T ]), ηq > 0, and
a strictly convex function Ψ : Q→ R.

1: Let q1 = (1/m, . . . , 1/m).
2: for t = 1, . . . , T do
3: Sample it ∼ qt.
4: Call the stochastic oracle to obtain z ∼ Pit .
5: θt+1 ← projΘ(θt − ηθ,t∇θ`(θt; z))
6: ∇Ψ(q̃t+1) ← ∇Ψ(qt) − ηq

qt,it
`(θt; z)eit ; qt+1 ← argminq∈QDΨ(q, q̃t+1), where

DΨ(x, y) = Ψ(x)−Ψ(y)−∇Ψ(x)>(y − x) is the Bregman divergence with respect to Ψ.
7: return 1

T

∑T
t=1 θt.

We now analyze the convergence rate of Algorithm 1. We make the following standard assumptions.168

Assumption 1. The loss function `(θ; z) is continuously differentiable and G-Lipchitz in θ, and has169

range [0,M ] for all z. The Euclidean diameter of the feasible region Θ is at most D.170

The following theorem follows from plugging regret bounds of OGD and OGD, and the construction171

of the gradient estimators into (3).172

Theorem 1. If ηθ,t is nonincreasing, Algorithm 1 achieves the expected convergence rate173

E[εT ] ≤ 1

T

(
G2

2

T∑
t=1

ηθ,t +
D2

2ηθ,T
+
M2

2
ηq

T∑
t=1

E
it

[
(∇2Ψ(qt))

−1
it,it

q2
t,it

]
+

maxq∗∈QDΨ(q∗,1/m)

ηq

)
.

A formal proof can be found in Appendix B. We will see how specific choices of the regularizer Ψ174

yield various algorithms and convergence rates for group DRO and others in the next subsections. A175

few remarks on the regularizers, step sizes, and projection step are in order.176

Regularizer. Although Algorithm 1 works with general Ψ, we can choose a specific regularizer for177

Q appearing in applications, e.g, the probability simplex, scaled k-set polytope, or a permutahedron.178

In the next subsections, we show that the entropy regularizer Ψ(x) =
∑
i(xi log xi − xi) and Tsallis179

entropy regularizer Ψ(x) = 2(1−
∑
i

√
xi) yield efficient algorithms with improved convergence180

rates for these cases.181

Step sizes. The theorem includes decreasing step sizes such as ηθ,t = D
mG
√
t

in addition to fixed182

step sizes. Decreasing step sizes have the advantage that we do not require the knowledge of T183

at the beginning of the algorithm but come at the cost of an extra constant factor in the expected184

convergence rate. Since both step size policies give the asymptotically same convergence rate, we185

describe only fixed step sizes in the theorems in the next subsections. In practice, decreasing step186

sizes stabilize the algorithm and often outperform fixed step sizes.187

Projection step. In general, the Bregman projection argminq∈QDΨ(q, q̃t+1) is convex, but may188

be costly to compute. For the applications described in Section 2, Q is a permutahedron. In this case,189

1We make a standard assumption that the regularizer Ψ is differentiable and strictly convex, and satisfies
‖∇Ψ(x)‖ → +∞ as x tends to the boundary of Q.
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Algorithm 2 GDRO-EXP3

Require: initial solution θ1 ∈ Θ, number of it-
erations T , and step sizes ηθ,t > 0 (t ∈ [T ]),
ηq > 0.

1: Let qt = (1/m, . . . , 1/m).
2: for t = 1, . . . , T do
3: Sample it ∼ qt.
4: Call the stochastic oracle to obtain z ∼ Pit .

5: θt+1 ← projΘ(θt − ηθ,t∇θ`(θt; z))
6: q̃t+1 ← qt exp

(
ηq`(θt;z)eit

qt,it

)
7: qt+1 ← q̃t+1∑

i q̃t+1,i
.

8: return 1
T

∑T
t=1 θt.

Algorithm 3 GDRO-TINF

Require: initial solution θ1 ∈ Θ, number of it-
erations T , and step sizes ηθ,t > 0 (t ∈ [T ]),
ηq > 0.

1: Let qt = (1/m, . . . , 1/m).
2: for t = 1, . . . , T do
3: Sample it ∼ qt.
4: Call the stochastic oracle to obtain z ∼ Pit .

5: θt+1 ← projΘ(θt − ηθ,t∇θ`(θt; z))

6: q̃t+1 ← qt

(
1− ηq

√
qt

qt,it
`(θt; z)eit

)−2

7: Compute α ∈ R such that∑m
i=1

(√
q̃t+1,i − α

)−2
= 1.

8: qt+1 ← (
√
q̃t+1 − α1)

−2

9: return 1
T

∑T
t=1 θt.

it is known that the Bregman projection with respect to the entropy and Tsallis entropy regularizers190

can be done in O(m logm) time [Lim and Wright, 2016]. If Q is the probability simplex, we even191

have a closed form for the Bregman projection.192

3.2 Algorithms for Group DRO193

As applications of our generic algorithm, we now describe two concrete algorithms for group DRO (2)194

and their convergence rates.195

GDRO-EXP3. Let Ψ be the entropy regularizer, which corresponds to the EXP3 algorithm for196

the q-player. The resulting algorithm, GDRO-EXP3, is shown in Algorithm 2. The update is in a197

closed formula and its complexity is O(m+ n) time. The convergence rate follows from Theorem 1.198

Theorem 2. If ηθ,t is nonincreasing, GDRO-EXP3 (Algorithm 2) achieves the expected convergence199

rate200

E[εT ] ≤ 1

T

(
G2

2

T∑
t=1

ηθ,t +
D2

2ηθ,T
+
mM2

2
ηqT +

logm

ηq

)
. (4)

For ηθ,t = D
G
√
T

and ηq =
√

2 logm
mM2T , we obtain201

E[εT ] ≤
√

2

√
G2D2 + 2M2m logm√

T
.

GRDO-TINF. We can further improve the convergence rate using the Tsallis entropy regularizer202

at the cost of a slightly higher iteration complexity. The update of qt is then203

q̃t+1 = qt

(
1−

ηq
√
qt

qt,it
`(θt; z)eit

)−2

, qt+1:=
(√

q̃t+1 − α1
)−2

,

where the multiplication, square-root, and power operations are entry-wise and α ∈ R is the unique204

solution of equation
∑m
i=1

(√
q̃t+1,i − α

)−2
= 1. The solution α can be computed via the Newton205

method. Practically, one can use α in the previous iteration to warm start the Newton method. In206

each iteration, the algorithm performs a single orthogonal projection onto Θ, the Newton method for207

finding α, and O(m+ n) operations to update θt, qt. The pseudocode is given in Algorithm 3. From208

Theorem 1, we obtain the following convergence rate.209

Theorem 3. If ηθ,t is nonincreasing, GDRO-TINF (Algorithm 3) achieves the expected convergence210

rate211

E[εT ] ≤ 1

T

(
G2

2

T∑
t=1

ηθ,t +
D2

2ηθ,T
+
√
mM2ηqT +

√
m

ηq

)
. (5)
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For ηθ,t = D
G
√
T

and ηq = 1
M
√
T

, we obtain212

E[εT ] ≤
√

2

√
G2D2 + 4M2m√

T
.

Comparison to Sagawa et al. [2020]. Our algorithms improve the convergence rate of Sagawa et213

al. [2020] by a factor of O(
√
m); see Table 1. The reason lies in the choice of gradient estimator. All214

algorithms are stochastic no-regret dynamics. As outlined above, their convergence hence can be215

bounded by the regrets of the players, which depend on the variance of the local norm of the gradient216

estimators. Their strategy is based on uniform sampling that yields a variance of O(m) for both217

players, whereas our bound is O(
√
m) thanks to the gradient estimators tailored to the regularizer of218

OMD. More details may be found in Appendix D.219

3.3 Algorithm for weighted ranking of group losses220

We now consider a more general case that Q is a permutahedron. Applying Algorithm 1 with the221

Tsallis entropy regularizer, we obtain the following result.222

Theorem 4. If ηθ,t is nonincreasing and Q is a permutahedron, Algorithm 1 with the Tsallis entropy223

regularizer achieves the same expected convergence rate as Theorem 3. Furthermore, the iteration224

complexity is O(m logm+ n).225

This implies a convergence rate of O(
√

G2D2+M2m
T ) for empirical CVaR optimization, which226

improves O(
√

G2D2+M2m logm
T ) convergence by Curi et al. [2020]. Furthermore, their iteration227

complexity is O(m3) due to the k-DPP sampling step, so our algorithm is even faster in terms of228

iteration complexity.229

4 Lower bound230

Theorem 3 states that we can find an ε-optimal solution for group DRO in O(G
2D2+M2m

ε2 ) calls to231

stochastic oracles. Next, we show that this query complexity is information-theoretically optimal.232

Let L be a class of convex G-Lipschitz loss functions ` : Θ→ [0,M ]. Given a loss function ` ∈ L,233

and an m-set P = {P1, . . . , Pm} of distributions, denote the optimality gap of θ ∈ Θ by234

R(θ, `,P) = max
P∈P

E
z∼P

[`(θ; z)]− min
θ∗∈Θ

max
P∈P

E
z∼P

[`(θ∗; z)].

Let AT be the set of algorithms that outputs θ̂ ∈ Θ making T queries to the stochastic oracle.235

Theorem 5 (Lower Bound).

inf
θ̂∈AT

sup
`∈L,Θ,P

E
P

[R(θ̂, `,P)] ≥ Ω

(
max

{
GD√
T
,M

√
m

T

})
,

where Θ runs over convex sets with diameter D and P over m-sets of distributions, and EP denotes236

the expectation over outcomes of the stochastic oracle in P .237

As
√
x+ y ≤

√
x +
√
y ≤

√
2(x+ y) for x, y ≥ 0, this theorem immediately implies that the238

minimax convergence rate is Ω

(√
G2D2+M2m

T

)
, which equals the convergence rate achieved by239

Algorithm 3 up to a constant factor.240

Proof Sketch. It suffices to show two lower bounds GD√
T

and M
√

m
T independently. The former is241

a well-known lower bound for stochastic convex optimization [Agarwal et al., 2012]. To illustrate the242

latter, we take an algorithmic dependent point of view via the Le cam’s method. For any algorithm243

in AT , we need to construct instances P0,P1 such that the total variation distance between the244

distributions over the query outcomes (they depend on both the behavior of the algorithm and the245

instance) with respect to P0 and P1 is small. On the other hand, the objective function of the two246
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Figure 2: Results on synthetic dataset

instances must be well-separated, i.e., any fixed θ is δ sub-optimal for either P0 or P1. So, any247

algorithm that solves group DRO up to error δ needs to distinguish two instances P0 and P1. This248

implies a query lower bound because the total variation distance of the outcome distributions of249

these instances is small. The challenge is how to construct such instances for the regime of small250

dimensions of θ, e.g, n = 1. To this end, we carefully construct linear functions for m groups using251

opposite slopes. Then, based on the behavior of the algorithm, we tweak the noise bias in one of the252

groups with a positive slope, in a way that any fixed θ is Θ(δ) sub-optimal for one of these instances.253

For the detailed proof, see Appendix C.254

5 Experiments255

In this section, we compare our algorithms with the known algorithm using real-world and synthetic256

datasets. We follow the setup in [Namkoong and Duchi, 2016].257

Adult dataset. For the real-world dataset, we use Adult dataset [Dua and Graff, 2017]. The dataset258

consists of age, gender, race, educational background, and many other attributes of 48, 842 individuals259

from the US census. The task is to predict whether the person’s income is greater than 50, 000 USD260

or not. We set up 6 groups based on the race and gender attributes: each group corresponds to261

a combination of {black,white, others} × {female,male}. Converting the categorical features to262

dummy variables, we obtain a 101-dimensional feature vector a ∈ Rn (n = 101) for each individual.263

We train the linear model with the logistic loss and hinge loss functions. The group-DRO objective is264

the worst empirical loss over the 6 groups:265

6
max
i=1

1

|Ii|
∑

(a,b)∈Ii

`(θ; a, b),

where Ii is the set of data points in the ith group. The feasible region is set to the Euclidean ball of266

radius D = 10.267
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Synthetic dataset. To observe the performance of the algorithms over the regime of high-dimension268

model parameters and the larger number of groups, we also conducted experiments using the following269

synthetic instances. First, we set n = 500 and varied m ∈ {10, 50, 100}. For each group i ∈ [m], we270

generated the true classifier θ∗i ∈ Rn from the uniform distribution over the unit sphere in Rn. The ith271

group distribution Pi was the empirical distribution of 1,000 data points, where each data point (a, b)272

was drawn as a ∼ N(0, In) and b = sign(a>θ∗i ) with probability 0.9 and b = − sign(a>θ∗i ) with273

probability 0.1. We trained the linear model with the hinge loss function. Finally, the group-DRO274

objective is275

m
max
i=1

E
(a,b)∼Pi

[`(θ; a, b)].

The feasible region is set to the Euclidean ball of radius D = 10.276

5.1 Algorithms277

We implemented GDRO-EXP3, GDRO-TINF, and the algorithm in [Sagawa et al., 2020] in Python.278

We ran our algorithms for T =2,000,000 iterations.279

Inner online algorithms. It is known that EXP3 has a variance as large as O(T 2) [Lattimore and280

Szepesvári, 2020]. Therefore, vanilla EXP3 often fails to achieve a sublinear regret even though it281

achieves O(
√
T ) regret in expectation. This large variance makes it difficult to reliably evaluate the282

performance of the algorithms. To stabilize the algorithms, we replaced EXP3 with its variation,283

EXP3P [Auer et al., 2003], which achievesO(
√
T ) regret with high probability. Note that this change284

does not harm our expected convergence bounds.285

Step sizes. The choice of step sizes is crucial to the practical performance of first-order methods.286

We found that the decreasing step size ηθ,t ∼ 1/
√
t for θt and the fixed step size ηq ∼ 1/

√
T for287

qt gave the best results. More precisely, we set ηθ,t = CθD√
t

(t ∈ [T ]) and ηq = Cq

√
logm
mT , where288

Cθ ∈ [0.1, 5.0] and Cq ∈ [0.1, 3.0] are hyper-parameters tuned for each algorithm. We used the best289

hyper-parameter found by Optuna [Akiba et al., 2019] for the shown results.290

Mini-batch. The use of mini-batch often improves the stability of stochastic gradient algorithms.291

In our experiments, we used mini-batches of size 10 to evaluate stochastic gradients. Neither the292

objective values of outputs nor the stability was improved with larger mini-batch sizes. The group293

DRO objective is evaluated using the entire dataset.294

Initialization. For both datasets, we initialized the algorithms with θ1 = 0.295

5.2 Results296

We show the results of our experiment in Figures 1 and 2.297

Adult dataset. In Figure 1, we plot the optimality gap of the averaged iterate 1
T

∑T
t=1 θt against the298

number of iteration T . We observe that all the algorithms converge with a rate roughly T−0.5 for both299

loss functions, consistent with our convergence bound. Furthermore, our algorithms (GDRO-EXP3300

and GDRO-TINF) achieve faster convergence compared to the algorithm by Sagawa et al. [2020].301

Interestingly, GDRO-TINF achieves a 10−4 optimality gap in T = 106 iterations, which is faster302

than the theoretical T−0.5 rate in Theorem 3.303

Synthetic dataset. In Figure 2, we plot the objective values of the averaged iterate against the304

number of iterations. For all the values of m, our algorithms (especially GDRO-EXP3) consistently305

achieve smaller loss values faster than the known algorithm. The performance gap between our306

algorithms and the known algorithm increased as m grows, which verifies that our algorithms have307

better dependence on m in the convergence rate.308
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