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Abstract 

We introduce an advanced task of quantum 3D 

visual grounding in RGB images using language 

descriptions enriched with appearance and 

geometric information through quantum 

computing paradigms. In this work, we propose 

a framework which can enhance the existing 

classical 3D visual grounding techniques by 

leveraging the inherent parallelism and high-

dimensional processing capabilities of quantum 

computing. This framework, Quantum3DVG, 

integrates quantum neural networks, including 

Quantum CNN (QCNN), Quantum Visual/Depth 

Encoder (QVDE), Quantum Text-Guided 

Visual/Depth Adapter (QTGVDA), and 

Quantum MLP (QMLP), to process both visual 

features and geometric data. At the heart of the 

proposed model, QVDE and QCNN encode 

image patches and depth information as quantum 

states, allowing for a high-level abstraction and 

quantum feature extraction. The QTGVDA is 

then re-envisioned as quantum circuit that refines 

these quantum states, employing quantum gates 

to align multi-scale visual and geometric features 

with textual descriptions. Finally, a quantum 

MLP is utilized for final object localization and 

classification. 

 

1. Introduction 

The interaction between humans and robots can be greatly 

enhanced if robots can understand language descriptions 

to find objects in complex, real-world 3D environments. 

While 2D visual grounding techniques have advanced 

(Deng et al., 2021; Yang et al., 2022; Zhan et al., 2023), 

they miss the depth aspect of understanding. Research has 

delved into using RGB-D and 3D scanning for indoor 

environments (Chen et al., 2020; Achlioptas et al., 2020), 

and recent work extends this to outdoor scenarios with 

LiDAR (Lin et al., 2023). However, these techniques are 

costly and have limitations.   
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While monocular 3D object detection (Huang et al., 2022; 

Brazil, 2023) is more accessible, it often lacks the rich 

semantic understanding of language needed for accurate 

object localization. A recently published work (Zhan et al., 

2024) surpasses the constraints resulted from Refs (Huang 

et al., 2022; Brazil, 2023) by incorporating advanced 

transformer model equipped with multi-head attention 

mechanism. Even though this approach well semantically 

interprets the space and objects, it is still not only suffering 

from the necessity of extensive computational 

infrastructure required for training the model, but also lack 

of accuracy in pattern recognition while encountering high 

level of truncation and occlusion. The overall frameworks 

of 3D visual grounding through monocular and RGB-D 

images as input are displayed in Figure 1. Considering the 

potential challenges, we herein propose a conceptual 

framework which can significantly accelerate the training 

process using the fundamentals of the quantum state, 

quantum gate, and quantum circuit. This work also attempts 

to theoretically consider the application of quantum-base 

vision models improving the pattern recognition 

capabilities within high intensity level of truncation and 

occlusion. Finally, the proposed Quantum3DVG model can 

be integrated with visualization software to enhance the 

advanced post-processing purposes.   

2. Related Work 

2.1. 2D Visual Grounding  

The field of grounding language descriptions in visual 

scenes, also known as referring expression comprehension, 

has been a major focus in computer vision and natural 

language processing. This task involves pinpointing a 

specific area within an image based on a textual description 

(Hu et al., 2016, Yu et al., 2018, Nagaraja et al., 2016). 

These descriptions can range from concise phrases 

(Plummer et al., 2015) to elaborate sentences (Mao et al., 

2016). The standard approach typically involves two steps. 

First, potential object locations are generated, often using 

pre-trained object detectors or unsupervised methods. 

Then, the most likely objects are identified by comparing 

these regions to the description and ranking them based on 

their similarity (Zhang et al., 2018). 
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A prominent area of research involves understanding the 

relationships between objects in the scene (Wang et al., 

2019; Yang et al., 2019; Hu et al., 2017). For instance, 

Yang et al. (Yang et al., 2019) leveraged graph attention 

networks and a modular decomposition approach to 

establish connections between relationships and language 

expressions. MAttNet by Yu et al. introduced language-

based and visual attention mechanisms to capture 

contextual information across modalities. While these 

methods excel at handling 2D vision and language 

reasoning tasks, they may not be well-suited for visual 

grounding on point clouds, where understanding 3D 

geometric relationships remain an under-explored area.   
 

 

2.2. 3D Object Detection 

In the realm of 3D scene understanding, pinpointing 

individual objects from a cloud of 3D data points is a 

crucial task. Researchers have proposed various detection 

techniques in recent times, including PointGroup (Jiang et 

al., 2020) and VoteNet (Qi et al., 2019). A study by (Chen 

et al., 2022) highlighted a powerful object detector which 

can have significant impact on the vision language system's 

overall performance. Their approach utilized PointGroup 

as the foundation for detection. However, PointGroup and 

similar backbones (like PointNet (Qi et al., 2017) and its 

variants) often struggle to differentiate between objects in 

close proximity. SoftGroup (Vu et al., 2022) recently 

addressed this limitation, achieving impressive results in 

the ScanNet (Dai et al., 2017) instance segmentation 

challenge. Unlike traditional clustering methods like 

PointGroup, SoftGroup boasts enhanced robustness and 

flexibility. This is achieved through a "soft assignment" 

approach, where each data point can partially belong to 

multiple clusters. This creates a more refined data 

representation, potentially leading to superior performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

2.3. 3D Visual Grounding 

Pinpointing a specific object in a 3D scene based on a textual 

description is a complex task known as 3D visual grounding. 

Pioneering datasets like Scanrefer and Referit3D paved the 

way for research in this area. Similar to its 2D counterpart, 

early approaches relied on a two-stage pipeline. This 

involved using pre-trained object detectors, like PointNet++ 

(Qi et al., 2017), to generate candidate objects and extract 

features. Later works, like SAT (Yang et al., 2021), 

incorporated 2D object information to bolster training. 

InstanceRefer (Yuan et al., 2021) reframed the task as an 

instance matching problem. To directly interpret intricate 

and varied descriptions within point clouds, Feng et al. (Feng 

et al., 2021) proposed a novel approach that constructs three 

interrelated graphs: a language scene graph, a 3D proposal 

relation graph, and a 3D visual graph. Transformer-based 

architectures have also gained traction, with models like 

3DVG-Trans (Zhao et al., 2021), TransRefer3D (He et al., 

2016), Multi-View Trans (Huang et al., 2022), and 

LanguageRefer (Roh et al., 2022) demonstrating promising 

results. D3Net and 3DJCG introduced unified frameworks 

for both dense captioning and visual grounding tasks. While 

previous efforts primarily focused on indoor environments 

with furniture as the target object, recent advancements aim 

to broaden the application scope. Lin et al. (Lin et al., 2023) 

introduced a large-scale outdoor scene grounding task that 

leverages online-captured 2D images and 3D point clouds. 

However, acquiring visual data through LiDAR or 

specialized cameras remains expensive and impractical for 

many scenarios. This motivates our work, which explores 

3D visual grounding using single images as input. 

3. Methodology 
As shown in Figure 2, we conceptually propose an end-to- 

Figure 1. The schematic representation of 3D visual grounding associated with input types including monocular and RGB-D images. 
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end quantum-based framework, Quantum3DVG, which 

consists of four main modules: 1) the quantum encoder; 2) 

the quantum adapter; 3) the quantum decoder; 4) the 

quantum grounding. The quantum encoder partition 

consists of quantum natural language processing (QNLP), 

quantum convolutional neural networks (QCNN), quantum 

vision encoder (QVE), and quantum depth encoder (QDE). 

For quantum adapter or QTGVDA, it contains quantum 

text-guided vision adapter (QTGVA) and quantum text-

guided depth adapter (QTGDA). In quantum decoder 

partition, the components are quantum multi-head attention 

(QMHA), quantum multi-head cross attention (QMHCA), 

quantum multi-scale deformable attention (QMSDA), and 

quantum feed forward network (QFFN), followed by 

quantum multilayer perceptron (QMLP) in quantum 

grounding partition. 

Diving deeper into the complexities and nuances of the 

Quantum3DVG model, we explore how each component 

functions within a quantum computational framework to 

enhance the process of 3D visual grounding using quantum 

vision and quantum natural language descriptions. The 

intersection of quantum computing with machine learning 

here aims to leverage the fundamental aspects of quantum 

mechanics, such as quantum entanglement and 

superposition, to process information in ways that could 

dramatically outstrip the capabilities of classical 

computational methods. Furthermore, more details 

concerning each partition has been provided in the 

following sections. 

 

3.1.  Quantum Multi-Modality of Encoder 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.1.1. Quantum Visual Encoder (QVE) 

The QVE commences with the conversion of classical image 

data into quantum data. This is not a trivial step—each image 

patch must be carefully encoded into quantum states without 

losing essential information. Techniques like amplitude 

encoding, where pixel intensities are translated into the 

probability amplitudes of quantum states, or angle encoding, 

where pixel values determine the rotations in quantum gate 

operations, are considered. Each encoding scheme has its 

advantages and trade-offs regarding computational 

resources and the fidelity of the represented data. After 

encoding, a sequence of QCNN layers applies quantum 

convolution operations. These are not direct analogs to 

classical convolutions but rather innovative quantum 

operations that consider the multi-level interactions between 

qubits. These interactions are non-local, a key property that 

could allow for a more holistic representation of visual 

features as compared to their classical counterparts. The 

QVE would employ quantum circuits to encode visual 

information from image patches. These quantum circuits can 

be thought of as QMHCA, QMSDA, QMHSA, and QFFN 

modules seen in Figure 3 (Appendix (A-1)). In the quantum 

realm, these modules would leverage quantum gates to 

perform entangled transformations on qubits that represent 

the image data, effectively enabling simultaneous processing 

of multiple spatial scales and feature representations. This is 

an extension of the classical approach, where different filters 

capture different aspects of the input data. 
 

3.1.2. Quantum Depth Encoder (QDE) 

For depth processing, the QDE transforms depth information  

Quantum Encoder Quantum Adapter 

Quantum Decoder 

Quantum Grounding 

Figure 2. The schematic representation of quantum 3D visual grounding containing quantum vision and language models. 
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into quantum states, which are then manipulated by a series 

of quantum transformer blocks such as QMHSA and 

QFFN. These blocks, reminiscent of the self-attention 

mechanism in classical transformers, perform a quantum 

version of this operation, where the attention weights are 

calculated through the interactions of quantum states. The 

transformer's ability to handle sequences is adapted to the 

quantum domain, providing a mechanism for interpreting 

quantum states in a manner that preserves spatial 

hierarchies and relationships critical for depth perception. 

 

3.2.  Quantum Text-Guided Adapter 

3.2.1. Quantum Text-Guided Visual Adapter (QTGVA)  

The QTGVA, as depicted in Figure 4 (Appendix (A-2)), 

stands out as a particularly intriguing component, taking on 

the challenge of integrating classical text information into 

a quantum process. This adapter acts as a translator, using 

text embeddings as a guide to modulate quantum operations 

on the visual states. This modulation involves a dynamic 

adjustment of the quantum gates' parameters based on the 

language input, allowing the adapter to focus on and 

enhance the quantum states that correspond to the textual 

descriptions. The QTGVA within the architecture functions 

to coalesce visual features with textual cues at the quantum 

state level. In this quantum construct, the classical 

Normalization and Addition operations are intrinsically 

accounted for through the unitary nature of quantum 

operations, maintaining the requisite normalization of 

quantum states post-transformation. To incorporate the 

guidance from textual inputs, a hybrid quantum-classical 

interaction is employed, wherein classical text data 

modulates quantum operations, altering the state evolution 

in a controlled manner. 

Furthermore, the Quantum Multi-Scale Deformable 

Attention (QMSDA) module is designed to replace the 

classical Multi-Scale Deformable Attention, employing a 

set of entangling gates that process spatially varying 

features across different scales. These gates induce a 

coherent manipulation of qubits corresponding to diverse 

visual features, simulating the adaptable convolutional 

process to the geometry of the input. Additionally, a pixel-

wise attention mechanism is emulated using a controlled 

sequence of quantum gates. These gates selectively 

enhance or suppress features within the quantum states, 

modulated by pixel-level textual information, akin to the 

classical pixel-wise attention process. The QMHCA has a 

complex pattern of entanglements across multiple qubit 

registers. The QMHCA allows for the concurrent 

processing of disparate visual feature sets, establishing a 

holistic understanding of the visual data with respect to the 

textual descriptions. Lastly, quantum up/downsampling is 

conceptualized to manipulate the resolution of quantum-

encoded feature representations. Further details concerning 

QTGVA and the rest of baseline models like QTGDA, QD, 

QMLP, QCNN, and QNLP are elaborated in Appendix (A). 

 

4. Experiments (Quantum3DVG vs 

Classical3DVG) 
In this study, we use a hybrid combination of human and 

vehicle types of datasets for outdoor locations using 

ChatGPT, Gemini, and Perplexity along with manual 

manipulation strategies which has been shown in Figure 10. 

More quantitative details of utilized dataset and further 

ablation study of each Quantum3DVG model’s component 

can be found in Appendix (B) and Appendix (C). As a part 

of primary results, the 3D object detection and localization 

associated with Quantum3DVG (Q3DVG) and 

Classical3DVG (C3DVG) are visually compared in Figure 

11. It can be clearly seen that the Q3DVG model is capable 

of accurately depicting 3D boxing compared to existing 

C3DVG model, while it also enjoys numerous advantages 

such as model training time decrement and clearer object 

detection and localization. Further qualitative testaments of 

Q3DVG model are provided in Appendix (D) proving that 

the quantum model has numerous advantages compared its 

classical counterpart known as C3DVG. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

5. Conclusion  
This study introduces the Quantum3DVG model, a novel 

approach that integrates quantum computing into 3D visual 

grounding. Our preliminary findings highlight the model's 

improved computational efficiency and robustness compared 

to classical methods, particularly in vision recognition and 

rapid feature processing.  

Q3DVG 

C3DVG 

Q3DVG 

C3DVG 

Q3DVG 

C3DVG 

The black car, standing at a height of 

about 1.4 meters, is located on the third 

lane to my left, about 20 meters away 

from me and positioned around 10 

degrees northwest of me. It is the second 

car on the lane, facing away from me, 

and currently moving straight ahead.  

My approximate position is 10 meters 

away from a pedestrian wearing high 

heels, who is standing on the left side 

of the road. They are facing towards 

the right and positioned next to a 

bicycle.  

On the right-side road of the 

intersection, there is a lone black car that 

measures approximately 1.5 meters in 

height. It is currently driving away from 

me towards my north-east direction and 

is situated around 20-30 meters away. 

Figure 11. Primary results from Q3DVG and C3DVG models. 
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Appendix (A): Additional Model Architecture and Relevant Details 

 

Appendix (A-1): Quantum Vision Encoder (QVE) and Quantum Depth Encoder (QDE) 

As can be observed in Figure 3, the overall schematic of a Quantum Vision Encoder (QVE) Model and a Quantum Depth 

Encoder (QDE) Model, both of which are components of a larger quantum-based multimodal model are presented. A 

detailed analytical description of the QVE and QDE schematics are given below: 

The QVE Model consists of three main components: QMHCA (Quantum Multi-Head Cross Attention), QMSDA 

(Quantum Multi-Scale Deformable Attention), and QFFN (Quantum Feed-Forward Network). The QMHCA component 

likely performs cross-attention operations to capture relationships between different parts of the input data, utilizing 

multiple attention heads to focus on various aspects of the input simultaneously. This enhances the model's ability to 

capture diverse and complex patterns. The QMSDA module aggregates data at multiple scales using deformable attention 

mechanisms, which are essential for capturing information at various levels of detail and allowing the model to adaptively 

focus on important features across different resolutions. The QFFN component processes the aggregated data using a feed-

forward network, likely consisting of several layers of quantum neurons (qubits and quantum gates) that apply 

transformations to the input data, enhancing its representation before passing it to the output layer. The data flow in the 

QVE model starts with the input being processed by the QMHCA module to extract relational features. These features are 

then passed to the QMSDA module for multi-scale deformable aggregation, and finally, the aggregated data is fed into the 

QFFN module, which transforms it into the output. 

The QDE Model, on the other hand, consists of two main components: QMHSA (Quantum Multi-Head Self-Attention) 

and QFFN (Quantum Feed-Forward Network). The QMHSA component implements self-attention mechanisms, allowing 

the model to focus on different parts of the input sequence when encoding depth information. With multiple self-attention 

mechanisms applied simultaneously, the model can better learn intricate dependencies within the input data. Similar to the 

QFFN in the QVE model, the QFFN in the QDE model processes data using a feed-forward network structure, further 

transforming the encoded depth information and preparing it for output or further processing. The data flow in the QDE 

model starts with the input being processed by the QMHSA module, where self-attention mechanisms capture 

dependencies within the input data. The attended data is then passed to the QFFN module for further transformation, and 

the output from the QFFN can be directed to other components or used as the final output. 

 
 

 

 

 

 

 

 

 

 

 

 

The quantum circuit as an inherent partition of QVE and QDE components is depicted in the right-side of Figure 3. The 

circuit is divided into three main sections: Encoding, Processing, and Measurement. In the Encoding section, the process 

begins with the preparation of initial quantum states, represented by ∣0⟩ states. A set of operations, denoted as  

QDE Model 

QVE Model 

Input 

Output 

Figure 3. The schematic of QVE/QDE and the quantum circuit function. 
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SX, is applied to these initial states to encode the input data into a quantum state suitable for further processing. The circuit 

shows the application of Hadamard gates (H) to the quantum bits v0 and v1, creating superpositions of ∣0⟩ and ∣1⟩. This 

step is crucial for generating a superposition state that can be used for parallel processing of information in the quantum 

circuit. 

The Processing section includes multiple quantum gates represented by G1, G2, G3, and G4. These gates likely represent 

various quantum operations that transform the encoded quantum states, such as entanglement, phase shifts, or more 

complex unitary transformations. The circuit includes several CNOT gates, which are used to create entanglement between 

qubits. The control qubit (indicated by a filled circle) influences the state of the target qubit (indicated by ⊕). The 

placement of these CNOT gates in the circuit suggests a pattern of entanglement and conditional operations that form the 

core of quantum processing. The quantum state ∣ψ⟩ represents the intermediate state of the quantum bits after undergoing 

the operations in the processing section. This state encapsulates the complex superpositions and entanglements created by 

the applied gates. In the Measurement section, measurement operators are included that collapse the quantum state into 

classical bits. Measurements are typically performed in the computational basis (∣0⟩ or ∣1⟩) and are indicated by meter 

symbols in the diagram. The final part of the circuit shows the measurement of the quantum bits, transforming the quantum 

information into classical bits (c0 and c1) that can be read out. The measured values are then interpreted as the output of 

the quantum circuit. 

The overall flow of the quantum circuit starts with the encoding of initial states using Hadamard gates to create 

superpositions. The superposition states undergo a series of quantum operations in the processing section, involving 

various gates that perform transformations and create entanglements. The final quantum state, after processing, is measured 

to obtain classical outputs that represent the result of the quantum computation. This quantum circuit is designed to leverage 

quantum parallelism and entanglement to process information efficiently, aligning with the goals of the Quantum Vision 

Encoder (QVE) and Quantum Depth Encoder (QDE) models.  

 

Appendix (A-2): Quantum Text-Guided Visual Adapter (QTGVA) and Quantum Text-Guided 

Depth Adapter (QTGDA) 

As given in Figure 4, the schematic illustration of two components such as Quantum Text-Guided Visual Adapter 
(QTGVA) and the Quantum Text-Guided Depth Adapter (QTGDA) is further visualized. The Quantum Text-Guided 
Visual Adapter (QTGVA) begins with an input signal, which can be a combination of textual and visual data. This input is 
first processed by the QMHCA (Quantum Multi-Head Cross Attention) module. This module is responsible for integrating 
information from multiple heads of attention mechanisms, leveraging quantum principles for efficient handling of high-
dimensional data and facilitating cross-modal interaction between visual and textual data. Next, the data moves to the 
QMSDA (Quantum Multi-Scale Deformable Attention) module, which adapts to different scales and deforms the attention 
mechanism to focus on relevant parts of the data at varying scales. This helps in capturing multi-scale features crucial for 
understanding complex visual inputs. Following this, the data is further refined by the Q-Attention mechanism, which 
ensures that the most relevant features are highlighted, and irrelevant noise is minimized. The processed data then 
undergoes quantum-based up-sampling or down-sampling in the Q-Up/Down Sampling module to match the required 
dimensions for subsequent processing, maintaining data integrity while resizing. Finally, the QTGV (Quantum Text-
Guided Vision) integrates the outputs from the attention mechanisms and the sampling process, ensuring that the visual 
data is accurately interpreted and transformed in a way guided by the accompanying textual data. 

The Quantum Text-Guided Depth Adapter (QTGDA) starts with an input that includes depth information guided by text. 
This input is first processed by the QMHA (Quantum Multi-Head Attention) module, which integrates depth information 
through multiple attention heads, designed to handle high-dimensional depth data efficiently using quantum principles. The 
data then moves to the QMHCA (Quantum Multi-Head Cross Attention) module to facilitate cross-modal interaction, 
focusing on depth information in conjunction with textual data. Finally, the QTGDA (Quantum Text-Guided Depth 
Adapter) integrates these processed elements to produce the final depth-related output. In terms of connections and 
workflow, the data flow in QTGVA involves processing the input through QMHCA and QMSDA, handling cross-attention 
and multi-scale deformable attention respectively. These outputs are refined by the Q-Attention mechanism and adjusted 
in scale by the Q-Up/Down Sampling module, with QTGV integrating all these processed data elements to produce the 
final output. Similarly, in QTGDA, the depth information is processed by QMHA and QMHCA, with QTGDA integrating 
these processed elements to produce the final depth-related output. The outputs from both QTGVA and QTGDA can be 
used together to provide a comprehensive understanding of the input data by integrating visual, textual, and depth  
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information efficiently using quantum principles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Appendix (A-3): Quantum Decoder (QD) 
As provided in Figure 5, the decoder section of the model brings the multi-modal quantum states together. Using quantum 

circuits that implement a type of quantum attention mechanism in the forms of QMHA, QMHCA, QMSDA, and QFFN, 

the quantum decoder directs focus within the entangled states, picking out the relevant features for object localization. The 

quantum parallelism at play here could allow the QD to consider a vast array of feature combinations and relationships 

simultaneously, a feat unattainable in classical computing. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

 

 
 

 
 

 

 
 

 
 

Appendix (A-4): Quantum MLP (QMLP) 

At the culmination of the model, the QMLP translates the refined quantum states from the QD into a form usable for 

classical interpretation. The QMLP performs this task by applying a series of quantum gates arranged in layers, which non-

linearly manipulate the quantum states. The measurement process at the output of these layers collapses the quantum states 

into classical information, which correlates to the predicted 3D bounding boxes (Friedrich et al., 2024; Shao, 2018). 

 

Input 

Output 

Input 

Output 

QTGV

A  

QTGDA 

Figure 4. The schematic of QTGVA and QTGDA. 

 

QMHA 

 

QMHCA QMSDA QFFN 

                                                    Figure 5. The detailed schematic of the QD within its quantum components. 
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As shown in Figure 6, it illustrates a comprehensive QMLP architecture specifically designed for this study. The bottom 
section of Figure 6 visualizes the quantum states using Bloch spheres. Each Bloch sphere represents the state of a qubit, 

illustrating the probabilities of the qubit being in state ∣0⟩ or ∣1⟩, as well as their superpositions. The Bloch spheres offer 
an intuitive way to understand the state transformations that occur during the processing in QNNs and QMLP. The 
visualization shows how input data is mapped onto the quantum states, highlighting the quantum encoding and processing 

steps. The general state of a qubit ∣𝜓⟩ can be described by the equation: ∣𝜓⟩ = cos(𝜃/2) ∣0⟩ + 𝑒𝑖𝜙 sin(𝜃/2) ∣1⟩ where 𝜃 and 

𝜙 are the spherical coordinates on the Bloch sphere. The 𝑧-axis represents the computational basis states ∣0⟩ and ∣1⟩, while 

the 𝑥- and 𝑦-axes represent the superpositions of these states, such as ∣+⟩ = (∣0⟩ + ∣1⟩) / 2 and ∣−⟩ = (∣0⟩ − ∣1⟩) / 2. Pure 
states are depicted as points on the surface of the sphere, whereas mixed states, which are probabilistic combinations of 
pure states, would lie inside the sphere (though these are not depicted in this Figure). 

Each Bloch sphere at the bottom of Figure 6 represents the quantum states of the qubits after encoding and processing 

through the Quantum Neural Networks (QNNs) and the Quantum MLP. Initially, qubits are in a definite state, usually ∣0⟩, 
depicted at the north pole of the Bloch sphere. As data is encoded into the quantum states, the qubits move from their initial 
state to various points on the Bloch sphere, depending on the encoding scheme (angle or amplitude encoding). The encoded 
state reflects the information from the input data. For instance, if amplitude encoding is used, the probability amplitudes of 
the qubit states correspond to the input data values. 
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                                         Figure 6. The detailed schematic of the QMLP model along with its quantum components and encoded qubits. 
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Appendix (A-5): Quantum Convolutional Neural Network (QCNN) 

Quantum CNN Layer: 

As shown in Figure 7, the QCNN architecture leverages the quantum computational framework to enhance the processing 
of complex data. The QCNN comprises several layers, each performing specific operations on the input data. The input to 
the QCNN is a multispectral image, capturing various parameters. This image undergoes preprocessing, such as 
normalization and dimension adjustments, to ensure compatibility with the quantum convolutional layers. The first set of 
layers consists of Quantum Convolutional 1D (QCONV 1D) operations. The first QCONV 1D layer applies a quantum 
convolutional operation to the input data, extracting basic features from the multispectral image. This layer uses 32 filters 
with a kernel size of 3x3, a stride of 1, and same padding. The second QCONV 1D layer further refines features extracted 
by the first layer, capturing more complex patterns. This layer employs 64 filters with the same kernel size, stride, and 
padding as the first layer. Following the QCONV 1D layers, Quantum ReLU (Q-ReLU) activation functions are applied. 
The first Q-ReLU activation introduces non-linearity after the first QCONV 1D layer, enabling the network to learn 
complex data representations. The second Q-ReLU activation follows the second QCONV 1D layer, further enhancing the 
network’s capability to model intricate patterns. Quantum Dropout (Q-Dropout) layers are incorporated to prevent 
overfitting. The first Q-Dropout layer randomly deactivates 20% of quantum gates during training, ensuring the network 
generalizes well to unseen data. The second Q-Dropout layer similarly deactivates 20% of quantum gates in deeper layers, 
reducing overfitting risks. 

The core quantum computational block includes a variational ansatz, a parameterized quantum circuit designed to 

approximate the desired quantum state transformations. This block features specific quantum gates such as 𝑅𝑥, 𝑅𝑦, and 

𝑅𝑧, which apply rotations around the respective axes on the Bloch sphere. Entanglement operations, depicted by CNOT 
gates, create correlations between qubits, enhancing the network's capacity to model complex dependencies. The 
parameters within the variational ansatz are optimized during training to minimize the loss function. The final layer 
integrates the processed information, producing output predictions for various parameters (Kerenidis et al., 2019). 
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                                         Figure 7. The detailed schematic of the QCNN model along with its quantum components. 
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More specifically, the QCNN layer’s key steps and components involved in the quantum forward and backward passes for 
a QCNN layer are summarized as below, and the detailed discussion is given in Algorithm 1: 

1. Quantum Convolution Product: 

The quantum convolution product is the primary operation, mapping the convolution process from classical CNNs to a 
quantum framework. It uses a mapping between the convolution of tensors and matrix multiplication, which can be reduced 
to inner product estimation between vectors. 

2. Inner Product Estimation: 

This involves calculating the inner product between the input and kernel tensors using quantum states. The inner product 
is estimated using amplitude estimation and median evaluation algorithms to ensure accuracy. 

3. Non-Linearity: 

After the convolution, a non-linear activation function (e.g., Q-ReLU) is applied. This is implemented using quantum 
circuits to handle the non-linearity, which is essential for the learning capability of neural networks. 

4. Quantum Sampling: 

The output of the quantum convolution is a quantum state representing the result of the convolution product. To retrieve 
meaningful classical information, quantum sampling techniques are used. This involves conditional rotations and amplitude 
amplification to enhance the probability of measuring important data points. 

5. Quantum Tomography: 

To convert the quantum state back to a classical form, quantum tomography with ℓ∞ norm guarantees is employed. This 
process ensures that the classical output closely approximates the desired results from the quantum state. 

6. Pooling Operation: 

The pooling operation, which reduces the dimensionality of the data, is integrated into the QCNN structure. This can be 
performed during the QRAM update phase and includes techniques like maximum pooling or average pooling. 

 

Quantum Dropout Technique: 

In this section, we present a comprehensive discussion of various quantum dropout strategies, as illustrated in Figure 8. 
Quantum dropout is an essential technique for regularizing quantum neural networks, akin to classical dropout in 
conventional neural networks. Each strategy employs a unique approach to dropping gates, thereby affecting the network's 
overall performance and robustness (Scala et al., 2023). In this study, we employ a hybrid policy of given quantum dropout 
techniques in Figure 8. 

Canonical dropout involves dropping a single rotation gate 𝑅𝐺 along with all preceding entangling gates 𝐸𝐺 that targeted 
the particular qubit, and all subsequent entangling gates that used that qubit as a control. As shown in Figure 8, single 
dropped gates are highlighted by circles/rectangles, with arrows indicating the sequence of dropped gates. This dropout 
strategy minimizes the network's dependency on specific qubits, potentially enhancing model generalization. The dropping 

probability 𝑝𝐺 is employed together with 𝑝𝐿 to obtain the overall dropping probability 𝑝 = 𝑝𝐺 𝑝𝐿. 

Canonical-forward dropout involves dropping a single rotation gate 𝑅𝐺 along with all subsequent entangling gates 𝐸𝐺 
that used that qubit as a control. Illustrated in Figure 8, this method mitigates the influence of future entanglements 

involving the dropped rotation gate, reducing error propagation through the network. The same dropping probability 𝑝𝐺 is 
utilized. 

Independent dropout works by dropping a single rotation gate 𝑅𝐺 and a single entangling gate 𝐸𝐺 independently of each 
other. Figure 8 demonstrates this approach, applying dropout independently to different types of gates, potentially 

balancing the influence of rotation and entangling gates on the network. This method employs distinct probabilities 𝑝R for 

rotation gates and 𝑝E for entangling gates. 

Rotation dropout involves dropping single rotation gates 𝑅𝐺 alone. As shown in Figure 8, this straightforward approach 

simplifies the quantum circuit by focusing solely on rotation gates, crucial for qubit state manipulation. The probability 𝑝R 
is used to determine the dropping of rotation gates.  

Entangling dropout involves dropping single entangling gates 𝐸𝐺 alone. Illustrated in Figure 8, this strategy targets 
entangling gates, pivotal for creating quantum correlations between qubits. Dropping these gates reduces the complexity 

of the quantum entanglement structure. The probability 𝑝E is used for entangling gate dropout. 
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                                         Figure 8. Various quantum dropout techniques utilized in our work. 
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Algorithm 1 (Combined Algorithm): QCNN with Quantum Backpropagation 

Input: Data input matrix 𝐴ℓ, kernel matrix 𝐹ℓ, precision parameters 𝜖, 𝜂, and 𝛿, non-linearity function 𝑓, learning rate 

𝜆.  

Output: Updated data matrices 𝐴ℓ+1 and kernel matrices 𝐹ℓ. 

1. Forward Pass (Quantum Convolution): 

• Inner Product Estimation: 

 

• Non-Linearity: 

 

• Quantum Sampling: 

 

• QRAM Update and Pooling: 

Update QRAM with 𝐴ℓ+1 and apply pooling. 

2. Backward Pass (Quantum Backpropagation): 

• Modify the Gradient: 

Set to 0 some values of   in QRAM. 

• Matrix-Matrix Multiplications: 

 

• Tomography: 

Estimate each entry of  and .  

• Gradient Descent: 

 

3. Output: Updated data matrices 𝐴ℓ+1 and kernel matrices 𝐹ℓ. 
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Appendix (A-6): Quantum Language Model with QNLP 

Quantum Natural Language Processing (QNLP) is an emerging field that combines the principles of quantum computing 

with the challenges and opportunities presented by natural language processing (NLP). According to the schematic 

represented in Figure 9, the difference between the classical NLP and QNLP workflows is illuminated. For instance, the 

string diagram representation of a sentence along with the quantum circuit representation of the corresponding sentence is 

provided in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix (B): Dataset Type and Dataset Generation Procedure 

The Table 1 provides a comprehensive overview of various datasets used in the study, detailing their size, type, and method 
of generation. The datasets vary in terms of the number of expressions (Exp. #NUM), objects (Obj. #NUM), scenes (Sce. 
#NUM), and vocabulary (Voc.  #NUM), as well as their application context (indoor or outdoor, and types of objects). The 
methods of generation include manual and automated techniques, with visual data presented in either 2D or 3D formats. 
The Quantum3DVG model dataset is applied along this study.  

 

 

 

 

 
 

 

 

 
 

Figure 9. (a) QNLP workflow, (b) DisCoCat string diagram, (c) Quantum circuit representation of the sentence in 

boxes (iii), (i), (ii), (iv), and (v). 
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Table 1. Utilized dataset details in this study. 

 

   Dataset 

 

                          Dataset Features                               Dataset Type 

Exp. #NUM           Obj. #NUM          Sce. #NUM          Voc.  #NUM    Location                     Method of Generation                    Label 

Spa.           Obj.                    Txt.              Vis.                     2D/3D 

SUN-Spot        7990                 3245                    1948                     2690      Indoor       Furniture             Manu.      RGB-D                   2D 

REVERIE        21702               4140                     90                        1600      Indoor       Furniture             Manu.      PC.                         2D 

ScanRefer        51583               11046                   704                      4197      Indoor       Furniture             Manu.      PC.                         3D 

Sr3d        83572               8863                     1273                    196      Indoor       Furniture             Temp.      PC.                         3D 

Nr3d        41503               5879                     642                      6951      Indoor       Furniture             Manu.      PC.                         3D 

SUNRefer        38495               7699                     7699                   5279      Indoor       Furniture             Manu.      RGB-D                  3D 

STRefer        5458                 3581                     662                       -       Outdoor    Human                Manu.      PC. & RGB            3D 

LifeRefer        25380               11864                   3172                     -      In/Outdoor   Human            Manu.      PC. & RGB            3D 

Quantum3DVG        41140               8228                    2025                    5271      Outdoor    Human+     Manu.+ChatGPT+      RGB    2D/3D 

                   Veh.            Gemini+Perplexity                         

   

The schematic in Figure 10 outlines the process for generating a dataset to train the Quantum 3D Visual Grounding 
(Q3DVG) model. It starts with categorizing images based on object type (Human + Vehicle) and distance (Far, Medium, 
Near). Key features such as dimensions, color, direction, occlusion, location, distance, azimuthal angle, and spatial 
description are extracted from these images. Advanced AI tools like ChatGPT, Gemini, and Perplexity are used to generate 
detailed text descriptions of the scenes. A verification process ensures the accuracy and quality of the data. This integrated 
workflow aims to create a robust dataset to train the Q3DVG model for precise 3D visual grounding. 
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Medium Distance + Moderate to See Near Distance + Easy to See 

Main Feature Extraction 

1. Height/Length/Depth 

2. Object Color 

3. Direction & Degree of Occlusion 

4. Location & Distance 

5. Azimuthal Angle  

6. Spatial Description 

The right-side road at the intersection harbors a 

single car, which is painted black and stands at an 

approximate height of 1.5 meters. The car is 

currently moving in a rightward direction away 

from me, positioned at a distance of 20-30 meters. 

Text Description 

Verification Process 

                                         Figure 10. The process of dataset generation for training the Quantum 3D Visual Grounding model. 
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Appendix (C): Supplementary Quantitative Results 

The Table 2 presents a comparison of quantum and classical models on various types of datasets, evaluated based on their 
accuracy (ACC) at thresholds 0.25 and 0.5. The models, Mono3DVG-TR and Quantum3DVG, are assessed under three 
categories: “Near Distance + Easy to See”, “Medium Distance + Moderate to See”, and “Far Distance + Hard to See”. In 
the “Near Distance + Easy to See” category, Quantum3DVG outperforms Mono3DVG-TR at ACC @0.25 (68.23 vs. 64.74) 
and shows relatively equal performance at ACC @0.5 (54.33). For “Medium Distance + Moderate to See”, Quantum3DVG 
also outperforms Mono3DVG-TR at both ACC @0.25 (77.12 vs. 75.44) and ACC @0.5 (59.96 vs. 55.48). In the “Far 
Distance + Hard to See” category, Quantum3DVG slightly outperforms Mono3DVG-TR at ACC @0.25 (46.87 vs. 45.07) 
and outperforms it at ACC @0.5 (18.41 vs. 15.35). Overall, the Quantum3DVG model demonstrates better or equal 
performance across all categories and thresholds compared to the Mono3DVG-TR model, a classical 3D visual grounding 
model, especially in challenging conditions. 

 
              Table 2. Evaluation of quantum and classical models on various types of datasets. 

 

Baseline Model 

 

   Near Distance + Easy to See  Medium Distance + Moderate to See       Far Distance + Hard to See 

   ACC @0.25           ACC @0.5                    ACC @0.25           ACC @0.5      ACC @0.25           ACC @0.5 

Mono3DVG-TR    64.74/72.36           53.49/51.80              75.44/69.23           55.48/48.66           45.07/49.01           15.35/29.91 

Quantum3DVG    68.23/72.36           54.33/51.80         77.12/69.23           59.96/48.66      46.87/49.01           18.41/29.91 

 

The Table 3 in the ablation study evaluates the performance of a multimodal system that includes both vision and depth 
tasks, with components consisting of Encoders, Decoders, and Adapters, each of which can be implemented in either a 
classical or quantum version. The study aims to determine how the inclusion of quantum components affects the system's 
accuracy, measured by ACC @0.25 and ACC @0.5. For the Classical Version with a Classical Decoder, the ACC @0.25 
values start at 47.31 with no quantum components, improve to 60.21 with the addition of a Quantum Vision Encoder, 
further increase to 61.98 with a Quantum Vision Encoder and Quantum Vision Adapter, and reach the highest value of 
64.36 with the addition of a Quantum Depth Adapter. Similarly, the ACC @0.5 values progress from 24.38, to 38.52, 
40.12, and finally 44.25 for the same respective configurations. 

For the Quantum Version with a Quantum Decoder, the results show improved performance compared to the Classical 
Decoder. The ACC @0.25 values are 49.55 within quantum components, 62.17 with a Quantum Vision Encoder, 64.18 
with a Quantum Vision Encoder and Quantum Vision Adapter, and 67.10 with the inclusion of a Quantum Depth Adapter. 
The ACC @0.5 values follow the same pattern: 25.88, 39.92, 42.22, and 46.34. 

In summary, the Table 3 demonstrates that the performance metrics (ACC @0.25 and ACC @0.5) improve progressively 
as quantum components are incorporated into the system. The highest performance is achieved when both quantum vision 
and depth adapters are included. These results are consistent for both classical and quantum decoders, with the Quantum 
Decoder showing higher performance gains compared to the Classical Decoder. This highlights the potential benefits of 
integrating quantum technology into multimodal systems for vision and depth tasks. 

 
              Table 3. The ablation study of quantum and classical Encoder, Decoder, and Adapter components. 

                                

                            Decoder 

Classical Decoder         Quantum Decoder 

 Quantum/Classical  

          Encoder 

Quantum/Classical  

         Adapter 

    Classical Version                Quantum Version 

 Vision          Depth            Vision          Depth            ACC @0.25   ACC @0.5     ACC @0.25   ACC @0.5 

                         47.31            24.38              49.55            25.88 

                 60.21            38.52              62.17            39.92 

           61.98            40.12             64.18            42.22 

           64.36            44.25              67.10            46.34 
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As can be observed in Table 4, it presents a comprehensive analysis of dataset statistics for Q3DVG and C3DVG, 

categorized by object location (Near Distance, Medium Distance, Far Distance) and quality of perceptions (Easy to See, 

Moderate to See, Hard to See). The data is divided into three model evaluation metrics: training, validation, and test sets, 

along with overall totals. In terms of object location, the distribution is relatively balanced between the datasets across all 

distances. For instance, Medium Distance has the highest representation with both Q3DVG and C3DVG comprising 

43.25% of the total data, followed by Near Distance at 26.49%, and Far Distance at 30.25%. This indicates a focus on 

medium-range object detection in the datasets. Regarding the quality of perceptions, the "Easy to See" category contains 

the most data, with each dataset (Q3DVG and C3DVG) comprising approximately 45.92% of the total instances. This is 

followed by the "Hard to See" category, with each dataset representing around 29.21%, and the "Moderate to See" category 

with each dataset at 24.88%. This suggests a gradual decrease in data quantity as visibility decreases.  

 

 
              Table 4. Dataset statistics for Q3DVG and C3DVG at different object locations and quality of perceptions. 

 

Model Evaluation 

 

            Near Distance          Medium Distance            Far Distance                              Overall 

 Q3DVG                  C3DVG            Q3DVG                  C3DVG         Q3DVG                  C3DVG                  Q3DVG 

Train  3,612 (22.45%)      7,805 (26.03%) 7,355 (45.71%)    12,815 (42.73%)      5,121 (31.84%)       9,370 (63.44%)        16,088 

Validation  2,432 (21.56%)      1,575 (27.46%)          4,222 (37.44%)      2,525 (44.03%) 4,621 (41%)           1,635 (28.51%)         11,275 

Test  4,856 (35.24%)      1,520 (28.07%) 6,218 (45.13%)      2,455 (45.34%)  2,703 (19.63%)      1,440 (26.59%)         13,777 

Total  10,900 (26.49%)  10,900 (26.49%) 17,795 (43.25%)    17,795 (43.25%) 12,445 (30.25%)    12,445 (30.25%)       41,140 

 

Model Evaluation 

  

                Easy to See              Moderate to See            Hard to See                                  Overall 

   Q3DVG                  C3DVG                Q3DVG                  C3DVG Q3DVG                  C3DVG                    Q3DVG  

Train  6,952 (45.28%)   13,855 (46.20%) 3,861 (25.14%)      7,425 (24.76%) 4,540 (29.58%)      8,710 (29.04%)           15,353 

Validation  4,991 (44.65%)     2,705 (47.17%) 3,200 (28.63%)      1,390 (24.24%) 2,986 (26.72%)      1,640 (28.60%)           11,177 

Test  6,947 (47.54%)    2,330 (43.03%) 3,174 (21.72%)      1,420 (26.22%) 4,489 (30.74%)      1,665 (30.75%)           14, 610 

Total  18,890 (45.92%)  18,890 (45.92%) 10,235 (24.88%)    10,235 (24.88%) 12,015 (29.21%)    12,015 (29.21%)         41,140 

 
 

             Table 5. Ablation study of QVE, QDE, and QD baseline models at different number of layers for Q3DVG and C3DVG. 

 

Baseline Model 

 

           Number of Layer               ACC @0.25              ACC @0.5 Number of Parameters 

Q3DVG                  C3DVG             Q3DVG                  C3DVG  Q3DVG                  C3DVG Q3DVG              C3DVG 

 

         QVE 

   K = 2                      K = 2         63.55                       62.16         44.65                       43.05      185.21M            118.99M 

   K = 3                      K = 3 

   K = 4                      K = 4 

   65.17                       64.36 

   64.56                        63.74 

   45.17                       44.25 

   44.23                       42.50 

227.33M            119.35M 

257.11M            119.71M 

 

         QDE 

   F = 1                       F = 1     

   F = 2                       F = 2 

   F = 3                       F = 3 

   65.77                       64.36 

   62.95                       61.26 

   62.04                       60.18 

   45.57                       44.25 

   42.59                       41.75 

   40.22                       38.80 

189.88M            119.35M 

232.96M            119.48M 

255.10M            119.61M 

 

        

           QD 

   S = 1                       S = 1     

   S = 2                       S = 2 

   S = 3                       S = 3 

S = 4                       S = 4 

   S = 5                       S = 5 

   66.16                       64.36  

   63.91                       62.84 

   63.27                       62.34 

   62.33                       60.38 

   58.01                       56.14      

   46.36                       44.25 

   44.96                       43.52 

   43.11                       40.80     

   40.13                       38.56 

   35.71                       34.28 

190.21M            119.35M 

263.87M            120.25M 

273.44M            121.16M 

289.12M            122.06M 

296.76M            122.97M 
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The notable criterion is the smaller number of training datasets for Q3DVG compared to C3DVG as it adjusts the 
computational time despite of higher number of parameters associated with Q3DVG in comparison with the C3DVG. 
Despite of a smaller number of training dataset and higher number of datasets for validation and test regarding the Q3DVG 
model, the quantum-equipped model accuracy still surpasses the threshold (accuracy) for its classical counterpart. It 
suggests that the quantum model is more trainable data-reluctant rather than the classical counterparts.  

Performing further ablation study, the Table 5 presents a comparing investigation on the performance of three baseline 
models—QVE, QDE, and QD—across varying numbers of layers on two main quantum and classical model versions: 
Q3DVG and C3DVG. The key performance metrics are accuracy at thresholds of 0.25 and 0.5 (ACC @0.25 and ACC 
@0.5), along with the number of parameters required for each configuration. 

For the QVE model, as the number of layers (K) increases from 2 to 3, the ACC @0.25 improves for both Q3DVG and 
C3DVG. However, with a further increase to 4 layers, there is a slight decrease in Q3DVG and a slight increase in C3DVG. 
For ACC @0.5, performance remains relatively stable across different layer configurations, with only minor fluctuations. 
The number of parameters increases significantly with additional layers. For instance, moving from 2 to 4 layers results in 
a parameter increase from 185.21M to 257.11M for Q3DVG, indicating a higher computational cost without substantial 
gains in accuracy. 

The QDE model shows a decline in accuracy as the number of layers (F) increases. The highest accuracy at ACC @0.25 
is achieved with a single layer, and performance drops as more layers are added. A similar trend is observed for ACC @0.5, 
where adding layers leads to a consistent decrease in performance. The number of parameters also increases with more 
layers, similar to the QVE model. However, given the decreasing accuracy, this suggests diminishing returns with 
additional layers. 

The QD model demonstrates the highest accuracy at ACC @0.25 with a single layer and experiences a steady decline as 
more layers are added. This pattern is consistent across both Q3DVG and C3DVG datasets. For ACC @0.5, the 
performance also decreases with additional layers, but the decline is more pronounced compared to ACC @0.25. The QD 
model requires the most parameters among the three models as layers increase. For example, moving from 1 to 5 layers 
results in a parameter increase from 190.21M to 296.76M for Q3DVG. Despite the increase in parameters, the accuracy 
gains are not evident, highlighting a potential inefficiency in the model's architecture for deeper configurations. 

Key observations include the importance of balancing model complexity with performance. The QD model shows that a 
simpler configuration (fewer layers) is more effective in terms of accuracy. Adding more layers results in higher 
computational costs without improving performance, suggesting overfitting or inefficiencies in deeper architectures. The 
QVE model strikes a balance with 3 layers, offering a stable performance across different accuracy thresholds while 
managing parameter efficiency better than deeper configurations. The optimal configuration for QVE seems to be with 3 
layers, providing a good trade-off between accuracy and the number of parameters. The QDE model performs best with a 
single layer, indicating that simpler models might be more effective for certain tasks. The QD model, although initially 
high performing with a single layer, does not scale well with added complexity. 

 

Appendix (D): Supplementary Qualitative Results 

As shown in Figure 12, the schematic displays qualitative results for comparing classical and quantum models for 3D object 
detection at varying distances: far, medium, and near. The results are showcased using original images, depth predictions, 
3D bounding boxes from classical (C3DVG) and quantum (Q3DVG) models, and corresponding textual queries. 

For the far distance scenario, the original image shows a street scene with a car highlighted in a red bounding box, located 
at a considerable distance from the viewer. The depth map displays a grayscale representation where closer objects are 
lighter, and distant objects are darker. Two 3D bounding boxes are presented (zoom-in mode): the C3DVG in blue, and the 
Q3DVG in red. The query describes a car about 1.5 meters in height, located approximately 50 meters north of the observer, 
in the lane ahead. It is the second car in front and is facing away. 

In the medium distance scenario, the original image features a different street scene with a car highlighted in an orange 
bounding box, closer than in the far distance image. The depth map similarly shows the objects' distances with a different 
grayscale gradient, indicating medium-range objects. Again, two 3D bounding boxes are presented in zoom-in mode: 
C3DVG in green, and Q3DVG in orange. The query describes a black car, about 1.6 meters high and 3.2 meters long, 
heading north, 30 meters away. The car is moving away with its back facing the observer. 

For the near distance scenario, the original image shows a car much closer to the observer, highlighted in a green bounding 
box. The depth map shows a clearer distinction of nearby objects, with more pronounced grayscale differentiation. Two 
3D bounding boxes are presented: C3DVG in green, and Q3DVG in yellow. The query describes a white car parked on the  
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right side of the road, about 20 meters away, with its back facing the observer. The car is the second one to the right and 
positioned around 20 degrees north-northeast. 

Comparatively, for the far distance, the classical model's 3D bounding box aligns well with the car's position, while the 
quantum model provides a more refined and more accurate bounding box. In the medium distance, both models accurately 
capture the car's dimensions, but the quantum model again appears to offer a more precise bounding box, especially in 
terms of depth perception. For the near distance, the proximity to the car allows both models to provide accurate bounding 
boxes, though the quantum model might offer a slight edge in precision. Overall, the qualitative results and accompanying 
analysis demonstrate the effectiveness of quantum models (Q3DVG) over classical models (C3DVG) in 3D object 
detection across different distances. Quantum models show superior accuracy in bounding box placement and depth 
perception, particularly evident in medium and far distances. This qualitative assessment underscores the potential 
advantages of integrating quantum computing approaches in visual detection tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A car, about 1.5 meters in height, is located 

approximately to my north and is approximately 

50 meters away from me. It is the second car in 

front of me on the road. It is traveling straight 

ahead and is facing away from me. Its position is 

in front of the first car on the road and it is mostly 

obscured by that car. 

Q3DVG 

 

C3DVG 

Q3DVG 

 

C3DVG 

A black car, approximately 1.6 meters 

high and 3.2 meters long, is heading north 

in the lane ahead of me. It is the first car 

and is about 30 meters away from me, 

moving away from me with its back 

facing me. 

Q3DVG 

 

C3DVG 

As I stand, a white car is parked on the 

right side of the road about 20 meters 

away from me, with its back facing me. It 

is the second car to my right and situated 

in a direction that is approximately 20 

degrees north-northeast of my position. 

Original Image Original Image Original Image 

Depth Pred. Depth Pred. Depth Pred. 

3D BOX 3D BOX 3D BOX 

Query Query Query 

Far Distance Medium Distance Near Distance 

The tram, with a black and yellow exterior, is 

approximately 3.3 meters tall and 18.1 meters 

long. It is located on the tracks, about 20 meters 

away from me in a northwesterly direction at 

roughly 30 degrees. It is positioned in front of the 

first car and is completely obstructed from my 

view. 

Q3DVG 

 

C3DVG 

Q3DVG 

 

C3DVG 

The only red truck, approximately 

10.8 meters in length, is located 
about 40 meters north of me and 

heading away from me on the road 

ahead. 

Q3DVG 

 

C3DVG 

A cyclist, who is the only one 
around, was riding away from me on 

the right sidewalk of the road about 

10 meters away in my north-
northeast direction with his back 

facing me. 

Original Image Original Image Original Image 

Depth Pred. Depth Pred. Depth Pred. 

3D BOX 3D BOX 3D BOX 

Query Query Query 

Hard to See Moderate to See Easy to See 

          Figure 12. Visualization of 3D boxing and depth map prediction for Q3DVG and C3DVG models at different locations and perception views. 
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Further results illustrate the qualitative outcomes of 3D object detection models, Q3DVG and C3DVG, in scenarios where 
queries are not directly pointing out clear features of objects. The respected schematic in Figure 13 contains three sections, 
each with an original image, the corresponding 3D bounding boxes from both models, and textual queries describing the 
scene. Three scenarios associated with additional qualitative results are mentioned as below: 

In the first scenario, the original image depicts a yellow car parked close to the sidewalk. The car is highlighted with both 
red and blue bounding boxes. The C3DVG model is shown in blue, while the Q3DVG model is shown in red. The query 
states that the yellow car is parked close to the sidewalk, adjacent to a white fence and green bushes. The car's vibrant 
yellow color stands out against the more subdued tones of the surrounding vehicles and buildings. 

In the second scenario, the original image shows a cyclist on the right side of the road, highlighted in both orange and green 
bounding boxes. The C3DVG model is shown in orange, and the Q3DVG model is shown in green. The query describes a 
cyclist wearing a white shirt, riding along the bike path on the right side of the road. The cyclist is moving away from the 
camera, heading towards the distance where the road and path converge. The cyclist is near a line of pink flowers that 
border the bike path, adding a splash of color to the scene. 

In the third scenario, the original image shows a pedestrian crossing the street, highlighted with both green and yellow 
bounding boxes. The C3DVG model is shown in yellow, while the Q3DVG model is shown in green. The query mentions 
a pedestrian crossing the street from right to left. The pedestrian is wearing dark clothing, which contrasts against the bright, 
sunlit street. The pedestrian is positioned at the center of a zebra crossing, highlighted by white lines on the road. The 
surrounding environment includes vehicles waiting at traffic lights, a cyclist preparing to cross, and greenery that frames 
the urban scene. 

In each scenario, the models were tested with queries that provided contextual rather than specific object details. This 
ensures that the models are capable of accurately detecting and describing objects even when the queries are more general 
and do not highlight clear features. For the first scenario, both models correctly identify and box the yellow car, with the 
quantum model potentially offering more refined results. In the second scenario, the cyclist is inaccurately detected and 
boxed by C3DVG model, while the Q3DVG model showing a precise fit. In the third scenario, the pedestrian is not well-
detected by C3DVG model, whereas the Q3DVG model is once again demonstrating a considerable edge in accuracy. 
Overall, this qualitative assessment showcases the robustness of Q3DVG model in handling queries with less specific 
details considering that the quantum model consistently provides a higher level of precision.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The yellow car is parked close to the 
sidewalk, adjacent to a white fence and 

green bushes. The car's vibrant yellow 

color stands out against the more subdued 

tones of the surrounding vehicles and 

buildings.  

Q3DVG 

 

C3DVG 

Q3DVG 

 

C3DVG 

In the foreground, on the right side of the 

road, there is a cyclist wearing a white shirt 

riding along the bike path. The cyclist is 

moving away from the camera, heading 

towards the distance where the road and path 

converge. The cyclist is situated near a line 

of pink flowers that border the bike path, 

adding a splash of color to the scene. 

Q3DVG 

 

C3DVG 

A pedestrian is crossing the street from right to 

left. The pedestrian is wearing dark clothing, 

which contrasts against the bright, sunlit street. 

He is positioned at the center of a zebra crossing, 

highlighted by white lines on the road. The 

surrounding environment includes vehicles 

waiting at the traffic lights, a cyclist preparing to 

cross, and greenery that frames the urban scene.  

Original Image Original Image Original Image 

3D BOX 3D BOX 3D BOX 

Query 

Query Query 

          Figure 13. Further testaments of 3D boxing for Q3DVG and C3DVG models using types of uncommon query. 
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