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ABSTRACT

The problem of recovering heavy components of a high-dimensional

vector from compressed data is of great interest in broad applica-

tions, such as feature extraction under scarce computing memory

and distributed learning under limited bandwidth. Recently, a com-

pression algorithm called count sketch has gained wide popularity

to recover heavy components in various fields. In this paper, we

carefully analyze count sketch and illustrate that its default recovery

method, namely median filtering, has a distinct error pattern of re-

porting false positives. To counteract this error pattern, we propose

a new scheme called zero checking which adopts a two-step recov-

ery approach to improve the probability of detecting false positives.

Our proposed technique builds on rigorous error analysis, which en-

ables us to optimize the selection of a key design parameter for max-

imum performance gain. The empirical results show that our scheme

achieves better recovery accuracy than median filtering and requires

less samples to accurately recover heavy components.

Index Terms— Count sketch, heavy components recovery, me-

dian filtering, zero checking, false positives

1. INTRODUCTION

In the era of big data, the dimensions of both learning models and

training data are growing at a staggering pace. Given limited re-

sources, direct processing of these high-dimensional signals is costly

and even impossible. Usually, these signals have to be compressed

into a low-dimensional form that makes the relevant tasks manage-

able. The tenet is that, the most important information of a high-

dimensional vector is typically encrypted in a few heavy components

that stand out in magnitude, while the remaining components carry

very little information. There is great enthusiasm from various fields

in studying the heavy components recovery problem, which is stated

as follows.

Assuming vector x ∈ R
d is composed of k ≪ d heavy compo-

nents with prominent magnitudes and d− k non-heavy components

that are close to zero, we want to find a nonadaptive compressing

matrix A ∈ R
m×d such that the heavy components of x can be

recovered from Ax.

Linear compression has been extensively explored in several re-

search areas, including compressive sensing, data stream computing,

and combinatorial group testing [2]. In theory, all algorithms de-

signed to recover signals from linear samples could be applied to re-

cover heavy components. However, we impose two extra constraints

for practical concerns. First, the measurement matrix A should be

sparse since the time needed to compute Ax is proportional to the

number of nonzeros in A. This excludes some popular dense matri-

ces such as Gaussian matrices. Second, considering that the vector’s

This work was partly supported by the US NSF grants #1527396,
#1741338 and #1939553.

dimension could be in the order of millions, we enforce linear re-

covery to alleviate computational burden, thus excluding nonlinear

algorithms such as l1 minimization.

Count sketch [1], which satisfies both constraints, has been

widely applied for heavy components recovery in a variety of ap-

plications such as distributed learning [3] and feature selection [4],

among others [5-7]. Despite extensive implementations in recent

years, the count sketch algorithm has rarely been examined or ques-

tioned. In this work, we carefully analyze count sketch and find that

its default recovery scheme, median filtering, has a strong tendency

to produce false positives, which refer to the type of recovery errors

that misidentify a non-heavy component as heavy. This issue often

causes the recovered signal to be useless and hence prompts prac-

titioners to use additional mechanisms to mitigate it. For example,

in the application of distributed learning, [3] keeps the top Pk el-

ements of the recovered vector and requests the original values of

these elements. As a result, the false positives would not increase

the recovery error as long as they are no more than (P − 1)k. How-

ever, without recognizing the specific error pattern of false positives,

the method implemented in [3] is more of an empirical amendment

than a theoretically-sound solution. Besides, such technique incurs

additional costs to the system and may not be applicable to a more

general setting where there is no access to the true values of the

compressed signal. In this paper, we first demonstrate the issue of

false positives specific to median filtering and then introduce zero

checking, a new recovery scheme that is designed to effectively

mitigate false positives via a two-step approach. We empirically

show that zero checking outperforms median filtering in terms of

lower overall error rate and lower sample requirement for successful

recovery. To the best of our knowledge, this work is the first one to

demonstrate the unique error pattern of median filtering and provide

comparable scheme to address such weakness.

The rest of the paper is organized as follows. Section 2 presents

the prior work of count sketch. Section 3 analyzes count sketch and

illustrates its false positive phenomenon. Section 4 proposes the new

recovery scheme of zero checking. Section 5 draws the conclusion.

2. COUNT SKETCH

Count sketch is usually depicted using the concepts of hash function

and hash table within the computer science community [1]. Alter-

natively, thanks to its linear nature, count sketch can be explained

using linear compression as follows.

2.1. Initialization

Count sketch seeks to collect t parallel observations of the data vec-

tor x ∈ R
d to enable recovery, with t being an odd number. Concep-

tually, this process starts with generating t random sampling matri-

ces A1, . . . ,At. Each Aj ∈ R
b×d constructs its columns indepen-
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dently obeying the rules: 1) each column contains only one nonzero;

2) the single nonzero is randomly drawn from {1, -1} and is posi-

tioned at each row with equal probability 1/b. It is assumed that

A1, . . . ,At are shared between the encoder and the decoder.

2.2. Encoding

Given data vector x = [x1, . . . , xd]
T, obtain yj ∈ R

b via

yj = Ajx j = 1, . . . , t. (1)

Altogether t sample vectors y1, . . . ,yt are acquired with a total

sample size m = t · b.

2.3. Decoding

Given sample vectors y1, . . . ,yt, recover an estimated vector of x

from each yj via

x
j = A

T
j yj j = 1, . . . , t. (2)

In total, t independent estimated vectors x1, . . . ,xt are avail-

able. To estimate data component xi, we extract the corresponding

estimate xj

i from each xj and form a set of t estimates {x1
i , . . . , x

t
i},

which is referred to as the returned list for xi throughout. The final

estimate of xi is given by the median of its returned list, i.e.,

x̂i = Median{x1
i , . . . , x

t
i} i = 1, . . . , d. (3)

We refer to (3) as “median filtering” in this paper.

It is worth noting that both the encoding in (1) and decoding in

(2) and (3) are conducted by linear operations. Further, (2) and (3)

can be implemented by very simple hash functions because of the

highly sparse nature of samplers Aj .

3. ANALYSIS ON COUNT SKETCH

3.1. The failure probability of a single estimate

Combining (1) and (2), each xj is obtained in effect by passing x

through a filtering matrix Φj ∈ R
d×d, i.e.,

x
j = A

T
j yj = A

T
j Ajx = Φjx j = 1, . . . , t. (4)

In (4), the estimate of xi is given by the inner product between

Φj’s i-th row vector (Φj)i and x. Based on the imposed structure

of Aj , several characteristics of (Φj)i can be drawn: 1) its i-th ele-

ment (which corresponds to xi) is 1; 2) each off-diagonal element is

nonzero with probability 1/b; 3) the nonzero off-diagonal elements

are independently drawn from {1, -1} with equal probability.

Although the nonzero off-diagonal elements of (Φj)i introduce

noise into the estimate xj

i , such noise is innocuous if all involved

data components in the inner product are non-heavy ones. This is

because non-heavy components have small magnitudes and tend to

cancel each other out due to the random signs of the nonzero off-

diagonal elements of (Φj)i. As a result, xj

i deviates very little from

xi and we consider it a “good estimate”.

On the other hand, if one or more interfering heavy components

are included in the inner product, then xj
i tends to deviate greatly

from xi. In such case, we consider xj

i a bad estimate or recovery

failure/error. Note that a bad estimate is bigger or smaller than the

ground truth with equal probabilities. Given that each heavy compo-

nent corrupts the estimate with probability 1/b, the failure probabil-

ity of a single estimate is p = 1 − (1 − 1/b)k with k denoting the

number of heavy components in x.

3.2. The failure probability of median filtering

According to (3), median filtering fails when the median of the re-

turned list is bad, which must satisfy two conditions. First, at least

(t + 1)/2 estimates in the returned list are bad. Second, the bad

estimates are tilted toward one side. For example, if 8 out of 9 es-

timates are bad but they are distributed symmetrically with respect

to the ground truth, then the median would still be a good estimate.

Denoting the number of bad estimates as Y and tracing down all

failed instances for each Y = i, our analysis yields the following

expression for the failure probability of median filtering:

pmed =

t
∑

i= t+1

2

∑

j∈[0,i− t+1

2
]
⋃
[ t+1

2
,i]

(

i

j

)

2i
·Pr{Y = i} (5)

where Pr{Y = i} =
(

t

i

)

pi(1− p)t−i. Note that (5) is with respect

to the recovery of one data component, heavy and non-heavy alike.

3.3. The false positive phenomenon

Since heavy and non-heavy components have the same failure proba-

bility (5) under median filtering, the ratio of recovery errors resulted

from these two categories would be asymptotically equal to the ratio

of their composition in the data vector. Since non-heavy components

dominantly outnumber the heavy ones (d−k vs. k), the vast majority

of recovery errors would be false positives.

4. COUNT SKETCH WITH ZERO CHECKING

4.1. Intuition and scheme

Knowing that false positives are the major source of recovery errors

under median filtering, it is helpful to introduce other mechanisms

that can spot false positives. Our idea builds on a key observation

that, for most false positives, their returned list tends to contain a

few good estimates even though the median is a bad one. We utilize

this distinct feature of false positives and propose a new recovery

mechanism called zero checking. For simplicity, here we assume

all non-heavy components are zeros, but the idea applies to general

settings where non-heavy components have negligible magnitudes

and hence can be rounded to zero.

The recovery process of zero checking is described as follows.

After obtaining the returned list of t estimates as stated in Section

2.3, our scheme implements a two-step approach to determine the

best estimate:

Step 1: If the median of the returned list is zero or negligibly small,

then return it as the output. Otherwise, go to Step 2.

Step 2: If the returned list contains at least R zeros, then rule this

case as a false positive and return zero as the output. Otherwise,

return the median.

In the above scheme, Step 1 only declares negatives/non-heavy

components, while leaving all positives, true or false, for further

screening in Step 2. Using a detection threshold R, Step 2 decides

whether components that would have been identified as heavy by

median filtering are false positives or not. Here the detection thresh-

old R is a key parameter to ensure the success of zero checking.

In contrast to median filtering, which imposes the same error rate

for non-heavy and heavy components, zero checking obviously de-

creases error rate for non-heavy components by excluding a portion

of false positives. However, a natural concern is that the threshold-

ing operation in Step 2 might inadvertently misclassify some heavy
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components as false positives, thus increasing the overall error rate.

In the next section, we will address this concern and show how to

select the detection threshold R.

4.2. The guideline on selecting the detection threshold

Defining pNH(R) and pH(R) as the failure probabilities of non-heavy

and heavy components respectively, the average failure probability

under zero checking is given by

pZC(R) =
d− k

d
× pNH(R) +

k

d
× pH(R). (6)

When R ≥ (t+1)/2, zero checking reduces to median filtering,

for the median estimate is always returned in Step 2. As R decreases,

pNH(R) declines but pH(R) may go up. In order to guarantee that

pZC(R) is no larger than pmed in (5), the detection threshold R ∈
{0, . . . , (t+ 1)/2} should make the following inequality hold:

(d− k)× (pmed − pNH(R)) ≥ k × (pH(R)− pmed) (7)

where the difference between the left side and right side translates to

the performance gain achieved by zero checking over the baseline,

and the optimal R that maximizes this gap also equivalently leads to

the lowest pZC(R) in (6).

To determine the best R, it is necessary to derive the closed-form

of pNH(R) and pH(R). Here pNH(R) is directly obtained from (5) by

keeping only R terms, i.e.,

pNH(R) =
t
∑

i=t−R+1

∑

j∈[0,i− t+1

2
]
⋃
[ t+1

2
,i]

(

i

j

)

2i
·Pr{Y = i}. (8)

The expression of pH(R) is less obvious because it has two

sources: 1) the baseline failure probability pmed; 2) the risk of the

returned list containing at least R zero estimates, which hinges on

p0, the probability for a single estimate of a heavy component to be

neutralized as zero. Since p0 is strongly dependent upon the magni-

tude diversity among heavy components, we will first elaborate such

dependency, and then give two upper bounds on pH(R) under two

opposite extreme assumptions on the data diversity.

Recall that an estimate is the sum of randomly-signed interfer-

ing heavy components and the target heavy component. When the

magnitudes of involved components are not identical, it is very un-

likely for the estimate to be neutralized. To illustrate this point, we

calculate p(s) =
(

k

s

)

(1/b)s(1− 1/b)k−s, the probability of an esti-

mate being corrupted by s heavy components. Since the estimate can

only be neutralized with one or more interfering heavy components,

the inequality holds: p0 ≤
∑

s≥1 p(s). If there is no heavy com-

ponent sharing the same magnitude as the target heavy component,

then p0 ≤
∑

s≥2 p(s). Since p(s) is an exponentially decreasing

function of s, p0 is stringently upper-bounded given different mag-

nitudes. Moreover, the expression of
∑

s≥2 p(s) could still be mas-

sively overestimated, because the s + 1 involved magnitudes may

not add up to zero regardless of the sign combination, e.g., {2, 3, 4}.

In addition, given a set of favorable magnitudes, the feasible sign

combination is usually unique; for example, given set {2, 4, 6}, if 2

is the target heavy component, then the interfering components have

to be 4 and -6 out of the four possible sign combinations, suggesting

a tighter bound of p0 ≤
∑

s≥2 p(s)/4.

Considering the above reasoning, it is clear that p0 reaches max-

imum when the magnitudes of involved components are identical.

Building on this observation, we can further conclude that pH(R)
achieves its universal upper bound only when all heavy components

share the same magnitude, which corresponds to the first extreme

assumption of no data diversity. We call this scenario the worst case

and our analysis yields the following closed-form of pH(R) in the

worst case:

pH, 1(R) =

t−1

2
∑

i=R

∑i

j=R

(

i

j

)

2i
·Pr{Y = i}+

t
∑

i= t+1

2

∑

j∈[0,i− t+1

2
]
⋃
[R,i]

(

i

j

)

2i
·Pr{Y = i}.

(9)

Compared to the worst case with no data diversity, an ideal case

is considered where all heavy components have different magni-

tudes. In the ideal case, p0 is upper-bounded by
(

1−(1−1/b)k−k ·

(1/b) · (1− 1/b)k−1
)

/4 as discussed. Adding two aforementioned

failure sources together, we can upper-bound pH(R) in the ideal case

as

pH, 2(R) ≤ pmed +

(

t

R

)

× pR0 . (10)

Depending on which assumption is used, we can plug either (9)

or (10), together with (8), into (7) to obtain the effective range for R.

Moreover, the optimal R can be selected by minimizing pZC(R) in

(6). Note that we do not claim that either the worst case or the ideal

case is a practical scenario. Our intention of hypothesizing these two

cases is to assess how much zero checking can outperform median

filtering in both the least favorable and the most favorable settings.

4.3. Experimental validation

This section investigates the empirical performance of zero checking

compared to the median filtering baseline. The task is to recover all

k heavy components of a data vector x ∈ R
d under the count sketch

regime with m = t · b samples. Throughout, the setting parameters

are fixed to be d = 10000, k = 50, b = 250. We first compute the

optimal detection threshold R in (6) and the corresponding failure

probability pZC(R) under both scenarios, shown in Figure 1 and Fig-

ure 2 respectively. As baseline, the threshold for median filtering is

(t+ 1)/2 as discussed and its failure probability is pmed in (5).

Figure 1 shows that the optimal threshold of zero checking is

consistently lower by a small margin than the baseline in the worst

case, whereas a much lower threshold, approximately half of the

baseline’s threshold, is allowed in the ideal case. Accordingly, Fig-

ure 2 shows that, in theory, zero checking can always outperform

median filtering in terms of error rate, with marginal performance

gain in the worst case and significant advantage in the ideal case.

Next we apply the obtained thresholds in Figure 1 to test the

actual performance of zero checking under both scenarios. For the

worst case, the data vector is generated by inserting k = 50 nonze-

ros into a 10000-dimensional all-zero vector, each nonzero having

a random sign and a fixed magnitude. The only difference for the

ideal case is that the magnitudes of nonzero elements are drawn from

{1, . . . , 50} without replacement. We run 1000 Monte Carlo exper-

iments under both scenarios. The average recovery errors for zero

checking and median filtering match their theoretical failure proba-

bilities in Figure 2 very well, and we omit these curves for lack of

space. Another relevant metric is the likelihood of successful recov-

ery on the whole data vector. The successful recovery rates of zero

checking under the worst case and the ideal case are plotted in Figure

3 and Figure 4 respectively.

5122

Authorized licensed use limited to: George Mason University. Downloaded on May 12,2023 at 19:02:25 UTC from IEEE Xplore.  Restrictions apply. 



2 4 6 8 10 12 14 16 18 20 22

t

0

2

4

6

8

10

12
R

median filtering
ZC-worst-case
ZC-ideal-case

Fig. 1. The optimal threshold R of zero checking.
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Fig. 2. The average failure probability.

In the worst case, although the performance gain of zero check-

ing is not as impressive, it is still beneficial. For example, when

t = 11, zero checking has a recovery rate improvement of over

40%. In the ideal case, the advantage of zero checking over median

filtering is significant. To reach 90% successful recovery rate, zero

checking saves almost half of the samples required by the baseline

(9 vs. 17).

In practice, the level of diversity among heavy components gen-

erally lies between the two discussed cases, suggesting that the per-

formance gain should also be between the two. If there is no prior

knowledge about the data vector, we can always adopt the surefire

approach of using the conservative detection threshold that matches

the worst case. However, if we want to achieve more aggressive

improvement beyond the bare minimum, it is necessary to know the

distribution of the data vector and to exploit the diversity of the heavy

components.

5. CONCLUSION

In this paper we have carefully examined the count sketch algorithm

when applied to recover heavy components. We found that the de-

fault recovery method, median filtering, has a distinct feature of pro-

ducing false positives. To overcome this error pattern, we propose a
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Fig. 3. Successful recovery rate in the worst case.
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Fig. 4. Successful recovery rate in the ideal case.

new recovery mechanism, zero checking, that effectively suppresses

false positives by applying an optimal detection threshold to maxi-

mize overall recovery accuracy. The empirical results show that zero

checking outperforms the baseline even in the worst-case scenario.

The proposed scheme holds great promise for applications with prior

information on the distribution of data vector and a high level of data

diversity.
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