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ABSTRACT

Feature-based methods are commonly used to explain model predictions, but these
methods often implicitly assume that interpretable features are readily available.
However, this is often not the case for high-dimensional data, and it can be hard even
for domain experts to mathematically specify which features are important. Can we
instead automatically extract collections or groups of features that are aligned with
expert knowledge? To address this gap, we present FIX (Features Interpretable to
eXperts), a benchmark for measuring how well a collection of features aligns with
expert knowledge. In collaboration with domain experts, we propose FIXScore, a
unified expert alignment measure applicable to diverse real-world settings across
cosmology, psychology, and medicine domains in vision, language and time series
data modalities. With FIXScore, we find that popular feature-based explanation
methods have poor alignment with expert-specified knowledge, highlighting the
need for new methods that can better identify features interpretable to experts.

1 INTRODUCTION

Machine learning is increasingly used in domains like healthcare (Tjoa & Guan, 2019), law (Atkin-
son et al., 2020), governance (Meijer & Wessels, 2019), science (de la Torre-López et al., 2023),
education (Holstein et al., 2018) and finance (Modarres et al., 2018). However, modern models
are often black-box, which makes it hard for practitioners to understand their decision-making and
safely use model outputs (Rai, 2019). For example, surgeons are concerned that blind trust in model
predictions will lead to poorer patient outcomes (Hameed et al., 2023); in law, there are known
instances of wrongful incarcerations due to over-reliance on faulty model predictions (Zeng et al.,
2016; Wexler, 2017). Although such models have promising applications, their opaque nature is a
liability in domains where transparency is crucial (Jacovi et al., 2021; Hong et al., 2020).

To address the pertinent need for transparency and explainability of their decision-making, the
interpretability of machine learning models has emerged as a central focus of recent research (Arrieta
et al., 2019; Saeed & Omlin, 2023; Räuker et al., 2023). A popular and well-studied class of
interpretability methods is known as feature attributions (Ribeiro et al., 2016; Lundberg & Lee,
2017; Sundararajan et al., 2017). Given a model and an input, a feature attribution method assigns
scores to input features that reflect their respective importance toward the model’s prediction. A key
limitation, however, is that the attribution scores are only as interpretable as the underlying features
themselves (Zytek et al., 2022).

Feature-based explanation methods commonly assume that the given features are already interpretable
to the user, but this typically only holds for low-dimensional data. With high-dimensional data like
images and text documents, where the readily available features are individual pixels or tokens, feature
attributions are often difficult to interpret (Nauta et al., 2023). The main problem is that features
at the individual pixel or token level are often too granular and thus lack clear semantic meaning
in relation to the entire input. Moreover, the important features are also domain-dependent, which
means that different attributions are needed for different users. These factors limit the usefulness of
popular feature attribution methods on high-dimensional data.

Instead of individual features, people understand high dimensional data in terms of semantic col-
lections of low level features, such as regions in an image or phrases in a document. Moreover,
for a feature to be useful, it should align with the intuition of domain experts in the field. To this
end, an interpretable feature for high-dimensional data should have the following properties. First,
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Dataset Mass Maps Supernova Multilingual 
Politeness Emotion Chest X-Ray Cholecystectomy

Input (x) mass map image
simulated 
astronomical time-
series data

conversation 
snippet Reddit comment chest X-ray image video surgery 

image

Output (y)
energy density Ωm, 

matter fluctuation σ8 
astronomical sources 
(e.g. supernova) politeness level emotion pathology safe/unsafe zone

# Examples 110,000 7,848 22,800 58,000 28,868 1,015

Expert Features voids, clusters linear consistent 
wavelengths lexical categories Russell’s 

circumplex model
anatomical 
structures organ structures

Input Example

Examples of 
Expert Features

Adapted From [Kacprzak et al., 2023] [Team et al., 2018] [Havaldar et al., 
2023a] [Demszky et al., 2020] [Majkowska et al., 

2020] [Madani et al., 2022]

Implicit Expert Features Explicit Expert Features

I was running my 
spellchecker and totally 
didn't realize that this 
was a vandalized page. 
Please accept my 
apology. I will spellcheck 
a little slower next time.

“I was running my 
spellchecker and 
totally didn't 
realize that this 
was a vandalized 
page. Please 
accept my apology. 
I will spellcheck a 
little slower next 
time.”

Categories
First person

Please
Negative
Promise

Apologetic

Cosmology Psychology Medicine

This was potentially 
the most dangerous 
stunt I have ever 
seen someone do. 
One minor mistake 
and you die.

“This was potentially the 
most dangerous stunt I 
have ever seen someone 
do. One minor mistake 
and you die.” 

Low arousal
High arousal, negative valence
Low arousal, negative valence
Positive valence

Figure 1: The FIX benchmark contains 6 datasets across a diverse set of application areas, data
modalities, and dataset sizes. For each dataset, we show an example of an input and some example
expert features for that input.

they should encompass a grouping of related low-level features (e.g., pixels, tokens), thus creating
high-level features that experts can more easily digest. Second, these low-level feature groupings
should align with domain experts’ knowledge of the relevant task, thus creating features with practical
relevance. We refer to features that satisfy these criteria as expert features.

But how can we obtain such features? In practice, it is left to domain experts to identify and provide
such features for individual tasks. Although experts often have a sense of what the expert features
should be, formalizing such features is often non-trivial. Moreover, manually annotating expert
features can also be expensive and labor-intensive. These challenges raise the critical question:

Can we automatically discover expert features that align with domain knowledge?

To this end, we present the FIX benchmark, a unified evaluation measuring feature interpretability that
can capture each individual domain’s expert knowledge. Our goal is to guide the development of new
methods that produce interpretable features by building a unified metric to measure how interpretable
a proposed feature group is. The FIX datasets (summarized in Figure 1) collectively encompass
a diverse array of real-world settings (cosmology, psychology, and medicine) and data modalities
(vision, language, and time-series signals): abdomen surgery safety identification (Madani et al.,
2022), chest X-ray classification (Lian et al., 2021), mass maps regression (Kacprzak et al., 2023),
supernova classification (Željko Ivezić et al., 2019), multilingual politeness classification (Havaldar
et al., 2023a), and emotion classification (Demszky et al., 2020; Havaldar et al., 2023b). The challenge
here lies in unifying all 6 different real-world settings and 3 different data modalities into a single
framework, which our proposed expert alignment measure FIXSCORE achieves. This allows us to
have a benchmark that does not overfit to any particular domain. To our knowledge, while previous
work has identified the need for interpretable features (Zytek et al., 2022; Doshi-Velez & Kim,
2017), there does not exist yet a benchmark that measures the interpretability of features for real-
world experts. The FIX benchmark accomplishes this while also serving as a basis for studying,
constructing, and extracting expert features. In summary, our contributions are as follows:

1. In collaboration with domain experts, we develop the FIX benchmark, a set of 6 curated
datasets with evaluation metrics for extracting Features Interpretable to eXperts in real-
world settings from diverse modalities of images, text, and time-series data. 1

1Code and updates are available at https://anonymous_website.html
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2. We introduce a general feature evaluation metric, FIXSCORE, that unifies the different real-
world settings of cosmology, psychology, and medicine into a single framework. We worked
closely with real domain experts to develop criteria for what made features interpretable in
each domain.

3. We evaluate commonly used techniques for extracting higher-level features and find that
existing methods score poorly on FIXSCORE, highlighting the need for developing new
general-purpose methods designed to automatically extract expert features.

2 RELATED WORK

Interpretability. Interpretability in machine learning is often viewed as a multifaceted concept that
encompasses algorithmic transparency (Shin & Park, 2019; Rader et al., 2018; Grimmelikhuijsen,
2023), explanation methods (Marcinkevičs & Vogt, 2023; Havaldar et al., 2023c), and visualization
techniques (Choo & Liu, 2018; Spinner et al., 2019; Wang et al., 2023), among other aspects. In
this work, we focus on feature-level interpretability, a central topic in interpretability research (Hong
et al., 2020; Nauta et al., 2023). Feature-based methods are popular because they are believed to
offer simple, adaptable, and intuitive settings in which to analyze and develop interpretable machine
learning workflows (Molnar et al., 2020). We refer to (Nauta et al., 2023; Dwivedi et al., 2023; Weber
et al., 2023) and the references therein for extensive reviews on feature-based explanations.

Application-grounded Evaluation. Chaleshtori et al. (2024) extend the work of Doshi-Velez &
Kim (2017) to propose a comprehensive taxonomy of evaluating explanations. Notably, this includes
application-grounded evaluations, which broadly seek to measure the efficacy of feature-based
methods in settings with human users and realistic tasks, such as AI-assisted decision-making.
However, the available literature on application-grounded evaluations is sparse: Chaleshtori et al.
(2024) reviewed over 50 existing NLP datasets and found that only four were suitable for application-
grounded evaluations (DeYoung et al., 2019; Wadden et al., 2020; Koreeda & Manning, 2021; Malik
et al., 2021). A principal objective of the FIX benchmark is to provide an application-grounded
evaluation of feature-based explanations in real-world settings.

Feature Generation. Because high-quality and interpretable features may not always be available,
there is interest in automatically generating them by combining low-level features (Nargesian et al.,
2017; Erickson et al., 2020; Zhang et al., 2023a). Notably, Zhang et al. (2023a) propose a method for
tabular data using the expand-and-reduce framework (Kanter & Veeramachaneni, 2015). However,
existing generation methods do not necessarily produce interpretable features, and most works focus
on tabular data. The FIX benchmark aims to address these limitations by providing a setting in which
to study and develop methods for interpretable feature generation across diverse problem domains.

XAI Benchmarks. There exists a suite of benchmarks for explanations that cover the properties
of faithfulness (or fidelity) (Zhou et al., 2021; Agarwal et al., 2022), robustness (Alvarez-Melis &
Jaakkola, 2018; Agarwal et al., 2022), simulatability (Mills et al., 2023), fairness (Fel et al., 2021;
Agarwal et al., 2022), among others. Quantus (Hedström et al., 2023), XAI-Bench (Liu et al., 2021),
OpenXAI (Agarwal et al., 2022), GraphXAI (Agarwal et al., 2023), and ROAR (Hooker et al., 2019)
are notable open-source implementations that evaluate for such properties. CLEVR-XAI (Arras et al.,
2022) and Zhang et al. (2023b) provide benchmarks that combine vision and text. ERASER (DeYoung
et al., 2019) is a popular NLP benchmark that unifies diverse NLP datasets of human rationales and
decisions. In general, however, there is a lack of interpretability benchmarks that evaluate feature
interpretability in real-world settings — a gap we aim to address with the FIX benchmark.

3 EXPERT FEATURE EXTRACTION

Feature-based explanation methods require interpretable features to be effective. For example,
surgeons communicate safety in surgery with respect to key anatomical structures and organs, which
are interpretable features for surgeons (Strasberg & Brunt, 2010; Hashimoto et al., 2019). These
interpretable features are a key bridge that can help surgical AI assistants communicate effectively
with surgeons. However, ground-truth annotations for such interpretable features are often expensive
and hard to obtain, as they typically require trained experts to manually annotate large amounts of
data. This bottleneck is not unique to surgery, and such challenges motivate us to study the problem
of extracting features interpretable to experts, or expert features.
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Figure 2: The FIX benchmark allows measuring alignment of extracted features with expert features
in different domains, either implicitly with a scoring function or explicitly with expert annotations.

Consider a task with inputs from X ⊆ Rd and outputs in Y . In the example of surgery, X may be
the set of surgery images, and Y is the target of where it is safe or unsafe to operate. We model a
higher-level expert feature of input x ∈ X as a subset of features represented with a binary mask
g ∈ {0, 1}d, where gi = 1 if the ith feature is included and 0 otherwise. In surgery, for example,
a good mask β is one that accurately selects a key anatomical structure or organ from an input x.
The objective of interpretable feature extraction is to find a set of masks Ĝ ⊆ {0, 1}d that effectively
approximates the expert features of x. That is, each binary mask ĝ ∈ Ĝ aims to identify some subset
of features meaningful to experts.

3.1 MEASURING ALIGNMENT OF EXTRACTED FEATURES WITH EXPERT FEATURES

At the core of FIX is a general framework for measuring the quality of extracted features with respect
to expert knowledge. Let Ĝ be a proposed set of expert features for an input x ∈ Rd, and suppose
there exists a function EXPERTALIGN(ĝ, x) ∈ [0, 1] that captures how well a single extracted feature
ĝ is expert-interpretable for x. Here, a score of 1 means that a domain expert considers ĝ highly
interpretable, whereas a score of 0 means that ĝ is a highly uninterpretable feature. Then, given a set
of proposed groups Ĝ and input x, we measure the quality of Ĝ for x as:

FIXSCORE(Ĝ, x) =
1

d

d∑
i=1

1

|Ĝ[i]|

∑
ĝ∈Ĝ[i]

EXPERTALIGN(ĝ, x). (1)

where let Ĝ[i] = {ĝ ∈ Ĝ : i ∈ ĝ} be the subset Ĝ that cover feature i. Intuitively, FIXSCORE is an
average of averages: the expert alignment for each individual feature i = 1, . . . , d is averaged over
all covers Ĝ[i]. This metric has two key strengths:

1. Duplication Invariance at Optimality. If one extracts perfect expert features (i.e., with
an alignment score of 1), the FIXSCORE cannot be increased further by duplicating expert
features. This property ensures that the score cannot be trivially inflated with repeats.

2. Encourages Diversity of Expert Features. Since the score aggregates a value for each
feature from i = 1, . . . , d, adding a new expert feature that does not yet overlap with already
extracted features is always beneficial.

The use of a generic expert alignment function enables the FIXSCORE to accommodate a diverse set
of applications. There are two main ways one can specify the EXPERTALIGN function: implicitly
with a score specified by an expert or explicitly with annotations from an expert, as shown in Figure 2.

Case 1: Implicit Expert Alignment. Suppose we do not have explicit annotations of expert features
for ground truth groups. In this case, we use implicit expert features defined indirectly via a scoring
function that measures the quality of an extracted feature. The exact formula of the score is specified
by an expert and will depend on the domain and task. Implicit expert features have the advantage

4
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of potentially being more scalable than features manually annotated by experts. The Mass Maps,
Supernova, Multilingual Politeness, and Emotion datasets are examples of the implicit features case.

Case 2: Explicit Expert Alignment. In the case where we do have annotations for expert features G⋆,
we can use a standardized expression for the FIXSCORE that measures the best possible intersection
with the annotated expert features. Then, the expert alignment score of a feature group ĝ is

EXPERTALIGN(ĝ, x) = max
g⋆∈G⋆(x)

MATCH(ĝ, g⋆), where MATCH(ĝ, g⋆) =
|ĝ ∩ g⋆|
|ĝ ∪ g⋆|

, (2)

and |·| counts the number of ones-entries, and ∩ and ∪ are the element-wise conjunction and
disjunction of two binary vectors, respectively. In other words, MATCH is an intersection-over-union
score. Our notation is motivated by the fact that one can treat expert features ĝ like sets as they are
binary vectors. The Cholecystectomy and Chest X-ray datasets have explicit expert features.

Our goal in FIX is to benchmark general-purpose feature extraction techniques that are domain
agnostic and do not use the FIXSCORE during training. Instead, benchmark challengers can use
neural network models trained on the end-to-end tasks to automatically extract features without
explicit supervision, which we release as part of the benchmark and discuss further in Appendix B.
Annotations for expert features are too expensive to collect at scale for training, while implicit features
are by no means comprehensive. The FIX benchmark is intended for evaluation purposes to spur
research in general purpose and automated expert feature extraction.

4 FIX DATASETS

In this section, we briefly describe each FIX dataset in Figure 1. For each dataset, we provide an
overview of the domain task and the problem setup. We then introduce the key expert alignment
function that measures the quality of an expert feature, and explain why certain properties incorporated
in the expert alignment function are desirable to experts.

4.1 MASS MAPS DATASET

Motivation. A major focus of cosmology is the initial state of the universe, which can be characterized
by various cosmological parameters such as Ωm, which relates to energy density, and σ8, which
pertains to matter fluctuations (Abbott et al., 2022). These parameters influence what is observable
by mass maps, also known as weak lensing maps, which capture the spatial distribution of matter
density in the universe. Although mass maps can be obtained through the precise measurement
of galaxies (Jeffrey et al., 2021; Gatti et al., 2021), it is not known how to directly measure Ωm

and σ8. This has inspired machine learning efforts to predict the two cosmological parameters
from simulations (Ribli et al., 2019; Matilla et al., 2020; Fluri et al., 2022). However, it is hard for
cosmologists to gain insights into how to predict Ωm and σ8 from black-box ML models.

Problem Setup. Our dataset contains clean simulations from CosmoGridV1 (Kacprzak et al., 2023).
Each input is a one-channel image of size (66, 66), where the task is to predict Ωm and σ8. Here,
Ωm is the average energy density of all matter relative to the total energy density, including radiation
and dark energy, while σ8 describes fluctuations in the distribution of matter (Abbott et al., 2022).
The dataset has 90,000/10,000/10,000 mass maps in train/validation/test splits.

Expert Features. When inferring Ωm and σ8 from the mass maps, we aim to discover which
cosmological structures most influence these parameters. Two types of cosmological structures
in mass maps known to cosmologists are voids and clusters (Matilla et al., 2020). An example is
illustrated in Figure 3, where voids are large regions that are under-dense relative to the mean density
and appear as dark, while clusters are over-dense and appear as bright dots.

To quantify the interpretability of an expert feature in the mass maps, we develop an implicit
expert alignment scoring function. Intuitively, a group that is purely void or purely cluster is more
interpretable in cosmology, while a group that is a mixture is less interpretable. We thus develop the
purity metric based on the entropy among void/cluster pixels (Zhang et al., 2003) weighted by the
ratio of interpretable pixels in the expert feature. We give additional details in Appendix A.1.

EXPERTALIGN(ĝ, x) = Purityvc(ĝ, x) · Ratiovc(ĝ, x) (3)
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(a) Full map (b) Void (c) Cluster

Figure 3: An example with expert features for Mass Maps Regression, showing (a) the full map, (b)
a feature with 100% void, and (c) a feature with 100% cluster. Voids are under-dense large regions
that appear to be dark, and clusters are over-dense regions that appear as bright dots. The purity
scores for both void and cluster are 1. We gray-out the pixels not selected in each feature.

Figure 4: An example with expert features for supernova classification, showing (left) the original
time-series dataset and (right) an example of the interpretable expert feature group. We highlight the
expert feature groups with the highest expert align scores.

4.2 SUPERNOVA DATASET

Motivation. The astronomical time-series classification, as mentioned in (Team et al., 2018), involves
categorizing astronomical sources that change over time. Astronomical sources include transient
phenomena (e.g. supernovae, kilonovae) and variable objects (e.g. active galactic nuclei, Mira
variables). This task analyzes simulation datasets that emulate future telescope observations from
the Legacy Survey of Space and Time (LSST) (Željko Ivezić et al., 2019). Given the vastness of
the universe, it is essential to identify the time periods that have the most significant impact on
classification of astronomical sources to optimize telescope observations. Time periods with no
observed data are less useful. To avoid costly searching over all timestamps for high-influence time
periods, we aim to identify significant timestamps that are linearly consistent in specific wavelengths.

Problem Setup. We take parts of the dataset from the original PLAsTiCC challenge (Team et al.,
2018). The input data are simulated LSST observations comprising four columns: observation times
(modified Julian days), wavelength (filter), flux values, and flux error. The dataset encompasses 7
distinct wavelengths that work as filters, and the flux values and errors are recorded at specific time
intervals for each wavelength. The classification task is to predict whether or not each of 14 different
astronomical objects exists. The supernova dataset contains 6274/728/792 train/valid/test examples.

Expert Features. A feature with linearly consistent flux for each wavelength is considered more
interpretable in astrophysics. An illustration of expert features used for supernova classification is
presented in Figure 4. This example showcases the flux value and error for various wavelengths, each
represented by a different color. We colored the timestamp of expert features with the wavelength
color with the highest linear consistency score. For the timestamp where there is no data point, we
do not recognize it as an expert feature. We create a linear consistency metric to assess the expert
alignment score of a proposed feature in the context of a supernova. Our linear consistency metric
uses p, the percentage of data points that display linear consistency, penalized by d, the percentage of
time stamps containing data points:

EXPERTALIGN(ĝ, x) = max
w∈W

p(ĝ, xw) · d(ĝ, xw). (4)

where W is the set of unique wavelength. Further details are provided in Appendix A.2.
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Example Expert Features with High Alignment

[Politeness] I was running my spellchecker
and totally didn’t realize that this was a van-
dalized page. Please accept my apology. I
will spellcheck a little slower next time.

g1 = I, my, I
g2 = spellchecker, vandalized, little, slower
g3 = will
g4 = my, apology

[Emotion] This was potentially the most dan-
gerous stunt I have ever seen someone do.
One minor mistake and you die.

g1 = dangerous, die
g2 = potentially, minor
g3 = mistake, stunt
g4 = I, someone, you

Table 1: Examples and expert features with high expert alignment for Multilingual Politeness (top) and
Emotion (bottom). These expert features correspond to low distance within the emotion circumplex
and high similarity with politeness lexica, respectively.

4.3 MULTILINGUAL POLITENESS DATASET

Motivation. Different cultures express politeness differently (Leech, 2007; Pishghadam & Navari,
2012). For instance, politeness in Japan often involves acknowledging the place of others (Spencer-
Oatey & Kádár, 2016), whereas politeness in Spanish-speaking countries focuses on establishing
mutual respect (Placencia & Garcia-Fernandez, 2017). Therefore, grounding interpretable features
that indicate politeness is language-dependent. Previous work from Danescu-Niculescu-Mizil et al.
(2013) and Li et al. (2020) use past politeness research to create lexica that indicate politeness/rudeness
in English and Chinese, respectively. A lexicon is a set of categories where each category contains a
curated list of words. For instance, the English politeness lexicon contains categories like Gratitude:
“appreciate”, “thank you”, et cetera, and Apologizing: “sorry”, “apologies”, etc. Havaldar et al.
(2023a) expand on these theory-grounded lexica to include Spanish and Japanese.

Problem Setup. The multilingual politeness dataset from (Havaldar et al., 2023a) contains 22,800
conversation snippets from Wikipedia’s editor talk pages. The dataset spans English, Spanish,
Chinese, and Japanese, and native speakers of these languages have annotated each conversation
snippet for politeness level, ranging from -2 (very rude) to 0 (neutral) to 2 (very polite).

Expert Features. When extracting interpretable features for a task like politeness classification
across multiple languages, it is useful to ground these features using prior research from com-
munication and psychology. If extracted politeness features from an LLM are interpretable and
domain-aligned, they should match what psychologists have determined to be key politeness indica-
tors. Examples of expert-aligned features are shown in Table 1. Concretely, for each lexical category,
we use an LLM to embed all the contained words and then average the resulting embeddings to get a
set C of k centroids: C = c1, c2, ...ck. See Appendix A.3 for more details. Then, a proposed expert
feature ĝ ∈ {0, 1}d indicates whether or not each of the d words w1, w2, ..., wd ∈ x are included in
the feature, and the expert alignment score for the proposed feature ĝ can be computed as follows:

EXPERTALIGN(ĝ, x) = max
c∈C

1

|ĝ|

d∑
i=1

ĝi · cos(embedding(wi), c) (5)

4.4 EMOTION DATASET

Motivation. Emotion classification involves inferring the emotion (e.g., Joy, Anger, etc.) reflected in
a piece of text. Researchers study emotion to build systems that can understand emotion and thus
adapt accordingly when interacting with human users. For extracted features to be useful for such
systems, they must be relevant to emotion. For example, a word like “puppy” may be used more
frequently in comments labeled with Joy vs. other emotions; therefore, it may be extracted as a
relevant feature for the Joy class. However, this is a spurious correlation — emotional expression is
not necessarily tied to a subject, and comments containing “puppy” may also be angry or sad.

Problem Setup. The GoEmotions dataset from Demszky et al. (2020) contains 58,000 English
Reddit comments labeled for 27 emotion categories, or “neutral” if no emotion is applicable. The
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(a) Full image (b) Right lung (c) Left lung

Figure 5: An example with expert features for Chest X-Ray dataset. (a) The full X-ray image
where the following pathologies are present: effusion, infiltration, and pneumothorax; (b-c) Expert-
interpretable anatomical structures of the left and right lungs.

input is a text utterance of 1-2 sentences extracted from Reddit comments, and the output is a binary
label for each of the 27 emotion categories.

Expert Features. Example expert features are shown in Table 1. To measure how emotion-related a
feature is, we use the circumplex model of affect (Russell, 1980). The circumplex model assumes
that all emotions can be projected onto the 2D unit circle with respect to two independent dimensions
– arousal (the magnitude of intensity or activation) and valence (how negative or positive). By
projecting features onto the unit circle, we can quantify emotional relations. In particular, we
calculate the following two attributes of the features with a group: (1) their emotional signal, i.e.,
mean distance to the circumplex and (2) their emotional relatedness, i.e., mean pairwise distance
within the circumplex. We then calculate the following: Signal(ĝ, x), which measures the average
Euclidean distance to the circumplex for every projected feature in ĝ, and Relatedness(ĝ, x), which
measures the average pairwise distance between every projected feature in ĝ (details in Appendix A.4).
For an extracted feature ĝ, the expert alignment score can then be computed by:

EXPERTALIGN(ĝ, x) = tanh(exp[−Signal(ĝ, x) · Relatedness(ĝ, x)]) (6)

4.5 CHEST X-RAY DATASET

Motivation. Chest X-ray imaging is a common procedure for diagnosing conditions such as at-
electasis, cardiomegaly, and effusion, among others. Although radiologists are skilled at analyzing
such images, modern machine learning models are increasingly competitive in diagnostic perfor-
mance (Ahmad, 2021). Therefore, ML models may prove useful in assisting radiologists in making
diagnoses. However, in the absence of an explanation, radiologists may only trust the model output if
it matches their own predictions. Moreover, inaccurate AI assistants are shown to negatively affect
diagnostic performance (Yu et al., 2024). To address this problem, explainability could be employed
as a safeguard to help radiologists decide whether or not to trust the model. As such, it is important
for machine learning models to provide explanations for their diagnoses.

Problem Setup. We use the NIH-Google dataset (Majkowska et al., 2020) available from the
TorchXRayVision library (Cohen et al., 2022). This is a relabeling of the NIH ChestX-ray14
dataset (Wang et al., 2017) which improved the quality of the original labels. It contains 28,868 chest
X-ray images labeled for 14 common pathology categories: atelectasis, calcification, cardiomegaly,
etc. We randomly partition the dataset into train/test splits of 23,094 and 5,774, respectively. The
task is a multi-label classification problem for identifying the presence of each pathology.

Expert Features. Radiology reports commonly refer to anatomical structures (e.g., spine, lungs),
which allows radiologists to perform and communicate accurate diagnoses to patients. We provide
these expert-interpretable features in the form of anatomical structure segmentations. However,
because we could not find datasets with both pathology labels and anatomical segmentations, we
used a pre-trained model from TorchXRayVision to generate the structure labelings for each image.
We use explicit expert alignment as described in Equation 2 to compute alignment of an extracted
feature ĝ and the 14 predicted anatomical structure segments, including the left clavicle, heart, etc.
Details of the Chest X-Ray dataset can be found in Appendix A.5.
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(a) Full image (b) Safe region (c) Gallbladder

Figure 6: An example with expert features of Laparoscopic Cholecystectomy Surgery Dataset: (a)
The view of the surgeon sees; (b) The safe region for operations; (c) The gallbladder, a key anatomical
structure for the critical view of safety.

4.6 LAPAROSCOPIC CHOLECYSTECTOMY SURGERY DATASET

Motivation. Laparoscopic cholecystectomy (gallbladder removal) is one of the most common elective
abdominal surgeries performed in the US, with over 750,000 operations annually (Stinton & Shaffer,
2012). A common complication of laparoscopic surgery is bile duct injury, which is associated with
an 8-fold increase in mortality (Michael Brunt et al., 2020) and accounts for more than $1B in US
healthcare annual spending (Berci et al., 2013). Notably, 97% of such complications result from
human visualization errors (Way et al., 2003). The surgery site commonly contains obstructing tissues,
inflammation, and other patient-specific artifacts — all of which may prevent the surgeon from getting
a perfect view. Consequently, there is growing interest in harnessing advanced vision models to
help surgeons distinguish safe and risky areas for operation. However, experienced surgeons rarely
trust model outputs due to their opaque nature, while inexperienced surgeons might overly rely on
model predictions. Therefore, any safe and useful machine learning model must be able to provide
explanations that align with surgeons’ expectations.

Problem Setup. The task is to identify the safe and unsafe regions for incision. We use the
open-source subset of the data from (Madani et al., 2022), wherein the authors enlist surgeons
to annotate surgery video data from the M2CAI16 workflow challenge (Stauder et al., 2016) and
Cholec80 (Twinanda et al., 2016) datasets. This dataset consists of 1015 annotated images with a
random train/test split of 812 and 203, respectively.

Expert Features. In cholecystectomy, it is a common practice for surgeons to identify the critical
view of safety before performing any irreversible operations (Strasberg & Brunt, 2010; Hashimoto
et al., 2019). This view identifies the location of vital organs and structures that inform the safe region
of operation and is incidentally what surgeons often need as part of an explanation. We provide
these expert-interpretable labels in the form of organ segmentations (liver, gallbladder, hepatocystic
triangle). We use explicit expert alignment as described in Equation 2 to compute alignment of an
extracted feature ĝ and the surgeon-annotated organ labels taken from Madani et al. (2022). Details
of the Cholecystectomy dataset can be found in Appendix A.6.

5 BASELINE ALGORITHMS & DISCUSSION

We evaluate standard techniques widely used within the vision, text, and time series domains to create
higher-level features. We provide a brief summary below, with additional details in Appendix C.

Domain-specific Baselines. We consider the following domain-centric baselines. (Image) For image
data, we consider three segmentation methods (Kim et al., 2024). Patches (Dosovitskiy et al., 2021)
divides the image into grids where each cell is the same size. Quickshift (Grady, 2006) connects
similar neighboring pixels into a common superpixel. Watershed (Levner & Zhang, 2007) simulates
flooding on a topographic surface. CRAFT (Fel et al., 2023) generates concept attribution maps.
(Time-series) For time series data, we take equal size slices of the data across time as patches (Schlegel
et al., 2021). We use different slice sizes to see how they impact multiple baselines. We take various
slice sizes, such as 5, 10, and 15, separately to evaluate the results of multiple baselines. (Text) For
text data, we present three baselines for extracting features (Rychener et al., 2022). At the finest
granularity, we treat each word as a feature. The second baseline considers each phrase as a feature.
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Vision Time Series Language
Method Cholec ChestX MassMaps Method Supernova Method Politeness Emotion

Domain-
specific

Identity 0.4686 0.2154 0.5486 Identity 0.0152 Identity 0.6070 0.0103
Random 0.1086 0.0427 0.5508 Random 0.0358 Random 0.6478 0.0303
Patch 0.0323 0.0999 0.5549 Slice 5 0.0337 Words 0.6851 0.1182
Quickshift 0.2622 0.3419 0.5496 Slice 10 0.0555 Phrases 0.6351 0.0198
Watershed 0.2807 0.1452 0.5594 Slice 15 0.0550 Sentences 0.6109 0.0120
SAM 0.3678 0.3151 0.5526
CRAFT 0.0271 0.1175 0.3991

Domain-
agnostic

Clustering 0.2880 0.2627 0.5518 Clustering 0.2622 Clustering 0.6680 0.0912
Archipelago 0.3351 0.2148 0.5509 Archipelago 0.2574 Archipelago 0.6773 0.0527

Table 2: Baselines scores of different FIX settings. We report the mean score and give a more
comprehensive table in Appendix C. We describe baseline implementations in Section 5. One thing to
note is that FIXSCORE is not comparable for different tasks (e.g. between Mass Maps and Supernova)
as the data and specific expert alignment metrics are different for different tasks.

Phrases are comprised of groups of words that are separated by some punctuation in the original text.
At the coarsest granularity, we treat each sentence as a feature.

Domain-agnostic Baselines. We additionally consider the following domain-agnostic baselines
for feature extraction. (Identity) We combine all elements into one single group. (Random) We
select features at random, up to the maximum baseline results for the group. The group maximum is
calculated as: (group maximum) ≈ (scaling factor)× (number of expert features). The size of the
distinct expert feature varies depending on the setting, and further details for each setting can be found
in Appendix C. We use a scaling factor of about 1.5 to allow for flexibility. (Clustering) For images,
we first use Quickshift to generate segments and then pass each segment through a feature extractor
(ResNet-18 by default). For time series, we use raw features from each time segment. We then apply
K-means clustering on the extracted/raw features to relabel and merge segments. For text, we use
BERTopic (Grootendorst, 2022) to obtain the clusters. (Archipelago) We adapt the implementation of
Archipelago (Tsang et al., 2020) to use ResNet-18 with quickshift for feature extraction.

Results and Discussions. We show results on the baselines in Table 2. For image datasets, Quickshift
has the best performance compared to Patch and Watershed on both the Cholecystectomy dataset
and the Chest X-ray dataset, since they have natural images. All baselines perform similarly for the
Mass Maps dataset. That the range of mass maps is different from other tasks is potentially because
they are not natural images, but rather similar to topographic surfaces. For the Supernova time-series
dataset, larger slices score yield higher expert alignment scores. For both Multilingual Politeness
and Emotion datasets, individual words appear to be the most expert-aligned features. Generally,
however, we see that the domain-agnostic neural baselines tend to also perform better than or close
to the best domain-centric baseline. The main benefit of using a neural approach is that it can more
easily automatically discover relevant features.

6 CONCLUSION

We propose FIX, a curated benchmark of datasets with evaluation metrics for extracting expert
features in diverse real-world settings. Our benchmark addresses a gap in the literature by providing
researchers with an environment to study and automatically extract interpretable features for experts.

Limitations and Future Work. The FIX benchmark is not an exhaustive specification of all expert
features, and may fail to capture others types. The ones we included are generally non-controversial
and well-accepted by the domain’s expert community, but we can foresee that there are cases where
this may not be true. Dealing with potential conflicting expert opinions may need a more nuanced
approach, which is left for future work to address. Furthermore, although we cover cosmology,
psychology, and medicine domains in this work, the metrics for these domains may not be appropriate
for all settings. We encourage prospective users to consider and implement metrics most appropriate
to their particular settings. Future work includes the development of new, general purpose techniques
that can extract expert features from data and models without supervision.

Reproducibility Statement. Our code is open-source at https://anonymous_website.com.
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Ethics Statement. This work seeks to make explainable machine learning more accessible to experts.
However, like the ML models, explanation methods are fallible and therefore should still be regarded
thoughtfully by users.
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A DATASET DETAILS

All datasets and their respective Croissant metadata records and licenses are available on HuggingFace
at the following links.

• Mass Maps: https://anonymous_website.html
• Supernova:

https://anonymous_website.html
• Multilingual Politeness:

https://anonymous_website.html
• Emotion:

https://anonymous_website.html
• Chest X-Ray:

https://anonymous_website.html
• Laparoscopic Cholecystectomy Surgery:

https://anonymous_website.html

A.1 MASS MAPS DATASET

Problem Setup. We randomly split the data to consist of 90,000 train and 10,000 validation maps
and maintain the original 10,000 test maps. We follow the post-processing procedure in Jeffrey et al.
(2021); You et al. (2023) for low-noise maps. Following previous works (Ribli et al., 2019; Matilla
et al., 2020; Fluri et al., 2022; You et al., 2023), we use a CNN-based model for predicting Ωm and
σ8.

Metric. Let x ∈ Rd be the input mass map with d = H ×W pixels, and g ∈ {0, 1}d be a boolean
mask g that describes which pixels belong to the group, where gi = 1 if the ith pixel belongs to the
group, and 0 otherwise.

We can compute the purity score of each group to void and cluster. We say a pixel is a void
(underdensed) pixel if its intensity is below 0, and a cluster (overdensed) pixel if its intensity is
above 3σ(x), following previous works (Matilla et al., 2020; You et al., 2023). We first compute the
proportion of void pixels and cluster pixels in feature g

Pv(g, x) =

∑d
i=1 1[gixi < 0]

g⊺1
, Pc(g, x) =

∑d
i=1 1[gixi > 3σ(x)]

g⊺1
(7)

where 1 ∈ 1d is the identity matrix, the numerators count the number of underdensed or overdensed
pixels, and g⊺1 is the number of pixels in the feature. In practice, we add a small ϵ = 10−6 to Pv

and Pc and renormalize them, to avoid taking the log of 0 later. Next, we compute the proportion of
pixels that are void or cluster, only among the void/cluster pixels:

P ′
v(g, x) =

Pv(g, x)

Pv(g, x) + Pc(g, x)
, P ′

c(g, x) =
Pc(g, x)

Pv(g, x) + Pc(g, x)
(8)

Then, we compute the EXPERTALIGN score for the predicted feature ĝ by computing the void/cluster-
only entropy reversed and scaled to [0, 1], weighted by the percentage of void/cluster pixels among
all pixels.

Purityvc(ĝ, x) =
1

2
(2 + P ′

v(ĝ, x) log2 P
′
v(ĝ, x) + P ′

c(ĝ, x) log2 P
′
c(ĝ, x)) (9)

where −(P ′
v(ĝ, x) log2 P

′
v(ĝ, x) + P ′

c(ĝ, x) log2 P
′
c(ĝ, x)) is the entropy computed only on void and

cluster pixels, a close to 0 score indicating that the interpretable portion of the feature is mostly void
or cluster. Purityvc(ĝ, x) is 0 if among the pixels in the proposed feature that are either void or
cluster pixels, half are void and half are cluster pixels, and 1 if all are void or all are cluster pixels,
regardless of how many other pixels there are in the proposed feature.

We also have the ratio
Ratiovc(ĝ, x) = (Pv(ĝ, x) + Pc(ĝ, x)) (10)

which is the total proportion of the feature that is any interpretable feature type at all.
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We then have our EXPERTALIGN for Mass Maps:

EXPERTALIGN(ĝ, x) = Purity(ĝ, x) · Ratio(ĝ, x) (11)

which is then 0 when all the pixels in the feature are neither void or cluster, and 1 if all pixels are
void pixels or all pixels are cluster pixels, and somewhere in the middle if most pixels are void or
cluster pixels but there is a mix between both.

A.2 SUPERNOVA DATASET

Problem Setup. We extracted data from the PLAsTiCC Astronomical Classification challenge (Team
et al., 2018). 2 PLAsTiCC dataset was designed to replicate a selection of observed objects with type
information typically used to train a machine learning classifier. The challenge aims to categorize a
realistic simulation of all LSST observations that are dimmer and more distorted than those in the
training set. The dataset contains 15 classes, with 14 of them present in the training sample. The
remaining class is intended to encompass intriguing objects that are theorized to exist but have not
yet been observed.

In our dataset, we split the original training set into 90/10 training/validation, and the original test set
was uploaded unchanged. We made these sets balanced for each class. The class includes objects
such as tidal disruption event (TDE), peculiar type Ia supernova (SNIax), type Ibc supernova (SNIbc),
and kilonova (KN). The dataset contains four columns: observation times (modified Julian days,
MJD), wavelength (filter), flux values, and flux error. Spectroscopy measures the flux with respect to
wavelength, similar to using a prism to split light into different colors.

Due to the expected high volume of data from upcoming sky surveys, it is not possible to obtain
spectroscopic observations for every object. However, these observations are crucial for us. Therefore,
we use an approach to capture images of objects through different filters, where each filter selects light
within a specific broad wavelength range. The supernova dataset includes 7 different wavelengths
that are used. The flux values and errors are recorded at specific time intervals for each wavelength.
These values are utilized to predict the class that this data should be classified into.

Metric. We use the following expert alignment metric to measure if a group of features is inter-
pretable:

EXPERTALIGN(ĝ, x) = max
w∈W

LinearConsistency(ĝ, xw) (12)

where W is the set of unique wavelength, ĝ is the feature group, and xw is the subset of x within
wavelength w. In the supernova setting, there are three parameters: ϵ, the parameter for how much
standard deviation σ is allowed, window size λ and the step size τ . Therefore, we formulate the
LinearConsistency function as follows:

LinearConsistency(ĝ, xw) = p(ĝ, xw) · d(ĝ, xw) (13)

p(ĝ, xw) is the percentage of data points that display linear consistency, penalized by d(ĝ, xw), which
is the percentage of time steps containing data points.

Let β(x, y) = argminβ(X
Tβ − y)2, where X = [x 1] and β = [β1 β0]. Here, β1 is the slope

and β0 is the intercept. M is the number of data points in xw, and ŷw,i = xw,i · β. Then, we have

p(ĝ, xw) =
1

M

M∑
i=1

1[ŷw,i ∈ [yw,i − ϵ · ωw,i, yw,i + ϵ · ωw,i]] (14)

Let t1, ..., tN be time steps at step size intervals. Then ti = tstart + i ∗ τ , and N is the number of
time steps. We also have

d(ĝ, xw) =
1

N

N∑
i=1

1[∃i : xw,i ∈ [ti, ti + λ]] (15)

A higher EXPERTALIGN(ĝ, x) ∈ [0, 1] value means the flux slope at each wavelength is consistently
linear and there are not many time intervals without data.

2https://www.kaggle.com/c/PLAsTiCC-2018

21

https://www.kaggle.com/c/PLAsTiCC-2018


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.3 MULTILINGUAL POLITENESS DATASET

Problem Setup. This politeness dataset from Havaldar et al. (2023b) is intended for politeness
classification, and would likely be solved via a fine-tuned multilingual LLM. Namely, this would be a
regression task, using a trained LLM to output the politeness level of a given conversation snippet as
a real number ranging from -2 to 2.

The dataset is accompanied by a theory-grounded politeness lexica. Such lexica built with do-
main expert input have been promising for explaining style (Danescu-Niculescu-Mizil et al., 2013),
culture (Havaldar et al., 2024), and other such complex multilingual constructs.

Metric. Assume a theory-grounded Lexica L with k categories: L = ℓ1, ℓ2, ...ℓk, where each
set ℓi ⊆ W , where W is the set of all words. For each category, we use an LLM to embed all
the contained words and then average the resulting embeddings, to get a set C of k centroids:
C = c1, c2, ...ck. We define this formally as:

C :

{
1

|ℓi|
∑
w∈li

embedding(w) for all i ∈ [1, k]

}
(16)

For a group ĝ containing words w1, w2, ..., the group-level expert alignment score can be computed
as follows:

EXPERTALIGN(ĝ, x) = max
c∈C

1

|ĝ|
∑
w∈ĝ

cos(embedding(w), c) (17)

Note that each language has a different theory-grounded lexicon, so we calculate a unique domain
alignment score for each language.

A.4 EMOTION DATASET

Problem Setup. This dataset is intended for emotion classification and is currently solved with a
fine-tuned LLM (Demszky et al., 2020). Namely, this is a classification task where an LLM is trained
to select some subset of 28 emotions (including neutrality) given a 1-2 sentence Reddit comment.

Axis Anchor Russell Emotions

Positive valence (PV) Happy, Pleased, Delighted, Excited, Satisfied
Negative valence (NV) Miserable, Frustrated, Sad, Depressed, Afraid
High arousal (HA) Astonished, Alarmed, Angry, Afraid, Excited
Low arousal (LA) Tired, Sleepy, Calm, Satisfied, Depressed

Table 3: Emotions used to define the valence and arousal axis anchors for projection into the Valence-
Arousal plane. We select the 5 emotions from the circumplex closest to each axis point.

Projection onto the Circumplex. To define the valence and arousal axes, we first generate four
axis-defining points by averaging the contextualized embeddings ("I feel [emotion]") of the emotions
listed in Table 3. This gives us four vectors in embedding space – positive valence (v⃗pos), negative
valence(v⃗neg), high arousal(⃗ahigh), and low arousal(⃗alow). We mathematically describe our projection
function below:

1. We define the valence axis, V , as v⃗pos−v⃗neg and the arousal axis, A, as a⃗high−a⃗low. We then
normalize V and A and calculate the origin as the midpoints of these axes: (v⃗middle, a⃗middle).

2. We then scale the axes so v⃗pos, v⃗neg, a⃗high, and a⃗low anchor to (1, 0), (−1, 0), (0, 1), and
(0,−1) respectively. This enforces the circumplex to be a unit circle in the valence-arousal
plane.

3. We compute the angle θ between the valence-arousal axes by solving cos θ = V ·A
∥V ∥·∥A∥

4. For each embedding vector x⃗ in the set {xi}ni=1 we want to project into our defined plane,
we compute the valence and arousal components for xi as follows:
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xv
i = (xi − v⃗middle) · V⃗

xa
i = (xi − a⃗middle) · A⃗.

5. We calculate the x and y coordinates to plot, enforcing orthogonality between the axes:
x̃v
i = xv

i − xa
i · cos θ

x̃a
i = xa

i − xv
i · cos θ

6. Finally, we plot (x̃v
i , x̃

v
i ) in the Valence-Arousal plane. We then calculate the shortest

distance from (x̃v
i , x̃

v
i ) to the circumplex unit circle.

Figure 7: The circumplex model of affect Russell (1980).

Metric. We calculate the following two values for a proposed feature ĝ containing words w1, w2, ...,
where n is the number of words in ĝ:

Signal(ĝ) =
1

n

∑
w∈ĝ

|∥Proj(w)∥2 − 1| (18)

Relatedness(ĝ) =
1

n2

n∑
i

n∑
j

∥Proj(wi)− Proj(wj)∥2 (19)

where Signal(ĝ, x) measures the average Euclidean distance to the circumplex for every projected
feature in ĝ, and Relatedness(ĝ, x) measures the average pairwise distance between every projected
feature in ĝ. We formalize the expert alignment metric as follows. For a group ĝ, the expert alignment
score can be computed by:

EXPERTALIGN(ĝ, x) = tanh(exp[−Signal(ĝ, x) · Relatedness(ĝ, x)]) (20)

A.5 CHEST X-RAY DATASET

We used datasets and pretrained models from TorchXRayVision (Cohen et al., 2022).3 In particular,
we use the NIH-Google dataset (Majkowska et al., 2020), which is a relabeling of the NIH ChestX-
ray14 dataset (Wang et al., 2017). This dataset contains 28,868 chest X-ray images labeled for 14
common pathology categories, with a train/test split of 23,094 and 5,774. We additionally used a
pre-trained structure segmentation model to produce 14 segmentations. The task is a multi-label
classification problem for identifying the presence of each pathology. The 14 pathologies are:

Atelectasis, Cardiomegaly, Consolidation, Edema, Effusion, Emphysema, Fibrosis,
Hernia, Infiltration, Mass, Nodule, Pleural Thickening, Pneumonia, Pneumothorax

3https://github.com/mlmed/torchxrayvision
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The 14 anatomical structures are:

Left Clavicle, Right Clavicle, Left Scapula, Right Scapula, Left Lung, Right Lung,
Left Hilus Pulmonis, Right Hilus Pulmonis, Heart, Aorta, Facies Diaphragmatica,
Mediastinum, Weasand, Spine

A.6 LAPAROSCOPIC CHOLECYSTECTOMY SURGERY DATASET

We use the open-source subset of the data from (Madani et al., 2022), which consists of surgeon-
annotated video data taken from the M2CAI16 workflow challenge (Stauder et al., 2016) and
Cholec80 (Twinanda et al., 2016) datasets. The task is to identify the safe/unsafe regions of where to
operate. Specifically, each pixel of the image has one of three labels: background, safe, or unsafe.
The expert labels provide each pixel with one of four labels: background, liver, gallbladder, and
hepatocystic triangle.

B INTERPRETABLE FEATURE EXTRACTION DETAILS

Figure 8 illustrates a graphical model representing the Interpretable Feature Extraction pipeline for a
given FIX dataset.

ℒ
ℓ

m
g

̂ℓ
m′ 

g ̂

ϵ

y

x

n

Interpretable Feature 
Extraction≈ FIXScore Metric

Figure 8: We illustrate a graphical model representing the Interpretable Feature Extraction pipeline
for a given FIX dataset, with FIXSCORE metric in its general form. There are m true feature groups
g and m latent features ℓ, and m′ proposed feature groups ĝ and m′ proposed latent features ℓ̂. m
does not have to equal m′. Moreover, n indicates the number of examples in the dataset. The person
figure on near the closest arrow indicates that a domain expert would be able to infer the variable
on the right-hand side of the arrow from the variable on the left-hand side arrow. In addition, ϵ is
included to account for noise.

C BASELINES DETAILS

The FIX benchmark is publicly available at: https://anonymous_website.com.

Bootstrapping. For each setting’s baselines experiments, we use a bootstrapping method (with
replacement) to estimate the standard deviation of the sample means of FIXSCORE.

Group Maximum. For the number of groups, we take the scaling factor multiplied by the size of
the distinct expert feature, which differs for each setting. The scaling factor we choose across all
setting is 1.5 (and round up to the next nice whole number).

In the case of a supernova setting, we consider a distinct expert feature size of 6. This is because the
maximum number of distinct expert features we can obtain is 6, given that there are a maximum of
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Method Cholecystectomy Chest X-ray Mass Maps

Image

Identity 0.4686 ± 0.0096 0.2154 ± 0.0027 0.5486 ± 0.0033
Random 0.1086 ± 0.0004 0.0427 ± 0.0001 0.5508 ± 0.0015
Patch 0.0323 ± 0.0001 0.0999 ± 0.0008 0.5549 ± 0.0009
Quickshift 0.2622 ± 0.0034 0.3419 ± 0.0025 0.5496 ± 0.0030
Watershed 0.2807 ± 0.0051 0.1452 ± 0.0017 0.5594 ± 0.0011
SAM 0.3678 ± 0.0074 0.3151 ± 0.0064 0.5526 ± 0.0009
CRAFT 0.0271 ± 0.0007 0.1175 ± 0.0011 0.3991 ± 0.0017

Domain-Agnostic Clustering 0.2880 ± 0.0049 0.2627 ± 0.0039 0.5518 ± 0.0009
Archipelago 0.3351 ± 0.0034 0.2148 ± 0.0009 0.5509 ± 0.0015

Supernova

Time Series

Identity 0.0152 ± 0.0011
Random 0.0358 ± 0.0021
Slice 5 0.0337 ± 0.0015
Slice 10 0.0555 ± 0.0044
Slice 15 0.0554 ± 0.0032

Domain-Agnostic Clustering 0.2622 ± 0.0037
Archipelago 0.2574 ± 0.0082

Multilingual Politeness Emotion

Text

Identity 0.6070 ± 0.0015 0.0103 ± 0.0001
Random 0.6478 ± 0.0012 0.0303 ± 0.0004
Words 0.6851 ± 0.0010 0.1182 ± 0.0003
Phrases 0.6351 ± 0.0010 0.0198 ± 0.0003
Sentences 0.6109 ± 0.0006 0.0120 ± 0.0002

Domain-Agnostic Clustering 0.6680 ± 0.0048 0.0912 ± 0.0005
Archipelago 0.6773 ± 0.0006 0.0527 ± 0.0008

Table 4: Baselines of different FIX settings. We report the mean FIXSCORE for all examples in each
setting, with standard deviations.

3 humps in the time series dataset. For each hump, there are both peaks and troughs, leading to a
potential maximum of 6 distinct expert features.

For the multilingual politeness setting, the group maximum would be 40, which is the total number
of lexical categories, 26, with the scaling factor multiplied in to give some flexibility.

For the emotion setting, the group maximum would be , which is the total number of lexical categories,
26, with the scaling factor multiplied in to give some flexibility.

For mass maps, the group maximum would be 25. We compute the maximum number of local
maximums 7 on mass maps blurred with σ = 3 and local minimums 7 on mass maps blurred with
σ = 5, which sums up to be 14. We can then multiply with the scaling factor to give some flexibility
and then we round up to 25.

Baseline Parameters. For mass maps, we use the following parameters for baselines. For patch,
we use 8× 8 grid. For QuickShift, we use kernel size 5, max dist 10, and sigma 0.2. For watershed,
we use min dist 10, compactness 0. For SAM, we use ‘vit_h’. For Archipelago, we use the same
Quickshift parameters for the Quickshift segmenter.

Baseline Results. We report the full baseline results with standard deviations in Table 4.

D COMPUTE RESOURCES

All experiments were conducted on two server machines, each with 8 NVIDIA A100 GPUs and 8
NVIDIA A6000 GPUs, respectively.
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E SAFEGUARDS

The datasets and models that we use in this work are not high risk and are previously open-source
and publicly available. In particular, for our medical settings which would pose the most potential
safety concern, the datasets we sourced our FIX datasets from are already open-source and consists
of de-anonymized images.

F DATASHEETS

We follow the documentation framework provided by Gebru et al. (2021) to create datasheets for the
FIX datasets. We address each section per dataset.

F.1 MOTIVATION

For what purpose was the dataset created?

• Mass Maps: The original dataset, CosmoGridV1 (Kacprzak et al., 2023), was created to help
with predicting the initial states of the universe in cosmology.

• Supernova: The original dataset PLAsTiCC for Kaggle competition (Allam Jr et al., 2018), was
created to classify astronomical sources that vary with time into different classes.

• Multilingual Politeness: The Multilingual Politeness dataset (Havaldar et al., 2023a) was created
to holistically explore how politeness varies across different languages.

• Emotion: The original dataset, GoEmotions (Demszky et al., 2020), was created to help under-
stand emotion expressed in language.

• Chest X-Ray: The NIH-Google dataset (Majkowska et al., 2020), which is a relabeling of the
NIH ChestX-ray14 dataset (Wang et al., 2017), was created to help identify the presence of
common pathologies.

• Laparoscopic Cholecystectomy Surgery: The original datasets from M2CAI16 workflow
challenge (Stauder et al., 2016) and Cholec80 (Twinanda et al., 2016) were created to help
identify the safe and unsafe areas of surgery.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?

• Mass Maps: The original dataset CosmoGridV1 (Kacprzak et al., 2023) was created by Janis
Fluri, Tomasz Kacprzak, Aurel Schneider, Alexandre Refregier, and Joachim Stadel at the ETH
Zurich and the University of Zurich. The simulations were run at the Swiss Supercomputing
Center (CSCS) as part of the project “Measuring Dark Energy with Deep Learning”, hosted at
ETH Zurich by the IT Services Group of the Department of Physics. We adapt the dataset and
add a validation split.

• Supernova: The original dataset PLAsTiCC was created by Team et al. (2018). We adapt the
dataset, add a validation split, and balance the sets for each class.

• Multilingual Politeness: The Multilingual Politeness dataset (Havaldar et al., 2023a) was created
by Shreya Havaldar, Matthew Pressimone, Eric Wong, and Lyle Ungar at the University of
Pennsylvania.

• Emotion: The original GoEmotions (Demszky et al., 2020) dataset was created by Dorottya
Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and Sujith
Ravi at Stanford University, Google Research and Amazon Alexa.

• Chest X-Ray: The NIH-Google dataset (Majkowska et al., 2020) was created by Anna Ma-
jkowska, Sid Mittal, David F Steiner, Joshua J Reicher, Scott Mayer McKinney, Gavin E Duggan,
Krish Eswaran, Po-Hsuan Cameron Chen, Yun Liu, Sreenivasa Raju Kalidindi, et al., at Google
Health, Stanford Healthcare and Palo Alto Veterans Affairs, Apollo Radiology International, and
California Advanced Imaging.

• Laparoscopic Cholecystectomy Surgery: The M2CA116 workflow challenge dataset (Stauder
et al., 2016) was created by Ralf Stauder, Daniel Ostler, Michael Kranzfelder, Sebastian Koller,
Hubertus Feußner, and Nassir Navab at Technische Universität München in Germany and Johns
Hopkins University. The Cholec80 dataset (Twinanda et al., 2016) was created by Andru P
Twinanda, Sherif Shehata, Didier Mutter, Jacques Marescaux, Michel De Mathelin, and Nicolas
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Padoy, at ICube, University of Strasbourg, CNRS, IHU, University Hospital of Strasbourg,
IRCAD and IHU Strasbourg, France.

Who funded the creation of the dataset?

• Please refer to each setting’s respective papers for funding details.

F.2 COMPOSITION

• The answers are described in our paper. Please refer to Section 4 and Appendix A for more
details.

F.3 COLLECTION PROCESS

• We defer the collection process to the relevant works that created them. Please refer to Section 4
and Appendix A for more details.

F.4 PREPROCESSING/CLEANING/LABELING

• The answers are described in our paper. Please refer to Section 4 and Appendix A for more
details.

F.5 USES

• The answers are described in our paper. Please refer to Section 4 and Appendix A for more
details.

F.6 DISTRIBUTION

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created?

• No. Our datasets will be managed and maintained by our research group.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?

• The FIX datasets are released to the public and hosted on Huggingface (please refer to links in
Appendix A).

When will the dataset be distributed?

• The datasets have been released now, in 2024.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?

• Mass Maps: The Mass Maps dataset is distributed under CC BY 4.0, following the original
dataset CosmoGridV1 (Kacprzak et al., 2023).

• Supernova: The Supernova dataset is distributed under the MIT license.
• Multilingual Politeness: The Multilingual Politeness dataset is distributed under the CC-BY-NC

license.
• Emotion: The Emotion dataset is distributed under the Apache 2.0 license.
• Chest X-Ray: The Chest X-Ray dataset is distributed under the Apache 2.0 license.
• Laparoscopic Cholecystectomy Surgery: The Laparoscopic Cholecystectomy Surgery dataset

is distributed under the CC by NC SA 4.0 license.

G AUTHOR STATEMENT

We bear all responsibility for any potential violation of rights, etc., and confirmation of data licenses.
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