
Under review as submission to TMLR

Challenges in Non-Polymeric Crystal Structure Prediction:
Why a Geometric, Permutation-Invariant Loss is Needed

Anonymous authors
Paper under double-blind review

Abstract

Crystalline structure prediction is an essential prerequisite for designing materials with
targeted properties. Yet, it is still an open challenge in materials design and drug discovery.
Despite recent advances in computational materials science, accurately predicting three-
dimensional non-polymeric crystal structures remains elusive. In this work, we focus on the
molecular assembly problem, where a set S of identical rigid molecules is packed to form a
crystalline structure. Such a simplified formulation provides a useful approximation to the
actual problem. However, while recent state-of-the-art methods have increasingly adopted
sophisticated techniques, the underlying learning objective remains ill-posed. We propose
a better formulation that introduces a loss function capturing key geometric molecular
properties while ensuring permutation invariance over S. Remarkably, we demonstrate that
within this framework, a simple regression model already outperforms prior approaches,
including flow matching techniques, on the COD-Cluster17 benchmark, a curated non-
polymeric subset of the Crystallography Open Database (COD). We release an anonymous
version of the code available at https://anonymous.4open.science/r/SinkFast-CD4C/.

1 Introduction

Generative modeling and deep learning have enabled rapid progress in the understanding and design of
materials, molecules, and drugs. On the one hand, for material property prediction, advances in graph neural
networks and transformers have significantly improved the understanding of molecular structures (Joshi et al.,
2023; Lin et al., 2023; Choudhary & DeCost, 2021), linking their three-dimensional (3D) geometry to physical
and chemical properties. Particular attention has been paid to SE(3)-equivariant representations, which
present higher expressivity by preserving geometric symmetries (Schütt et al., 2021). These methods have
been adapted to crystalline structures, with their inherent challenges of infinite periodicity and rich symmetry
patterns (Yan et al., 2024a). Yan et al. (2022; 2024a); Ito et al. (2025) yield state-of-the-art performance in
property prediction of crystalline structures thanks to physically grounded methods, reflecting the need to
integrate physics knowledge in models. On the other hand, for material design, generative models such as
diffusion models (Song et al., 2021) and flow matching methods (Liu et al., 2023) have greatly enhanced the
capacity to generate valid and diverse molecular and material structures (Watson et al., 2023). This work
aims to combine these two aspects for the task of molecular assembly prediction, where a finite set of identical
rigid molecules is packed into a crystalline structure.

A fundamental step in designing a material with specific properties is to know its crystallization pattern. As
represented in Figure 1, a crystal is conventionally described by a unit cell, the smallest volume that contains
all the structural and symmetry information necessary to generate the whole crystal by translation. This
three-dimensional infinitely periodic shape largely determines the physical and chemical properties of the
resulting material. This shape can be predicted either by regression (Liang et al., 2020; Cao et al., 2024) or
by flow matching/diffusion methods that allow for probabilistic answers (Merchant et al., 2023; Xie et al.,
2022; Luo et al., 2025; Pakornchote et al., 2024; Jiao et al., 2023).

Most of the previous methods model atoms in the unit cell individually. While such an approach works well
(Miller et al., 2024) for simple crystals of atomic point clouds from the Materials Project (Jain et al., 2013),

1

https://anonymous.4open.science/r/SinkFast-CD4C/

Under review as submission to TMLR

the performance degrades on more complex molecular materials with symmetries other than translations.
These contain internal point-group symmetries within the unit cell. An asymmetric unit (ASU) is defined as
an elementary pattern of the unit cell, irreducible under the symmetry group transformations. A unit cell
can be composed of multiple ASUs and an example is shown in Figure 1A. As this basic structure maintains
a fixed internal structure, generating the crystal by directly predicting the ASU position, orientation, and
symmetry operations in the world frame significantly reduces the dimensionality of the task, compared to
moving each atom individually. In this setting, the goal of the molecular assembly prediction problem can be
formulated as follows: given an elementary structure – an ASU –, predict its local crystalline structure, or in
other words, how it packs in space.

Contributions In this work we show the need of integration of domain-specific physics knowledge in
the training scheme of models and the challenges that constitute the task of material generation. Our
contributions can be summarised as follows:

1. Physics grounded loss. We show that a domain-specific rigid-body, model agnostic loss, grounded
in physical principles, leads to improved prediction of crystalline structures.

2. Permutation-invariant loss. We propose an effective differentiable soft matching objective that is
invariant to global geometric transformations and to the order permutation of repeated molecular
units.

3. Remaining challenges. While the proposed domain-driven learning objective enables us to
outperform prior approaches with a simple regression model, we also witness the challenges that
remain to be tackled to reach real-world applicability.

A B C

Figure 1: A crystalline material at three different scales. From left to right: (A) The asymmetric subunit
(ASU). (B) The unit cell with mirror images of the ASU. (C) The unit cell is repeated periodically in all
three directions. Illustrations correspond to the COD-4316210 crystal structure from Crystallographic Open
Database (Gražulis et al., 2009).

2 Related Works

Datasets. The fast-moving field of materials science has seen significant advances in recent years, largely
driven by the release of large-scale open-source datasets. Many of the works discussed here rely on the QM9
database (Ramakrishnan et al., 2014), the Materials Project (Jain et al., 2013) and JARVIS (Choudhary
et al., 2020). While these datasets contain only polymeric and inorganic crystals, the Crystallography Open
Database (Gražulis et al., 2009) is the main open-source dataset for experimentally determined non-polymeric
organic crystals, composed of 507k structures. OMC25 (Gharakhanyan et al., 2025), an even larger database
composed of 25 million crystals, was recently released and can be used to define new bigger benchmarks.
However, OMC25 consists of simulated zero-temperature structures that may not corresponds to those
observed in X-ray experiments, unlike the COD data. Thus in this work we focus on COD-Cluster17 (Liu
et al., 2024b), a dataset sanitized from COD.

2

Under review as submission to TMLR

2.1 Physics informed GNN for property prediction

Graph Neural Networks (GNNs) with message passing (Kipf & Welling, 2017; Rampášek et al., 2022)
and transformer-based architectures (Ying et al., 2021; Menegaux et al., 2023) have been widely applied
to molecular property prediction. Initially adapted from 2D molecular representations, GNNs have been
extended to crystalline materials. Notable models include CGCNN (Xie & Grossman, 2018), MEGNet (Chen
et al., 2019), and GATGNN (Louis et al., 2020), which pioneered the application of GNNs to materials
property prediction. To better capture the geometric and physical properties of materials, geometry-aware
GNNs have been developed (Duval et al., 2023). Physically grounded models such as ALIGNN (Choudhary
& DeCost, 2021), Matformer (Yan et al., 2022), PotNet (Lin et al., 2023) and ComFormer (Yan et al.,
2024a) achieve state-of-the-art results on the Materials Project dataset, demonstrating the importance of
incorporating materials science knowledge into predictive models. Concurrently, SE(3)-equivariant methods,
known for their expressivity, have emerged with models such as SchNet (Schütt et al., 2017), PaiNN (Schütt
et al., 2021), SEGNN (Brandstetter et al., 2022), SphereNet (Liu et al., 2022), NequIP (Batzner et al., 2022)
and Equiformer (Liao & Smidt, 2023). Such models can be used as backbones to provide powerful molecular
representations that are essential for generative models in crystal structure prediction (Guo et al., 2025).

2.2 Geometric representations in computer vision

In computer vision, permutation-invariant loss functions have been used and developed in multiple object
detection and segmentation (Carion et al., 2020) and multi-object tracking (Xu et al., 2020). Locatello et al.
(2020) and Kori et al. (2024) learn a binding scheme for assigning objects to slots in object property prediction
and unsupervised instance discovery. In the point cloud registration domain, Wang & Solomon (2019) have
studied rigid alignment of point clouds as well as prediction to target assignment. However, they decorrelate
R3 and SO(3) in the loss and reassign predictions to target only when correspondence is unknown. Pais et al.
(2019) study the registration of 3D scans and learn the rigid alignment using different distances. Park et al.
(2020) use Procrustes-alignment of 3D shapes to learn a regression problem of predicting 3D positions of a
deformable object from 2D frame observations. Here, we transfer this powerful and effective knowledge to
material science in order to provide a robust and physics grounded training scheme.

2.3 Generative models in materials science

Generating the 3D stable configuration of a single molecule is essential for materials discovery. Datasets such as
GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022) and OMol25 (Levine et al., 2025) are tailored for this task.
The OMol25 dataset includes evaluations based on linear sum assignment for assessing optimal conformers,
guided by machine learning interatomic potentials (Smith et al., 2017) and Density Functional Theory (DFT)
(Kohn & Sham, 1965). Generative approaches include flow matching models and SE(3)-equivariant generative
models such as those by Cornet et al. (2024) and Song et al. (2023).

Historically, the problem of computational material design —predicting the global arrangement of such
molecules in space— has been extensively studied through the lens of Crystal Structure Prediction (CSP)
challenge. At first, CSP has relied on computationally expensive iterative energy assessment of predicted
structures with first-principles calculations based on the density functional theory (DFT) (Kohn & Sham,
1965; Kresse & Furthmüller, 1996; Pickard & Needs, 2011), including techniques by Wang et al. (2021); Glass
et al. (2006); Pickard & Needs (2011), where atoms are iteratively replaced by chemically similar ones and
validated with DFT calculations. Recently, machine learning has accelerated this process (Schmidt et al.,
2022; Merchant et al., 2023). For example, Genarris 3.0 (Yang et al., 2025) combines a physically-constrained
optimization with machine learning-based interatomic potentials.

For simple crystals from the Materials Project (Jain et al., 2013), their 3D infinitely periodic structures can
now be directly predicted (Liang et al., 2020; Cao et al., 2024). These methods are further enhanced by
diffusion models (Merchant et al., 2023; Xie et al., 2022; Pakornchote et al., 2024; Jiao et al., 2023; Levy
et al., 2025) and flow-matching approaches (Miller et al., 2024; Luo et al., 2025; Nam et al., 2025). Inspired
by their success in other domains, Large Language Models have been adapted to CSP, as seen in CrystalLLM

3

Under review as submission to TMLR

(Antunes et al., 2024) and models that integrate SE(3) equivariance and periodic boundary conditions (Yan
et al., 2024b).

For more complex molecular structures, rigid-body generative models are extensively explored in protein
design and structure prediction, as in AlphaFold2 (Jumper et al., 2021), FrameDiff (Yim et al., 2023b), and
FrameFlow (Yim et al., 2023a). Closer to molecular crystals, studies now focus on assembly prediction, where
a finite cluster of molecules is packed into a pattern that is able to replicate a crystal structure—we thoroughly
define it in Section 3. For example, Liu et al. (2024b) propose atom-wise equivariant flow matching, while
Guo et al. (2025) introduce a rigid body flow matching model for molecular cluster packing prediction. Here,
we propose a physically-grounded training scheme with a deep learning prediction model and explore the
remaining challenges of the cluster packing prediction task.

3 Problem setting

Problem formulation A non-polymeric crystal is a solid material in which molecules are arranged in
a highly ordered pattern—the unit cell—repeating in the three spatial dimensions (3D). The asymmetric
units ASU that constitute it are molecules that are identical objects in 3D. The unit cell is then defined by a
finite number of symmetry operators applied to the ASU. The pinnacle of crystalline structure prediction
is to compute the infinite 3D structure of a material given its substituent chemical compounds. To solve
this challenging task, one can make a number of approximations and hypotheses. The molecular assembly
subproblem is a simplification of the original problem, where a finite set S of identical rigid molecules is
packed together from a state Sinitial of randomly positioned molecules in space, into a state Sfinal which
forms a pattern that can be then replicated in space into a crystal. Our goal is thus to predict rigid spatial
transformations Ti for each molecule i that reconstruct the Sfinal set from the Sinitial set. We propose an
efficient and model-agnostic way to guide any machine learning model with physical knowledge of the task.

Dataset In this work we use the COD-Cluster17 assembly dataset introduced by Liu et al. (2024b),
specifically constructed for the task of non-polymeric crystal structure prediction. To the best of our
knowledge, this is currently the only available curated benchmark for this task. This dataset contains 111k
assemblies and is a simplified, sanitized version of the 507k crystals from the real world Crystallography
Open Database (COD) (Gražulis et al., 2009). The procedure to build the dataset is detailed in (Liu et al.,
2024b) and can be summarized as follows. First, crystals are extracted from the COD if: (1) their asymmetric
unit contains only one molecule; (2) they do not present disordered atoms (cases where some atoms do not
occupy unique and uniquely attributed positions); (3) they are non-polymeric. Then, the dataset is built
by computing for each filtered crystal the ground-truth supercell of an arbitrary asymmetric unit–referred
to as the central molecule–, which is the aggregation of 27 unit cells into a parallelepiped centered on the
unit cell of the asymmetric unit of interest. An example of a supercell is given in Figure 1C. The authors
of COD-Cluster17 then extracted the central molecule’s 16 nearest neighbors using a cutoff in Euclidean
space within this supercell. This procedure outputs the final positions set consisting of each atom Cartesian
coordinates. Then, a random rigid-body transformation is applied to the atomic positions of each molecule,
which results in the initial positions set. The task for the COD-Cluster17 benchmark is then originally
a point cloud packing matching task of predicting all atoms final absolute positions, provided the known
correspondence with the initial positions. This task has also been formulated as a rigid-body packing matching
by Guo et al. (2025) as molecular integrity is preserved in both Sinitial and Sfinal sets.

However, the exact mapping enforcing specific index correspondences between the assembly atoms or molecules
is unrealistic as the mapping is arbitrary. Indeed, all ASUs in a crystal are geometrically, physically and
chemically equivalent. Thanks to the filtering procedure of the COD-Cluster17 dataset construction, as
detailed above, the 17 molecules in Sinitial and Sfinal sets are thus also equivalent. Then, there is no specific
reason why i in Sinitial must be associated with i but not a different index j in Sfinal. One of our contributions
is thus to propose a more reasonable task of packing molecules without enforcing index correspondences,
preserving the invariance to permutations of the set Sfinal of 17 molecules. It is important to note that despite
the COD-Cluster17 benchmark is available in two distinct versions – with and without molecular inversion –
Guo et al. (2025) focus exclusively on the version without inversions for simplicity. While this assumption

4

Under review as submission to TMLR

ensures that molecules are identical under rigid transformations, we argue in Appendix C.1 that our method
can also be efficiently adapted to the inversion dataset.

Rigid body description We aim to predict the positions of rigid molecules in 3D, which can not be
described by single position vectors as for atoms. Instead, we represent the position of a rigid molecule as a
rigid spatial transformation operator T = (r⃗, q) composed of a 3D translation r⃗ ∈ R3 and a 3D rigid rotation
quaternion q = [s, q⃗] ∈ SO(3), where s is its scalar part and q⃗ is its vector part. See Appendix A for details.

4 Methods

We will now refer to the global reference frame as an arbitrarily chosen coordinate system used to represent
the positions and orientations of the M molecules in the set S. In contrast, we define local frames as those
attached to the center of mass of each individual molecule, which rigidly move with them. These local frames
are initialized using the principal components of each molecule’s inertia tensor. While this initialization may
not be unique, the specific choice does not affect the relative transformations between local frames, which are
the quantities actually used in the model computations.

4.1 Metrics

Packing matching Current crystal structure prediction methods (Guo et al., 2025; Liu et al., 2024b)
typically use the Packing Matching (PM) score as an assessment metric. It is defined for atoms positions x⃗
as follows,

PM2
atom = 1

N2

N∑
i=1

N∑
j=1

(
∥x⃗ pred

i − x⃗ pred
j ∥−∥x⃗ gt

i − x⃗ gt
j ∥

)2
, (1)

where N is the number of atoms in the assembly, x⃗pred
i (resp. x⃗gt

j) is the position vector of atom i (resp. j)
in the predicted (resp. ground-truth) assembly. PM quantifies how well the pairwise distances between the
atoms are predicted, and is invariant to global rotations and translations. Also commonly used, the PMcenter
metric, is defined as follows,

PM2
center = 1

M2

M∑
i=1

M∑
j=1

(
||⃗c pred

i − c⃗ pred
j ||−||⃗c gt

i − c⃗ gt
j ||

)2
, (2)

where M is the number of molecules in the assembly, c⃗ pred
i (resp. c⃗ gt

j) is the position of ith molecule’s (resp.
jth) center of mass in the predicted (resp. ground-truth) assembly. It evaluates the quality of the molecule
positions regardless of their orientations.

Root mean square displacement RMSD is another metric common in chemistry, structural biology,
physics, and materials science. RMSD performs direct comparisons of atom positions, which requires
representing them in a common frame:

RMSD2
atom = 1

N

∑
i∈N

∥x⃗ pred
i − x⃗ gt

i ∥
2. (3)

Note that Appendix B proves the relation PMatom ≤
√

2RMSDatom showing the correlation between both
metrics even though PM compares relative positions, whereas RMSD relies on absolute ones. This relation
shows that PM score is a good proxy for the RMSD assessment. In particular: "as long as reported PM is
greater than 2 times square root of 2 ȧngströms, RMSD is greater than 2 ȧngströms.".

S-Permutation invariant metric The molecular assembly task as defined in this paper aims at matching
a set Sinitial of M equivalent initial molecules to a set Sfinal of M final ones. As these molecules are identical,
positioning one at a given place or another is strictly equivalent physically. A proper metric should thus
reflect this S-permutation invariant property, which we now present.

5

Under review as submission to TMLR

We represent molecules i from the predicted assembly and j from the ground truth assembly by their rigid-body
positions T i

pred and T j
gt in the global reference frame, from which we can reconstruct atoms positions x⃗pred

i

and x⃗gt
j to compute the PM scores. We consider the cost matrix CL of any metric L such as PMatom or

PMcenter, such that CL
ij is the cost of assigning molecule i from the ground truth assembly with the molecule

j in the predicted assembly. This cost matrix is computed as follows:

∀{i, j} ∈ J1, MK2, CL
ij = L

(
T i

pred, T j
gt

)
. (4)

The goal is then to find a complete assignment of molecules in the predicted assembly with molecules in the
ground truth assembly, which minimizes the metric L over all S-permutations. This minimizer is denoted L∗.
Formally it is defined by the linear sum assignment problem. Let P be a boolean pairing matrix in which
Pij = 1 if and only if molecule i from ground truth assembly is mapped with molecule j in the predicted
assembly:

L∗ := min
P

∑
ij

CL
ij .Pij with Pij ∈ {0, 1} s.t. P · 1 = P ⊤ · 1 = 1. (5)

In practice we use scipy’s linear sum assignment method to compute this exact minimizer L∗ of L.

4.2 Physically grounded losses

While the previous paragraph introduces useful permutation invariant atom-wise metrics, well suited for
evaluating atomistic predictions, we now turn to defining trainable objectives that are better adapted to
the rigid-body formulation of the task. Concretely, we propose two rigid-body loss functions: LRMSD,
which operates on absolute positions of molecules, and LGeom, which extends this formulation to relative
molecular positions. We will further show how these objectives can be made S-permutation invariant through
differentiable optimal assignment in section 4.3.

We now consider rigid body predicted (resp. ground-truth) positions in the global reference frame as
T pred = (r⃗ pred, q pred) (resp. T gt = (r⃗ gt, q gt)). The loss currently used in the literature decouples R3 and
SO(3) spaces as:

L R3(T pred, T gt) = ∥r⃗ pred − r⃗ gt∥2 L SO(3)(T pred, T gt) = ∥q pred − q gt∥2, (6)

and then one can combine them with a tuned hyperparameter α as

LML = LR3 + αLSO(3). (7)

The α parameter has to be adjusted to the task one is trying to solve. It has to balance the weight of
unbounded distance in R3 to the bounded distance in SO(3). As different samples in the dataset may have
very different geometries, with inter-molecular distances spanning orders of magnitudes, having a single
parameter is suboptimal. Finally, as the space of rigid transformations SE(3) is not a direct product of R3

and SO(3), this loss has no physical or geometrical meaning.

Rigid RMSD loss Popov & Grudinin (2014) introduced a more suitable rigid-body transformation loss
that is strictly equivalent to the RMSD2

atom metric in eq. 3. It is defined for a rigid transformation T = (r⃗, q),
with quaternion q = (s, q⃗) composed of a scalar s and a vector part q⃗, as follows.

RMSD2(T , I) = 4
N

q⃗ ⊤Iq⃗ + r⃗ 2, (8)

where I is an inertia tensor of the rigid body computed in its center-of-mass local frame (see Appendix A for
the definition). One can notice that in this frame the two RMSD2 contributions, rotation and translation, are
additive. The inertia tensor naturally provides a weight between the rotation and the translation contributions.
However, the cross-terms appear in the equation if we change the reference frame as detailed in Appendix A.
Thus, given two spatial transformations Tpred and Tgt, of the same rigid body with the inertia tensor I, we
can naturally define the physically-grounded RMSD loss without additional hyperparameters as

LRMSD(Tpred, Tgt) = RMSD2(Tgt ◦ T −1
pred, I). (9)

We will use this RMSD loss as default during training and test to compare absolute positions in the predicted
assembly of molecules with the ground truth.

6

Under review as submission to TMLR

Geometric loss Regarding the task of molecular assembly prediction, we aim to define a loss that better
reflects the relative packing of molecules and not memorizing their absolute positions. Let us consider two
rigid molecules in an assembly S consisting of M molecules, i, j ∈ M . Let us assume we have predicted a
packing Spred of these molecules resulting in individual global spatial transformations (or positions) Ti,pred
and Tj,pred. We want to compare these transformations to the corresponding ground-truth ones Ti,gt and Tj,gt
from the packing Sgt. We can define the assembly transformation-invariant PM metric for these molecules
similar to the one in eq. 1. However, this computation requires to first compute positions of all corresponding
atoms. Instead, we propose a more elegant rigid-body RMSD-based solution presented in Figure 2. Concretely,
we compute the RMSD2 metric between the ith molecules in the superposed local frames of the jth molecules,
as follows,

LRMSD(T −1
j,pred ◦ Ti,pred, T −1

j,gt ◦ Ti,gt) = RMSD2(T −1
j,gt ◦ Ti,gt ◦ T −1

i,pred ◦ Tj,pred, I). (10)

We can then extend the above expression to the comparison of M − 1 molecules to a reference one. Without
loss of generality, we can assume it is the Mth molecule and define the geometric loss LGeom as follows:

LGeom (Tpred, Tgt) = 1
M − 1

M−1∑
i=1
LRMSD(T −1

M,pred ◦ Ti,pred, T −1
M,gt ◦ Ti,gt). (11)

In practice in COD-Cluster17, as detailed in section 3, the way the dataset is constructed defines a reference
molecule around which we extract the 16 nearest neighbors. We show some illustration of the proposed losses
in Appendix A.7.

A B

Reference
Molecule

Reference
Molecule

Target Prediction
Target vs Prediction before alignment Alignment of the Predicted Reference

on the Target Reference molecules

Reference
Molecule

C

RMSD

Target vs Prediction after
alignment

Figure 2: A schematic illustration of our geometric loss alignment and similarity measure computation. A:
Predicted and target couples of molecules with local frames before alignment. B: The reference molecule from
the predicted packing is aligned on the one from the target packing. C: Predicted and target molecules after
aligning both reference molecules on each other. The similarity measure is then computed as the RMSD2

between the non-reference molecules.

4.3 Differentiable optimal assignment

As metrics are computed with invariance to S-permutations, it is essential to also train models with
permutation invariant losses. However, the linear sum assignment problem 5 is not differentiable and results
in training instabilities, as our preliminary experiments demonstrated. We thus use during training the
differentiable version of it provided by the Sinkhorn algorithm with the boolean pairing P matrix being
relaxed as ∀{i, j}, 0 < Pij < 1. The problem is then defined for any training loss L, like LML,LRMSD or

7

Under review as submission to TMLR

LGeom, such that:

L∗
train = min

P
⟨P, CL⟩F + reg · Ω(P)

with Pij ∈ [0, 1] s.t. P · 1 = P ⊤ · 1 = 1 and P ≥ 0

with Ω(P) =
∑

ij

Pij log(Pij)
(12)

An implementation of this algorithm as defined in Cuturi (2013) can be found in Python Optimal Transport
library (Flamary et al., 2021). This approach provides a feedback to the model with multiple possible
assignments weighted by P , which behaves like a probability map.

5 Results

5.1 Experimental setup

Dataset We evaluate the performance of our approach on the COD-Cluster17 benchmark introduced in
Liu et al. (2024b). The dataset and the task are detailed in section 3. It contains 111k assemblies and
is a simplified, sanitized version of the 507k crystals from the real world Crystallography Open Database.
Previous methods also benchmark on a subset of 5k assemblies. This benchmark comes with a splitting
strategy into 80% for train, 10% for validation and 10% for test. The validation set is used for best method
selection throughout the training epochs and the final performances presented in this section are obtained on
the test set. Following previous works, we compare our approach on 3 seeds and report below the average
performance.

Model We primarily compare our method called SinkFast to the state-of-the-art AssembleFlow (Guo et al.,
2025) method and thus reuse the same model. In particular, we consider here the atom-level SE(3)-equivariant
model version described in Appendix C.2, that we refer to as the backbone. Then we will refer to AssembleFlow
as this backbone trained with a flow matching scheme, while SinkFast refers to the same backbone trained
with permutation invariance.

Training methods AssembleFlow uses a flow matching setting, in which the model is trained on various
interpolated rigid-body positions, which helps guide the optimization process. In contrast, our method
SinkFast is trained in simple regression, which is defined as the task of predicting the target rigid-body
positions directly from the initial positions. In this setting, the model takes exclusively as input the initial
rigid-body positions. Simple regression is equivalent to a one-step flow matching.

While AssembleFlow is trained with LML (Eq. 7) as the training objective, our method SinkFast is trained with
one of the following objectives: L∗

ML (Eq. 7), L∗
RMSD (Eq. 9) or L∗

Geom (Eq. 11) with permutation-invariance
(Eq. 12). Standard hyperparameters and models’ parameters are provided in Appendix C.2. In particular,
we keep the hyperparameter α in Eq. 7 fixed to 10, as it was tuned by AssembleFlow authors for the task,
and use 50 time steps of flow matching.

Baselines Inorganic crystal structure prediction is a fast-moving domain in which many state-of-the-art
models compete and innovate. As we want to compare the performance of current organic state of the art to
the inorganic one, we conduct experiments on the COD-Cluster17-5k dataset by retraining both CDVAE
(Xie et al., 2022) and DiffCSP (Jiao et al., 2023) models. Implementation details are provided in Appendix
E.1. Three other baselines, PackMol, GNN-MD and CrystalFlow-LERP, are motivated by the AssembleFlow
paper (Guo et al., 2025), from which their results are extracted.

All models were trained on a single NVidia H100 GPU system, with 80GB memory and 67 TFlops. We
trained them for 500 epochs, with a batch size of 8, Adam optimizer with a learning rate 10−4 adapted by a
Cosine Annealing scheduler.

8

Under review as submission to TMLR

Table 1: Our best model SinkFast against state-of-the-art models on COD-Cluster17. Our method is trained
with L∗

ML (Eq. 7) or L∗
RMSD (Eq. 9) with permutation-invariance (Eq. 12). The best results are marked in

bold.

Flow
Matching

Packing Matching in Å↓

PMcenter PMatom PM∗
center PM∗

atom

Dataset: COD-Cluster17-5K
PackMol (Martínez et al., 2009) 6.05±0.05 7.10±0.05 - -
CDVAE (Xie et al., 2022) - - 10.50±0.52 14.81±0.89
DiffCSP (Jiao et al., 2023) - - 23.50±2.44 30.61±2.53
GNN-MD (Liu et al., 2024a) 13.80±0.07 13.67±0.06 - -
CrystalFlow-LERP (Liu et al., 2024b) ✓ 13.26±0.09 13.59±0.09 - -
AssembleFlow (Guo et al., 2025) ✓ 6.13±0.10 7.27±0.04 3.86±0.13 5.79±0.012

SinkFast - L∗
ML (ours) 5.80±0.03 6.96±0.03 3.60±0.04 5.54±0.04

SinkFast - L∗
RMSD (ours) 5.85±0.05 6.98±0.05 3.77±0.12 5.67±0.08

Dataset: COD-Cluster17-All
PackMol (Martínez et al., 2009) 6.09±0.01 7.15±0.01 - -
GNN-MD (Liu et al., 2024a) 14.51±0.82 22.30±12.04 - -
CrystalFlow-LERP (Liu et al., 2024b) ✓ 13.28±0.01 13.61±0.00 - -
AssembleFlow (Guo et al., 2025) ✓ 6.21±0.01 7.37±0.01 3.51±0.05 5.60±0.03

SinkFast - L∗
ML (ours) 5.80±0.00 7.00±0.01 3.47±0.04 5.51±0.02

SinkFast - L∗
RMSD (ours) 5.80±0.00 7.00±0.01 3.41±0.04 5.54±0.01

5.2 Main results

In Table 1 we present our models performance against six other state-of-the-art models on the COD-Cluster17
dataset. First, while original state-of-the-art results are presented in PMcenter and PMatom, we show under
PM∗

center and PM∗
atom the importance of optimal assignment to get the best metric performance over the set

of S-permutations of the predicted assembly as detailed in section 4.3. Indeed the metric decreases greatly
under this optimal assignment, indicating the inability of models to memorize positions for each molecule
as they are equivalent. Then, we show that our method outperforms all other baselines on both 5k subset
and the full dataset by a significant margin. Notably our method is the only deep learning method that
outperforms PackMol on both datasets.

5.3 Ablation studies

Training with introduced losses Table 2 lists experiments conducted when training with physically
grounded losses, both in flow matching as in AssembleFlow (Guo et al., 2025) and in our simple regression
model with permutation invariant loss. We can draw 2 main conclusions: (1) training with LRMSD (Eq. 9)
performs on par with training with the tuned standard LML (Eq. 7) while having no parameter to tune. And
(2) both previous absolute losses fail to perform on the geometric relative packing loss metric L∗

Geom (Eq.
11) while training with it is the solution. In reverse, training with this relative loss yields poor results on
absolute ones. This mainly shows the limitations of the absolute packing matching task of interest here.

Moreover, these results along with ablation in Appendix D show a significant gain, dividing by up to 3.8
the evaluation metric, when training with the S-permutation invariant losses, while not being useful in flow
matching. This reveals a redundancy between the two and that the main interest of flow matching on this
task thus lies in being an optimal transport approximator. While the added value of flow matching is yet
to be proven, its usage out of the box may not come handy. We believe it should be better adapted to the
domain specificities and tasks in further studies.

As rigid body transformations are composed here of both a rotation and a translation individually predicted
by our model, we present in Appendix D.4 the individual pure R3 and SO(3) performances. This experiment
shows that both AssembleFlow and SinkFast focus on positioning molecules in space while mostly discarding
their orientation.

9

Under review as submission to TMLR

Table 2: Ablation study of using physically grounded losses during training on COD-Cluster17 in two different
training schemes: flow matching or simple regression with permutation-invariant loss.

Test Loss in Å↓ Packing matching in Å↓

Loss Flow Matching L∗
RMSD L∗

Geom PM∗
center PM∗

atom PMcenter PMatom

Dataset: COD-Cluster17-5K

LML ✓ 9.56±0.07 13.35±0.30 3.86±0.13 5.79±0.12 6.28±0.15 7.39±0.16
LRMSD ✓ 9.41±0.19 13.37±0.24 3.89±0.16 5.80±0.16 6.26±0.20 7.35±0.21
LGeom ✓ 9.22±0.06 10.45±0.55 3.90±0.08 5.85±0.04 6.14±0.02 7.20±0.05

L∗
ML 8.69±0.06 12.16±0.12 3.60±0.04 5.54±0.04 5.80±0.03 6.96±0.03
L∗

RMSD 8.73±0.07 12.05±0.15 3.77±0.12 5.67±0.08 5.85±0.05 6.98±0.05
L∗

Geom 9.32±0.06 8.78±0.05 5.55±0.15 6.54±0.07 6.92±0.07 7.46±0.02

Dataset: COD-Cluster17-All

LML ✓ 9.26±0.18 12.02±0.30 3.51±0.05 5.60±0.03 5.96±0.02 7.15±0.03
LRMSD ✓ 9.08±0.12 12.17±0.33 3.51±0.04 5.60±0.03 5.97±0.05 7.18±0.05
LGeom ✓ 9.33±0.10 10.77±0.13 3.78±0.09 5.76±0.05 6.09±0.07 7.21±0.05

L∗
ML 8.65±0.02 12.10±0.10 3.47±0.04 5.51±0.02 5.80±0.00 7.00±0.01
L∗

RMSD 8.70±0.03 12.16±0.08 3.41±0.04 5.54±0.01 5.80±0.00 7.00±0.01
L∗

Geom 9.35±0.00 8.71±0.03 5.43±0.10 6.52±0.05 6.84±0.06 7.45±0.02

Table 3: Execution times for our method reported on COD-Cluster17-5k. Results are presented as average
over 10 epochs at training and over 10 batches at inference. AssembleFlow is trained with 50 timesteps.

Method Training time (s)
per epoch

Test time (s)
per batch

AssembleFlow 2678.5 0.89
SinkFast - without permutation-invariant loss 53.6 0.02
SinkFast - with permutation-invariant loss 64.1 0.02

Execution time Table 3 lists the execution time for the different methods. In particular, we are interested
in the expense of our S-permutation invariant loss and how it compares to the cost of using a flow matching
scheme. While it increases the training execution time by 20% compared to simple regression without the
permutation invariance, it saves by a factor 42 the overall training time compared to flow matching. And
as it is only used during training, the gain at inference is a factor 50 (number of time steps) compared to
flow matching. However, as only one timestep is usually sampled at training in flow matching, it is better to
compare convergence time in terms of number of epochs before convergence. While AssembleFlow converges
after 350 epochs, SinkFast converges after less than 100 epochs. The actual gain at training time is then a
factor 3.5. As mentioned in Guo et al. (2025), PackMol is 25 times slower than AssembleFlow, which makes
it about 1,000 times slower than SinkFast.

6 Limitations

Prediction quality Although our objective function refinement helps to boost the reported metrics,
the visualizations reported in Appendix F also show the large performance gap remaining to be closed in
discovering plausible and stable crystal structures. In particular, the orientations of molecules are highly
incorrect as reported and discussed in the ablation study in Appendix D.4. We believe new methods should
make use of all the geometrical properties of materials science to design powerful yet efficient algorithms that
can reliably perform on tasks always closer to real-life data. To the best of our knowledge, this limitation
affects all published work on the topic, including ours, highlighting the current boundaries of the field and
future research challenges.

Generalization While this work pushes the frontier of materials discovery on a specific benchmark, its
usefulness to other benchmarks is yet to be assessed. Our work has been designed to tackle a weakness in the

10

Under review as submission to TMLR

problem definition of common molecular assembly tasks and highlights the need for a revised dataset definition.
With a real-life application in mind, the absence of periodic boundary conditions is a fundamental limitation
of the COD-Cluster17 dataset and thus to this method. Indeed, a predicted molecule position should be
correct up to any unit cell translation. However, as no periodicity information is available, prediction has to
match absolute target positions, which hinders the generalisation capability of any model. A second major
limitation in COD-Cluster17 is the absence of space group information for each training sample. The same
rigid molecule can crystallize in different configurations according to specific symmetry groups inside a unit
cell that then replicates infinitely in space. This conditions global structure prediction – and thus also the
subtask of molecules assembly – and can give different targets for the same common data. As a result, the
generalisation capability of any model is greatly hindered.

Applicability On the one hand, the molecule assembly task of COD-Cluster17 is far from the non-polymeric
crystal structure prediction one. While it is the only available benchmark in this field, the community needs a
more physically meaningful dataset with a proper benchmark definition, based either on COD (Gražulis et al.,
2009) (about 500k crystals) or OMC25 (Gharakhanyan et al., 2025) (about 25 million crystals). However,
OMC25 consists of simulated zero-temperature structures, unlike the experimentally observed COD data.

On the other hand, if we want to use our model in practice, the molecular conformation is usually not known
and deeply related to the crystal structure. We study in Appendix E.2 the rigid body approximation and our
model’s performance on a different real-world test set, in which we generate new molecular conformations
through RDKit (Landrum et al., 2025). We conclude that the current approximation is valid, however future
models should be trained end-to-end, jointly learning conformation and crystal structure prediction.

7 Conclusion

In this paper we have focused on a simpler subtask of the complex organic crystal structure prediction. We
have shown the necessity to use meaningful metrics on a benchmark and proven its utmost importance
to accurately compare methods. We have also demonstrated the importance to train models with rigid-
body losses grounded in physical principles that greatly improve performance on molecule assembly. Such
metrics are also essential to assess real-world applicability of current methods. Our main contribution is
the demonstration that the appropriate definition of a meaningful learning objective simplifies the problem,
boosts the performance and speeds up the training scheme. We release a simple implementation of the method
to be used in future benchmarks. This work invites to take a step back from large generative models and
expensive methods, and instead focus on proper problem definition and principled, physics-inspired solutions.

References
Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.

In International Conference on Learning Representations (ICLR), 2023.

Luis M Antunes, Keith T Butler, and Ricardo Grau-Crespo. Crystal structure generation with autoregressive
large language modeling. Nature Communications, 15(1):1–16, 2024.

Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations for property
prediction and molecular generation. Scientific Data, 9(1):185, 2022.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Kornbluth, Nicola
Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural networks for data-efficient and
accurate interatomic potentials. Nature communications, 13(1):2453, 2022.

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Geometric and
physical quantities improve E(3) equivariant message passing. In International Conference on Learning
Representations (ICLR), 2022.

Zhendong Cao, Xiaoshan Luo, Jian Lv, and Lei Wang. Space group informed transformer for crystalline
materials generation. preprint arXiv:2403.15734, 2024.

11

Under review as submission to TMLR

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko.
End-to-end object detection with transformers. In European Conference on Computer Vision (ECCV),
2020. URL https://arxiv.org/abs/2005.12872.

Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. Graph networks as a universal machine
learning framework for molecules and crystals. Chemistry of Materials, 31(9):3564–3572, 2019.

Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=g7ohDlTITL.

Kamal Choudhary and Brian DeCost. Atomistic line graph neural network for improved materials
property predictions. npj Computational Materials, 7(1), November 2021. ISSN 2057-3960. doi:
10.1038/s41524-021-00650-1. URL http://dx.doi.org/10.1038/s41524-021-00650-1.

Kamal Choudhary, Kevin F Garrity, Andrew CE Reid, Brian DeCost, Adam J Biacchi, Angela R Hight Walker,
Zachary Trautt, Jason Hattrick-Simpers, A Gilad Kusne, Andrea Centrone, et al. The joint automated
repository for various integrated simulations (jarvis) for data-driven materials design. npj computational
materials, 6(1):173, 2020.

François Cornet, Grigory Bartosh, Mikkel Schmidt, and Christian Andersson Naesseth. Equivariant neural
diffusion for molecule generation. Advances in Neural Information Processing Systems, 2024.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transportation distances. In Adv. in
Neural Information Processing Systems (NIPS), 2013. URL https://arxiv.org/abs/1306.0895.

Alexandre Duval, Simon V Mathis, Chaitanya K Joshi, Victor Schmidt, Santiago Miret, Fragkiskos D Malliaros,
Taco Cohen, Pietro Liò, Yoshua Bengio, and Michael Bronstein. A hitchhiker’s guide to geometric gnns for
3D atomic systems. arXiv preprint arXiv:2312.07511, 2023.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Chambon,
Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie T.H. Gayraud,
Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J.
Sutherland, Romain Tavenard, Alexander Tong, and Titouan Vayer. Pot: Python optimal transport. Journal
of Machine Learning Research, 22(78):1–8, 2021. URL http://jmlr.org/papers/v22/20-451.html.

Vahe Gharakhanyan, Luis Barroso-Luque, Yi Yang, Muhammed Shuaibi, Kyle Michel, Daniel S. Levine, Misko
Dzamba, Xiang Fu, Meng Gao, Xingyu Liu, Haoran Ni, Keian Noori, Brandon M. Wood, Matt Uyttendaele,
Arman Boromand, C. Lawrence Zitnick, Noa Marom, Zachary W. Ulissi, and Anuroop Sriram. Open
molecular crystals 2025 (omc25) dataset and models, 2025. URL https://arxiv.org/abs/2508.02651.

Colin W Glass, Artem R Oganov, and Nikolaus Hansen. Uspex—evolutionary crystal structure prediction.
Computer physics communications, 175(11-12):713–720, 2006.

Saulius Gražulis, Daniel Chateigner, Robert T. Downs, A. F. T. Yokochi, Miguel Quirós, Luca Lutterotti,
Elena Manakova, Justas Butkus, Peter Moeck, and Armel Le Bail. Crystallography Open Database – an
open-access collection of crystal structures. Journal of Applied Crystallography, 42(4):726–729, Aug 2009.
doi: 10.1107/S0021889809016690. URL https://doi.org/10.1107/S0021889809016690.

Hongyu Guo, Yoshua Bengio, and Shengchao Liu. Assembleflow: Rigid flow matching with inertial frames
for molecular assembly. In International Conference on Learning Representations (ICLR), 2025. URL
https://openreview.net/forum?id=jckKNzYYA6.

Yusei Ito, Tatsunori Taniai, Ryo Igarashi, Yoshitaka Ushiku, and Kanta Ono. Rethinking the role of frames
for SE(3)-invariant crystal structure modeling. In International Conference on Learning Representations
(ICLR), 2025.

A Jain, SP Ong, G Hautier, W Chen, WD Richards, S Dacek, S Cholia, D Gunter, D Skinner, G Ceder, et al.
The materials project: a materials genome approach to accelerating materials innovation, apl mater. 1
(2013) 011002, 2013.

12

https://arxiv.org/abs/2005.12872
https://openreview.net/forum?id=g7ohDlTITL
http://dx.doi.org/10.1038/s41524-021-00650-1
https://arxiv.org/abs/1306.0895
http://jmlr.org/papers/v22/20-451.html
https://arxiv.org/abs/2508.02651
https://doi.org/10.1107/S0021889809016690
https://openreview.net/forum?id=jckKNzYYA6

Under review as submission to TMLR

Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal structure
prediction by joint equivariant diffusion. In Adv. in Neural Information Processing Systems (NeurIPS),
2023. URL https://arxiv.org/abs/2309.04475.

Chaitanya K. Joshi, Cristian Bodnar, Simon V. Mathis, Taco Cohen, and Pietro Liò. On the expressive
power of geometric graph neural networks. In International Conference on Machine Learning (ICML),
2023. URL https://arxiv.org/abs/2301.09308.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects. Physical
review, 140(4A):A1133, 1965.

Avinash Kori, Francesco Locatello, Fabio De Sousa Ribeiro, Francesca Toni, and Ben Glocker. Grounded
object-centric learning. In International Conference on Learning Representations (ICLR), 2024.

Georg Kresse and Jürgen Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using
a plane-wave basis set. Physical review B, 54(16):11169, 1996.

Greg Landrum, Paolo Tosco, Brian Kelley, Ricardo Rodriguez, David Cosgrove, Riccardo Vianello, sriniker,
Peter Gedeck, Gareth Jones, Eisuke Kawashima, NadineSchneider, Dan Nealschneider, Andrew Dalke,
tadhurst cdd, Matt Swain, Brian Cole, Samo Turk, Aleksandr Savelev, Alain Vaucher, Maciej Wójcikowski,
Ichiru Take, Hussein Faara, Vincent F. Scalfani, Rachel Walker, Daniel Probst, Kazuya Ujihara, Niels
Maeder, Jeremy Monat, Juuso Lehtivarjo, and guillaume godin. rdkit/rdkit: 2025_03_5 (q1 2025) release,
July 2025. URL https://doi.org/10.5281/zenodo.16439048.

Daniel S Levine, Muhammed Shuaibi, Evan Walter Clark Spotte-Smith, Michael G Taylor, Muhammad R
Hasyim, Kyle Michel, Ilyes Batatia, Gábor Csányi, Misko Dzamba, Peter Eastman, et al. The open
molecules 2025 (omol25) dataset, evaluations, and models. arXiv preprint arXiv:2505.08762, 2025.

Daniel Levy, Siba Smarak Panigrahi, Sekou-Oumar Kaba, Qiang Zhu, Kin Long Kelvin Lee, Mikhail Galkin,
Santiago Miret, and Siamak Ravanbakhsh. Symmcd: Symmetry-preserving crystal generation with diffusion
models. In International Conference on Learning Representations (ICLR), 2025.

Haotong Liang, Valentin Stanev, A. Gilad Kusne, and Ichiro Takeuchi. Cryspnet: Crystal structure
predictions via neural networks. Physical Review Materials, 4(12), December 2020. ISSN 2475-9953. doi:
10.1103/physrevmaterials.4.123802. URL http://dx.doi.org/10.1103/PhysRevMaterials.4.123802.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3D atomistic graphs.
In International Conference on Learning Representations (ICLR), 2023.

Yuchao Lin, Keqiang Yan, Youzhi Luo, Yi Liu, Xiaoning Qian, and Shuiwang Ji. Efficient approximations of
complete interatomic potentials for crystal property prediction. In International Conference on Machine
Learning (ICML), 2023. URL https://arxiv.org/abs/2306.10045.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
for generative modeling. In International Conference on Learning Representations (ICLR), 2023. URL
https://openreview.net/forum?id=PqvMRDCJT9t.

Shengchao Liu, Weitao Du, Hannan Xu, Yanjing Li, Zhuoxinran Li, Vignesh Bhethanabotla, Divin Yan,
Christian Borgs, Anima Anandkumar, Hongyu Guo, and Jennifer Chayes. A multi-grained symmetric
differential equation model for learning protein-ligand binding dynamics. In ICLR 2024 Workshop on
AI4DifferentialEquations In Science, 2024a. URL https://arxiv.org/abs/2401.15122.

13

https://arxiv.org/abs/2309.04475
https://arxiv.org/abs/2301.09308
https://doi.org/10.5281/zenodo.16439048
http://dx.doi.org/10.1103/PhysRevMaterials.4.123802
https://arxiv.org/abs/2306.10045
https://openreview.net/forum?id=PqvMRDCJT9t
https://arxiv.org/abs/2401.15122

Under review as submission to TMLR

Shengchao Liu, Divin Yan, Hongyu Guo, and Anima Anandkumar. An equivariant flow matching framework
for learning molecular crystallization. In ICML 2024 Workshop on Geometry-grounded Representation
Learning and Generative Modeling, 2024b.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In International Conference on Learning Representations (ICLR), 2023. URL
https://openreview.net/forum?id=XVjTT1nw5z.

Yi Liu, Limei Wang, Meng Liu, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical message passing
for 3d molecular graphs. In International Conference on Learning Representations (ICLR), 2022. URL
https://arxiv.org/abs/2102.05013.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention. In Adv.
in Neural Information Processing Systems (NeurIPS), 2020. URL https://proceedings.neurips.cc/
paper_files/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf.

Steph-Yves Louis, Yong Zhao, Alireza Nasiri, Xiran Wang, Yuqi Song, Fei Liu, and Jianjun Hu. Graph
convolutional neural networks with global attention for improved materials property prediction. Physical
Chemistry Chemical Physics, 22(32):18141–18148, 2020.

Xiaoshan Luo, Zhenyu Wang, Qingchang Wang, Jian Lv, Lei Wang, Yanchao Wang, and Yanming Ma.
Crystalflow: A flow-based generative model for crystalline materials, 2025. URL https://arxiv.org/
abs/2412.11693.

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez. Packmol: A package for building initial
configurations for molecular dynamics simulations. Journal of Computational Chemistry, 30(13):2157–2164,
2009. ISSN 1096-987X. doi: 10.1002/jcc.21224. URL http://dx.doi.org/10.1002/jcc.21224.

Rocco Meli and Philip C. Biggin. spyrmsd: symmetry-corrected rmsd calculations in python. Journal of
Cheminformatics, 12(1):49, 2020.

Romain Menegaux, Emmanuel Jehanno, Margot Selosse, and Julien Mairal. Self-attention in colors: Another
take on encoding graph structure in transformers, 2023. URL https://arxiv.org/abs/2304.10933.

Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and Ekin Dogus
Cubuk. Scaling deep learning for materials discovery. Nature, 624(7990):80–85, 2023.

Benjamin Kurt Miller, Ricky T. Q. Chen, Anuroop Sriram, and Brandon M Wood. FlowMM: Generating
materials with Riemannian flow matching. In International Conference on Machine Learning (ICML),
2024. URL https://openreview.net/forum?id=W4pB7VbzZI.

Juno Nam, Sulin Liu, Gavin Winter, KyuJung Jun, Soojung Yang, and Rafael Gómez-Bombarelli. Flow
matching for accelerated simulation of atomic transport in materials, 2025. URL https://arxiv.org/
abs/2410.01464.

Guillaume Pagès and Sergei Grudinin. Analytical symmetry detection in protein assemblies. ii. dihedral and
cubic symmetries. Journal of structural biology, 203(3):185–194, 2018.

Guillaume Pagès, Elvira Kinzina, and Sergei Grudinin. Analytical symmetry detection in protein assemblies.
i. cyclic symmetries. Journal of Structural Biology, 203(2):142–148, 2018.

G. Dias Pais, Pedro Miraldo, Srikumar Ramalingam, Jacinto C. Nascimento, Venu Madhav Govindu, and
Rama Chellappa. 3Dregnet: A deep neural network for 3D point registration. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

Teerachote Pakornchote, Natthaphon Choomphon-anomakhun, Sorrjit Arrerut, Chayanon Atthapak, Sakarn
Khamkaeo, Thiparat Chotibut, and Thiti Bovornratanaraks. Diffusion probabilistic models enhance
variational autoencoder for crystal structure generative modeling. Scientific Reports, 14, 2024. URL
https://arxiv.org/abs/2308.02165.

14

https://openreview.net/forum?id=XVjTT1nw5z
https://arxiv.org/abs/2102.05013
https://proceedings.neurips.cc/paper_files/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/8511df98c02ab60aea1b2356c013bc0f-Paper.pdf
https://arxiv.org/abs/2412.11693
https://arxiv.org/abs/2412.11693
http://dx.doi.org/10.1002/jcc.21224
https://arxiv.org/abs/2304.10933
https://openreview.net/forum?id=W4pB7VbzZI
https://arxiv.org/abs/2410.01464
https://arxiv.org/abs/2410.01464
https://arxiv.org/abs/2308.02165

Under review as submission to TMLR

Sungheon Park, Minsik Lee, and Nojun Kwak. Procrustean regression networks: Learning 3d structure of
non-rigid objects from 2d annotations. In European Conference on Computer Vision (ECCV), 2020. URL
https://arxiv.org/abs/2007.10961.

Chris J Pickard and R J Needs. Ab initiorandom structure searching. Journal of Physics: Condensed
Matter, 23(5):053201, January 2011. ISSN 1361-648X. doi: 10.1088/0953-8984/23/5/053201. URL
http://dx.doi.org/10.1088/0953-8984/23/5/053201.

P Popov and S Grudinin. Rapid determination of rmsds corresponding to macromolecular rigid body motions.
Journal of Computational Chemistry, 35(12):950–956, 2014.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer. In Adv. in Neural Information Processing
Systems (NeurIPS), 2022.

Jonathan Schmidt, Noah Hoffmann, Hai-Chen Wang, Pedro Borlido, Pedro JMA Carriço, Tiago FT Cerqueira,
Silvana Botti, and Miguel AL Marques. Large-scale machine-learning-assisted exploration of the whole
materials space. arXiv preprint arXiv:2210.00579, 2022.

Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. November 2015.

Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre Tkatchenko,
and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network for modeling quantum
interactions. In Adv. in Neural Information Processing Systems (NIPS), 2017.

Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction of
tensorial properties and molecular spectra. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 9377–9388. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/schutt21a.html.

Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of the 12th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’85, pp. 245–254, New York, NY, USA,
1985. Association for Computing Machinery. ISBN 0897911660. doi: 10.1145/325334.325242. URL
https://doi.org/10.1145/325334.325242.

Justin S Smith, Olexandr Isayev, and Adrian E Roitberg. Ani-1: an extensible neural network potential with
dft accuracy at force field computational cost. Chemical science, 8(4):3192–3203, 2017.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In International Confer-
ence on Learning Representations (ICLR), 2021. URL https://openreview.net/forum?id=St1giarCHLP.

Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou, and Wei-Ying
Ma. Equivariant flow matching with hybrid probability transport for 3d molecule generation. In Adv. in
Neural Information Processing Systems (NIPS), 2023.

Hai-Chen Wang, Silvana Botti, and Miguel AL Marques. Predicting stable crystalline compounds using
chemical similarity. npj Computational Materials, 7(1):12, 2021.

Yue Wang and Justin M. Solomon. Deep closest point: Learning representations for point cloud registration. In
International Conference on Computer Vision (ICCV), 2019. URL https://arxiv.org/abs/1905.03304.

Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E. Eisenach,
Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M. Wicky, Nikita Hanikel,
Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham Venkatesh, Isaac Sappington,
Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile Mathieu, Sergey Ovchinnikov, Regina
Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung Baek, and David Baker. De novo design of protein
structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

15

https://arxiv.org/abs/2007.10961
http://dx.doi.org/10.1088/0953-8984/23/5/053201
https://proceedings.mlr.press/v139/schutt21a.html
https://doi.org/10.1145/325334.325242
https://openreview.net/forum?id=St1giarCHLP
https://arxiv.org/abs/1905.03304

Under review as submission to TMLR

Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. Physical review letters, 120(14):145301, 2018.

Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crystal diffusion
variational autoencoder for periodic material generation. In International Conference on Learning Repre-
sentations (ICLR), 2022. URL https://arxiv.org/abs/2110.06197.

Yihong Xu, Aljosa Osep, Yutong Ban, Radu Horaud, Laura Leal-Taixé, and Xavier Alameda-Pineda. How to
train your deep multi-object tracker. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6787–6796, 2020.

Keqiang Yan, Yi Liu, Yuchao Lin, and Shuiwang Ji. Periodic graph transformers for crystal material
property prediction. In Adv. in Neural Information Processing Systems (NeurIPS), 2022. URL https:
//arxiv.org/abs/2209.11807.

Keqiang Yan, Cong Fu, Xiaofeng Qian, Xiaoning Qian, and Shuiwang Ji. Complete and efficient graph trans-
formers for crystal material property prediction. In International Conference on Learning Representations
(ICLR), 2024a. URL https://arxiv.org/abs/2403.11857.

Keqiang Yan, Xiner Li, Hongyi Ling, Kenna Ashen, Carl Edwards, Raymundo Arróyave, Marinka Zitnik,
Heng Ji, Xiaofeng Qian, Xiaoning Qian, et al. Invariant tokenization of crystalline materials for language
model enabled generation. In Adv. in Neural Information Processing Systems (NeurIPS), 2024b.

Yi Yang, Rithwik Tom, Jose A. G. L. Wui, Jonathan E. Moussa, and Noa Marom. Genarris 3.0: Generating
close-packed molecular crystal structures with rigid press. Journal of Chemical Theory and Computation,
21(21):11318–11332, 2025. doi: 10.1021/acs.jctc.5c01080. URL https://doi.org/10.1021/acs.jctc.
5c01080. PMID: 41166606.

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah Lewis,
Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast protein backbone
generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023a.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay, and
Tommi Jaakkola. SE(3) diffusion model with application to protein backbone generation. In International
Conference on Machine Learning (ICML), 2023b.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan
Liu. Do transformers really perform badly for graph representation? In Adv. in Neural Information
Processing Systems (NeurIPS), 2021.

16

https://arxiv.org/abs/2110.06197
https://arxiv.org/abs/2209.11807
https://arxiv.org/abs/2209.11807
https://arxiv.org/abs/2403.11857
https://doi.org/10.1021/acs.jctc.5c01080
https://doi.org/10.1021/acs.jctc.5c01080

Under review as submission to TMLR

Appendix

We release an anonymous version of the code available at https://anonymous.4open.science/r/
SinkFast-CD4C/.

A RMSD and Rigid Motions

A.1 Notations

Throughout this section we will be generally dealing with 3× 3 matrices and 3-vectors. Therefore, for linear
algebra operations we will stick to the following notation. Bold upper case letters (i.e., A) will denote
matrices, normal weight lower case letters (i.e., c) will denote scalars, and we will also use an arrow notation
for 3-vectors, such as v⃗. Most of the information reported here can be found in the original papers that
deal with rigid-body measures for rigid molecules by Popov & Grudinin (2014); Pagès et al. (2018); Pagès &
Grudinin (2018).

A.2 Rigid-body arithmetic

As we introduced in the main text, a rigid spatial transformation operator T = (⃗t, Q) is composed of a 3D
translation t⃗ ∈ R3 and a 3D rigid rotation quaternion Q = [s, q⃗] ∈ SO(3), which can also be represented with
a rotation matrix R, such that T = (⃗t, R). It is useful to introduce a composition of spatial transformation
operators T2 ◦ T1, where the operator T1 on the right is applied first, and an inverse T −1. The composition
will be given as

T2 ◦ T1 = (⃗t2 + R2t⃗1, R2R1) ≡ (⃗t2 + Q2 · t⃗1, Q2 ·Q1), (A.1)

where we define the quternion product in the next section. The inverse will be:

T −1 = (−R−1t⃗, R−1) ≡ (−RT t⃗, RT) ≡ (−Q−1 · t⃗, Q−1), (A.2)

with an inverse quternion defined below.

A.3 Quaternion arithmetic

It is very convenient to express three-dimensional rotations using quaternion arithmetic. Thus, we will give a
brief summary of it here. We consider a quaternion Q as a combination of a scalar s with a 3-component
vector q⃗ = {qx, qy, qz}, Q = [s, q⃗]. Quaternion algebra defines multiplication, division, inversion and norm,
among other operations. The product of two quaternions Q1 = [s1, q⃗1] and Q2 = [s2, q⃗2] is a quaternion and
can be expressed through a combination of scalar and vector products:

Q1 ·Q2 ≡ [s1, q⃗1] · [s2, q⃗2] = [s1s2 − (q⃗1 · q⃗2), s1q⃗2 + s2q⃗1 + (q⃗1 × q⃗2)] . (A.3)

The squared norm of a quaternion Q is given as |Q|2 = s2 + q⃗ · q⃗, and a unit quaternion Q̂ is a quaternion
with its norm equal to 1. An inverse quaternion Q−1 is given as Q−1 = [s,−q⃗]/|Q|2. A vector v⃗ can be
treated as a quaternion with a zero scalar component, v⃗ ≡ [0, v⃗]. Then, a unit quaternion Q̂ can be used to
rotate vector v⃗ to a new position v⃗′ as follows

[0, v⃗′] = Q̂ [0, v⃗] Q̂−1 =
[
0, (s2 − q⃗2)v⃗ + 2s(q⃗ × v⃗) + 2(q⃗ · v⃗)q⃗

]
= [0, v⃗ + 2q⃗ × (q⃗ × v⃗ + sv⃗)] . (A.4)

Equivalently, the same rotation can be represented with a rotation matrix R, such that v⃗′ = Rv⃗, where R
can be expressed through the components of the quaternion Q̂ as

R =

 s2 + q2
x − q2

y − q2
z 2qxqy − 2sqz 2qxqz + 2sqy

2qxqy + 2sqz s2 − q2
x + q2

y − q2
z 2qyqz − 2sqx

2qxqz − 2sqy 2qyqz + 2sqx s2 − q2
x − q2

y + q2
z

 . (A.5)

17

https://anonymous.4open.science/r/SinkFast-CD4C/
https://anonymous.4open.science/r/SinkFast-CD4C/

Under review as submission to TMLR

A unit quaternion Q̂ corresponding to a rotation by an angle α around a unit axis u⃗ is given as Q̂ =
[cos α

2 , u⃗ sin α
2], and its inverse is Q̂−1 = [cos α

2 ,−u⃗ sin α
2]. Finally, N sequential rotations around different

unit axes defined by unit quaternions {Q̂i}N result in a new vector v⃗′ according to

[0, v⃗′] = Q̂N Q̂N−1...Q̂2Q̂1 [0, v⃗] Q̂−1
1 Q̂−1

2 ...Q̂−1
N−1Q̂−1

N . (A.6)

A.4 Root mean square deviation

The root mean square deviation (RMSD) is one of the most widely used similarity criteria in chemistry,
structural biology, bioinformatics, and material science. We will stick to this measure here, as it is very
powerful, easy to understand and also because it can be computed very efficiently. For our particular needs
we will use the definition of RMSD between two ordered sets of points, where each point has an equal
contribution to the overall RMSD loss. More precisely, given a set of N points A = {a⃗i}N and B = {⃗bi}N

with associated weights w = {wi}N , the RMSD between them is defined as

RMSD(A, B)2 = 1
W

∑
1≤i≤N

wi

∣∣∣⃗ai − b⃗i

∣∣∣2
, (A.7)

where W =
∑

i wi. Here, {wi}N are statistical weights that may emphasize the importance of a certain part
of the molecular structure, for example in case of a protein, the backbone or Cα atoms. These weights can
also be equal to atomic masses (in this case W equals to the total mass of the molecule) or may be set to
unity (in this case W = N). In this work, we set the weights to unity, thus

RMSD(A, B)2 = 1
N

∑
1≤i≤N

∣∣∣⃗ai − b⃗i

∣∣∣2
, (A.8)

since it makes the following equations simpler to read and to use in practice. However, we should keep in
mind that the weights can be easily added to all the corresponding equations.

A.5 Rigid body motion described with quaternions

Let R be a rotation matrix and t⃗ a translation vector applied to a molecule with N atoms at positions
A = {a⃗i}N with a⃗i = {xi, yi, zi}T , such that the new positions A′ = {a⃗′

i}N are given as a⃗′
i = Ra⃗i + t⃗. Then,

the weighted RMSD between A and A′ will be given as

RMSD2(A, A′) = 1
W

∑
i

wi

∣∣⃗ai −Ra⃗i − t⃗
∣∣2

. (A.9)

We can rewrite the previous expression using quaternion representation of vectors a⃗i and t⃗ as

RMSD2 = 1
W

∑
i

wi

∣∣∣[0, a⃗i]− Q̂[0, a⃗i]Q̂−1 −
[
0, t⃗

]∣∣∣2
. (A.10)

Here, the unit quaternion Q̂ corresponds to the rotation matrix R. Since the norm of a quaternion does not
change if we multiply it by a unit quaternion, we may right-multiply the kernel of the previous expression by
Q̂ to obtain

RMSD2 = 1
W

∑
i

wi

∣∣∣[0, a⃗i]Q̂− Q̂[0, ai]− [0, t⃗]Q̂
∣∣∣2

. (A.11)

Using the scalar–vector representation of a quaternion, Q̂ = [s, q⃗], we rewrite the previous RMSD expression
as

RMSD2 = 1
W

∑
i

wi

[
−q⃗ · t⃗,−st⃗ + (2a⃗i − t⃗)× q⃗

]2
. (A.12)

18

Under review as submission to TMLR

Performing scalar and vector products in Eq. (A.12), we obtain

RMSD2 = 1
W

∑
i

wi

(
[qxtx + qyty + qztz]2

+ [−stx + qy(2zi − tz)− qz(2yi − ty)]2 (A.13)
+ [−sty + qz(2xi − tx)− qx(2zi − tz)]2

+ [−stz + qx(2yi − ty)− qy(2xi − tx)]2
)

.

Grouping terms in Eq. (A.13) that depend on atomic positions together, we obtain

RMSD2 = t2
x + t2

y + t2
z + 4

W

∑
i

wi{q2
x(y2

i + z2
i) + q2

y(x2
i + z2

i) + q2
z(x2

i + y2
i)

− 2qxqyxiyi − 2qxqzxizi − 2qyqzziyi} (A.14)

+ 4
W

{
qxqztz + qxqyty − q2

ztx − q2
ytx + sqzty − sqytz

} ∑
i

wixi

+ 4
W

{
qyqztz + qxqytx − q2

xty − q2
zty + sqxtz − sqztx

} ∑
i

wiyi

+ 4
W

{
qyqzty + qxqztx − q2

xtz − q2
ytz + sqytx − sqxty

} ∑
i

wizi.

Introducing the inertia tensor I, the rotation matrix R, the center of mass vector c⃗, and the 3× 3 identity
matrix E3, we may simplify the previous expression to

RMSD2 = t⃗2 + 4
W

q⃗T Iq⃗ + 2t⃗T (R −E3) c⃗, (A.15)

where c⃗ = 1
W {

∑
wixi,

∑
wiyi,

∑
wizi}T , rotation matrix R corresponds to the rotation with the unit

quaternion Q̂ according to Eq. (A.5), and the inertia tensor I is given as

I =

 ∑
wi(y2

i + z2
i) −

∑
wixiyi −

∑
wixizi

−
∑

wixiyi

∑
wi(x2

i + z2
i) −

∑
wiyizi

−
∑

wixizi −
∑

wiyizi

∑
wi(x2

i + y2
i)

 . (A.16)

The RMSD expression (A.15) consists of three parts, the pure translational contribution t⃗2, the pure rotational
contribution 4

W q⃗T Iq⃗, and the cross term 2t⃗T (R −E3) c⃗. In this equation, only two variables depend on
the atomic positions {a⃗i}N , the inertia tensor I, and the center of mass vector c⃗. These depend only on
the reference structure of a rigid molecule, and can be precomputed. Moreover, it is practical to choose a
reference frame centred on the molecular center of mass. In this frame, the cross term vanishes and the above
RMSD equation simplifies to

RMSD2 = t⃗2 + 4
W

q⃗T Iq⃗. (A.17)

However, we must bring reader’s attention that the inertia tensor must be specifically computed in the chosen
reference frame.

A.6 SE(3) flow matching

In the Euclidean space Conditional Flow Matching (Liu et al., 2023; Lipman et al., 2023; Albergo &
Vanden-Eijnden, 2023) is a simple scalable method to train generative models. The basic principle is to
choose a family X = {(Xt)t∈[0,1]} of interpolating paths between any source distribution P0 and the target
distribution P1. The paths should be differentiable and have their marginal laws at both ends t = 0 and t = 1
match the source and target distributions: L(X0) = P0 and L(X1) = P1, respectively. The flow matching

19

Under review as submission to TMLR

procedure consists in training a neural network u to match the conditional velocity field vX induced by these
paths:

vX(t, x) = E
[
Ẋt|Xt = x

]
. (A.18)

In practice, this family path is created with linear interpolations (LERP) between samples X0, X1 from
P0,P1:

Xt = (1− t)X0 + tX1 = LERP(X0, X1, t). (A.19)

At inference time, samples are generated by solving the forward ODE induced by the velocity field, by Euler
discretization for example.

In SO(3) While this framework was originally designed for Rd, there exists an extension to SO(3) (Chen &
Lipman, 2024). Indeed, by representing rotations with unit quaternions, there is a natural equivalent to linear
interpolation, called Spherical Linear Interpolation (SLERP) (Shoemake, 1985). This creates differentiable
interpolation paths (qt) between source and target quaternions q0, q1:

qt = SLERP(q0, q1; t) = q0(q1
0q1)t. (A.20)

Combining LERP and SLERP, it is possible to linearly interpolate between two rigid-body transformations
T0 = (r⃗0, q0) and T1 = (r⃗1, q1) as Tt = (LERP(r⃗0, r⃗1, t), SLERP(q0, q1; t)).

A.7 Illustration of the proposed physically-grounded losses

We illustrate in Figure A.1 how the different proposed losses evolve when the prediction is similar to the
ground-truth up to a certain rigid-body transformation, either rotation, translation or permutation. In each
of these cases, the predicted structure is correct chemically and physically and the loss should thus be 0.
This figure helps us illustrate 3 main motivations. First, the difference between the parameter dependent
LML and the physically meaningful LRMSD. Second, the geometric loss is invariant to SE(3) transformations
of the global picture but is not invariant to the index permutation of the arbitrarily chosen ordering of
identical molecules. Third, this invariance to index permutation is enabled through the use of the linear sum
assignment problem as detailed in section 4.1.

B Metrics

Theorem B.1. PM2
atom ≤ 2RMSD2

atom

Proof. Let us first define two metrics PMatom and RMSDatom as

PM2
atom = 1

n2
atom

∑
i∈natom

∑
j∈natom

(||x⃗i,pred − x⃗j,pred||−||x⃗i,gt − x⃗j,gt||)2, (B.1)

RMSD2
atom = 1

natom

∑
i∈natom

||x⃗i,pred − x⃗i,gt||2. (B.2)

20

Under review as submission to TMLR

<latexit sha1_base64="Vp8ZIA/zOIq06X+gu5ch7aIs/Tk=">AAAC53ichZHLbtNAFIbH5lbMLS1LNiMiJMQislMrzQapUpFg0UrlkraiDtF4cpKOOhdr5hgRWX4GdogtL8Set2HsmkVQCkea0a//fJ7fcyYvpHAYx7+C8MbNW7fvbN2N7t1/8PBRb3vnxJnScphwI409y5kDKTRMUKCEs8ICU7mE0/zyoOmffgbrhNEfcFXAVLGlFgvBGXpr1vuZKYYXnMnqsJ5VGcIXrI4O65q+pEmUZdGG9ruj969aYHgN8BqMaoG4BTYyTcan6sX/czro31kdFEezXj8epMNkPE5pI/biYdyK0Wh3lyaDuK0+6ep4th0E2dzwUoFGLplzFbMouIQ6ykoHBeOXbAmVEtyaZn5r9rmXmilw06p9iZo+886cLoz1SyNt3bWDmHJupXJPNndxf/cac1PvvMTFeFoJXZQIml8FLUpJ0dDmt+hcWOAoV14wboW/AuUXzDKO/vHXUsAJjf4Av8PSMumaof2ZDL1enAwHyWiQvk37++NufFvkCXlKnpOE7JF98oYckwnhQRp8DHgwD0X4NfwWfr9Cw6D75jFZq/DHb9XK6KY=</latexit> LML = 1

LRMSD = 2

LGeom = 0

L⇤
ML = 1

L⇤
RMSD = 2

L⇤
Geom = 0

1

2

z

xy

1

2

z

xy

1

2

z

xy

2

1

z

xy

Ground Truth Prediction

Rotation = 180° Translation =

<latexit sha1_base64="NSHdYzU+W/NxG5AbRsZ4PeHH2DY=">AAACLHicdVDLTgIxFG19O75Al24aiYluyAwQYOlj41ITARMhpFPuDA2dzqTtmBCCv+JWN27c+xVujGHrd9gBXWD0Jm1OzrnP4yeCa+O673hhcWl5ZXVt3dnY3NreyeV3mzpOFYMGi0WsbnyqQXAJDcONgJtEAY18AS1/cJ7prTtQmsfy2gwT6EQ0lDzgjBpLdXN7bZ+HoTgizr0zg8dON1dwi5WSV69XSAZqbsmdgmq1XCZe0Z1G4eTUfZnkX+VlN49xuxezNAJpmKBaj6gynAkYO+1UQ0LZgIYwijhTcbbEHH1roaQR6M5oes6YHFqmR4JY2ScNmbJzjWik9TDybWZETV//1jLyL+02NUG9M+IySQ1INhsUpIKYmGRrkR5XwIwYWkCZ4vYEwvpUUWasg3NTQHNpbAP7Q6io0JlpP86Q/0GzVPSqxcqVde8MzWIN7aMDdIQ8VEMn6AJdogZiaIge0CN6ws/4DX/gySx1AX/X7KG5wJ9fvgSqHA==</latexit>✓ ◆1
1
1

Permutation : 1→2
2→1

<latexit sha1_base64="gDXREmmlfsNcqdsjNZT12S0dOtk=">AAAC53ichVFNaxsxENVuvxL3y0mPuYiYQunBrJ3F8SUQSCA9JJCkdRKadY1WHjsi+lik2VCz7G/orfTaP9R7/020tlvq4CYDEo83T/M0M2kmhcMo+h2Ejx4/efpsZbX2/MXLV6/ra+tnzuSWQ48baexFyhxIoaGHAiVcZBaYSiWcp9d7Vf78BqwTRn/CSQZ9xcZajARn6KlB/VeiGF5xJovDclAkCF+xODosS7pDo1qS1JakT48+7t8rOACj/hEs1VQeX4r3D/s8IJp5/RUN6o2oGbdb3W5MK7AdtaMp6HS2tmirGU2jQeZxPFgLgmRoeK5AI5fMuYJZFFxCWUtyBxnj12wMhRLcmmp+C/Slh5opcP1iuomSvvXMkI6M9UcjnbILhZhybqJSr6x6cXdzFbksd5njqNsvhM5yBM1nRqNcUjS0+hYdCgsc5cQDxq3wLVB+xSzj6Je/4AJOaPQF/A1jy6SrhvZnMvT/4KzdbHWa8Unc2O3Ox7dCNsgmeUdaZJvskg/kmPQID+Lgc8CDYSjCb+H38MdMGgbzN2/IQoQ/bwHJJOig</latexit> LML = 0

LRMSD = 0

LGeom = 0

L⇤
ML = 0

L⇤
RMSD = 0

L⇤
Geom = 0

<latexit sha1_base64="l8N9Fng6c5PXDt6q0iScnSNY8gQ=">AAAC53ichVFLa9tAEF6pr1R9Oemxl6WmUHowsi0cXwKBFJpDAunDSWjkmtV67CzZh9gdhRqh39Bb6LV/qPf+m65k9+DiNgO7fHzz7Xw7M1kuhcM4/hWEd+7eu/9g62H06PGTp89a2zunzhSWw4gbaex5xhxIoWGEAiWc5xaYyiScZVcHdf7sGqwTRn/CRQ5jxeZazARn6KlJ62eqGF5yJsujalKmCF+xPD6qKrpH+1GaRhvSH44/vv2v4B0Y1QjiRrBRU3t8Kd/c7nOLaOm1EsXRpNWOO0mvOxwmtAa7cS9uwGDQ79NuJ26iTVZxMtkOgnRqeKFAI5fMuZJZFFxCFaWFg5zxKzaHUgluTT2/NfrCQ80UuHHZbKKirzwzpTNj/dFIG3atEFPOLVTmlXUv7u9cTW7KXRQ4G45LofMCQfOl0ayQFA2tv0WnwgJHufCAcSt8C5RfMss4+uWvuYATGn0Bf8PcMunqof2ZDP03OO11uoNO8j5p7w9X49siL8hL8pp0yS7ZJ4fkhIwID5Lgc8CDaSjCb+FN+H0pDYPVm+dkLcIfvwHituis</latexit> LML = 3

LRMSD = 3

LGeom = 0

L⇤
ML = 3

L⇤
RMSD = 3

L⇤
Geom = 0

<latexit sha1_base64="guswpYWXvbCN9TXE6gCSKcPmm2o=">AAAC53ichZHLahsxFIY101vi3pxmmY2IKZQuzNiZ2rMpBFpIFgkkbZ2EZlyjkY8dEV0GSVNqhnmG7EK2faHu8zaRxm7BxWkPSPz85xv9o6Ms58zYKLoNwgcPHz1+srbeePrs+YuXzY1XJ0YVmsKAKq70WUYMcCZhYJnlcJZrICLjcJpdfvD90++gDVPyi53lMBRkKtmEUWKdNWr+SgWxF5Tw8qAalamFH7Y8PKgq/B6/a6RpY0X70+HnjzXQvwfYAyVqIKmBlYzP+Fa+9VT0z5z/QPOsP9Co2YracbeTJDH2oh91o1r0ejs7uNOO6mqhRR2NNoIgHStaCJCWcmJMSbRllEPVSAsDOaGXZAqlYFQrP78l+9xJSQSYYVm/RIVfO2eMJ0q7JS2u3aWDiDBmJjJH+ruYv3veXNU7L+wkGZZM5oUFSedBk4Jjq7D/LTxmGqjlMycI1cxdAdMLogm17vGXUsAwad0BboepJtz4of2eDL5fnHTbnV47Po5bu8lifGtoC22jN6iD+mgX7aMjNEA0iIOvAQ3GIQuvwuvwZo6GweKbTbRU4c879jnotA==</latexit> LML = 5

LRMSD = 7

LGeom = 8

L⇤
ML = 0

L⇤
RMSD = 0

L⇤
Geom = 0

Figure A.1: Illustration how the proposed physically-grounded losses evolve under some transformations on a
toy example. The numbers are arbitrary and not physically related.

We also define x̄pred = 1
natom

∑
i x⃗i,pred, x̄gt = 1

natom

∑
i x⃗i,gt, and use · as the scalar product. Let us write

down the following expression,

PM2
atom − 2RMSD2

atom = 1
n2

atom

∑
i∈natom

∑
j∈natom

(
4x⃗i,pred · x⃗i,gt − 2(x⃗i,pred · x⃗j,pred + x⃗i,gt · x⃗j,gt

+ ||x⃗i,pred − x⃗j,pred||||x⃗i,gt − x⃗j,gt||)
)

= 4(xpred · xgt)− 2x̄pred · x̄pred − 2x̄gt · x̄gt −
2

n2
atom

∑
i∈natom

∑
j∈natom

||x⃗i,pred − x⃗j,pred||||x⃗i,gt − x⃗j,gt|| (B.3)

By Cauchy-Schwarz enquality (or maximizing the cosine of an angle between two vectors), we obtain

2
n2

atom

∑
i∈natom

∑
j∈natom

||x⃗i,pred − x⃗j,pred||||x⃗i,gt − x⃗j,gt||≥

2
n2

atom

∑
i∈natom

∑
j∈natom

(x⃗i,pred − x⃗j,pred) · (x⃗i,gt − x⃗j,gt),
(B.4)

21

Under review as submission to TMLR

which gives

PM2
atom − 2RMSD2

atom ≤ −2(̄⃗xpred −¯⃗xgt)2, (B.5)

thus,

PM2
atom − 2RMSD2

atom ≤ 0. (B.6)

Theorem B.2. PM metric is SE3-invariant.

Proof. Let us again consider

PM2(xpred, xgt) = 1
n2

atom

∑
i∈natom

∑
j∈natom

(||x⃗i,pred − x⃗j,pred||−||x⃗i,gt − x⃗j,gt||)2. (B.7)

This quantity is invariant up to any rigid transformation T = (R, t⃗) of one of its inputs. Indeed,

PM2
atom(T ◦ xpred, x⃗gt) = 1

n2
atom

∑
i∈natom

∑
j∈natom

(||T ◦ x⃗i,pred − T ◦ x⃗j,pred||−||x⃗i,gt − x⃗j,gt||)2

= 1
n2

atom

∑
i∈natom

∑
j∈natom

(||Rx⃗i,pred − t⃗−Rx⃗j,pred + t⃗||−||x⃗i,gt − x⃗j,gt||)2

= 1
n2

atom

∑
i∈natom

∑
j∈natom

(||R(x⃗i,pred − x⃗j,pred)||−||x⃗i,gt − x⃗j,gt||)2

= 1
n2

atom

∑
i∈natom

∑
j∈natom

(||x⃗i,pred − x⃗j,pred||−||x⃗i,gt − x⃗j,gt||)2

= PM2
atom(xpred, xgt)

(B.8)

Theorem B.3. Geometric loss is SE3-invariant.

Proof. We consider:

LGeom (Tpred, Tgt) = 1
M − 1

M−1∑
i=1
LRMSD(T −1

M,pred ◦ Ti,pred, T −1
M,gt ◦ Ti,gt). (B.9)

This quantity is invariant up to any transformation Tnoise of one of its inputs:

LGeom (Tnoise ◦ Tpred, Tgt) = 1
M − 1

M−1∑
i=1
LRMSD

(
(Tnoise ◦ TM,pred)−1 ◦ Tnoise ◦ Ti,pred,

T −1
M,gt ◦ Ti,gt

)
= 1

M − 1

M−1∑
i=1
LRMSD

(
T −1

M,pred ◦ T
−1

noise ◦ Tnoise ◦ Ti,pred,

T −1
M,gt ◦ Ti,gt

)
= 1

M − 1

M−1∑
i=1
LRMSD

(
T −1

M,pred ◦ Ti,pred, T −1
M,gt ◦ Ti,gt

)
= LGeom (Tpred, Tgt)

22

Under review as submission to TMLR

C Method and implementation

C.1 Extension to the inversion dataset

We argue that our method can also be applied to the inversion version of the dataset. Indeed this version,
defined in Liu et al. (2024b), presents half of the 17 molecules in each assembly as the left-handed and right-
handed geometries of a chiral or achiral molecule. The latter molecules can interconvert during crystallization
and thus, our permutation-invariant approach can be applied on this dataset. In the case of chiral molecules
which can not interconvert during crystallization, the invariance to permutation can be adapted to the 2
subsets of left-handed and right handed geometries individually.

C.2 AssembleFlow atom-level model

We use the Atom-level implemented in AssembleFlow and which can be described in Algorithm C.1. It is
composed of a PaiNN embedding layer to encode each molecular structure individually followed by N layers
of atom-to-molecules attention message passing. Each molecule’s transformation prediction is then obtained
by aggregating the resulting atomic embeddings per molecule and passed through a projection head.

C.3 Implementation details

C.3.1 Hyperparameters and number of parameters

Table C.1 lists the hyperparameters used during training along with the number of parameters for the model
and the memory usage.

C.3.2 Licenses and versions

The common environment packages are released with the code through a conda environment. We also report
in Table C.2 the versions and licenses of the main packages used.

D Ablation studies

D.1 Differential assignment with direct regression

In Table D.1, we list the experiments of training or not with differential assignment in direct regression with
the AssembleFlow atom-level model. We want to draw the attention to the PM∗ methods and the great
added value of using our assignment method regardless of the loss being used.

D.2 Differential assignment with flow matching

Table D.2 lists the experiments of switching on and off the expensive flow matching framework (table 3)
along with using the differential assignment. The added value of flow matching when using the differential
assignment loss is not very clear in the current framework. As it does not always significantly help the
method, we suspect a need to further adapt the assignment method to the iterative flow matching scheme.
However, we would like to point out two things. Firstly, it greatly improves the performance of the relative
geometric method on the absolute metrics while decreasing it on the relative metric. Secondly, it enable to
reach the overall best performance in the PM∗

center metric.

We report in Table D.3 (resp. D.4) a clearer ablation study conducted with LRMSD (resp. LGeom) of training
the AssembleFlow backbone with or without flow matching and permutation-invariant loss.

D.3 Using linear sum assignment during training against differentiable assignment

We report in Table D.5 the experiment of using the linear sum assignment (exact) during training against
the differential assignment (relaxed). On the one hand, using the exact solver during training enables

23

Under review as submission to TMLR

Algorithm C.1 Atom-level model.
def AtomModel({ai} : atoms, t : time, {P⃗t

i} : positions, Nlayer = 5, Nconv = 5, c = 128)
1: t = Linear(SiLU(Linear(time_embed(t)))) [c]
2: {ht

i} = PaiNN({ai}, {P⃗t
i}) + Linear(SiLU(t)) [Natom, c]

3: {st
i} = ScatterMeanper mol({ht

i}) [Nmol, c]
4: {X⃗t

i} = ScatterMeanper mol({P⃗t
i}) [Nmol, 3]

5: {et
ij} = RadialGraph({P⃗t

i}, {X⃗t
i}) Atom to Molecules edges

6: for all {i, j}/et
ij = 1 :

7: ∆t
ij = P⃗t

i − X⃗t
j/∥P⃗t

i − X⃗t
j∥

8: χt
ij = P⃗t

i × X⃗t
j/∥P⃗t

i × X⃗t
j∥

9: Λt
ij = ∆t

ij × χt
ij

10: Baset
ij = concat(∆t

ij , χt
ij , Λt

ij) [Edges, 3, 3]
11: Et

i = MLP(GaussianFourierEmbed(Baset
ij · P⃗t

i)) [Edges, c]
12: Et

j = MLP(GaussianFourierEmbed(Baset
ij · X⃗t

j)) [Edges, c]
13: {zt

ij} = MLP(concat(Et
i, Et

j)) [Edges, c]
14:end for
15:Rt

i = 0 and St
i = 0

16:for all l ∈ [1, ..., Nlayer]:
17: for all f ∈ [1, ..., Nconv]:
18: {h̃t

i} = GATf
conv({ht

i}, {st
j}, {zt

ij})
18: {ht

i} = {ht
i}+ LayerNorm({h̃t

i})
19: {h̃t

i} = FFNf ({ht
i})

20: {ht
i} = {ht

i}+ LayerNorm({h̃t

i}) + Linear(SiLU(t))
21: if l < Nconv :
22: {ht

i} = SiLU({ht
i})

23: end if
24: end for
25: {st

i} = ScatterMeanper mol({ht
i})

26: Rt
i ← Rt

i + ScatterMeanper mol

(
Meanj∈N (i){MLP(concat(ht

i + st
j , zt

ij)) · Baset
ij}

)
[Nmol, 3]

27: St
i ← St

i + ScatterMeanper mol

(
Meanj∈N (i){Proj

(
Linear

(
MLP(concat(ht

i + st
j , zt

ij)) · Baset
ij

))
}
)

[Nmol, 4]
28: end for
29: return {St

i ,Rt
i}

24

Under review as submission to TMLR

Table C.1: Hyperparameters used in the model.

Model part Function Parameters

Training Epochs {500}
Batch size {8}
Loss {LM: {alpha: 10}}

{RMSD: ∅ }
{Geometric: ∅ }

Assignment {None: ∅}
{’Exact’: ∅}

{’Differentiable’:
{reg=5.10−2.median_score}}

Optimizer Name {Adam}
Learning rate {10−4}
Weight decay {0}
Scheduler {’CosineAnnealingLR’}

Molecular Encoder cutoff {5}
(PaiNN) embedding dim {128}

number of interactions {3}
number of rbf {20}
scatter {’mean’}
gamma {3.25}

Backbone emb_dim {128}
(AssembleFlow Atom) hidden dim {128}

cutoff {10}
cluster cutoff {50}
number of timesteps {1, 50}
scatter {’mean’}
number of Gaussians {20}
number of heads {8}
number of layers {5}
number of convolutions {5}
gamma {3.25}

Total number of parameters: 4 292 718

Total memory usage: 38.9 GB

Table C.2: Versions and licenses.

Package Version License

COD-Cluster17 git commit MIT
AssembleFlow Model git commit MIT
POT 0.9.5 MIT
RMSD - CeCILL

25

https://huggingface.co/datasets/chao1224/CrystalFlow/commit/bc9d9b091e63e8c355b2420439804475dcfd9c56
https://github.com/chao1224/AssembleFlow/commit/92af6cd8d7d1884a03328ec902d39d970d2ab5a6

Under review as submission to TMLR

Table D.1: Ablation study of using differentiable assignment (Diff. assign.) losses during training on
COD-Cluster17 with direct regression.

Test Loss in Å↓ Packing matching in Å↓

Loss Diff.
assign. L∗

RMSD L∗
Geom PM∗

center PM∗
atom PMcenter PMatom

Dataset: COD-Cluster17-5K

LML 9.64±0.21 11.43±0.08 5.62±0.31 6.68±0.24 6.97±0.23 7.62±0.18
LRMSD 9.64±0.03 11.24±0.15 5.57±0.19 6.67±0.07 6.93±0.12 7.61±0.02
LGeom 10.10±0.14 10.05±0.11 8.44±0.43 8.37±0.26 9.05±0.37 8.74±0.22

L∗
ML ✓ 8.69±0.06 12.16±0.12 3.60±0.04 5.54±0.04 5.80±0.03 6.96±0.03
L∗

RMSD ✓ 8.73±0.07 12.05±0.15 3.77±0.12 5.67±0.08 5.85±0.05 6.98±0.05
L∗

Geom ✓ 9.32±0.06 8.78±0.05 5.55±0.15 6.54±0.07 6.92±0.07 7.46±0.02

Dataset: COD-Cluster17-All

LML 11.67±0.07 11.33±0.05 12.94±0.16 10.47±0.03 13.03±0.15 10.47±0.02
LRMSD 11.58±0.04 11.20±0.12 12.98±0.13 10.44±0.01 13.07±0.12 10.43±0.01
LGeom 11.90±0.08 11.38±0.09 13.62±0.07 10.52±0.01 13.66±0.06 10.49±0.01

L∗
ML ✓ 8.65±0.02 12.10±0.10 3.47±0.04 5.51±0.02 5.80±0.00 7.00±0.01
L∗

RMSD ✓ 8.70±0.03 12.16±0.08 3.41±0.04 5.54±0.01 5.80±0.00 7.00±0.01
L∗

Geom ✓ 9.35±0.00 8.71±0.03 5.43±0.10 6.52±0.05 6.84±0.06 7.45±0.02

Table D.2: Ablation study of using flow matching in addition to differentiable assignment losses during
training on COD-Cluster17.

Test Loss in Å↓ Packing matching in Å↓

Loss Flow
Matching L∗

RMSD L∗
Geom PM∗

center PM∗
atom PMcenter PMatom

Dataset: COD-Cluster17-5K

L∗
ML 8.69±0.06 12.16±0.12 3.60±0.04 5.54±0.04 5.80±0.03 6.96±0.03
L∗

RMSD 8.73±0.07 12.05±0.15 3.77±0.12 5.67±0.08 5.85±0.05 6.98±0.05
L∗

Geom 9.32±0.06 8.78±0.05 5.55±0.15 6.54±0.07 6.92±0.07 7.46±0.02

L∗
ML ✓ 9.31±0.25 13.54±0.50 3.48±0.19 5.60±0.14 6.12±0.23 7.29±0.21
L∗

RMSD ✓ 9.53±0.54 13.71±0.40 3.43±0.20 5.56±0.14 6.12±0.19 7.28±0.17
L∗

Geom ✓ 9.09±0.09 10.48±0.18 3.72±0.11 5.73±0.04 6.04±0.10 7.19±0.05

Dataset: COD-Cluster17-All

L∗
ML 8.65±0.02 12.10±0.10 3.47±0.04 5.51±0.02 5.80±0.00 7.00±0.01
L∗

RMSD 8.70±0.03 12.16±0.08 3.41±0.04 5.54±0.01 5.80±0.00 7.00±0.01
L∗

Geom 9.35±0.00 8.71±0.03 5.43±0.10 6.52±0.05 6.84±0.06 7.45±0.02

L∗
ML ✓ 9.37±0.09 13.69±0.21 3.42±0.12 5.63±0.07 6.15±0.12 7.36±0.09
L∗

RMSD ✓ 9.51±0.38 13.42±0.22 3.29±0.04 5.53±0.04 6.01±0.06 7.23±0.07
L∗

Geom ✓ 9.28±0.09 10.72±0.13 3.89±0.23 5.88±0.12 6.27±0.17 7.40±0.12

26

Under review as submission to TMLR

Table D.3: Ablation study of using flow matching and differentiable assignment loss during training on
COD-Cluster17-All with LRMSD.

Flow
Matching

Permutation
Invariance L∗

RMSD PM∗
center PM∗

atom

11.58±0.04 12.98±0.13 10.44±0.01
✓ 9.08±0.12 3.51±0.04 5.60±0.03

✓ 8.70±0.03 3.41±0.04 5.54±0.01
✓ ✓ 9.51±0.38 3.29±0.04 5.53±0.04

Table D.4: Ablation study of using flow matching and differentiable assignment loss during training on
COD-Cluster17-All with LGeom.

Flow
Matching

Permutation
Invariance L∗

Geom PM∗
center PM∗

atom

11.38±0.09 13.62±0.07 10.52±0.01
✓ 10.77±0.13 3.78±0.09 5.76±0.05

✓ 8.71±0.03 5.43±0.10 6.52±0.05
✓ ✓ 10.72±0.13 3.89±0.23 5.88±0.12

backpropagation for each molecule in the assembly along the path leading to its assigned target, while killing
the other gradients corresponding to other paths to unassigned targets. On the other hand, the relaxed
differential version preserves the gradients to all possible paths with probability attached to each, which
enables a more diverse learning. While being suboptimal compared to the differential assignment, the added
value of using the latter is very small as shown in Table D.5. We report here the performance obtained
without tuning the regularization parameter of the Sinkhorn algorithm and exploring its influence on the
overall performance. Nonetheless we argue that this hyperparameter should should play an important role
with better-performing methods in the future. Indeed we believe that if the method learned nearly perfectly
to match a molecule to its target position, this relaxed method would diversify the search space and act as a
data augmentation method, the amount of which would be set by the regularization parameter.

Table D.5: Ablation study of using differential or exact assignment losses during training on COD-Cluster17
with direct regression.

Test Loss in Å↓ Packing matching in Å↓

Loss Assignment
type L∗

RMSD L∗
Geom PM∗

center PM∗
atom PMcenter PMatom

Dataset: COD-Cluster17-5K

L∗
ML Exact 8.70±0.06 12.24±0.14 3.64±0.12 5.56±0.08 5.81±0.04 6.96±0.04
L∗

RMSD Exact 8.72±0.07 12.19±0.05 3.65±0.05 5.61±0.03 5.81±0.02 6.96±0.04
L∗

Geom Exact 9.32±0.05 8.80±0.08 5.51±0.25 6.53±0.14 6.90±0.14 7.45±0.06

L∗
ML Diff. 8.69±0.06 12.16±0.12 3.60±0.04 5.54±0.04 5.80±0.03 6.96±0.03
L∗

RMSD Diff. 8.73±0.07 12.05±0.15 3.77±0.12 5.67±0.08 5.85±0.05 6.98±0.05
L∗

Geom Diff. 9.32±0.06 8.78±0.05 5.55±0.15 6.54±0.07 6.92±0.07 7.46±0.02

Dataset: COD-Cluster17-All

L∗
ML Exact 8.65±0.02 12.18±0.02 3.37±0.03 5.47±0.02 5.78±0.01 6.99±0.01
L∗

RMSD Exact 8.70±0.03 12.14±0.09 3.44±0.09 5.56±0.03 5.80±0.01 7.00±0.01
L∗

Geom Exact 9.35±0.03 8.71±0.03 5.40±0.07 6.51±0.05 6.84±0.05 7.46±0.03

L∗
ML Diff. 8.65±0.02 12.10±0.10 3.47±0.04 5.51±0.02 5.80±0.00 7.00±0.01
L∗

RMSD Diff. 8.70±0.03 12.16±0.08 3.41±0.04 5.54±0.01 5.80±0.00 7.00±0.01
L∗

Geom Diff. 9.35±0.00 8.71±0.03 5.43±0.10 6.52±0.05 6.84±0.06 7.45±0.02

27

Under review as submission to TMLR

D.4 Angular VS translational prediction

We report in table D.6 the decomposition of the RMSD score in both its translation L∗
R3 and rotation L∗

SO(3)
parts. Please note that L∗

RMSD
2 = L∗

R3
2 +L∗

SO(3)
2, following eq. 8. The noise baseline is computed by always

using an identity transformation as a prediction, meaning, a zero translation and an identity rotation, and
computing the RMSD between the sets Sinitial of initial positions and Sfinal of final positions. Presented
results indicate the scale of the problem and show in particular that initial orientations are better than
predicted ones. This table shows that both models mainly focus on the translation part of the problem, while
discarding rotations completely.

Table D.6: Both AssembleFlow and SinkFast RMSD performance decomposed between translation and
rotation on COD-Cluster17-5K. Baseline scores indicate the scale of the metric and are computed between
Sinitial and Sfinal as if the model always predicts identity transformations.

Test Loss in Å↓

Model Loss L∗
RMSD L∗

R3 L∗
SO(3)

Dataset: COD-Cluster17-5K

Noise (Baseline) 12.83±0.05 11.55±0.02 5.42±0.06

LML 9.53±0.09 7.60±0.09 5.65±0.06
AssembleFlow LRMSD 9.43±0.23 7.47±0.21 5.66±0.10

LGeom 9.12±0.05 7.10±0.07 5.65±0.14

L∗
ML 8.90±0.11 6.63±0.06 5.87±0.09

SinkFast L∗
RMSD 8.86±0.09 6.66±0.06 5.77±0.07
L∗

Geom 9.33±0.11 7.49±0.09 5.50±0.07

Equivariant version. We have made an attempt to make the output of the model equivariant with the
aim to improve in particular the orientation predictions. The implementation of this adaptation is presented
in Algorithm D.1. We report the results of the experiment in Table D.7. Unfortunately, the problem remains
unsolved and we believe that the model definition requires deeper modifications. It requires more advanced
equivariant techniques to improve the expressivity of its intermediate layers, which results in changing
completely the AssembleFlow backbone.

Table D.7: Ablation study of making SinkFast’s backbone equivariant and trained with flow matching on
COD-Clutser17 - 5k. The model is trained with LGeom loss as it is then purposed for relative prediction tasks.

Flow
Matching

Equivariant
Backbone L∗

Geom PM∗
center PM∗

atom

8.87 5.48 6.53
✓ 9.22 5.55 6.66

✓ 10.34 3.99 5.88
✓ ✓ 10.26 4.79 6.27

D.5 Dependency to Skinhorn regularization parameter

In Table D.8, we report the experiments of training our SinkFast model with different values of the regu-
larization coefficient in the Sinkhorn algorithm. We can observe that the model is quite sensitive to this
parameter with the best results obtained with a regularization value of 10. For such a value of this parameter,
the permutation probability matrix is smooth, neither too uniform nor too sharp.

28

Under review as submission to TMLR

Algorithm D.1 Equivariant atom-level model.
def AtomModel({fa} : atomic features, t : time, {P⃗t

a} : atomic positions,
{Qt

m} : molecular orientations, Nlayer = 5, Nconv = 5, c = 128)
1 : t = MLP(time_embed(t)) [c]
2 : {ht

a} = PaiNN({fa}, {P⃗t
a}) + Linear(SiLU(t)) [Natom, c]

3 : {st
m} = ScatterMeanper mol({ht

a}) [Nmol, c]
4 : {X⃗t

m} = ScatterMeanper mol({P⃗t
a}) [Nmol, 3]

5 : {et
ij} = RadialGraph({P⃗t

a}, {X⃗t
m}) Atom to Molecules edges

6 : for all {i, j}/et
ij = 1 : Each molecule j that is the neighbor of each atom i

7 : ∆t
ij , χt

ij , Λt
ij = OrthNorm(P⃗t

m,0, P⃗t
m,2, P⃗t

m,3) 3 first atoms of molecule m s.t. i ∈ m.
8 : Baset

ij = concat(∆t
ij , χt

ij , Λt
ij) | origin: O⃗t

ij = P⃗ t
m,0 [Edges, 3, 3]

9 : Et
i = MLP(GaussianFourierEmbed(Baset

ij · [P⃗t
i − O⃗t

ij])) [Edges, c]
10: Et

j = MLP(GaussianFourierEmbed(Baset
ij · [X⃗t

j − O⃗t
ij])) [Edges, c]

11: {zt
ij} = MLP(concat(Et

i, Et
j)) [Edges, c]

12: end for
13: Rt

m = P⃗t
m and St

m = Baset
m,j=0 as quaternion

14: At
i = St

m ∀m ≤ Nmol s.t. i ∈ molecule m.
15: for all l ∈ [1, ..., Nlayer]:
16: for all f ∈ [1, ..., Nconv]:
17: {h̃t

i} = GATf
conv({ht

i}, {st
j}, {concat(zt

ij ,At
i(Qt

j)−1, (Baset
ij)−1(Pt

i −Xt
j))})

18: {ht
i} = {ht

i}+ LayerNorm({h̃t

i})
19: {h̃t

i} = FFNf ({ht
i})

20: {ht
i} = {ht

i}+ LayerNorm({h̃t

i}) + Linear(SiLU(t))
21: if l < Nconv :
22: {ht

i} = SiLU({ht
i})

23: end if
24: end for
25: {st

m} = Meani∈m({ht
i})

26: {F t
ij} = concat(ht

i + st
j , zt

ij ,At
i(Qt

j)−1, (Baset
ij)−1(Pt

i −Xt
j)) [Edges, 2*c+7]

27: Rt
m ← Rt

m + Meani∈m

(
Meanj∈N (i){MLP(F t

ij) · Baset
ij}

)
[Nmol, 3]

28: At
i ← Meanj∈N (i)

(
Proj

(
Linear

(
MLP(F t

ij) · Baset
ij

)))
.At

i [Nmol, 4]
29: St

m ← RotationMeani∈m (St
m,At

i, ht
i) [Nmol, 4]

30: end for
31: return {St

i ,Rt
i}

Algorithm D.2 Aggregation function of quaternions.
def RotationMeanindex({q1,i} : initial quaternions, {q2,j} : quaternions to aggregate,

{Eij} : edge attribute between i and j, λ = 1 : regularization)
2: {wij} = Linear({Eij}) [Edges, 1]

3: Mi =
∑

j∈N (i)
w2

ijq−1
2,j

×q−1
2,j∑

j∈N (i)
w2

ij

with × the outer product [N1, 4, 4]

4: MSym = 1
2 (M+MT) [N1, 4, 4]

3: Ui = DomEigVec(MSym
i + λ.q−1

1,i × q−1
1,i) get dominant eigen vector [N1, 4]

5: q1,i ← q1,i.Ui.q1,i

6: return {q1,i}

29

Under review as submission to TMLR

Table D.8: Sensitivity experiment of SinkFast method to Sinkhorn’s regularization coefficient. The model is
trained with L∗

RMSD loss on COD-Clutser-5k.

Sinkhorn
Regularization

Parameter
L∗

RMSD PM∗
center PM∗

atom

100 9.56±0.07 6.58±0.21 7.27±0.07
50 8.95±0.06 3.73±0.08 5.73±0.07
10 8.87±0.05 3.64±0.06 5.66±0.05
5 8.89±0.05 3.76±0.04 5.72±0.04
2 8.89±0.10 3.87±0.13 5.79±0.10
1 8.91±0.09 3.99±0.05 5.85±0.04

1e-1 8.92±0.08 4.11±0.04 5.91±0.05
1e-2 8.99±0.02 4.07±0.00 5.90±0.02
1e-3 9.12±0.07 4.50±0.03 6.09±0.03

E Additional experiments

E.1 Comparison to inorganic-based methods

Inorganic crystal structure prediction is a fast-moving domain in which many state of the art models compete
and innovate. We here want to compare the performance of current organic state of the art to the inorganic
one. Thus, we conduct experiments on the COD-Cluster17-5k dataset by retraining both CDVAE (Xie et al.,
2022) and DiffCSP (Jiao et al., 2023) models. In both cases, the models are trained to predict the target set
of atomic positions from a noise distribution, where the same atoms are randomly positioned in space. Both
methods operate in fractional coordinates and require a lattice definition. However, since the COD-Cluster17
dataset provides only point clouds without explicit lattice parameters or periodic boundary conditions, we
define a pseudo lattice as the bounding box that encompasses all sets of molecules. Atom positions are then
expressed in fractional coordinates relative to this pseudo lattice.

This setup introduces a stringent constraint that is not optimal for symmetry-based algorithms like CDVAE
and DiffCSP, as we do not supply accurate information about atomic density or minimal symmetry groups.
Despite this, both methods were able to produce high-quality predictions in certain cases. Notably, their
performance did not show a strong correlation with the number of atoms per ASU.

At inference, we sample from the learned distribution of atomic positions rather than using initial positions
provided by COD-Cluster17. As shown in Table E.1, both CDVAE and DiffCSP underperform significantly
compared to rigid-body-based AssembleFlow and SinkFast methods, indicating that these point cloud models
are not well suited to this task out-of-the-box. In Tables E.2 and E.3 we explore whether these methods
perform particularly well on small graphs, but this tendency is actually also shared by both AssembleFlow
and SinkFast.

Table E.1: Performance in Å(↓) of our proposed SinkFast and AssembleFlow rigid-body methods against
inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k test set.

Method PM∗
center PM∗

atom

CDVAE 10.50±0.52 14.81±0.89
DiffCSP 23.50±2.44 30.61±2.53
AssembleFlow 3.76±0.00 5.73±0.02
SinkFast 3.60±0.04 5.54±0.04

We present in Table E.4 for each model the best predictions based on minimal Packing Matching (PM) score,
and in Tables E.5 and E.6 the 5th and 10th percentiles, respectively. However, due to CDVAE’s long training

30

Under review as submission to TMLR

Table E.2: Performance in Å(↓) of our proposed SinkFast and AssembleFlow rigid-body methods against
inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k test set filtered
on natom ≤ 16 corresponding to the 20 smallest graphs.

Method PM∗
center PM∗

atom

CDVAE 8.17±0.07 12.34±0.91
DiffCSP 19.74±0.42 25.89±0.48
AssembleFlow 2.58±0.19 3.49±0.19
SinkFast 2.60±0.04 3.48±0.11

Table E.3: Performance in Å(↓) of our proposed SinkFast and AssembleFlow rigid-body methods against
inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k test set filtered
on natom ≤ 50 corresponding to half of the dataset.

Method PM∗
center PM∗

atom

CDVAE 10.37±0.82 14.63±1.10
DiffCSP 22.93±2.66 29.98±2.91
AssembleFlow 3.26±0.06 4.96±0.03
SinkFast 3.35±0.11 4.95±0.06

and very slow inference time, we compute its performance on 120 test samples. To ensure a fair comparison,
we evaluate all models on this shared subset, which we refer to as the CDVAE subset. We observe from these
experiments that CDVAE and DiffCSP can perform extremely well on very few structures. However, their
effectiveness quickly decreases across the dataset. This suggests that while these models have potential, they
require further adaptation to be competitive on this task. In our view, adapting such models meaningfully
goes beyond a quick out-of-the-box comparison. Nonetheless, they represent promising directions and could
enrich the set of baselines on COD-Cluster17 in future dedicated studies or reviews.

Table E.4: Single best structure performance in Å(↓) of our proposed SinkFast and AssembleFlow rigid-body
methods against inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k
test set : filtered on the CDVAE subset.

Method PM∗
center PM∗

atom

CDVAE 1.19 2.57
DiffCSP 0.99 4.61
AssembleFlow 2.04 3.03
SinkFast 2.06 2.73

Table E.5: 5th percentile performance in Å(↓) of our proposed SinkFast and AssembleFlow rigid-body
methods against inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k
test set : filtered on the CDVAE subset.

Method PM∗
center PM∗

atom

CDVAE 1.91 3.21
DiffCSP 6.61 11.08
AssembleFlow 2.67 3.86
SinkFast 2.66 3.83

Extension to matching loss. A Sinkhorn-based matching loss could also be applied to inorganic CSP
models. In this non-rigid-body case the model would not be penalized when identical atoms are correctly

31

Under review as submission to TMLR

Table E.6: 1st quantile performance in Å(↓) of our proposed SinkFast and AssembleFlow rigid-body methods
against inorganic crystal structure prediction models CDVAE and DiffCSP on COD_Cluster17 - 5k test set :
filtered on the CDVAE subset.

Method PM∗
center PM∗

atom

CDVAE 2.55 4.67
DiffCSP 9.61 15.19
AssembleFlow 2.77 4.43
SinkFast 2.84 4.23

predicted but swapped. We have tried to train a simple adaptation of DiffCSP with this matching loss.
However, as a diffusion based model, DiffCSP predicts the noise that has been applied to each atomic position
to denoise it and progressively reconstruct the crystal. The target is then a noise attached to each atom and
the Sinkhorn-based matching loss applicability is more complex and questionable.

Similarly, in order to make it work with flow matching on AssembleFlow, we have had to make some
adjustments. For instance, an initial reassignment needs to be computed before interpolating trajectories Xt

between X0 initial positions and X1 final ones which are not the dataset’s target ones in this case. Also, we
have observed that the model needs to predict X1 from intermediate positions Xt rather than predicting
some noise in order to make it work.

We believe our quick implementation of DiffCSP is already not well adapted to organic CSP. This leads to
serious limitations at the current time for this task and questions the motivation to increase the complexity
of it with a Sinkhorn matching loss. However it could be adapted and applied to inorganic CSP datasets
such as the Materials Project. We believe it could have great potential on this task if appropriately adapted.

E.2 Dependence to the correctness of the conformation

To evaluate our model’s dependency on the correctness of the initial molecular conformations, and to support
the rigid molecule formulation of the initial packing probelm, we conducted the following experiment. For
each molecule in the COD-Cluster17-5k test set, we extracted the corresponding SMILES representation
of the ASU molecule and generated five stable conformations using RDKit (Landrum et al., 2025), using
EmbedMolecule followed by UFFOptimizeMolecule functions. Each generated conformation is then passed
through our model to predict the packed molecular positions.

To assess the quality of RDKit-generated conformtations, we computed the symmetry-corrected RMSD values
between RDKit-generated conformation and crystallographic structures using the spyrmsd algorithm (Meli
& Biggin, 2020) from RDKit (Landrum et al., 2025) and present the results in Figure E.1. We can see
that about 25% of the generated conformations are sufficiently close to the crystallographic ones (within
2Å RMSD) and the median RMSD is below 4Å. This experiment supports the rigid-body approximation in
our model. We also computed Packing Matching (PM) between each RDKit sampled molecule conformation
and its corresponding COD-Cluster17 conformation. On average, PM was 3.27 Å with a standard deviation
of 2.19 Å and a median of 3.11 Å. Due to RDKit failures on 170 of the 500 test set structures caused by issues
such as improper valences or atom count mismatches–typically to experimentally invisible hydrogens–our
analysis focuses on a subset of 330 molecules, referred to as the RDKit subset.

The results are presented in Tables E.7, E.8 and E.9 under the RDKit column. First, we compare performance
on RDKit-generated versus crystallographic conformations for both SinkFast and AssembleFlow. In terms of
center-of-mass alignment (PMcenter), the methods perform comparably across the two types of input. However,
the performance are slightly hindered in the atom-to-atom comparison. This shows that conformations are
not well represented in our model. Second, comparing Table E.8 to Table E.9 we observe that both methods
perform much better on crystallographic structures from which we generate five different conformations
that are close to the crystallographic ones. This confirms the importance of initial conformational accuracy.
However, we suspect a correlation between the size of the rigid molecule and how close are conformations
generated by RDKit. The good performance of the model could also be explained through this aspect.

32

Under review as submission to TMLR

10 20 30 40 50
Number of heavy atoms in the molecule

1

2

3

4

5

6

7

8

M
in
im

um
Sy
m
m
et
ry
-c
or
re
ct
ed

RM
SD

(Å
)

ov
er

5
re
pl
ic
as

Density of RDKit generated samples

0

2

4

6

8

10

12

Sy
m
m
et
ry
-c
or
re
ct
ed

RM
SD

(Å
)

Figure E.1: Left: Distribution of minimum symmetry-corrected RMSD values (Å) over 5 RDKit conformations
with respect to the number of heavy atoms in the ASU molecule. Symmetry-corrected RMSD values were
computed between RDKit-generated conformations and crystallgoraphic structures with spyrmsd (Meli
& Biggin, 2020). Right: Distribution of symmetry-corrected RMSD values between RDKit-generated
conformations and crystallgoraphic structures. The yellow bar indicates the first quartile, the orange one the
median and the red one the last quartile.

Our conclusion is that while the models get a sense of how important initial conformations are, the learned
representations are independent to the molecular conformations. We therefore believe that future models
should be trained end-to-end, jointly learning conformation and crystal structure prediction. This represents
a promising direction for advancing research in this very complex domain. We believe our study helps to
identify key challenges and can serve as a foundation for future work in organic crystal structure prediction.

Table E.7: Performance in Å(↓) of our proposed SinkFast and AssembleFlow methods on both crystallographic
and RDKit generated conformations on COD-Cluster17-5k test set : filtered on the RDKit subset.

Method RDKit PM∗
center PM∗

atom

AssembleFlow 3.54±0.01 5.44±0.00
AssembleFlow ✓ 3.58±0.00 5.59±0.08
SinkFast 3.59±0.13 5.41±0.08
SinkFast ✓ 3.55±0.13 5.53±0.15

Table E.8: Performance in Å(↓) of our proposed SinkFast and AssembleFlow methods on both crystallographic
and RDKit generated conformations on COD-Cluster17-5k test set : filtered on the RDKit subset with the
lowest packing matching distance to original ones.

Method RDKit PM∗
center PM∗

atom

AssembleFlow 3.27±0.01 4.92±0.03
AssembleFlow ✓ 3.27±0.03 4.90±0.03
SinkFast 3.28±0.13 4.88±0.11
SinkFast ✓ 3.18±0.11 4.81±0.12

33

Under review as submission to TMLR

Table E.9: Performance in Å(↓) of our proposed SinkFast and AssembleFlow methods on both crystallographic
and RDKit generated conformations on COD-Cluster17-5k test set : filtered on the RDKit subset with the
highest packing matching distance to original ones.

Method RDKit PM∗
center PM∗

atom

AssembleFlow 3.80±0.03 5.95±0.08
AssembleFlow ✓ 3.89±0.01 6.27±0.09
SinkFast 3.88±0.11 5.92±0.00
SinkFast ✓ 3.92±0.12 6.25±0.14

F Visualizations

Figure F.1 shows the packing of three assemblies randomly picked from the test set. We visualize all atoms
as van der Waals (vdW) spheres. We took the standard vdW radii for chemical elements, colored using JMol
colors and ray-traced the scenes with PyMol. The image does not demonstrate common patterns, only certain
packing similarities. One can conclude on the generally poor reconstruction obtained from the two compared
algorithms. Indeed, the method and the problem formulation do not allow to generalize well enough to be
applied and used at large scale.

34

Under review as submission to TMLR

Figure F.1: Visualization of our SinkFast-L∗
ML prediction against ground truth and AssembleFlow method

on 3 examples randomly picked from the test set. Scores of each prediction are reported with PM∗
atom,

L∗
RMSD, L∗

tran the translational error, L∗
rot the rotational error and 3 L∗

ML errors with different values of
the α parameter. Atoms are colored using the JMol color convention and shown using PyMol molecular
visualization system (Schrödinger, LLC, 2015).

35

	Introduction
	Related Works
	Physics informed GNN for property prediction
	Geometric representations in computer vision
	Generative models in materials science

	Problem setting
	Methods
	Metrics
	Physically grounded losses
	Differentiable optimal assignment

	Results
	Experimental setup
	Main results
	Ablation studies

	Limitations
	Conclusion
	RMSD and Rigid Motions
	 Notations
	Rigid-body arithmetic
	Quaternion arithmetic
	Root mean square deviation
	 Rigid body motion described with quaternions
	SE(3) flow matching
	Illustration of the proposed physically-grounded losses

	Metrics
	Method and implementation
	Extension to the inversion dataset
	AssembleFlow atom-level model
	Implementation details
	Hyperparameters and number of parameters
	Licenses and versions

	Ablation studies
	Differential assignment with direct regression
	Differential assignment with flow matching
	Using linear sum assignment during training against differentiable assignment
	Angular VS translational prediction
	Dependency to Skinhorn regularization parameter

	Additional experiments
	Comparison to inorganic-based methods
	Dependence to the correctness of the conformation

	Visualizations

