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Abstract

We compare various forms of prompts to rep-001
resent event types and develop a unified frame-002
work to incorporate the event type specific003
prompts for supervised, few-shot, and zero-004
shot event detection. The experimental results005
demonstrate that a well-defined and compre-006
hensive event type prompt can significantly im-007
prove the performance of event detection, espe-008
cially when the annotated data is scarce (few-009
shot event detection) or not available (zero-shot010
event detection). By leveraging the semantics011
of event types, our unified framework shows up012
to 24.3% F-score gain over the previous state-013
of-the-art baselines.014

1 Introduction015

Event detection (Grishman, 1997; Chinchor and016

Marsh, 1998; Ahn, 2006) is the task of identifying017

and typing event mentions from natural language018

text. Supervised approaches, especially deep neural019

networks (Chen et al., 2020; Du and Cardie, 2020;020

Lin et al., 2020; Liu et al., 2020; Li et al., 2020; Lyu021

et al., 2021), have shown remarkable performance022

under a critical prerequisite of a large amount of023

manual annotations. However, they cannot be ef-024

fectively generalized to new languages, domains025

or types, especially when the annotations are not026

enough (Lai et al., 2020b; Shen et al., 2021) or027

there is no annotations available (Lyu et al., 2021;028

Zhang et al., 2021b; Pasupat and Liang, 2014).029

Recent studies have shown that both the accu-030

racy and generalizability of event detection can031

be improved via leveraging the semantics of event032

types based on various forms of prompts, such033

as event type specific queries (Lyu et al., 2021;034

Du and Cardie, 2020; Liu et al., 2020), defini-035

tions (Chen et al., 2020), structures (Lin et al.,036

2020; Wang et al., 2019), or a few prototype event037

triggers (Wang and Cohen, 2009; Dalvi et al., 2012;038

Type Name Attack

Definition Violent or physical act causing harm
or damage

Seed Trigger Invaded, airstrikes, overthrew, am-
bushed

Type Structure Attack, Attacker, Instrument, Victim,
Target, Place

APEX Prompt
Attack, invaded airstrikes overthrew am-
bushed, an Attacker physically attacks a
Target with Instrument at a Place

Table 1: Example of various forms prompt for the event
type Conflict: Attack

Pasupat and Liang, 2014; Bronstein et al., 2015; 039

Lai and Nguyen, 2019; Zhang et al., 2021b; Cong 040

et al., 2021). Table 1 shows an example of each 041

form of event type prompt for detecting event men- 042

tions from the input sentence. These studies further 043

encourage us to take another step forward and think 044

about the following three questions: (1) does the 045

choice of prompt matter when the training data is 046

abundant or scarce? (2) what’s the best form of 047

prompt for event detection? (3) how to best lever- 048

age the prompt to detect event mentions? 049

To answer the above research questions, we con- 050

duct extensive experiments with various forms of 051

prompts for each event type, including (a) event 052

type name, (b) prototype seed triggers, (c) defini- 053

tion, (d) event type structure based on both event 054

type name and its predefined argument roles, (e) 055

free parameter based continuous soft prompt, and 056

(f) a more comprehensive event type description 057

(named APEX prompt) that covers all the infor- 058

mation of prompts (a)-(d), under the settings of 059

supervised event detection, few-shot and zero-shot 060

event detection. We observe that (1) by considering 061

the semantics of event types with most forms of 062

prompts, especially seed triggers and the compre- 063

hensive event type descriptions, the performance 064

of event detection under all settings can be signifi- 065
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cantly improved; (2) Among all forms of event rep-066

resentations, the comprehensive description based067

prompts show to be the most effective, especially068

for few-shot and zero-shot event detection; (3) Dif-069

ferent forms of event type representations provide070

complementary improvements, indicating that they071

capture distinct aspects and knowledge of the event072

types.073

In summary, our work makes the following con-074

tributions:075

• we investigate various forms of prompts to rep-076

resent event types for both supervised and weakly077

supervised event detection, and prove that a well-078

defined and comprehensive event type prompt can079

dramatically improve the performance of event de-080

tection and the transferability from old types to new081

types.082

• we developed a unified framework to leverage083

the semantics of event types with prompts for su-084

pervised, few-shot and zero-shot event detection,085

and demonstrate state-of-the-art performance with086

up to 24.3% F-score improvement over the strong087

baseline methods.088

2 Related Work089

Supervised Event Detection: Most of the exist-090

ing Event Detection studies follow a supervised091

learning paradigm (Ji and Grishman, 2008; Liao092

and Grishman, 2010; McClosky et al., 2011; Li093

et al., 2013; Chen et al., 2015; Cao et al., 2015;094

Feng et al., 2016; Yang and Mitchell, 2016; Nguyen095

et al., 2016; Wadden et al., 2019; Lin et al., 2020;096

Wang et al., 2021b), however, they cannot be di-097

rectly applied to detect new types of events. Re-098

cently studies have shown that, by leveraging the099

semantics of event types based on type-specific100

questions (Du and Cardie, 2020; Liu et al., 2020;101

Li et al., 2020; Lyu et al., 2021) or seed event trig-102

gers (Bronstein et al., 2015; Lai and Nguyen, 2019;103

Wang et al., 2021a), the event detection perfor-104

mance can be improved. However, it’s still un-105

known that whether they are the best choices of106

representing the semantics of event types.107

Few-shot Event Detection: Two primary learn-108

ing strategies in few-shot classification tasks are109

Meta-Learning (Kang et al., 2019; Li et al., 2021;110

Xiao and Marlet, 2020; Yan et al., 2019; Chowd-111

hury et al., 2021), and Metric Learning (Sun et al.,112

2021; Wang et al., 2020b; Zhang et al., 2021a;113

Agarwal et al., 2021). Several studies have ex-114

ploited metric learning to align the semantics of115

candidate events with few examples of the novel 116

event types for few-shot event detection (Lai et al., 117

2020a; Deng et al., 2020; Lai et al., 2020b; Cong 118

et al., 2021; Chen et al., 2021; Shen et al., 2021). 119

However, due to the limited annotated data and the 120

diverse semantics of event mentions, it’s hard to 121

design a metric distance to accurately capture the 122

semantic similarity between the seed mentions and 123

new ones. 124

Zero-shot Event Detection: The core idea of 125

zero-shot learning is to learn a mapping function 126

between seen classes and their corresponding sam- 127

ples, and then apply it to ground new samples to 128

unseen classes. Huang et al. (2018) first exploited 129

zero-shot event extraction by leveraging Abstract 130

Meaning Representation (Banarescu et al., 2013) to 131

represent event mentions and types into a shared se- 132

mantic space. Recent studies (Zhang et al., 2021b; 133

Lyu et al., 2021) further demonstrate that without 134

using any training data, by leveraging large exter- 135

nal corpus with abundant anchor triggers, zero-shot 136

event detection can also be achieved with decent 137

performance. However, such approaches cannot 138

properly identify event mentions, i.e., distinguish- 139

ing event mentions from none-event tokens. 140

Prompt Learning Prompt learning aims to learn 141

a task-specific prompt while keeping most of the pa- 142

rameters of the model freezed (Li and Liang, 2021; 143

Hambardzumyan et al., 2021; Brown et al., 2020). 144

It has shown competitive performance in a wide 145

variety of applications in natural language process- 146

ing (Raffel et al., 2020; Brown et al., 2020; Shin 147

et al., 2020; Jiang et al., 2020; Lester et al., 2021; 148

Schick and Schütze, 2021b). Previous work either 149

use a manual (Petroni et al., 2019; Brown et al., 150

2020; Schick and Schütze, 2021a) or automated 151

approach (Jiang et al., 2020; Yuan et al., 2021; Li 152

and Liang, 2021) to create prompts. In this work, 153

we compare various forms of template based and 154

free-parameter based prompts for event detection 155

task under both supervised and weakly supervised 156

setting. 157

3 Problem Formulation 158

In this work, we aim to compare various forms of 159

prompts to represent the event types under different 160

settings, including supervised event detection, few- 161

shot event detection and zero-shot event detection. 162

Here, we first provide a definition for each setting 163

of the event detection task and then describe the 164

2



p1 p2 p3  .... pk         [SEP]       He     killed   someone  and   yet   finds   excuses  .  [SEP]

O OOConflict: 
Attack O O O

Encoding

Enriched 
Contextual 

Representation

Binary 
Classification

ContextEvent Type Prompt

[CLS]

APEX Prompt: 
Attack-[SEP]-invaded-airstrikes-overthrew-ambushed-[SEP]-An-Attacker-physically-attacks-a-Target-with-Instrument-at-a-Place

Type name: 
Conflict: Attack

Seed triggers: 
invaded, airstrikes,

overthrew, ambushed

Definition: 
Violent or physical act

causing harm or damage

Type structure: 
Attacker, Instrument,
Victim, Target, Place

Word embedding PosTagEvent type aware contextual represtation

MLP

Figure 1: Overview of the unified framework for event detection based on event type specific prompts.

various forms of event type prompts.165

3.1 Settings of Event Detection166

Supervised Event Detection We follow the con-167

ventional supervised event detection setting where168

both the training, validation and evaluation data169

sets cover the same set of event types. The goal is170

to learn a model f on the training data set and eval-171

uate its capability on correctly identifying and clas-172

sifying event mentions for the target event types.173

Few-shot Event Detection There are two sep-174

arate training data sets for few-shot event de-175

tection: (1) A large-scale base training data set176

Dbase = {(xi,yi)}Mi=1 that covers the old event177

types (named base types) with abundant annota-178

tions and M denotes the number of base event179

types; (2) a smaller training data set Dnovel =180

{(xj ,yj)}N×K
j=1 that covers N novel event types,181

with K examples each. Note that the base and182

novel event types are disjoint except the Other183

class. The model f will be first optimized on Dbase,184

and then further fine-tuned on Dnovel. The valida-185

tion data set contains the mentions of both base186

and novel event types, while the evaluation data set187

only includes mentions of novel event types. The188

goal is to evaluate the generalizability and transfer-189

ability of the model from base event types to new190

event types with few annotations.191

Zero-shot Event Detection The only difference192

between zero-shot and few-shot event detection lies193

in the training data sets. In zero-shot event detec-194

tion, there is only a large-scale base training data195

set Dbase = {(xi,yi)}Mi=1 with sufficient annota- 196

tions for the base event types. The model f will be 197

only optimized on base event types and evaluated 198

on the novel types, which is to measure the trans- 199

ferability of the model under a more challenging 200

setting. 201

3.2 Event Type Prompts 202

We compare the following five forms of prompts to 203

represent the event types: 204

Event Type Name The most straightforward and 205

intuitive representation of an event type is the type 206

name, which usually consists of one to three tokens. 207

As the most basic and discriminative representa- 208

tions of event types, we include them in all the 209

following text-based event type prompts. 210

Definition The type name sometimes cannot ac- 211

curately represent the semantics of an event type 212

due to the ambiguity of the type name as well as the 213

variety of the event mentions. For example, execute 214

can either refer to putting a legal punishment into 215

action or performing a skillful action or movement. 216

The definitions instead formally describe the mean- 217

ing of the event types. Taking the event type Attack 218

from ACE as an example, its definition is violent 219

or physical act causing harm or damage 220

Prototype Seed Triggers Seed trigger based rep- 221

resentation consists of the type name and a list of 222

prototype triggers. Given an event type t and its 223

annotated triggers, following (Wang et al., 2021a), 224
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we select the top-K1 ranked words as the proto-225

type triggers based on the probability ft/fo of each226

word, where fo is the frequency of the word from227

the whole training dataset and ft is the frequency228

of the word being tagged as an event trigger of type229

t. Thus, for the event type Attack, we represent it230

as attack invaded airstrikes overthrew ambushed.231

Event Type Structure Each event is associated232

with several arguments, indicating the core partici-233

pants. Our preliminary experiment shows that for234

certain event types, the arguments can help deter-235

mine the existence of its corresponding events. For236

example, given a sentence, if no person presents in237

the context, there should be no Meet events. Given238

that, we define an event type structure, which con-239

sists of the event type name and argument roles, to240

represent the event type, e.g., attack attacker victim241

target instrument place for Attack.242

Continuous Soft Prompt Inspired by the re-243

cent success of prompt tuning methods in various244

NLP applications, we also adopt a continuous soft245

prompt, i.e., a free vector of parameter, to repre-246

sent each event type. More details regarding the247

learning of soft prompts are described in Section 4.248

APEX Prompt We assume a better representa-249

tion of an event type should cover the important250

information of all the above prompts. Thus we251

define a more comprehensive description (named252

APEX prompt) for each event type by concatenating253

its event type name, seed triggers, and definition254

which covers all the argument roles. For example,255

The APEX prompt for Attack event type is attack,256

invaded airstrikes overthrew ambushed, an attacker257

physically attacks a target with an instrument at a258

place.259

In our experiments, the event type names and260

event type structures are automatically extracted261

from the target event ontology, such as ACE (Lin-262

guistic Data Consortium, 2005), ERE (Song et al.,263

2015) and MAVEN (Wang et al., 2020a). The pro-264

totype seed triggers for each event type are auto-265

matically selected from its annotated data. The266

definitions and APEX prompts are based on the267

official annotation guides for each target event on-268

tology (Linguistic Data Consortium, 2005; Song269

et al., 2015; Wang et al., 2020a) and the available270

definitions in FrameNet (Baker et al., 1998) with271

manual editing.272

1In our experiments, we set K = 4.

4 A Unified Framework for Event 273

Detection 274

Figure 1 shows the overview of our unified frame- 275

work, which leverages event type specific prompts 276

to detect events under supervised, few-shot and 277

zero-shot settings. Next, we will describe the de- 278

tails of this framework. 279

Context Encoding Given an input sentence 280

W = {w1, w2, . . . , wN}, we take each event type 281

prompt T = {τ t1, τ t2, . . . , τ tK} as a query to extract 282

the corresponding event triggers. Specifically, we 283

first concatenate them into a sequence as follows: 284

[CLS] τ t1 ... τ tK [SEP] w1 ... wN [SEP] 285

where [SEP] is a separator from the BERT en- 286

coder (Devlin et al., 2019). We use a pre-trained 287

BERT encoder to encode the whole sequence and 288

get contextual representations for the input sen- 289

tence W = {w0,w2, ...,wN} as well as the event 290

type prompt T = {τ t
0, τ

t
1, ..., τ

t
K}.2 291

Event Type Aware Contextual Representation 292

Given a prompt of each event type, we aim to ex- 293

tract corresponding event triggers from the input 294

sentence automatically. To achieve this goal, we 295

need to capture the semantic correlation of each 296

input token to the event type. Thus we apply atten- 297

tion mechanism to learn a weight distribution over 298

the sequence of contextual representations of the 299

event type query for each token: 300

AT
i =

|T |∑
j=1

αij · T j , where αij = cos(wi, T j), 301

where T j is the contextual representation of the 302

j-th token in the sequence T = {t, τ t1, τ t2, . . . , τ tK}. 303

cos(·) is the cosine similarity function between 304

two vectors. AT
i denotes the event type t aware 305

contextual representation of token wi. 306

Event Detection With the aforementioned event 307

type prompt attention, each token wi from the input 308

sentence will obtain a enriched contextual represen- 309

tations AT
i . We concatenate them with the original 310

contextual representation wi from the encoder, and 311

classify it into a binary label, indicating it as a 312

candidate trigger of event type t or not: 313

ỹt
i = Uo([wi; A

T
i ;P i]) , 314

2We use bold symbols to denote vectors.
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where [; ] denotes concatenation operation, U o is a315

learnable parameter matrix for event trigger detec-316

tion, and P i is the one-hot part-of-speech (POS)317

encoding of word wi.318

For continuous soft prompt based event detec-319

tion, we follow Li and Liang (2021) where a pre-320

fix index q is prepended to the input sequence321

W ′ = [q; W ]. The prefix embedding is learned by322

q = MLPθ(Qθ[q]), where Qθ ∈ R|Q|×k denotes323

the embedding lookup table for the vocabulary of324

prefix indices. Both MLPθ and Qθ are trainable pa-325

rameters. After obtaining the prefix embedding q,326

we concatenate it with the initialized token embed-327

dings of the input sentence and feed them to BERT328

encoder. For each token wi, we obtain its contex-329

tual representation wi, concatenate it with its POS330

tag encoding P i, and then classify the token into a331

binary label.332

Learning Strategy The learning strategy varies333

for supervised learning, few-shot learning and zero-334

shot learning. For supervised learning, we optimize335

the following objective for event trigger detection336

L = − 1

|T ||N |
∑
t∈T

|N|∑
i=1

yt
i · log ỹ

t
i ,337

where T is the set of target event types and N is the338

set of tokens from the training dataset. yt
i denotes339

the groundtruth label vector.340

For few-shot event detection, we optimize the341

model on both base training data set and the smaller342

training data set for novel event types:343

L =− 1

|T B||NB|
∑
t∈T B

|NB |∑
i=1

yt
i · log ỹt

i344

− α
1

|T N ||NN |
∑
t∈T N

|NN |∑
i=1

yt
i · log ỹt

i345

where T B and NB denote the set of base event346

types and tokens from the base training data set,347

respectively. T N is the set of novel event types.348

NN is the set of tokens from the training data set349

for novel event types. α is a hyper-parameter to350

balance the two objectives.351

For zero-shot event detection, as we only have352

the base training data set, we minimize the follow-353

ing objective:354

L = − 1

|T B ||NB |
∑

t∈T B

|NB |∑
i=1

yt
i · log ỹ

t
i .355

5 Experiment Setup 356

5.1 Datasets 357

We perform experiments on three public bench- 358

mark datasets, include ACE05-E+ (Automatic 359

Content Extraction)3, ERE (Entity Relation 360

Event) (Song et al., 2015)4, and MAVEN(Wang 361

et al., 2020a). On each dataset, we conduct ex- 362

periments under three settings: supervised event 363

detection, few-shot and zero-shot event detection. 364

For supervised event detection, we use the same 365

data split as the previous studies (Li et al., 2013; 366

Wadden et al., 2019; Lin et al., 2020; Du and 367

Cardie, 2020; Lin et al., 2020; Nguyen et al., 2021; 368

Wang et al., 2020a) on all the three benchmark 369

datasets. 370

For few-shot and zero-shot event detection on 371

MAVEN, we follow the previous study (Chen et al., 372

2021) and choose 120 event types with the most 373

frequent mentions as the base event types and the 374

rest 45 event types as novel ones. For few-shot and 375

zero-shot event detection on ACE and ERE, previ- 376

ous studies (Lai et al., 2020b,a; Chen et al., 2021) 377

follow different data splits and settings, making it 378

hard for fair comparison. Considering the research 379

goals of few-shot and zero-shot event detection, we 380

define the following conditions to split the ACE 381

and ERE datasets: 382

• The base event types and novel event types 383

should be disjoint except Other. 384

• Each base or novel event type should contain 385

at least 15 instances. 386

• The training set should contain sufficient an- 387

notated event mentions. 388

To meet the above conditions, for ACE, we de- 389

fine the event types of 5 main event categories: 390

Business, Contact, Conflict, Justice and Movement 391

as the base event types, and types of the remaining 392

3 main categories: Life, Personnel and Transaction 393

as the novel event types. In total, there are 18 qual- 394

ified base types and 10 qualified novel types (the 395

others do not satisfy the second condition). For 396

ERE, we use the exact same 10 novel event types 397

as ACE, and the rest 25 types as base event types. 398

After defining the base and novel event types, we 399

further create the training, validation and evaluation 400

3https://catalog.ldc.upenn.edu/
LDC2006T06

4Following Lin et al. (2020), we merge LDC2015E29,
LDC2015E68, and LDC2015E78 as the ERE dataset.
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Dataset ACE05-E+ ERE-EN MAVEN Notes

# Types Base 18 25 120 -
Novel 10 10 45 -

# Mentions Base 3572 5449 93675 -
Novel 1724 3183 3201 -

Train Few-shot 3216 3886 88085 Include mentions of base types and a
small set of mentions for novel types

Zero-shot 3116 3786 87635 Include mentions of base types

Validation 900 2797 3883 Mentions of base and novel types
( 51%/49% ) ( 53%/47% ) ( 71%/23% ) Indicate the base/novel mention ratio

Evaluation 1195 2012 1652 Include mentions of novel types

Table 2: Data statistics for ACE2005, ERE and MAVEN datasets under the few-shot and zero-shot event detection
settings.

Method Supervised ED Few-shot ED Zero-shot ED

State of the art 73.3 35.2∗ 49.1∗

(Nguyen et al., 2021) (Lai et al., 2020b) (Zhang et al., 2021b)

(a) Event Type name 72.2 52.7 49.8
(b) Definition 73.1 46.7 45.5
(c) Seed Triggers 73.7 53.8 52.4
(d) Event Type Structure 72.8 50.4 48.0
(e) Continuous Soft Prompt 68.1 48.2 -

Majority Voting of (a)-(e) 73.9 52.1 48.7

(f) APEX Prompt 74.9 57.4 55.3

Table 3: Performance of event detection (ED) on ACE05 (F1-score, %) ∗ indicates evaluation on our data set split.

splits for all three datasets. For few-shot event de-401

tection, we use the sentences with only base event402

type mentions as the base training data set, and403

randomly select 10 sentences with novel event type404

mentions as the additional smaller training data405

set. We use the sentences with both base and novel406

event type mentions as the development set, and use407

the remaining sentences with only novel event type408

mentions as the evaluation dataset. For zero-shot409

event detection, we use the same development and410

evaluation set as few-shot event detection, and re-411

move the instances with novel event mentions from412

the training set. For both zero-shot and few-shot413

event detection, we randomly split the sentences414

without any event annotations proportionally to the415

number of sentences with event mentions in each416

set. Table 2 shows the detailed data statistics for all417

the three datasets under the few-shot and zero-shot418

event extraction settings.419

5.2 Hyperparameters and Evaluation420

For a fair comparison with the previous base-421

line approaches, we use the same pre-trained422

bert-large-uncased model for fine-tuning423

and optimizing our model with BertAdam. For424

supervised event detection, we optimize the pa- 425

rameters with grid search: training epoch 3, learn- 426

ing rate ∈ [3e-6, 1e-4], training batch size ∈ 427

{8, 12, 16, 24, 32}, dropout rate ∈ {0.4, 0.5, 0.6}. 428

The running time is up to 3 hours on one Quadro 429

RTX 8000. For evaluation, we use the same crite- 430

ria as previous studies (Li et al., 2013; Chen et al., 431

2015; Nguyen et al., 2016; Lin et al., 2020): an 432

event mention is correct if its span and event type 433

matches a reference event mention. 434

6 Results and Discussion 435

Overall Results The experimental results for su- 436

pervised, few-shot and zero-shot event detection 437

on ACE05, ERE and MAVEN are shown in Ta- 438

ble 3-5, from which we see that (1) the APEX 439

prompt achieves the best performance among all 440

the forms of prompts under all the settings of the 441

three benchmark datasets. Comparing with the pre- 442

vious state of the art, the APEX prompt shows up 443

to 4% F-score gain for supervised event detection 444

(on ERE), 22.2% F-score gain for few-shot event 445

detection (on ACE), and 24.3% F-score gain for 446

zero-shot event detection (on MAVEN); (2) All the 447
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Method Supervised ED Few-shot ED Zero-shot ED

State of the art 59.4 33.0∗ 41.2∗

(Lu et al., 2021) (Lai et al., 2020b) (Zhang et al., 2021b)

(a) Event Type Name 58.2 44.8 40.5
(b) Definition 57.9 44.2 40.4
(c) Seed Triggers 60.4 50.4 49.8
(d) Event Type Structure 59.1 48.5 48.7
(e) Continuous Soft Prompt 55.6 41.7 -

Majority Voting of (a)-(e) 60.2 47.9 48.3

(f) APEX Prompt 63.4 52.6 49.9

Table 4: Performance of event detection (ED) on ERE (F1-score, %). ∗ indicates evaluation on our data set split.

Method Supervised Few-shot Zero-shot

State of the art 68.5 57.0 40.2*
(Wang et al., 2021b) (Chen et al., 2021) (Zhang et al., 2021b)

(a) Event type name 68.8 63.4 58.8
(b) Definition 67.1 56.9 52.9
(c) Seed Triggers 68.7 65.1 62.2
(e) Continuous Soft Prompt 64.5 38.6 -

Majority Voting of (a)-(e) 68.4 63.4 58.6

(f) APEX Prompt 68.8 68.4 64.5

Table 5: Performance of event detection (ED) on MAVEN (F1-score, %). ∗ indicates evaluation on our data set split.

forms of prompts provide significant improvement448

for few-shot and zero-shot event detection, demon-449

strating the benefit of leveraging the semantics of450

event types via various forms of prompts for event451

detection, especially when the annotations are lim-452

ited or not available. (3) Continuous soft prompt453

does not provide comparable performance as other454

forms of event type representations, which proves455

the necessity of leveraging event type specific prior456

knowledge to the representations; (4) The majority457

voting does not show improvement over individ-458

ual prompts, due to the fact that each individual459

prompt captures a particular aspect of the event460

type semantics.461

Supervised Event Detection By carefully inves-462

tigating the event mentions that are correctly de-463

tected by the APEX prompt while missed by other464

prompts, we find that the APEX prompt is more465

effective in detecting two types of event mentions:466

homonyms (multiple-meaning words) and intricate467

words. General homonyms are usually hard to be468

detected as event mentions as they usually have469

dozens of meanings in different contexts. For ex-470

ample, consider the following two examples: (i)471

Airlines are getting [Transport:Movement] flyers472

to destinations on time more often . (ii) If the473

board cannot vote to give [Transaction:Transfer-474

Money’] themselves present money. Here, “get”,475

and “give” are not detected based on the event type 476

name or seed triggers but correctly identified by 477

the definition and APEX prompts. In general, the 478

definition and APEX prompts make 10% and 7% 479

fewer false predictions than seed triggers on gen- 480

eral homonyms. For intricate words, their seman- 481

tics usually cannot be captured with an individual 482

prompt. In the following two examples: (i) It is rea- 483

sonable, however, to reimburse board members for 484

legitimate expenses (ii) ··· ever having discussed be- 485

ing compensated by the board in the future · · ·, “re- 486

imburse” and “compensated” indicate sophisticated 487

meaning of Transaction:Transfer-Money, which 488

may not be captured by prompts, such as seed trig- 489

gers. With the event definition and the argument 490

roles in the APEX prompt, the highly correlated 491

contexts, such as “board members” and “legitimate 492

expenses”, can help the model correctly detect reim- 493

burse as an event mention of Transaction:Transfer- 494

Money. 495

Few-shot Event Detection Figure 2 shows the 496

F-score distribution of all novel types based on vari- 497

ous forms of event type prompts, from which we ob- 498

serve that: (1) The event type name, seed triggers, 499

and APEX prompt generally perform better than 500

definition and structure, as they carry more straight- 501

forward semantics of event types. (2) Event type 502

name based prompts show lower performance on 503
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Figure 2: F-score distribution of all novel types based on various event type prompts under the few-shot event
detection setting on ACE (Best view in color)

Personnel:End-Position, Personnel:Start-Position504

and Transaction:Transfer-Money than other event505

types, as the semantics of these event type names506

are less indicative than other event types. (3) Seed507

triggers based prompts perform worse than event508

type name and APEX prompts on two event types,509

Life:injure and Life:die, probably because the pro-510

totype seed triggers are not properly selected. (4)511

The structure based prompt outperforms the other512

prompts on Life:Injure as Life:Injure events require513

the existence of a person or victim. (5) APEX514

prompt shows consistently (almost) best perfor-515

mance on all the event types, due to the fact that it516

combines all the information of other prompts. (6)517

We also observe that the performance of Life:Be-518

Born, Life:Die, Life:Marry, and Personnel:Elect519

based on various forms of prompts are consistently520

better than the other types as the intrinsic semantics521

of those types the corresponding event triggers are522

concentrated.523

Zero-shot Event Detection The proposed524

prompt-based method is more affordable to be gen-525

eralized comparing with the prior state-of-the-art526

approach (Zhang et al., 2021b). The average length527

of created APEX prompts is less than 20 tokens,528

thus manually creating them won’t take much529

human effort. On the contrary, Zhang et al. (2021b)530

requires a large collection of anchor sentences to531

perform zero-shot event detection, e.g., 4,556,237532

anchor sentences for ACE and ERE. This process533

is time consuming and expensive.534

Remaining Challenges We have demonstrated535

that a proper description can provide much better536

performance for both supervised and weakly super-537

vised event detection. However, the event types538

from most existing ontologies are not properly 539

defined. For example, in ACE annotation guide- 540

line (Linguistic Data Consortium, 2005), transfer- 541

money is defined as “giving, receiving, borrow- 542

ing, or lending money when it is not in the con- 543

text of purchasing something”, however, it’s hard 544

for the model to accurately interpret it, especially 545

the constraints “not in the context of purchasing 546

something”. In addition, many event types from 547

MAVEN, e.g., Achieve, Award, and Incident, are 548

not associated with any definitions. A potential fu- 549

ture research direction is to leverage mining-based 550

approaches or state-of-the-art generators to auto- 551

matically generate a comprehensive event type de- 552

scription based on various sources, such as annota- 553

tion guidelines, example annotations, and external 554

knowledge bases. 555

7 Conclusion 556

We investigate a variety of prompts to represent 557

the semantics of event types, and leverage them 558

with a unified framework for supervised, few-shot 559

and zero-shot event detection. Experimental results 560

demonstrate that, a well-defined and comprehen- 561

sive description of event types can significantly 562

improve the performance of event detection, espe- 563

cially when the annotations are limited (few-shot 564

event detection) or even not available (zero-shot 565

event detection), with up to 24.3% F-score gain 566

over the prior state of the art. In the future, we 567

will explore mining-based or generation-based ap- 568

proaches to automatically generate a comprehen- 569

sive description of each event type from available 570

resources and external knowledge base. 571
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Event Rep Type Comprehensive Prompt

Business:Declare-
Bankruptcy

Declare Bankruptcy [SEP] bankruptcy bankruptcies bankrupting [SEP] Organi-
zation request legal protection from debt collection at a Place

Business:End-Org End Organization [SEP] dissolving disbanded [SEP] an Organization goes out
of business at a Place

Business:Merge-Org Merge Organization [SEP] merging merger [SEP] two or more Organizations
come together to form a new organization at a Place

Business:Start-Org Start Organization [SEP] founded [SEP] an Agent create a new Organization at
a Place

Conflict:Attack Attack [SEP] invaded airstrikes overthrew ambushed [SEP] An Attacker physi-
cally attacks a Target with Instrument at a Place

Conflict:Demonstrate Demonstrate [SEP] demonstrations protest strikes riots [SEP] Entities come
together in a Place to protest or demand official action

Contact:Meet Meet [SEP] reunited retreats [SEP] two or more Entities come together at same
Place and interact in person

Contact:Phone-Write Phone Write [SEP] emailed letter [SEP] phone or written communication be-
tween two or more Entities

Justice:Acquit Acquit [SEP] acquitted [SEP] a trial of Defendant ends but Adjudicator fails to
produce a conviction at a Place

Justice:Appeal Appeal [SEP] appeal [SEP] the decision for Defendant of a court is taken to a
higher court for Adjudicator review with Prosecutor

Justice:Arrest-Jail Arrest Jail [SEP] arrested locked [SEP] the Agent takes custody of a Person at a
Place

Justice:Charge-Indict Charge Indict [SEP] indictment [SEP] a Defendant is accused of a crime by a
Prosecutor for Adjudicator

Justice:Convict Convict [SEP] pled guilty convicting [SEP] an Defendant found guilty of a crime
by Adjudicator at a Place

Justice:Execute Execute [SEP] death [SEP] the life of a Person is taken by an Agent at a Place

Justice:Extradite Extradite [SEP] extradition [SEP] a Person is sent by an Agent from Origin to
Destination

Justice:Fine Fine [SEP] payouts financial punishment [SEP] a Adjudicator issues a financial
punishment Money to an Entity at a Place

Justice:Pardon Pardon [SEP] pardoned lift sentence [SEP] an Adjudicator lifts a sentence of
Defendant at a Place

Justice:Release-Parole Release Parole [SEP] parole [SEP] an Entity ends its custody of a Person at a
Place

Justice:Sentence Sentence [SEP] sentenced punishment [SEP] the punishment for the defendant
is issued by a state actor

Justice:Sue Sue [SEP] lawsuits [SEP] Plaintiff initiate a court proceeding to determine the
liability of a Defendant judge by Adjudicator at a Place

Justice:Trial-Hearing Trial Hearing [SEP] trial hearings [SEP] a court proceeding initiated to determine
the guilty or innocence of a Person with Prosecutor and Adjudicator at a Place

Life:Be-Born Be Born [SEP] childbirth [SEP] a Person is born at a Place

Life:Die Die [SEP] deceased extermination [SEP] life of a Victim ends by an Agent with
Instrument at a Place

Table 6: APEX templates for ACE event types
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Event Rep Type Comprehensive Prompt

Life:Divorce Divorce [SEP] people divorce [SEP] two Person are officially divorced at a place

Life:Injure Injure [SEP] hospitalised paralyzed dismember [SEP] a Victim experiences
physical harm from Agent with Instrument at a Place

Life:Marry Marry [SEP] married marriage marry [SEP] two Person are married at a Place

Movement:Transport Transport [SEP] arrival travels penetrated expelled [SEP] an Agent moves an
Artifact from Origin to Destination with Vehicle at Price

Personnel:Elect Elect [SEP] reelected elected election [SEP] a candidate Person wins an election
by voting Entity at a Place

Personnel:End-Position End Position [SEP] resigning retired resigned [SEP] a Person stops working for
an Entity or change office at a Place

Personnel:Nominate Nominate [SEP] nominate [SEP] a Person is nominated for a new position by
another Agent at a Place

Personnel:Start-
Position

Start Position [SEP] hiring rehired recruited [SEP] a Person begins working for
an Entity or change office at a Place

Transaction:Transfer-
Money

Transfer Money [SEP] donations reimbursing deductions [SEP] transfer Money
from the Giver to the Beneficiary or Recipient at a Place

Transaction:Transfer-
Ownership

Transfer Ownership [SEP] purchased buy sell loan [SEP] buying selling loaning
borrowing giving receiving of Artifacts from Seller to Buyer or Beneficiary at a
Place at Price

Table 7: APEX templates for ACE event types (continued)

15


