
Published as a conference paper at ICLR 2022

IFLOOD: A STABLE AND EFFECTIVE REGULARIZER

Yuexiang Xie1, Zhen Wang1, Yaliang Li1, Ce Zhang2, Jingren Zhou1, Bolin Ding1
1Alibaba Group, 2ETH Zürich

{yuexiang.xyx, jones.wz, yaliang.li, jingren.zhou, bolin.ding}@alibaba-inc.com, ce.zhang@inf.ethz.ch

ABSTRACT

Various regularization methods have been designed to prevent overfitting of ma-
chine learning models. Among them, a surprisingly simple yet effective one, called
Flooding, is proposed recently, which directly constrains the training loss on aver-
age to stay at a given level. However, our further studies uncover that the design
of the loss function of Flooding can lead to a discrepancy between its objective
and implementation, and cause the instability issue. To resolve these issues, in this
paper, we propose a new regularizer, called individual Flood (denoted as iFlood).
With instance-level constraints on training loss, iFlood encourages the trained
models to better fit the under-fitted instances while suppressing the confidence on
over-fitted ones. We theoretically show that the design of iFlood can be intrinsi-
cally connected with removing the noise or bias in training data, which makes it
suitable for a variety of applications to improve the generalization performances
of learned models. We also theoretically link iFlood to some other regularizers by
comparing the inductive biases they introduce. Our experimental results on both
image classification and language understanding tasks confirm that models learned
with iFlood can stably converge to solutions with better generalization ability, and
behave consistently at instance-level.

1 INTRODUCTION

Though overparameterized neural networks have achieved success on a wide range of tasks and
applications, it is worth noting that their capacities are sufficient to memorize the entire training
data (Zhang et al., 2017a; Arpit et al., 2017), which often leads to an intolerable generalization gap,
or in other words, overfitting. To prevent overfitting, many methods have been proposed to regularize
how machine learning models fit the training data via introducing additional constraints to control the
capacity in effect. For example, L1- or L2- regularizer (i.e., Weight Decay) (Hanson & Pratt, 1989),
Early Stopping (Yao et al., 2007), Dropout (Srivastava et al., 2014), Label Smoothing (Szegedy et al.,
2016), Confident Penalty (Pereyra et al., 2017), etc (Zhang et al., 2017b; Izmailov et al., 2018; Zheng
et al., 2021; Foret et al., 2021; Yang et al., 2020).

Recently, a new method named Flooding (Ishida et al., 2020) is proposed, which controls the extent
to which machine learning models fit the training data via directly encouraging the averaged training
loss to stay at a given level rather than achieving (near-)zero loss. Formally, Flooding suggests the
following loss function LFlooding to be minimized:

LFlooding = ∣L − b∣ + b, (1)

where L denotes the averaged training loss that is defined over a total of N training instances as
L = 1

N ∑
N
i=1Li, and b ≥ 0 is a hyper-parameter called “the flood level” to control the training loss.

Designed in such a way, whenever L is below b, the gradients will be negated to increase it, so that L
will stay around b and avoid being (near-)zero. Ishida et al. (2020) suggests to implement Flooding
by minimizing LFlooding with mini-batch SGD, where L is estimated over a mini-batch of instances
rather than the full data. Although they have pointed out that the objective being optimized by SGD
is an upper bound of its desired one, we notice that this gap increases as the batch size decreases,
which makes the discrepancy between the objective and implementation of Flooding more serious.

By investigating how machine learning models learned with Flooding behave on the training instances
and generalize on the testing ones, we uncover the instability issue of Flooding, where it can lead

1

Published as a conference paper at ICLR 2022

to different solutions, and the solutions are inconsistent in their generalization abilities and their
behaviors over individuals. Further, we point out that the reason for the instability issue is that
Flooding can only guarantee “global convergence”— Flooding encourages the averaged training loss
to be sufficiently close to b, while having no requirement on the individual losses.

Both the discrepancy and instability issues can be attributed to the design of its loss function, which
motivates us to propose a new regularizer in this paper, called individual Flood (denoted as iFlood).
The proposed regularizer iFlood defines a loss function LiFlood as:

LiFlood =
1

N

N

∑
i=1
(∣Li − b∣ + b), (2)

where b ≥ 0 is the flood level, N is the size of training sample and Li is the loss function defined upon
the i-th instance. When b = 0, L, LFlooding, and LiFlood are equivalent. With b > 0, iFlood encourages
the model to better fit the under-fitted instances while suppressing the confidence of over-fitted ones.

Although the modification is simple, the proposed new regularizer has the following merits: (1) The
design of the loss function of iFlood ensures that it can be optimized by SGD without discrepancy
between its objective and implementation. (2) Compared with Flooding, the models learned with
iFlood can achieve “local convergence”, that is, the individual losses (i.e., Lis) rather than the averaged
loss (i.e., L) are encouraged to be sufficiently close to the specified level b, which ensures that the
learned models behave consistently over individual instances and produce stable generalization
performance. (3) Meanwhile, we theoretically show that the design of iFlood can be intrinsically
connected with removing the noise or bias in the training data, making iFlood suitable for a variety of
applications to improve the generalization abilities. (4) Moreover, we theoretically compare iFlood
with some related works (Szegedy et al., 2016; Pereyra et al., 2017), showing that iFlood discounts
the over-confident predictions with less inductive bias.

We conduct extensive experiments on both image classification and language understanding tasks
to compare the performance improvements gained by different regularizers, demonstrating the
effectiveness of the proposed iFlood. Further, we evaluate the stability1 of iFlood from several
measurements, such as total variation distance and gradient norm. All the experimental results
show that, with the “local convergence” suggested by iFlood, the learned models stably converge to
solutions with better generalization ability.

2 PRELIMINARY

For ease of discussion, we introduce some notations at first. Without loss of generality, we consider
a typical classification problem: Given a training dataset D = {(xi, yi)∣x ∈ X , y ∈ Y, i = 1, . . . ,N}
where X stands for the instance domain, Y stands for the set of labels, and each instance (xi, yi)
is independently drawn from an underlying joint distribution Pr(X,Y), we aim to learn a function
f ∶ X → ∆(Y) (i.e., a mapping from the instance domain to the space of probability distributions
over the labels) to minimize the generalization error E(x,y)∼Pr(X,Y)[1y≠argmax

y′
f(x)y′], where f(x)y′

denotes the probability of taking the class y′.

The function f is often learned by minimizing certain loss function l(y, f(x)) (e.g., Cross-Entropy
loss). For simplicity, we denote the loss over the i-th training instance as Li and that over the whole
training dataset as L = 1

N ∑
N
i=1Li. Note that, besides the classification problem, the regularization

methods discussed in this paper are applicable to other machine learning tasks, e.g., regression.

3 INDIVIDUAL FLOOD (IFLOOD)

In this section, we first compare iFlood with Flooding from various aspects to demonstrate the
advantages of the proposed new regularizer iFlood. Then we provide theoretical analysis about
the effect of iFlood for removing the noise or bias in the training data, and connect iFlood with
existing regularization methods, such as Label Smoothing (Szegedy et al., 2016) and Confident
Penalty (Pereyra et al., 2017).

1In this paper, “stability” has a different meaning from that used in learning theory (Mohri et al., 2018).

2

Published as a conference paper at ICLR 2022

3.1 LOCAL CONVERGENCE

Let us revisit how Flooding works first. By applying Flooding, once the original averaged loss L has
approached the flood level, it goes below and above b repeatedly until its convergence. Such process
is called “flooding” in Ishida et al. (2020). The loss function of Flooding encourages the averaged loss
L to approach to b, thus Flooding pursues the “global convergence” (i.e., ∣L − b∣ ≈ 0). To learn the
model parameters θ by minimizing LFlooding defined in Eq.(1), the gradient of LFlooding w.r.t. θ is in
the same direction as that of L when L ≥ b, and in the opposite direction when L < b. To be specific,

∇θLFlooding =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇θL =
1

N

N

∑
i=1
∇θLi, if L ≥ b,

−∇θL =
1

N

N

∑
i=1
(−1) ⋅ ∇θLi, if L < b.

(3)

From Eq.(3), we know that whether the original gradient of an instance (i.e., ∇θLi) should be
negated is determined by the fact that whether the averaged loss L is below or above the flood level b.
However, in most practical cases and meanwhile the experiments of Flooding, deep neural networks
are trained with mini-batch SGD where L is estimated from a sampled mini-batch of instances at
each step. Thus, whether the gradients should be negated is determined by the averaged training loss
estimated over a mini-batch of instances rather than the full data. In this way, the objective being
actually optimized by mini-batch SGD is an upper bound of LFlooding, as pointed out by Ishida et al.
(2020). This leads to a discrepancy between the loss function of Flooding and its implementation,
which introduces randomness to the choice of whether to negate the gradients and makes the flooding
process become random. In this study, we further notice that, due to the property of absolute operator,
such discrepancy increases along with the decreasing of batch size.

For iFlood, according to Eq.(2), in a training dataset consisting of N instances, the gradient of
LiFlood w.r.t. the model parameters θ can be given as ∇θLiFlood =

1
N ∑

N
i=1∇θ ∣Li − b∣. Therefore,

for each individual, it is guaranteed to contribute 1
N
∇θLi to the aggregated gradient, when Li ≥ b;

or to contribute the negation of that, when Li < b. By applying iFlood, the model parameters are
encouraged to walk along the contour of L = b like what Flooding does, but, in contrast to Flooding,
this is achieved by demanding each individual loss Li,∀i ∈ {1, . . . ,N} to be close to b. Intuitively
speaking, iFlood encourages the model to better fit the under-fitted instances while suppressing the
confidence of over-fitted ones, according to the given flood level b. In a word, iFlood pursues the
“local convergence” (i.e., ∣Li − b∣ ≈ 0,∀i ∈ {1, . . . ,N}). We will analyze the advantage of “local
convergence” over “global convergence” from the aspect of stability in Section 3.2. For now, the
additive property of Eq.(2) ensures the gradients calculated in each SGD an unbiased estimation,
which seemingly eliminates the discrepancy between the design and implementation.

Note that when optimized by SGD with batch size of 1, Flooding coincides with iFlood. However,
it is unreasonable to set batch size to 1 for training machine learning models in most cases, which
is empirically confirmed in Appendix C. For practical batch sizes, the designs of the loss function
of iFlood and Flooding are different, as aforementioned, and we will empirically demonstrate those
differences in Section 4.

3.2 STABILITY

To better understand the differences between Flooding and iFlood, we plot the distributions of
individual training losses with Flooding and iFlood in Figure 1, which is produced by training a
ResNet18 model on CIFAR-10. Compared with the distribution corresponding to Flooding (see
Figure 1a), we can observe that the distribution corresponding to iFlood (i.e., Figure 1b) is much more
concentrated, and almost all the instances can be regularized by iFlood to achieve “local convergence”
(i.e., ∣Li − b∣ ≈ 0,∀i ∈ {1, . . . ,N}).

Figure 1a confirms that the models learned with Flooding can achieve “global convergence” (i.e.,
∣L − b∣ ≈ 0). The inconsistent in behaviors over individuals achieved by Flooding can causes the
instability of Flooding, namely that Flooding leads to various solutions with different generalization
abilities. Let’s consider the following cases: One learned model achieves Li = b for every training
instance, and the other learned model achieves Li = 0 on half of the whole training instances while

3

Published as a conference paper at ICLR 2022

0.0 0.1 0.2 0.30.00

0.02

0.04

Pr
ob

ab
ili

ty b=0.03

0.00 0.02 0.04 0.060.0

0.1

Pr
ob

ab
ili

ty b=0.03

(a) Individual losses of Flooding
0.0 0.1 0.2 0.30.00

0.02

0.04

Pr
ob

ab
ili

ty b=0.03

0.00 0.02 0.04 0.060.0

0.1

Pr
ob

ab
ili

ty b=0.03

(b) Individual losses of iFlood
Figure 1: The distributions of individual losses of Flooding (a) and iFlood (b). The read dotted lines
represent the flood level b = 0.03. Best viewed with color.

Li = 2b on the rest ones. Obviously, these two learned models have achieved the same “global
convergence” that L − b = 0, but they behave inconsistently over the (training) individuals. Moreover,
when b is taken to be a level where Li = b corresponds to being correctly classified and Li = 2b
corresponds to being mis-classified, the generalization ability of the former surpasses that of the latter
in most cases. The analysis of these cases sheds light on the reason for Flooding’s instability. Albeit
the learning dynamics would not lead to these extreme cases in practice, we experimentally observe
that, over a considerable portion of instances, the individual losses produced by a model learned with
Flooding are far away from b, as Figure 1a shows.

To address this issue, iFlood is introduced to achieve “local convergence”, which ensures the learned
models behave more consistently than those models learned with Flooding. In this way, iFlood can
achieve a stable boost of generalization ability. We will provide quantitative analysis to demonstrate
the advantages of iFlood on stability in Section 4.

3.3 THEORETICAL ANALYSIS

It has been noticed by Ishida et al. (2020) that a larger b is in favor, when the training data contain
noisy labels. Intuitively, b controls how confident the model should trust the training data. Inspired by
this observation, it is worth discussing (1) what is the meaning of b in iFlood; (2) when and why do
the models learned with iFlood benefit from the regularization. In the rest of this section, we look into
these questions under two settings—noisy labels and biased sample, which are commonly considered
in both academia and industry.

3.3.1 NOISY LABELS

For many real-world applications, the observed labels are polluted due to certain reasons (Angluin &
Laird, 1988; Patrini et al., 2016; Thulasidasan et al., 2019), e.g., the mistakes made by annotators,
the perturbation of some attackers, etc. Here, we consider a widely adopted setting where a noisy
training sample Dnoisy = {(xi, zi)∣xi ∈ X , zi ∈ Y, i = 1, . . . ,N} is given, with each (xi, zi) being
independently drawn from a distribution Pr(X,Z) in the following process: first, an instance
(x, y) is drawn from the underlying joint distribution Pr(X,Y); then, y is perturbed to be z,
taking an incorrect label y′ with probability α,0 ≤ α ≤ 1, or keeping the correct label y with
probability (1 − α), where the incorrect label is drawn from a uniform distribution over Y/{y}.
This generation process implies Z ⊥⊥X ∣Y and a conditional probability distribution Pr(Z ∣Y) with
∀y ∈ Y,Pr(Z = y∣y) = 1 − α and ∀y′ ≠ y,Pr(Z = y′∣y) = α

∣Y ∣−1 .

Given Dnoisy, suppose the data generation process is known, we can learn a model parameterized with
θ by minimizing its negative log-likelihood:

− logPr(z1∶N ∣x1∶N , θ) = − log
N

∏
i=1

Pr(zi∣xi, θ) = −
N

∑
i=1

log∑
y∈Y

Pr(yi, zi∣xi, θ)

= −
N

∑
i=1

log∑
y∈Y

Pr(zi∣yi)Pr(yi∣xi, θ) = −
N

∑
i=1

log{(1 − α)Pr(Y = zi∣xi, θ) +
α

∣Y ∣ − 1
∑
y≠zi

Pr(y∣xi, θ)}

= −
N

∑
i=1

log{(1 − α)Pr(Y = zi∣xi, θ) +
α

∣Y ∣ − 1
(1 −Pr(Y = zi∣xi, θ))},

(4)
where we denote the cardinality of Y as ∣Y ∣. However, when we have no idea about the underlying
data generation process, the RHS of Eq.(4) is unknown to us.

4

Published as a conference paper at ICLR 2022

If Dnoisy is directly adopted as training data without denoising, θ will be learned by minimizing the
Cross-Entropy loss: L = −1

N ∑
N
i=1∑y∈Y 1zi=y logPr(Y = y∣xi, θ). In this case, the learned model

tends to generalize poorly, as it has been misled by the noisy sample and learns a distribution different
from the actual joint distribution Pr(X,Y).

To explore the usage of iFlood in denoising, we first analyze Eq.(4) and present the following
proposition about it.
Proposition 1. The negative log-likelihood (i.e., Eq.(4)) is upper bounded by:

N log(∣Y ∣ − 1) −
N

∑
i=1
{(1 − α) logPr(Y = zi∣xi, θ) + α log(1 −Pr(Y = zi∣xi, θ))}, (5)

which is minimized when Pr(Y = zi∣xi, θ) = 1 − α, i = 1, . . . ,N .

Proof. Since − log(⋅) is monotonically decreasing and ∣Y ∣ ≥ 2, Eq.(4) is upper bounded by:
−∑

N
i=1 log{

1−α
∣Y ∣−1 Pr(Y = zi∣xi, θ) +

α
∣Y ∣−1(1 − Pr(Y = zi∣xi, θ))} within its domain. This func-

tion is further upper bounded by Eq.(5) with Jensen’s inequality. By checking the derivatives of
Eq.(5), we know that it is minimized when Pr(Y = zi∣xi, θ) = 1 − α, i = 1, . . . ,N .

When we regularize the Cross-Entropy loss defined over Dnoisy with iFlood, it becomes:

LiFlood =
1

N

N

∑
i=1
{∣ − ∑

y∈Y
1zi=y logPr(Y = y∣xi, θ) − b∣ + b}. (6)

Once we specify b = − log(1 − α), LiFlood encourages every Pr(Y = zi∣xi, θ), i = 1, . . . ,N to take
exp(−b) = 1 − α, which minimizes an upper bound (Eq.(5)) of the actual negative log-likelihood
(Eq.(4)). In this way, without knowing how the observed sample becomes noisy beforehand, LiFlood
can still serve as a surrogate function for the unknown negative log-likelihood (Eq.(4)) of interest,
extending the usage of iFlood to denoising.

3.3.2 BIASED SAMPLE

The second setting to explore iFlood is when the collected training data does not follow the probability
distribution of interest. Such a data sample is often named biased sample, which is ubiquitously
observed in real-world applications (Abdollahpouri et al., 2019; Kowald et al., 2020). For instance, in
recommendation systems, there exists popularity bias (Abdollahpouri et al., 2019; Kowald et al., 2020),
and in face recognition and object recognition, data samples are biased regarding the backgrounds
or the illumination conditions (Kortylewski et al., 2019; Barbu et al., 2019). Again, we represent
an observed label by Z and denote such a biased sample as Dbiased = {(xi, zi)∣xi ∈ X , zi ∈ Y, i =
1, . . . ,N}. The biased sample setting can be formally given as: The observed distribution of input,
denoted as Pr′(X), is different from the ground-truth one Pr(X), which leads to the joint distribution
Pr(X,Z) ≠ Pr(X,Y) and thus model tends to learn a biased conditional distribution Pr(Z ∣X)
rather than the underlying one Pr(Y ∣X).

Models learned from a biased sample cannot generalize well due to the distribution drift. Luckily,
we can apply iFlood to debiase. In most cases, although we have no idea about the analytic form of
Pr(Z ∣X,Y), it is reasonable to assume and validate some properties about Z ∣X that Pr(Z ∣X,Y)
implies. With such properties, iFlood is able to recover the unbiased label. Formally, let’s assume that
according to distributions Pr(Z ∣X,Y) and Pr(X,Y) which generate Dbiased, the difference between
observed labels Z ∣X and underlying labels Y ∣X follows some specific distribution:

l(Z ∣X,Y ∣X) ∼ Lap(⋅∣µ,λ), (7)
where l denotes the adopted loss function, and Lap(⋅∣µ,λ) denotes the Laplace distribution with
parameters µ ≥ 0, λ > 0. With such knowledge, the negative log-likelihood of observing the biased
sample Dnoisy is as follows:

−
1

N

N

∑
i=1

logPr[l(zi, f(xi))] = −
1

N

N

∑
i=1

log{
1

2λ
e
∣− l(zi,f(xi))−µ

λ
∣
}∝

1

N

N

∑
i=1
∣l(zi, f(xi)) − µ∣. (8)

This happens to be in the same form as LiFlood. Thus, learning a model from the biased sample Dbiased
via iFlood with b = µ leads to the same solution as learning from the corresponding unbiased sample.

5

Published as a conference paper at ICLR 2022

3.4 COMPARING IFLOOD WITH OTHER RELATED WORKS

There exist some regularization methods that prevent a model from overfitting by suppressing its
over-confident predictions, such as Label Smoothing (denoted as LS) (Szegedy et al., 2016) and
Confident Penalty (denoted as CP) (Pereyra et al., 2017). Following Meister et al. (2020), these
methods can be summarized as follows:

LLS = L + βDKL(u∥p), LCP = L + βDKL(p∥u), (9)

where β is the regularization strength, DKL(⋅∥⋅) represents the KL divergence, p is the predicted
probability distribution over labels, and u is a prior of the label distribution. From Eq.(9) we can
see that Label Smoothing and Confident Penalty add a regularization term to the loss function L to
encourage the distribution of predicted probability to be close to the prior. Without additional domain
knowledge, the uniform distribution is often adopted as the prior, which is expected to prevent the
peaked distributions (i.e., the over-confident predictions) and lead to a better generalization.

Compared with Label Smoothing and Confident Penalty, iFlood performs similarly but has less
assumption on the prior of the label distribution. iFlood prevents the model from becoming over-
confident on the observed training sample via discounting its prediction probability over the observed
label, where the extent of discount is controlled by the flood level b. On the other hand, iFlood does
not make any assumption on how to distribute the reserved confidence.

Formally, we compare iFlood with Label Smoothing under the setting where Cross-Entropy loss is
considered and a uniform prior is adopted by Label Smoothing. In this case, the predicted probability
distribution p (over labels) that minimizes the objective of Label Smoothing (Eq.(9)) is exactly
one of the distributions that minimize the loss function of iFlood. As the regularization is posed at
instance-level in both methods, we show this relationship by checking the minimizer of the objective
of Label Smoothing over any (x, y) ∈ D:

l(y, f(x)) + βDKL(u∥f(x)) = l(y, p) + βDKL(u∥p) = − log(py) −
β

∣Y ∣
log(py) −

β

∣Y ∣
∑
y′≠y

log(py′)

(10)

≥ −[
∣Y ∣ + β

∣Y ∣
log(py) +

(∣Y ∣ − 1)β

∣Y ∣
log(

1 − py

∣Y ∣ − 1
)] = −[

∣Y ∣ + β

∣Y ∣
log(py) +

(∣Y ∣ − 1)β

∣Y ∣
log(1 − py) + c],

(11)

where p denotes the probability distribution over labels predicted by f , c is a constant, and ∣Y ∣ denotes
the cardinality of Y . On one hand, Eq.(11) is a tight lower bound of Eq.(10), where equality is
established when p satisfies that ∀y′ ≠ y, py′ =

1−py

∣Y ∣−1 . On another hand, derivative of Eq.(11) shows

that it (as well as Eq.(10)) can be minimized at py =
∣Y ∣+β
∣Y ∣(1+β) . Thus, the objective of Label Smoothing

encourages the learned function f to predict a distribution p that satisfies both of the above conditions.
Meanwhile, when we specify iFlood with b = log(∣Y ∣(1+β)∣Y ∣+β), according to Eq.(2), it encourages the

learned function f to predict a distribution p that satisfies py = exp(−b) =
∣Y ∣+β
∣Y ∣(1+β) . Based on the

above analysis, we see that iFlood discounts the prediction confidence over the observed label to the
same level as that of Label Smoothing, without encouraging the reserved confidence to be equally
distributed to other labels. When it is hard to obtain some prior knowledge about the label distribution,
iFlood can provide a less-biased and more flexible regularization, compared with Label Smoothing.
Similar analysis and conclusion can be applied to Confident Penalty.

4 EXPERIMENTS

In this section, we conduct a series of experiments to demonstrate the effectiveness of iFlood, with
the aim to answer the following questions: Q1: Does iFlood provide larger boost of generalization
ability, compared with existing regularization methods on benchmark datasets? Q2: Compared to
Flooding, can iFlood stably converge to solutions with better generalization ability? Q3: Can iFlood
address the noisy label issue well in practice?

6

Published as a conference paper at ICLR 2022

Table 1: Accuracy (%) comparison on benchmark datasets.
Regularizer CIFAR-10 CIFAR-100 SVHN ImageNet SST-2 QQP QNLI

Unregularized 94.59 78.24 96.94 77.24 91.88 90.40 90.79
Label Smoothing 94.78 77.32 97.06 77.44 91.63 91.06 91.35
Confident Penalty 94.61 78.28 97.01 77.28 91.88 91.10 91.53
Flooding 94.58 78.63 96.98 77.25 91.86 91.14 91.43
iFlood (ours) 94.95 79.06 97.16 77.58 92.09 91.22 91.64

4.1 SETTINGS

Datasets. We consider both image classification and language understanding tasks. For image classi-
fication, we use CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and
ImageNet (Russakovsky et al., 2015). For language understanding, we adopt the General Language
Understanding Evaluation (GLUE) benchmark (Wang et al., 2019), and report the experimental
results on SST-2, QQP, and QNLI. The details of these datasets and more experimental results on
GLUE benchmark can be found in Appendix A and D.2 respectively.

Baselines. We compare iFlood with the following baselines: (1) Flooding (Ishida et al., 2020); (2) La-
bel Smoothing (Szegedy et al., 2016); (3) Confident Penalty (Pereyra et al., 2017); (4) Unregularized,
denotes that the models are learned without Flooding, iFlood, Label Smoothing and Confident Penalty.
Data augmentation (e.g., random crop (Krizhevsky et al., 2012) and horizontal flip (Simonyan &
Zisserman, 2015)) have been necessary plug-ins of the learning procedure on image classification
datasets, we do not remove them in our experiments. As the basic regularizers, L2-regularization
is used in both image classification and language understanding tasks, and Dropout is adopted in
language understanding task.

Implementation details. On the image classification datasets, we consider training ResNet18 (He
et al., 2016) for CIFAR-10, CIFAR-100 and SVHN, and training ResNeXt50 (Xie et al., 2017) for
ImageNet, adopting momentum SGD as the learning procedure to be regularized. We train ResNet18
for 300 epochs with 128 as the batch size. The learning rate is initialized as 0.1 and decays (multiplied
by 0.2) at the 80-th, 160-th and 200-th epochs. As for ResNeXt50, we train it for 90 epochs with 256
as the batch size. The learning rate is initialized as 0.1 and decays (multiplied by 0.1) at the 30-th,
and 60-th. On the language understanding datasets, we consider fine-tuning BERT (Devlin et al.,
2019) via Adam (Kingma & Ba, 2015) as the learning procedure to be regularized. We adopt the
pre-trained BERT model provided by huggingface (Wolf et al., 2020) and fine-tune it on the target
datasets. The number of epochs is tuned among {3,4,5}, the batch size is 16, the learning rate is
tuned among {2e− 5, 5e− 5}, and the dropout rate is 0.1. For Flooding and iFlood, the flood level b is
tuned in the range of [0.10,0.50] via grid seach with 0.05 as the step size for ImageNet, and tuned in
the range of [0.01,0.10] via grid search with 0.01 as the step size for other datasets.

Hyper-parameter spaces considered for baseline methods can be found in the Appendix B. All models
are implemented using PyTorch (Paszke et al., 2019) and trained on NVIDIA GeForce GTX 1080
Ti or Tesla V100 GPUs. For fair comparison, we search for the optimal configuration of hyper-
parameters for each method. Then we run each method for 5 times using its optimal configuration
and report the averaged results, reducing the randomness in the comparison.

4.2 IMPROVEMENTS ON GENERALIZATION ABILITY (Q1)

We compare iFlood with the baseline methods on benchmark datasets to demonstrate its effectiveness.
The experimental results are summarized in Table 1. Obviously, with appropriate configurations (i.e.,
the strength of regularization), all these regularization methods can improve the performance of the
learned model compared to unregularized case, on most of the datasets. This phenomenon can be
explained by the fact that, in this experiment, the number of parameters to be estimated is larger
than the size of training sample, which makes regularization indispensable. We can also observe
that, on both the image classification and language understanding datasets, iFlood provides larger
improvements of the performance than those of the baseline methods. This confirms the effectiveness
of iFlood in improving generalization ability of learned models, which is brought by the design
of iFlood, encouraging the learned model to better fit under-fitted instances while suppressing the
confidence on overfitted ones. We also conduct experiments on large-scale dataset Criteo and report
the results in Appendix D.1, which confirms the effectiveness of iFlood.

7

Published as a conference paper at ICLR 2022

Table 2: Comparison of performance variances. The relative changes in terms of “Unregularized”
cases are also reported.

Dataset Regularizer The std. of test acc. max DTV avg DTV

CIFAR-10
Unregularized 0.16% 0.0004 0.0003

Flooding 0.29% (+0.13%) 0.0237 (×59.25) 0.0221 (×73.67)
iFlood 0.19% (+0.03%) 0.0068 (×17.00) 0.0053 (×17.67)

CIFAR-100
Unregularized 0.29% 0.0029 0.0028

Flooding 0.36% (+0.07%) 0.0241 (×8.31) 0.0236 (×8.43)
iFlood 0.22% (-0.07%) 0.0167 (×5.76) 0.0165 (×5.89)

SST-2
Unregularized 0.29% 0.0089 0.0084

Flooding 0.37% (+0.08%) 0.0205 (×2.30) 0.0193 (×2.30)
iFlood 0.21% (-0.08%) 0.0103 (×1.16) 0.0099 (×1.18)

QQP
Unregularized 0.12% 0.0220 0.0173

Flooding 0.14% (+0.02%) 0.0376 (×1.71) 0.0321 (×1.86)
iFlood 0.12% (+0.00%) 0.0223 (×1.01) 0.0175 (×1.01)

It is worth pointing out that, iFlood can work well with some other regularization methods, such as
weight decay. Under the scenario of over-parameterized neural networks, near-zero training loss is
achievable regardless of the regularization constraints posed upon the model parameters. Therefore,
when cooperated with weight decay, iFlood controls the ultimate extent to which such models fit the
training data, while weight decay affects learning dynamics (Golatkar et al., 2019).

4.3 STABILITY OF IFLOOD (Q2)

In Section 3, we provide analysis about the instability of Flooding, which further motivates us to
propose iFlood. In this section, we conduct experiments to show that, compared to Flooding, iFlood
can stably converge to solutions with better generalization ability.

Variances. We use the standard deviation (denoted as “std.”) of test accuracy to measure the
differences of the generalization abilities among the learned models. Beseides, we adopt the total
variation distance (denoted as DTV) to measure the difference between any two learned models, which
can be estimated on the training sample as:

DDTV(f, g) =
1

2N

N

∑
i=1
∑
y∈Y
∣f(xi)y − g(xi)y ∣, (12)

where f and g denote two learned models. We estimate the distance for every pair of the ten
models and report both the maximum and the averaged values of them. The experimental results are
summarized in Table 2.

The results show that the test accuracy of models learned with iFlood vary less than that of models
learned with Flooding, with the largest difference between them could be 0.16%. The less variance in
generalization ability demonstrates the stability of iFlood. Meanwhile, from Table 2 we can observe
that, the variance of iFlood is much smaller than that of Flooding (e.g., nearly 24% - 70% of Flooding
from the aspect of avg DTV). Further, the comparison of total variation distance DTV between
Flooding and iFlood is consistent with the individual losses shown in Figure 1, which supports our
idea: Under the individual-level constraint, iFlood can achieve “local convergence” and converge to
solutions with better generalization ability, in a stabler manner than Flooding.

The norm of gradients. To further compare the stability between Flooding and iFlood, we train a
ResNet18 on CIFAR-10 (Figure 2a) and CIFAR-100 (Figure 2b), and monitor the L1 norm of the
gradients at each epoch. From the figure, we can observe that, during the training course of Flooding,
the norm of gradients is larger than that of iFlood by a noticeable margin, and the gap has not been
filled until the end of training. It implies that even at the end of training, the model parameters learned
with Flooding are changed more significantly than those of iFlood, which could cause the instability
of learned models.

The effect of b. We further study the effect of flood level b via training a ResNet18 on CIFAR-10,
and report the training accuracies of both Flooding and iFlood with varied b in Figure 2c. From the

8

Published as a conference paper at ICLR 2022

50 100 150 200 250 300
Epoch

0

1

2

L 1
 N

or
m

 o
f G

ra
di

en
ts Flooding

iFlood

(a)

50 100 150 200 250 300
Epoch

0

2

4

L 1
 N

or
m

 o
f G

ra
di

en
ts Flooding

iFlood

(b)

0.00 0.20 0.40 0.60
Flood Level b

90%

95%

100%

Tr
ai

ni
ng

 A
cc

ur
ac

y

Flooding
iFlood

(c)
Figure 2: The comparisons between Flooding and iFlood. (a) The L1 norm of gradients on CIFAR-10;
(b) The L1 norm of gradients on CIFAR-100; (c) The training accuracy on CIFAR-10 w.r.t. various
flood level b. Best viewed with color.

figure we can observe that, as the flood level b increases, the training accuracy of Flooding drops
drastically, while that of iFlood stays at the same level until b > 0.60. This result implies that iFlood is
much more robust w.r.t. the hyper-parameter b compared to Flooding. Since Flooding just encourages
the averaged loss to be close enough to b but has no requirement on the individual losses, some
instances stay under-fitted regrading the flood level b. When b is taken to be a relatively large value,
the training instances whose individual losses are larger than b might become under-fitted or even
mis-classified. Such instances might degrade the model’s generalization ability (Belkin et al., 2019).
As iFlood encourages the model to fit every individual instance to the same extent (i.e., ∣Li − b∣ ≈ 0),
it can overcome such under-fitted instance issues via achieving “local convergence”.

4.4 EFFECTIVENESS IN DENOISING (Q3)

In this section, we instantiate the noise label setting to evaluate the effectiveness of iFlood in denoising.
Following the setting discussed in Section. 3.3.1, the polluted version of CIFAR-10 and SST-2 training
datasets are constructed. We train ResNet18 model on the polluted CIFAR-10 dataset and train BERT
model on the polluted SST-2 dataset, with Flooding or iFlood applied as the regularizer for denoising.
More implementation details can be found in the Appendix E.

10% 20% 30% 40%
Noisy Instance Raito

70%

75%

80%

85%

90%

A
cc

ur
ac

y

Unreg.
Flooding
iFlood

(a) On polluted CIFAR-10

10% 20% 30% 40%
Noisy Instance Raito

70%

75%

80%

85%

90%

A
cc

ur
ac

y

Unreg.
Flooding
iFlood

(b) On polluted SST-2
Figure 3: Performance comparison on datasets polluted with noisy labels.

Results are plotted in Figure 3. It can be observed that, on both polluted CIFAR-10 and polluted
SST-2 datasets, models learned with iFlood generalize much better than those with Flooding and those
without any regularization. Further, the advantages of iFlood become more significant as the ratio of
noisy instance α increases. These experimental results confirm our theoretical analysis in Section
3.3.1 that iFlood, as a regularizer, has the capability to denoise data, so that the regularized models
can achieve better generalization performances, even when they are trained on noisy datasets.

5 CONCLUSIONS

In this paper, we uncover the instability issue of a recently proposed regularization method Flooding.
Our analysis on its causes motivates us to propose a new regularizer iFlood, which encourages the
individual losses to approach a specified level. Experimental results on a variety of tasks show that
the models learned with iFlood produce stabler generalization improvement. We also theoretically
show that, the objective of iFlood over a noisy or biased training sample can serve as a surrogate or
even match the maximum likelihood estimator applied to a clean sample, which is also confirmed by
our experimental results. Further, we theoretically compare iFlood with some other regularization
methods and find that iFlood discounts the over-confident predictions with less inductive bias injected.

9

Published as a conference paper at ICLR 2022

REFERENCES

Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher. The unfairness of
popularity bias in recommendation. In the RMSE workshop held in conjunction with the 13th ACM
Conference on Recommender Systems, 2019.

Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning, 2(4):343–370,
1988.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S
Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at
memorization in deep networks. In International Conference on Machine Learning, pp. 233–242,
2017.

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the
limits of object recognition models. In Advances in neural information processing systems, pp.
9453–9463, 2019.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 4171–4186, 2019.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning Representations,
2021.

Aditya Sharad Golatkar, Alessandro Achille, and Stefano Soatto. Time matters in regularizing deep
networks: Weight decay and data augmentation affect early learning dynamics, matter little near
convergence. In Advances in Neural Information Processing Systems, pp. 10678–10688, 2019.

Stephen José Hanson and Lorien Y Pratt. Comparing biases for minimal network construction with
back-propagation. In Advances in neural information processing systems, pp. 177–185, 1989.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Takashi Ishida, Ikko Yamane, Tomoya Sakai, Gang Niu, and Masashi Sugiyama. Do we need
zero training loss after achieving zero training error? In Proceedings of the 37th International
Conference on Machine Learning, 2020.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. In Amir Globerson and Ricardo
Silva (eds.), Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence,
UAI 2018, Monterey, California, USA, August 6-10, 2018, pp. 876–885, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the International Conference on Learning Representations, 2015.

Adam Kortylewski, Bernhard Egger, Andreas Schneider, Thomas Gerig, Andreas Morel-Forster,
and Thomas Vetter. Analyzing and reducing the damage of dataset bias to face recognition with
synthetic data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2019.

Dominik Kowald, Markus Schedl, and Elisabeth Lex. The unfairness of popularity bias in music
recommendation: A reproducibility study. In European Conference on Information Retrieval, pp.
35–42, 2020.

10

Published as a conference paper at ICLR 2022

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Department of Computer Science, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, pp. 1097–1105,
2012.

Clara Meister, Elizabeth Salesky, and Ryan Cotterell. Generalized entropy regularization or: There’s
nothing special about label smoothing. In Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 6870–6886, 2020.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT
press, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, pp. 8024–8035. 2019.

Giorgio Patrini, Frank Nielsen, Richard Nock, and Marcello Carioni. Loss factorization, weakly
supervised learning and label noise robustness. In International conference on machine learning,
pp. 708–717, 2016.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. In 5th International Conference on
Learning Representations, ICLR, Workshop Track Proceedings, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proceedings of the International Conference on Learning Representations, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Sunil Thulasidasan, Tanmoy Bhattacharya, Jeff A. Bilmes, Gopinath Chennupati, and Jamal Mohd-
Yusof. Combating label noise in deep learning using abstention. In Proceedings of the 36th
International Conference on Machine Learning, pp. 6234–6243, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the International Conference on Learning Representations, 2019.

Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P Xing. High-frequency component helps explain
the generalization of convolutional neural networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8684–8694, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, October 2020.

11

Published as a conference paper at ICLR 2022

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1492–1500, 2017.

Taojiannan Yang, Sijie Zhu, and Chen Chen. Gradaug: A new regularization method for deep neural
networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 14207–14218, 2020.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26(2):289–315, 2007.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In Proceedings of the International Conference
on Learning Representations, 2017a.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In Proceedings of the International Conference on Learning Representations,
2017b.

Yaowei Zheng, Richong Zhang, and Yongyi Mao. Regularizing neural networks via adversarial
model perturbation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021.

12

Published as a conference paper at ICLR 2022

A DATASETS

We conside both image classification and language understanding tasks, and adopt 7 benchmark
datasets for evaluation, including CIFAR-102, CIFAR-1003, SVHN4, ImageNet5, SST-26, QQP7 and
QNLI8. The statistics of the datasets are summarized in Table 3.

Table 3: The statistics of benchmark datasets.
Dataset # Train # Test

Image Classification
CIFAR-10 50,000 10,000

CIFAR-100 50,000 10,000
SVHN 73,257 26,032

ImageNet 1,281,167 50,000

Language Understanding
SST-2 67,349 872
QQP 363,846 40,430
QNLI 104,743 5,463

B DETAILS OF HYPERPARAMETER OPTIMIZATION

We randomly split the training data into training and validation sets with the proportion of 9:1, and
apply grid search on the validation dataset for hyperparameter optimization (HPO). We adopt the
optimal configuration provided by HPO to train and evaluate each method 5 times, alleviating the
impact of randomness.

Specifically, for Label Smoothing (Szegedy et al., 2016), we tune the smoothing parameter value
ϵ among {0.05,0.1,0.2}, and adopt a uniform distribution as the prior of label distribution for
interpolation. For Confident Penalty (Pereyra et al., 2017), following the original paper, the strength
of the confidence penalty β is tuned among {0.1,0.5,1.0,2.0}.

C SGD WITH VARIOUS BATCH SIZE

When optimized by SGD with batch size of 1, Flooding coincides with iFlood. However, it is
unreasonable to set batch size to 1 for training practical machine learning models, according to the
literature and our experimental results shown in Figure 4.

0 50 100 150 200
Epoch

1

2

3

Te
st

 L
os

s

0 50 100 150 200
Epoch

0.2

0.4

0.6

0.8

Te
st

 E
rr

or
 R

at
e

batch size = 1
batch size = 8
batch size = 16
batch size = 32
batch size = 64
batch size = 128

Figure 4: ResNet18 with Flooding on CIFAR-10.

As mentioned in (Ishida et al., 2020), the objective being optimized by SGD is an upper bound of
its desired objective, where we notice that the gap between these two objectives increases w.r.t. the

2https://www.cs.toronto.edu/ kriz/cifar.html
3https://www.cs.toronto.edu/ kriz/cifar.html
4http://ufldl.stanford.edu/housenumbers/
5https://image-net.org/challenges/LSVRC/2012/
6https://nlp.stanford.edu/sentiment/index.html
7https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
8https://rajpurkar.github.io/SQuAD-explorer/

13

Published as a conference paper at ICLR 2022

decreasing of batch size. As for the practical batch sizes, the design of the loss function of iFlood and
Flooding are different, and we have shown iFlood outperforms Flooding in Section 4.2.

D EXPERIMENTS ON LARGE-SCALE DATASET AND GLUE BENCHMARK

D.1 LARGE-SCALE DATASET CRITEO

To demonstrate the effectiveness of the proposed iFlood, we train an MLP for click-through rate
prediction on Criteo, a real-world advertisement dataset including around 45 million instances. The
AUC of “Unregurized” v.s. Flooding v.s. iFlood are 78.08% v.s. 78.41% v.s. 79.14%. According to
literature, a 0.001-level improvement in offline AUC evaluation makes a significant difference. Thus
these results confirm the effectiveness of iFlood on large-scale real-world datasets.

D.2 GLUE BENCHMARK

Table 4: Accuracy (%) comparison on GLUE benchmark.
Dataset Metric Unregularized Label Smoothing Confident Penalty Flooding iFlood

CoLA Matthews Corr. 56.82 56.72 56.85 56.53 57.87
SST-2 Accuracy 91.88 91.63 91.88 91.86 92.09
MRPC Accuracy 84.46 84.36 84.90 83.64 85.25
STS-B Pearson Corr. 89.00 - - 89.37 89.46
QQP Accuracy 90.40 91.06 91.10 91.14 91.22
MNLI Accuracy 83.22 83.43 83.12 83.22 83.22
QNLI Accuracy 90.79 91.35 91.53 91.43 91.64
RTE Accuracy 65.49 66.28 66.50 65.05 67.29
WNLI Accuracy 56.34 56.34 56.34 56.34 56.34

The experimental results on GLUE benchmark are shown in Table 49, from which we can observe
that iFlood outperforms other baseline methods by a noticeable margin. These experimental results
are consistency with those reported in Table 1, which confirm the effectiveness of iFlood in improving
generalization ability of learned models.

E DATASETS CONSTRUCTION IN NOISY LABEL

Following the setting discussed in noisy label (Section 3.3.1), the polluted version of CIFAR-10 and
SST-2 datasets are constructed as follow: We randomly choose a proportion of the original training
instances according to α(0 < α < 1), and then pollute the label of each chosen instance by uniformly
picking one from its corresponding incorrect classes. We enumerated the noise instance ratio α with
0.1, 0.2, 0.3 and 0.4. Note that the test instances are kept clean to reflect the real-world scenarios. We
search for the optimal flood level b in the range of [0.10,0.50] via grid search with 0.05 as the step
size for both Flooding and iFlood. The experimental results can be found in Section 4.4.

F ADDITIONAL EXPERIMENTS

F.1 LOW-FREQUENCY COMPONENT V.S. HIGH-FREQUENCY COMPONENT

Inspired by previous study (Wang et al., 2020), we conduct experiments to show how model learned
with different regularizers reacts to different levels of details of the data (e.g., the low-frequency
component and high-frequency component of images). To be specific, for each instance in the training
data, we decompose the data into low-frequency component and high-frequency component w.r.t.
different radius thresholds r via applying Fourier transform and inverse Fourier transform. Then
we train a ResNet-18 on CIFAR-10 using the raw training data, and evaluate the model on both

9Label Smoothing and Confident Penalty are not suitable to be adopted on STS-B, since the output dimension
is 1.

14

Published as a conference paper at ICLR 2022

low-frequency component and high-frequency component. More details can be referred to Section
3.1 in Wang et al. (2020).

0 50 100 150 200 250 300
Epoch

20%

40%

60%

80%

100%

A
cc

ur
ac

y

Vanilla

0 50 100 150 200 250 300
Epoch

20%

40%

60%

80%

100%
Flooding

0 50 100 150 200 250 300
Epoch

20%

40%

60%

80%

100%
iFlood

train r=4 low r=4 high r=8 low r=8 high r=12 low r=12 high r=16 low r=16 high

Figure 5: How models learn with low-frequency component and high-frequency component.

The experimental results are illustrated in Figure 5, where r = 4/8/12/16 low denotes the low-
frequency component and r = 4/8/12/16 high denotes the high-frequency component. From these
experimental results we can conclude that model performs better on low-frequency component than
high-frequency component when r = 8/12/16, but worse when r = 4, which are consistency with the
results in Wang et al. (2020) (note that BatchNorm is adopted). Compared to Flooding and Vanilla, we
can observe that model learned with iFlood catches more low-frequency component (e.g., r = 4/8 low)
and less high-frequency component (e.g., r = 8/16 high), which confirms the effectiveness of iFlood
in improving the generalization ability of model since low-frequency component is much more
generalizable than high-frequency component (Wang et al., 2020).

F.2 THE NORM OF GRADIENTS

We train a ResNet18 on CIFAR-10 and CIFAR-100, and monitor the L1 norm of the gradients at
each epoch. The experimental results shown in Figure 6a and 6b confirm that: (1) The design of the
loss function of Flooding leads to the instability issue, which is supported by the phenomenon that
the norm of gradients is larger than other methods by a noticeable margin; (2) The design of the loss
function of iFlood brings the merit of significantly reducing the gap of the norm of gradients between
Flooding and other methods.

50 100 150 200 250 300
Epoch

0

1

2

L 1
 N

or
m

 o
f G

ra
di

en
ts Unreg.

Flooding
iFlood
LS
CP

(a)

50 100 150 200 250 300
Epoch

0

2

4

L 1
 N

or
m

 o
f G

ra
di

en
ts Unreg.

Flooding
iFlood
LS
CP

(b)

10% 20% 30% 40%
Noisy Instance Raito α

70%

75%

80%

85%

90%

A
cc

ur
ac

y Unreg.
Flooding
iFlood
LS
CP

(c)
Figure 6: The comparison between iFlood and baselines. (a) The L1 norm of gradients on CIFAR-10;
(b) The L1 norm of gradients on CIFAR-100; (c) Performance comparison on polluted CIFAR-10.

F.3 EFFECTIVENESS IN DENOISING

We train a ResNet-18 on polluted CIFAR-10 to evaluate the effectiveness of iFlood in denoising. The
generation process of polluted CIFAR-10 can be referred to Appendix E, and the experimental results
are shown in Figure 6c. From the figure we can observe that, models learned with iFlood outperform
those with other regularizers by a noticeable margin, and the advantages of iFlood become more
significant as the ratio of noisy instance α increases. These results confirm the effectiveness of iFlood
in denoising.

15

Published as a conference paper at ICLR 2022

F.4 CONFIDENCE DISTRIBUTION

To further confirm that “iFlood encourages the model to better fit the under-fitted instances while
suppressing the confidence of over-fitted ones“ from the perspective of model confidence, we
demonstrate the distribution of model confidence in Figure 7. We adopt the same experimental
settings as those used in Figure 1: a ResNet-18 is trained on CIFAR-10, and the flooding level b is set
to 0.03 for both Flooding and iFlood. From the figure we can observe that, compared with Flooding,
iFlood encourages the model to continue to fit the under-fitted instances w.r.t. b, (i.e., the instance
with confidence less than e−b ≈ 0.97), while suppressing the over-fitted ones (i.e., the instance with
confidence large than e−b ≈ 0.97). These results are consistent with those in Figure 1.

0.75 0.80 0.85 0.90 0.95 1.00
Confidence

0.00

0.01

0.02

Pr
ob
ab
ili
ty

Flooding

0.90 0.92 0.94 0.96 0.98 1.00
Confidence

0.0

0.1

Pr
ob
ab
ili
ty

iFlood

Figure 7: The distributions of model confidence.

16

	Introduction
	Preliminary
	Individual Flood (iFlood)
	Local Convergence
	Stability
	Theoretical Analysis
	Noisy Labels
	Biased Sample

	Comparing iFlood with Other Related Works

	Experiments
	Settings
	Improvements on Generalization Ability (Q1)
	Stability of iFlood (Q2)
	Effectiveness in Denoising (Q3)

	Conclusions
	Datasets
	Details of Hyperparameter Optimization
	SGD with Various Batch Size
	Experiments on Large-scale Dataset and GLUE Benchmark
	Large-scale Dataset Criteo
	GLUE benchmark

	Datasets Construction in Noisy Label
	Additional Experiments
	Low-frequency Component v.s. High-frequency Component
	The norm of gradients
	Effectiveness in denoising
	Confidence Distribution

