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Graph Contrastive Learning Reimagined: Exploring Universality
Anonymous Author(s)∗

ABSTRACT
Graph Contrastive Learning (GCL) presents a promising training
paradigm for addressing the label scarcity problem on real-world
graph data. Despite its outstanding performance demonstrated in
such classical web network tasks as link prediction, its generality
to heterophilous networks such as marriage networks has yet to be
thoroughly explored. The major factors constraining its generaliz-
ability are the encoders and positive sample collection which fol-
low the strong homophilous assumption, which conflicts with the
requirements of heterophilous graphs. The logical thought would
be to equipGCLwith an encoderwith learnable propagationweights
or generate a more homophilous graph for the input graph. How-
ever, the former is experimentally verified to be infeasible and the
latter is prohibitive due to self-supervised learning. Therefore, we
reaffirmed that the primary cause for its failure is the blind positive
sample collection and the cross-layer decay of pseudo-supervised
information. To alleviate the above shortcomings, We investigate
the characteristic that homophilous graph structure has: i.e., its
matrices satisfy the block-diagonal property. Based on this, a new
graph contrastive learning framework with an inference module
for block diagonal graph structures is proposed, called gRaph cOn-
traStive Exploring uNiversality (ROSEN), which constructs such
structures by learning the local subspace correlations between nodes
and their neighbors. It is then applied to the optimization process
of contrast loss to aid in the selection of reliable positive sam-
ples from the neighborhood and to the encoder process to guar-
antee the generation of discriminative node representations, re-
spectively. In order to obtain mutually beneficial information for
graph structure inference and contrast loss optimization, these two
important processes are updated alternately. Thus, theoretically,
ROSEN follows the expectation-maximization algorithm. Extensive
evaluations of real-world graphs, especially thosewith heterophilous,
have shown the excellent performance and robustness of ROSEN.
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Graph Neural Networks; Contrastive Learning for Web Graphs;
Graph Representation Learning
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(a) Localized GCL.           (b) the proposed localized GCL.
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Figure 1: Comparison of localized GCL and the proposed lo-
calized GCL. The thickness of the line indicates the weight.

1 INTRODUCTION
Self-supervised Graph Learning (SSGL), which provides practical
guidance for network training bymining implicit pseudo-supervised
information, has emerged as a standard unsupervised paradigm for
representing Web graph [22, 38]. As one of the most concerned
SSGL, Graph Contrastive Learning (GCL) proposes a more essen-
tial and intuitive design that captures the invariance information
via consistency maximization of two graphs (views) and has been
utilized in diverseWeb applications, such as recommender systems
[15, 20]. When it comes to the source of self-supervised informa-
tion, most GCL methods follow a heuristic approach presented for
contrastive learning in computer vision [5, 8], in which the same
nodes in the augmented graphs are set as positive samples of each
other [44], named Paired GCL. In addition, GCL provides a graph-
specific scheme based on the homophilous assumption, namely ap-
pending the neighbor nodes into the positive samples, called Lo-
calized GCL, as shown in Figure 1 (a). These schemes contribute
excellent expert knowledge for mining pseudo-supervised infor-
mation, resulting in efficient and stable GCL frameworks [13, 19].

Unfortunately, most existing GCL frameworks still fail to cover
the requirements for universality. To be specific, real-world web
graphs are diverse, instead of just those linking the same-type web-
site, such as heterophilous networks [39], which undoubtedly put
forward a request for a universal GCL framework. However, the
above GCL frameworks are powerless for this request since their
key components (i.e., GNN encoder [18, 37] and contrastive loss
[19]) follow the strong homophilous assumption, which is consid-
ered a major factor of failure on the heterophilous graphs [6, 43].
Thus, a straightforward solution for this drawbackmay be to equip
an elaborated GNN encoder that has verified the effectiveness of
these complex web graphs in supervised scenarios, such as GAT
[32] and FAGCN [2]. Yet such a strategy has been experimentally
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verified to be suboptimal on heterophilous web graphs. We believe
its main causes are: blind positive sample collection and the decay
of the pseudo-supervised information.

On the one hand, the propagation induced by contrastive loss
optimization is equivalent to jointly feature smoothing [4] (i.e., en-
large similarity) and sharpening [40] (i.e., decline similarity) on
the positive and negative pairs, respectively [35]. Based on the re-
quirement for label consistency [36], the ideal positive sample sets
for the localized GCL scheme should be composed of only neigh-
bor nodes whose class are same as the center nodes (TRUE pos-
itive samples) instead of all neighbor nodes. Training with posi-
tive samples that are collected blindly, the network parameters of
Localized GCL would not fit the true data distribution accurately,
resulting in a node representation with unauthentic predictions.
As key pseudo-supervised information, the indicator matrix that
points to TRUE positive samples supplies the correct direction for
feature updating. However, since the labels are unknown, it is a
tough challenge to construct such an indicator matrix.

On the other hand, the decay of cross-layer pseudo-supervised
information is also responsible for the mistakes in propagation
weight training. Specifically, the propagation within the encoder
takes its orientation (i.e., smoothing or sharpening) with the help
of learnable propagation weights. As pseudo-supervised informa-
tion for training propagation weights, positive sample pairs iden-
tify whether the nodes at both ends of the edges are similar. Typ-
ically it directly affects the learning of the outermost propagation
weights while ignoring the correctness of the learning of the inner
propagation weights, which tends to decay the pseudo-supervised
information, thereby disrupting parameter training. Actually, for
achieving label-guided classified propagation, several Graph Neu-
ral Network (GNN) models have been provided, such as CPGNN
[42] and BM-GCN [12]. The former propagates soft labels under
the guidance of a compatibility matrix, while the latter propagates
features over a block matrix built with soft labels. Still, the problem
remains in unsupervised settings.

To remedy the two drawbacks, this study attempts to devise a
self-supervised structure inference module to adapt the GCL to di-
verse web graphs. Firstly, a theoretical analysis reveals the graph
structure matrices corresponding to the fully homophilous graph
mustmeet the BlockDiagonal Property. On this basis, the structure
inference module can pursue the homophilous graph structure by
implementing the Block Diagonal Representation algorithm on the
feature space. The inferred graph structure matrix approximately
characterizes the higher-order relationships between same-subspace
nodes and may be an informative indicator for collecting TRUE
positive samples and learning correct propagation weights in the
GNN encoder. Yet, this characterization might not be precise ow-
ing to the presence of massive data noise.

To meet this challenge, this study proposes a novel graph con-
trastive learning framework, named gRaph cOntraStive Exploring
uNiversality (ROSEN), which leverages two strategies, Local Fea-
ture Space Training, and Alternating Update, to improve the effec-
tiveness of the structure inference module progressively. Specif-
ically, synchronously calculating the block diagonal matrices on
the Ego network feature space of the nodes, and then extracting
the vectors of the corresponding nodes to reconstruct the graph

structure, as shown in Figure 2.(b). Aiming at the blindness prob-
lem of positive sample collection for local graph contrast learn-
ing, ROSEN assists contrast learning in judging reliable positive
samples (i.e., the neighbor nodes in the same subspace as the cen-
ter node) based on the correlation of local subspaces. In addition,
the inferred graph structure is directly incorporated into the fea-
ture propagation at each layer of the encoder as a solution for the
problem of cross-layer pseudo-supervised information decay. To
provide low-noise features for graph structure inference and cred-
ible graph structures for contrastive loss optimization, these cru-
cial components ROSEN are optimized alternatively to obtain re-
ciprocal information. Theoretically, it is proven that ROSEN can
be formulated as the maximum likelihood of nodes and neighbor
nodes, which is resolved by the Expectation Maximization (EM) al-
gorithm. The main contributions of this study are summarized as
follows

• We investigate the block diagonal properties presented by
the homophilous graph structure matrix.

• We propose a generalized graph contrast learning frame-
work with graph structure inference, named gRaph cOn-
traStive Exploring uNiversality (ROSEN).

• We theoretically prove that the proposed local graph con-
trast learning framework follows the EM algorithm.

• We perform intensive experiments on publicly available
datasets to provide evidence for the effectiveness and uni-
versality of the ROSEN.

2 PRELIMINARIES
In this section, we commence by introducing notations used through-
out the paper. And then we elucidate the basic concepts of Graph
Contrastive Learning (GCL).

2.1 Graph Contrastive Learning
Notations. Let G(V, E,X) denotes an attributed graph, whereV
is the node set, E is the edge set, and X ∈ 𝑅𝑁×𝐹 represents the
node attribute matrix, where 𝑁 and 𝐹 are the number of nodes
and attributes, respectively. The adjacency matrix is denoted by
A ∈ 𝑅𝑁×𝑁 .The laplacianmatrix is defined as 𝐿A = 𝐷𝑖𝑎𝑔(A1)−A =
D − A, where D denots the diagonal degree matrix. Based on the
edge set V , the neighbor node set of each node can be obtained
(e.g., 𝑁 (𝑣) of node 𝑣). The label matrix is denoted by Y ∈ 𝑅𝑁×𝐶 ,
which only is employed in fine-tune the parameters of the classi-
fier on downstream tasks, such as node classification.
GNN Encoder. To produce informative node representations, the
raw attribute is projected by a shared encoder with learnable prop-
agation weights (e.g., Graph Attention Network (GAT) [32]). For
the given graph G(V, E,X), this encoding process can be formu-
lated as

𝐺𝐶𝑁 (Ã,H(𝑙 ) ) : H(𝑙+1) = 𝜎 (ÃH(𝑙 )W(𝑙 ) ) (1)

where H(0) = X is the initial representation, and 𝜎 terms the non-
linear activation function (e.g., ReLU), andW(𝑙 ) represents the pa-
rameter matrix. Consequently, by encoding node via GNNs, node
representations would capture the structural relationships and lo-
cal patterns on graphs.
Paired and Localized GCL. Based on the defined positive and
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negative sample sets, contrastive loss is implemented as the dis-
tance minimization between the positive pairs alongside the dis-
tance maximization between the negative pairs. As exemplified by
a node-level GCL scheme, a widely used InfoNCE [30] loss L𝑖𝑛𝑓 𝑜
can be described as follows:

L𝑖𝑛𝑓 𝑜 = − 1
|𝑉 |

∑
𝑣∈𝑉

𝑙𝑜𝑔
𝑝𝑜𝑠 (𝑣)

𝑝𝑜𝑠 (𝑣) + 𝑛𝑒𝑔(𝑣)

𝑝𝑜𝑠 (𝑣) =
∑
𝑣+∈P𝑣

𝑒𝜃 (h𝑣 ,h𝑣+ )/𝜏 , 𝑛𝑒𝑔(𝑣) =
∑

𝑣−∈N𝑣

𝑒𝜃 (h𝑣 ,h𝑣− )/𝜏
(2)

where 𝜃 represents the cosine similarity. 𝜏 is a temperature coef-
ficient, and smaller one help form a more uniform representation
space. P𝑣 and N𝑣 denote the positive and negative sample set of
node 𝑣 , respectively. The positive sample selection strategies uti-
lized in GCL include two categories: Paired positive smaples and
Localized positive samples. Generally, the former utilizes the same
node in another graph [44], while the latter append nodes with
similar semantics [13, 19]. Based on the homophilous assumption
[1, 25], i.e., connected nodes have similar semantics, neighbors on
the graph structure are considered as credible positive samples. As
a consequence, they can be expressed as

𝑃𝑎𝑖𝑟𝑒𝑑 P𝑣 = {𝑢 |𝑢 = 𝑣}, (3)
𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑 P𝑣 = {𝑢 |𝑢 ∈ 𝑁 (𝑣) 𝑎𝑛𝑑 𝑢 ∈ {𝑁 (𝑣) ∪ 𝑣}} (4)

Negative sample set contains all the remaining nodes, i.e., N𝑣 =
{{𝑉∪𝑉̃ }\{P𝑣∪𝑣}}. Compared to the paired GCL, the localized one
enhances the characterization of homophily, which is regarded as a
reliable guide of the feature propagation in unsupervised scenarios
[19], resulting in a accurate representation of inductive biases on
real-world Web graphs [26].

3 METHODOLOGY
Responding to the dilemma of Graph Contrastive Learning (GCL)
mentioned in the introduction, this section begins by proving the
efficacy of block diagonal graph structure matrices for this prob-
lem theoretically. Then, a novel framework with block diagonal
structure inference for graph contrast learning is proposed, named
gRaph cOntraStive Exploring uNiversality (ROSEN), and benefits
from the alternating update of graph structure inference and con-
trast loss optimization. Lastly, a theoretical explanation of the pro-
posed framework ROSEN is provided, from an expectation-maximization
perspective.
Motivation.An efficient solution to the problems presented in the
Introduction is constructing a fully homophilous graph structure
by removing the edges linking the node pairs of different classes in
the initial graph structure. However, getting such a graph structure
by graph augmentation [28, 41] is tricky since the node labels are
unknown in self-supervised learning scenarios. To overcome this
challenge, this study first investigates the properties the matrix of
the entire homophilous graph structures possessed.

Definition 3.1. Block Diagonal Property [14]. Given a squarema-
trix, if it can be partitioned into multiple small block matrices,
where each block is represented by non-zero elements on the prin-
cipal diagonal and all non-diagonal elements are zero, it obeys the
block diagonal property.

TheoRem 3.2. For the permutation matrix P, which can be uti-
lized in an elementary row transformation to make the attribute ma-
trix X to be sorted according to class, after elementary row-column
transformation using P, the adjacent matrix S of fully homophilous
graph matrices will definitely satisfy the Block Diagonal Property ex-
plained in Define 3.1.

PRoof. Firstly, the permutation matrix P can be viewed as a
node sorting operator since the transformedmatrix after class sort-
ing can always be denoted as

X̂ = PX = [X̂1, X̂2, . . . , X̂𝐾 ],
where X̂𝑖 ∈ 𝑅𝑛𝑖×𝐹 denotes the feature sub-matrix of the nodes for
class 𝑖 , and having

∑𝐶
𝑖=0 𝑛𝑖 = 𝑁 . Therefore, the transformed matrix

Ŝ = PSP⊤ is a matrix sorted according to class. Since there are
only the edges linking the same class of node pairs in the fully
homophilous graph, the transformated adjacentmatrix Ŝ = PSP⊤

can always be formulated as
Ŝ1 0 · · · 0
0 Ŝ2 · · · 0
...

...
. . .

...

0 0 · · · Ŝ𝐾


(5)

where Ŝ𝑖 ∈ 𝑅𝑛𝑖×𝑛𝑖 is a block matrix, which describes the relations
between the nodes of class 𝑖 . Thus, it is can be concluded that the
adjacent matrix Ŝ satisfy the Block Diagonal Property. □

3.1 ROSEN Framework
Based on the analysis presented in the previous section, this study
intends to propose a structure inference module for WGCL in pur-
suit of Block Diagonal graph structures. Inspired by the classic
Block Diagonal Representation (BDR) [23], the module can gen-
erate coefficient matrix that approximate block diagonal by opti-
mizating subspace clustering with soft diagonal block regulariza-
tion on feature space, namely

min
B

1
2
∥X − BX∥2 + 𝛾 ∥B∥𝑘

s.t. diag(B) = 0, B ≥ 0, B = B𝑇
(6)

whereB stands for the coefficientmatrix, and ∥B∥𝑘 =
∑𝑘−1
𝑖=0 𝜆𝑖 (LB)

represents the sum of the smallest 𝑖 eigenvalue of the laplacian ma-
trix of B, where the eigenvalues are listed in ascending order, and
𝛾 is a scalar for tradeoff between two terms. These two terms of
Equation (7) guarantee that matrix B is self-expressive [21] and
has 𝑘 connected subgraphs (i.e., blocks) [7].

In the proposed module, three constraints for matrix B include
no self-loops, non-negativity, and symmetry. However, applying
these constraints directly to B would limit its expressive power.
Thus, this module seeks to introduce an approximation term to
alleviate these constraints, namely rephrasing Equation (6) as

min
Z,B

1
2
∥X − ZX∥2 + 𝜆

2
∥Z − B∥2 + 𝛾 ∥B∥𝑘 ,

s.t. diag(B) = 0, B ≥ 0, B = B𝑇
(7)

where Z denotes the coefficient matrix for approximating B. This
objective function can be optimizaed via alternating minimization

3
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Figure 2:Workflowof the proposed structure inferencemod-
ule. Nodes are sorted by class. Only reliable edges which con-
nect the node pairs belonging to the same subspace are kept.

solver [34], namely, update one while fixing the other. After the
solver converges, the generated coefficient matrices would be ap-
plied in the ROSEN training. Even though it appears plausible to
generate reliable graph structures for ROSEN leveraging this pro-
posedmodule, the process would be hampered by themassive data
noise in real-world graphs, resulting in the generated structures
being off the Block Diagonal Property.

To tackle this drawback, this study proposes a novel contrastive
learning framework for web graphs, named gRaph cOntraStive Ex-
ploring uNiversality (ROSEN). It leverages two strategies, Local
Feature Space Training and Alternating Optimization, to improve
the effectiveness of the graph structure inference module progres-
sively, thereby generating discriminative node representations.

3.1.1 Local Block Diagonal Graph Structure Inference. Since nodes
in the neighborhood determined by linking have more substantial
relevance than those out of the neighborhood, the structure infer-
ence module is set up on the node local subgraphs to minimize
the impact of data noise. In line with extract-then-calculate, ”Lo-
cal Feature Space Training” strategy focuses on synchronously op-
timizing the following objective function on the obtained node Ego
networks (i.e., combinations of nodes and their one-hop neighbors)
to compute affinity matrices.

min
Z𝑣 ,B𝑣

1
2
∥H𝑣 − Z𝑣H𝑣 ∥2 +

𝜆

2
∥Z𝑣 − B𝑣 ∥2 + 𝛾 ∥B𝑣 ∥𝑘 ,

𝑠 .𝑡 . diag(B𝑣) = 0, B𝑣 ≥ 0, B𝑣 = B𝑇𝑣

(8)

where H𝑣 ∈ 𝑅 ( |𝑁 (𝑣) |+1)×𝐷 denotes the feature matrix for the Ego
network of node 𝑣 . Additionally, Z𝑣 and B𝑣 represents the coeffi-
cient matrices for this Ego network, which are abbreviated as Z
and B in the calculations for ease of presentation. Since ∥B∥𝑘 is
nonconvex term for which the optimization is NP-hard, we con-
vert it into a convex program using the properties about the sum
of eigenvalues [3]

∥B∥𝑘 = min
W

⟨LB,W⟩ , s.t. 0 ⪯ W ⪯ I,Tr(W) = 𝑘

whereW is the newly added variable block. Therefore, the overall
objective for the proposed structure inference module with these
three variable blocks (i.e., Z𝑣 , B𝑣 , and W𝑣 ) is

min
Z,B,W

1
2
∥H𝑣 − ZH𝑣 ∥2 +

𝜆

2
∥Z − B∥2 + 𝛾 ⟨Diag(B1) − B,W⟩

s.t. diag(B) = 0,B ≥ 0,B = B⊤, 0 ⪯ W ⪯ I,Tr(W) = 𝑘

(9)

By utilizing alternating minimization, this objective function is
split into three problems and solved independently, as described in

the appendix. Ultimately, the closed solutions for the three blocks
are derived as

W𝑘+1 = UU⊤, (10)

Z𝑘+1 =
(
H⊤
𝑣 H𝑣 + 𝜆I

)−1 (
H⊤
𝑣 H𝑣 + 𝜆B

)
(11)

B∗ =
[(
Â + Â⊤

)
/2

]
+

(12)

whereU ∈R( |𝑁 (𝑣) |+1)×𝑘 contains the eigenvectors matching the𝑘
smallest eigenvalues of the laplacian matrix LB. Additionally, Â =
A−Diag(diag(A)), whereA = Z+𝛾𝜆

(
diag(W)1⊤ −W

)
. Please con-

sult Appendix for the alternating minimization solver of Equation
(9).

Following two coefficient matrices for the Ego network are ob-
tained, the row vectors and indices corresponding to the center
nodes are extracted from them to build two affinity matrix (de-
noted byAZ andAB) describing the full graph structure. Moreover,
to guarantee matrix non-negativity and symmetry, we construct
the adjacencymatrix S by taking absolute values and applying sym-
metry operations. This can be formulated as

S =
(
|AB | +

��AB
⊤��) /2 or S =

(
|AZ | +

��AZ
⊤��) /2 (13)

Moreover, to ease the computational burden and preserve confi-
dent relationship, a sparse graph structure is generated by a matrix
sparsification operation, i.e., zeroing of matrix values less than a
threshold 𝛽 , which can be formulated as

S𝑖 𝑗 =

{
0, if S𝑖, 𝑗 < 𝛽,

S𝑖, 𝑗 , otherwise

Benefits.The proposed structure inference module for web graph
contrastive learning provides the below advantages. (1) Robust topol-
ogy augmentation. As only non-zero valued edges are meaningful,
those tend to link pairs of nodes belonging to the same subspace
will be preserved by this module, i.e., robust edge deletion, which
would offer reliable positive samples as pseudo-supervised infor-
mation forWGCL. (2) Higher-order information. Given that the in-
ferred edge weight favors the characterization of higher-order rela-
tionships between local neighbors, it stands for the inferred graph
structure will boost the representation capability of the WGCL
framework by exploring mesocosmic community structure rather
than fragile pairwise relationships. Furthermore, the module per-
forms parallel training on nodes, which may facilitate the scalabil-
ity of the framework.

3.1.2 Contrastive LearningOptimization. After amore credible graph
structure matrix is constructed, the discussion follows on how to
improve the generality of graph contrastive learning. Firstly, the
proposed ROSEN proposes leveraging this matrix to guide the op-
timization process of localized graph contrastive learning. To be
specific, given node features H and inferred graph structure ma-
trix S, it devises the objective function L𝑏𝑑𝑔𝑐𝑙 for node 𝑣 as

−𝑙𝑜𝑔

∑
𝑣+∈𝑁𝑆

𝑣

S𝑣,𝑣+ ∗ 𝑒𝜃 (h𝑣 ,h𝑣+ )/𝜏∑
𝑣+∈𝑁𝑆

𝑣

S𝑣,𝑣+ ∗ 𝑒𝜃 (h𝑣 ,h𝑣+ )/𝜏 +
∑

𝑣−∈{𝑉 \N𝑆
𝑣 }

𝑒𝜃 (h𝑣 ,h𝑣− )/𝜏
(14)

where 𝑁𝑆𝑣 denotes the neighbor node set of node 𝑣 , which is de-
termined by the matrix S. In contrast to existing localized contrast
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schemewhich blindly assuming all neighbor nodes are the positive
samples [13, 19], the proposed ROSEN elaborately selectes the re-
liable neighbor nodes as TRUE positive samples through the local
structure inference module. In addition, the local higher-order re-
lationships provided by weights could efficiently supplement the
fragile pairwise relationships between the sample pairs in contrast
learning computations.

Alternating update. Considering that graph neural networks
(GNNs) can essentially serve as denoising encoders [24], which
meets the demand of low-noise features for the proposed structure
inference module, the construction of graph structure matrices on
the encoded features is a logical solution. To provide expressive
encoded features, the proposed ROSEN presents the alternating
optimization scheme of the encoder parameters and graph struc-
ture. Additionally, the inferred graph structure is adopted for the
encoding process to alleviate the discriminative information loss
of the node features [12, 42].

TheoRem 3.3. LetΘ, 𝑘 and 1G denote the parameters of the GNN
encoder, the number of subspaces (blocks), and the subspace indicator,
respectively, the proposed ROSEN follows the Expectation-Maximization
(EM) algorithm, in which the structure inference and the maximiza-
tion of the lower bound on the mutual information of the contrastive
pairs’ representation are equivalent to the E step and the M step, re-
spectively.

Please refer to the appendix for the detailed proof.

4 EXPERIMENTS
In this section, we begin by introducing the fundamental setups of
the experiment, including datasets, comparison methods, and con-
figurations.Then, to comprehensively assess the proposed ROSEN,
the performances on two mainstream tasks, i.e., node classifica-
tion and clustering, are experimentally validated. Lastly, several
experiments are utilized to provide an intuitive understanding of
its performance improvement, including the effectiveness test, the
ablation study, the hyperparameter analysis, and the robustness
analysis.

4.1 Experimental Setup
4.1.1 Datasets. To rigorously evaluate the proposed ROSEN, twelve
publicly available graph datasets are adopted in the experiment.
According to whether the Edge Homophily [26] is more signifi-
cant than 0.5, these datasets can be divided into two categories:
homophilous graph (i.e., Cora, CiteSeer, PubMed, Wiki-CS, Com-
puters, and Photo) and heterophilous graph (i.e., Cornell, Texas,
Wisconsin, Chameleon, Squirrel, and Actor). The detailed statistics
are in Table 5 in the Appendix.

For a fair model comparison, the datasets are split according
to the broadly adopted scheme [26]. Specifically, As for three ho-
mophilous graphs (Cora, CiteSeer, and Pubmed) and all six het-
erophilous graphs, a publicly available split is adopted, which splits
48%, 32%, and 20% of the data are used for training, validation,
and testing, respectively. In addition, for three large homophilous
graphs (Wiki-CS, Computers, and Photo), we randomly split the
training, validation, and test sets into 10%, 10%, and 80%.

4.1.2 Comparison Methods. The comparison methods are the fol-
lowing four types, i.e., classical semi-supervised graph neural net-
work (including GCN [18], GAT [32], and JKNetJKNet), and an un-
supervised method ( K-Means [10]) and unsupervised graph learn-
ing model (DeepWalk [27], Node2Vec [9], GAE [17], VGAE [17]),
and the latest graph contrastive learning framework (including
DGI [33], MVGRL [11], GRACE [44], GCA [45], BGRL [29], and
HomoGCL [19]).

4.1.3 Configurations. All experiments are performed on a single
GeForce RTX4090 24GB GPU. The results are reported as an av-
erage of over ten random runs. The experiment works with the
configurations reported in the original paper for all comparison
methods. It is worth mentioning that, thanks to the open PyTorch
libraries: PyG1 and PyGCL2, the reproduction of all comparison
methods is facilitated. For the proposed framework ROSEN, the en-
coder picks a two-layer GCN [18] network, and the dimensions of
its hidden layer are selected as 64. The graph augmentation strate-
gies are masking attribute and edge deletion, which have the ra-
tio {0.2, 0.4, 0.6, 0.8}. The temperature coefficient of the contrastive
loss is taken from {0.1, 0.3, 0.5, 0.7, 1, 2}. In addition, the network
optimizer used during network training is Adam optimizer [16],
the learning rate is taken out of {0.001, 0.01} and the weight decay
rate is chosen in {0, 1×10−3, 1×10−4, 1×10−5}. The hyperparame-
ter 𝜆,𝛾 , and 𝑡𝑜𝑙 used for graph structure learning are chosen among
{40, 50, 60},{0.5, 1, 2}, and {1 × 10−3, 1 × 10−4}, respectively. The
number of blocks for subspace clustering is picked from a range
no more significant than the number of classes, and its impact on
the results is thoroughly analyzed in Section 4.5.

4.2 Results and Analysis
Homophilous datasets. Table 1 presents the node classification
performance of all methods on the homophilous graph. Observ-
ing the data presented in Table 1, it is evident that the proposed
ROSEN exhibits superior classification performance on all datasets
compared to all unsupervised baseline methods. For example, it
outperforms the second-ranked MVGRL on the Cora dataset by
0.95%, which demonstrates the effectiveness of the proposed graph
structure inferencemodule for graph contrastive learning. Further-
more, even in comparison to the supervised baseline methods, the
ROSEN obtains the highest classification accuracy on all the other
five datasets except CiteSeer and PubMed. Of note is the perfor-
mance on the large dataset. It outperformed the runner-up GAT
on the Computers dataset by 1.97% and the runner-up JKNet on
the Photo dataset by 1.22%. This illustrates that the inferred graph
structure provides more precise pseudo-supervised information,
which proves the potent data-mining capabilities of the ROSEN.
Heterogeneous datasets.As discussed before, the design of most
existing unsupervised graph neural networks (especially graph con-
trastive learning methods) is based on the strong homophilous as-
sumption (i.e., neighbor nodes are treated to be TRUE positive sam-
ples), which renders thempowerless in tackling heterophilous prob-
lem. The performance comparison of the ROSEN and the compar-
ison methods on the heterophilous graph is exhibited in Table 2.
It can be observed that, as compared to all unsupervised baseline
1https://www.pyg.org/
2https://github.com/PyGCL
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Table 1: The accuracy in percentage (mean ± std) of node classification for six homophilous datasets. The Best and Runner-up
are highlighted by bolding and underlining, respectively. The second column presents the data considered during training.

Model Training Data Cora CiteSeer PubMed Wiki-CS Computers Photo
GCN A,X, Y 85.77 ± 0.25 73.68 ± 0.31 88.13 ± 0.28 76.89 ± 0.37 86.34 ± 0.48 92.35 ± 0.25
GAT A, X, Y 86.37 ± 0.30 74.32 ± 0.27 87.62 ± 0.26 77.42 ± 0.19 87.06 ± 0.35 92.64 ± 0.42
JKNet A, X, Y 85.93 ± 1.35 74.37 ± 1.53 87.68 ± 0.30 79.52 ± 0.21 85.28 ± 0.72 92.68 ± 0.13

DeepWalk A 73.96 ± 0.12 61.91 ± 0.42 74.79 ± 0.98 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11
Node2Vec A 75.87 ± 0.22 62.54 ± 0.13 76.49 ± 0.32 71.79 ± 0.05 84.39 ± 0.08 89.67 ± 0.12
GAE A, X 76.83 ± 1.22 65.43 ± 1.13 76.52 ± 0.33 70.15 ± 0.01 85.27 ± 0.19 91.62 ± 0.13
VGAE A, X 79.36 ± 0.83 69.18 ± 0.27 79.17 ± 0.44 76.63 ± 0.19 86.37 ± 0.21 92.20 ± 0.11
DGI A, X 85.90 ± 0.57 72.57 ± 0.23 83.52 ± 1.24 75.73 ± 0.13 84.09 ± 0.39 91.49 ± 0.25
MVGRL A, X 86.77 ± 0.33 73.71 ± 0.48 84.63 ± 0.73 77.97 ± 0.18 87.09 ± 0.27 92.01 ± 0.13
GRACE A, X 84.79 ± 0.64 72.94 ± 0.72 84.51 ± 0.68 79.16 ± 0.36 87.21 ± 0.44 92.65 ± 0.32
GCA A,X 85.16 ± 0.51 72.73 ± 0.45 85.22 ± 0.73 79.35 ± 0.12 87.84 ± 0.27 92.78 ± 0.17
BGRL A, X 85.37 ± 0.74 73.45 ± 0.83 84.61 ± 0.32 78.74 ± 0.22 88.92 ± 0.33 93.24 ± 0.29
HomoGCL A, X 85.02 ± 0.68 73.67 ± 0.78 82.33 ± 0.49 77.47 ± 0.45 87.84 ± 0.28 93.59 ± 0.27

ROSEN A, X 87.72 ± 1.00 74.13 ± 0.68 85.30 ± 0.72 80.17 ± 1.28 89.03 ± 0.41 93.90 ± 1.10

Table 2:The accuracy in percentage (mean ± std) of node classification for six heterophilous datasets. The Best and Runner-up
are highlighted by bolding and underlining, respectively. The second column presents the data considered during training.

Model Training Data Cornell Texas Wisconsin Chameleon Squirrel Actor
GCN A, X, Y 55.14 ± 7.57 55.68 ± 9.61 58.42 ± 5.10 59.82 ± 2.58 36.89 ± 1.34 30.64 ± 1.49
GAT A, X, Y 58.92 ± 3.32 58.38 ± 4.45 55.29 ± 8.71 60.26 ± 2.50 40.72 ± 1.55 27.44 ± 0.89
JKNet A, X, Y 56.49 ± 3.22 65.35 ± 4.86 51.37 ± 3.21 60.31 ± 2.76 44.24 ± 2.11 36.47 ± 0.51

DeepWalk A 39.18 ± 5.57 46.49 ± 6.49 33.53 ± 4.92 47.74 ± 2.05 32.93 ± 1.58 22.78 ± 0.64
Node2Vec A 42.94 ± 7.46 41.92 ± 7.76 37.45 ± 7.09 41.93 ± 3.29 22.84 ± 0.72 28.28 ± 1.27
GAE A, X 58.85 ± 3.21 58.64 ± 4.53 52.55 ± 3.80 33.84 ± 2.77 28.03 ± 1.61 28.03 ± 1.18
VGAE A, X 59.19 ± 4.09 59.20 ± 4.26 56.67 ± 5.51 35.22 ± 2.71 29.48 ± 1.48 26.99 ± 1.56
DGI A, X 63.35 ± 4.61 60.59 ± 7.56 55.41 ± 5.96 39.95 ± 1.75 31.80 ± 0.77 29.82 ± 0.69
MVGRL A, X 64.30 ± 5.43 62.38 ± 5.61 62.37 ± 4.32 51.07 ± 2.68 35.47 ± 1.29 30.02 ± 0.70
GRACE A, X 54.86 ± 6.95 57.57 ± 5.68 50.00 ± 5.83 48.05 ± 1.81 31.33 ± 1.22 29.01 ± 0.78
GCA A,X 55.41 ± 4.56 59.46 ± 6.16 50.78 ± 4.06 49.80 ± 1.81 35.50 ± 0.91 29.65 ± 1.47
BGRL A, X 57.30 ± 5.51 59.19 ± 5.85 52.35 ± 4.12 47.46 ± 2.74 32.64 ± 0.78 29.86 ± 0.75
HomoGCL A, X 48.64 ± 2.59 54.05 ± 2.32 39.21 ± 5.75 48.68 ± 1.16 38.71 ± 0.85 28.81 ± 0.78

ROSEN A, X 76.49 ± 6.84 74.86 ± 6.29 78.63 ± 4.68 49.25 ± 2.33 39.13 ± 1.36 33.19 ± 0.81

Table 3: Overall performance of node clustering measured
by ACC, NMI, and ARI scores in percentage.The best results
are in bold, and the second-best results are underlined.

Cora Citeseer
ACC NMI ARI ACC NMI ARI

K-Means 35.78 16.88 8.30 44.47 21.35 17.43
GRACE 64.02 36.17 22.69 53.65 27.62 25.14
BGRL 61.84 40.39 24.29 52.52 15.4 14.17
MVGRL 72.45 55.05 41.55 64.14 39.12 38.93
ROSEN 76.08 58.53 46.50 66.22 40.34 40.17

methods, ROSEN consistently achieves significant performance im-
provement on five heterophilous datasets except for Chameleon,
which demonstrates the generality and robustness of the designed
ROSEN. In particular, on the Cornell, Texas, andWisconsin datasets,

it is above the classification accuracies of the second-place MV-
GRL by 12.19%, 12.48%, and 16.26%, respectively. Besides, it con-
siderably outperforms the supervised baseline methods on these
three datasets and achieves comparable performance on the other
three datasets. This is mainly attributed to the availability of the
homophilous graph structure in the optimization of comparative
learning, which confirms the effectiveness of the graph structure
inference module.
Visualization. To visually compare the representation capability
of the GCL framework, the generated node representations are di-
mensionally reduced and visualized via t-SNE [31]. Figure 3 presents
the results for GRACE, BGRL, and the proposed ROSEN over the
datasets Cora, Photo, and Wiki-CS. It is concluded from the result
that the quality of the node embedding produced by ROSEN is
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Figure 3: t-SNE visualization of the models GRACE, BGRL,
and ROSEN on the datasets Cora, Photo, and Wiki-CS. Each
color stands for a class.

significantly better than that of the comparison methods. In par-
ticular, across all three datasets, the former has a tighter cluster
of same-class embeddings and larger gaps between different-class
clusters compared to the latters.These results illustrate the discrim-
inative quality of embedding generated by the proposed ROSEN
and validate the powerful data mining capabilities of the ROSEN.

Node Clustering. For assessing the ability of GCL methods to
generate discriminative node representations, their impact on the
clustering task was analyzed on the Cora and Citeseer datasets. In
line with the training-then-clustering paradigm, after the model
training converges, the learned node representations are evaluated
for the representation quality with the help of K-Means. Table 3 ex-
hibits the comparison result of the proposed ROSEN and four clas-
sical unsupervised baseline methods (i.e., K-Means [10], GRACE
[44], BGRL [29], and MVGRL [11]) on the node clustering task.

As can be observed from the data presented in Table 3: (1) com-
pared to the unsupervised method K-Means, which does not use
graph structure, considering the homophilous graph structure in
the model design enables GCL methods to generate more discrim-
inative representations. (2) compared to these representative GCL
methods, the proposed ROSEN has learned clustering-friendly em-
beddings. It outperforms the runner-up MVGRL by over at least
1% on all datasets, which highlights the effectiveness of leveraging
reliable graph structure in the optimization of GCLs.

4.3 Effectiveness Test
As discussed in the previous section, the pursuit of graph structure
matrices that meet the block diagonal property is proposed to effi-
ciently construct homophilous graph structures in self-supervised
scenarios. To visually explain the usefulness of the proposed graph
structure inference module, the edge distributions of the inferred
graph structure matrices (i.e., AZ or AB) and the adjacency matrix
are compared, as depicted in Figure 4. To examine for the block
diagonal property, all nodes are numbered according to their class.
And then, the sum of edges connected to nodes of different classes
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Class

C
la

ss
C

la
ss

C
la

ss
C

la
ss

Class

Class Class

Figure 4: Visualization of the adjacency matrix and the in-
ferred graph structure matrices on the Squirrel and Actor
datasets. The inferred graph structure matrices are more
similar to the block diagonal matrix.

Table 4:The accuracy in percentage (mean ± std) of node clas-
sification for ablation study.The best results are in bold, and
the second-best results are underlined.

Cora Cornell Wisconsin
ROSEN 87.72±1.00 76.49±6.84 78.63±4.68

w/o being in encoding 85.77±1.49 69.08±6.48 74.81±4.96
w/o being in contrasting 85.63±1.57 67.24±5.67 72.98±6.19

localized GCL 84.65±1.18 56.62±6.85 63.02±5.81

is counted. In the end, maximum value normalization makes the
data map from 0 to 1.

Observing Figure 1 we can notice: the inferred graph structure
matrices are always closer to the block diagonal matrices than the
original adjacency matrices. In particular, as exemplified on the
Squirrel dataset, many elements of the non-diagonal are deleted
or the weights are reduced, which illustrates the outstanding abil-
ity of the proposed graph structure inference module. Besides that,
this phenomenon is more obvious on the Actor dataset, which il-
lustrates the validity of the proposed ROSEN.

4.4 Ablation Study
To verify the contributions of the design in the proposed ROSEN,
several ablation experiments are constructed on the Cora, Cornell,
and Wisconsin datasets. The influence of the manner in which the
graph structures are employed, i.e., encoding and contrasting, is
studied on the node classification performance of the proposed
ROSEN. The results are exhibited in Table 4, where the ”localized
GCL” stands for the GCL variants in which the adjacency matrix
is utilized for both encoding and contrasting.

It can be observed from Table 4 : (1) Compared to other variants,
the proposed ROSEN consistently presents optimal classification
performance on all datasets, which underlines the effectiveness of
its design. (2) The second row presents higher results than those

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Cora

A
C

C
U

R
A

C
Y

(%
) 88

87

86

85

84
2   3 4 5 6   7

Cornell

A
C

C
U

R
A

C
Y

(%
) 80

74

68

62

56
2    3   4     5

Actor

A
C

C
U

R
A

C
Y

(%
) 34

33

32

31

30
2     3   4  5

Number of subspaces (k) Number of subspaces (k) Number of subspaces (k)

Figure 5: Impact of the number of diagonal blocks (i.e., num-
ber of subspaces) on the performance of node classification.

presented in the fourth row.This illustrates the validity of the start-
ing point of this study, i.e., to provide a reliable graph structure
for contrastive loss to determine positive and negative samples. (3)
The results in the first row are higher than those in the second
row, which is attributed to the efficiency of the graph structure
in the encoding for generating low-noise representations as a tool
for helping the correct blocking in the proposed graph structure
inference module. (4) In the comparison of the results in the third
and fourth rows, the former over the latter exhibits performance
advantages. It highlights the fact that generating discriminative
node representations by leveraging the structures inference mod-
ule is an effective solution for improving GCL.

4.5 Hyperparameter Analysis
A unique and crucial parameter in the ROSEN is the number of
subspaces (blocks), i.e., 𝑘 , which is ideally the same as the number
of classes.Thus, selecting the appropriate number of subspaces can
be challenging for self-supervised tasks. This experiment attempts
to provide valuable insights by analyzing the effect of this parame-
ter on the node classification performance of the proposed ROSEN,
as described in Figure 5. Since there is massive noise in web graphs,
the choice of this parameter is limited to no more than the number
of classes to preserve sufficient neighbor nodes for each node.

As can be observed from Figure 5: (1) On all three datasets, the
proposed ROSEN exhibits steady improvements achieved within a
certain range of the parameter 𝑘 , which are {2, 3}, {2, 3, 4, 5} and
{4, 5} for the Cora, Cornell, and Actor datasets, respectively. This
illustrates the insensitivity of the proposed ROSEN to the number
of blocks 𝑘 . (2) Together with the data in Tables 1 and Tables 2, it is
apparent that the proposed ROSEN still outperforms most baseline
methods with small parameter values, such as 𝑘 = 2. The reason-
able explanation for this phenomenon is that compared to existing
GCL methods which treat all neighbors as positive samples, even
if FALSE positive samples (i.e., nodes of different classes) are incor-
rectly preserved during structure inference, the proposed ROSEN
benefits from its exclusion of the nodes of part of the other classes.
The results demonstrate the effectiveness of the proposed graph
structure inference module for GCL.

4.6 Robustness Analysis
As stated in Section 3.1.1, the graph structure inferred from the lo-
cal neighborhoods endows the adaptability of the ROSEN to noisy
data. To verify the claim, this experiment simulates real noisy data
by manually setting topology noise and attribute noise for datasets
Cora andActor, as away of comparing the robustness of the ROSEN
and the comparedmethods (includingGRACE,MVGRL, adn BGRL).
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Figure 6: Performance variation of GCL models on graph
data with topology noise.
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Figure 7: Performance variation of GCL models on graph
data with attribute noise.

It can be observed from Figure 6 that, while the compared meth-
ods manifest the adaptability to minor topology noise, their per-
formance degrades incrementally as the perturbation increases. By
contrast, the proposed ROSEN exhibits the stability in preserving
its predictive performance on graphs with topology noise. In addi-
tion, it can be seen from Figure 6 that the proposed model shows
the greatest robustness, despite a decline in performance for all
models as the proportion of attribute noise increases. Of interest
here is on both datasets, the performance reduction of the ROSEN
is less than 8%, even with a 60% proportion of noise being added.
Similarly, the results in Figure 7 show that the proposed method
has better stability than the compared methods. This is mainly at-
tributed to the usefulness of the block constraints imposed on the
graph structure matrix. It forcibly tightens the representation of
nodes with high feature similarity into the same block, thereby
the proposed ROSEN is insensitive to the number of edges.

5 CONCLUSION
In summary, this study discusses challenges in self-supervised learn-
ing for diverseweb graph data and proposes a solution called ROSEN.
Existing GCL frameworks face issues related to blind positive sam-
ple collection and pseudo-supervised information decay. ROSEN
aims to address these problems using a Block Diagonal graph struc-
ture inference module and two strategies: “Local Feature Space
Training” and “Alternating Update”. Specifically, ”Local Feature
Space Training” refers to a training approach that focuses on the
features or characteristics of data within a localized or specific re-
gion. Moreover, it benefits from reciprocal information by alter-
nately updating the inferred block diagonal graph structure, and
contrastive loss optimization. Overall, this research offers a promis-
ing solution to enhance the universality of GCL to diverse web
graphs. The potential future research directions include the model
design for large-scale web graph applications.
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A APPENDIX
A.1 Datasets
The statistics of all the datasets used in this experiment are shown
in Table 5.

Table 5: Statistics of twelve graph datasets. The abbreviation
#𝐸𝑑𝑔𝑒𝐻𝑜𝑚 denotes the edge homophily elucidated in [26].

Dataset Nodes Edges Features Classes #𝐸𝑑𝑔𝑒𝐻𝑜𝑚

Cora 2,708 5,278 1,433 7 0.81
CiteSeer 3,327 4,552 3,703 6 0.74
PubMed 19,717 44,324 500 3 0.80
Wiki-CS 11,701 216,123 300 10 0.65
Computers 13,752 245,861 767 10 0.78
Photo 7,650 238,163 745 8 0.83
Cornell 183 295 1,703 5 0.13
Texas 183 309 1,703 5 0.11
Wisconsin 251 499 1,703 5 0.20
Chameleon 2,277 36,101 2,325 5 0.23
Squirrel 5,201 217,073 2,089 5 0.22
Actor 7,600 33,544 931 5 0.22

A.2 Algorithm description
To jointly modify the graph structure S and train the GCL param-
eters Θ, we alternately update one while fixing the other, and the
details are shown in Algorithm 1. Andwe show in Alogrithm 2 that
the structure of graph is inferred through the node embedding.

Algorithm 1 ROSEN
Input: Graph 𝐺 = (𝑉 , 𝐸,X), GNN encoder 𝑓Θ, number of sub-

spaces 𝑘
Output: trained GNN encoder 𝑓Θ and node embeddings H∗

1: Initialize GNN encoder 𝑓Θ, and initialize H∗ = X and initialize
augmented graph S∗ via Equation (7)

2: while not Converge do
3: /* E-step */
4: 𝐺 = (𝑉 , 𝐸, X̂) = 𝐴𝑢𝑔(𝐺 (𝑉 , 𝐸,X))
5: while not MaxEpoch do
6: H∗ = 𝑓Θ (S∗,H∗)
7: for 𝑣 in 𝑉 do
8: H∗

𝑣 = H∗ [𝑁 (𝑣)]
9: Z,B.append(StructureInference(H∗

𝑣, 𝑘))
10: end for
11: Update S∗ via Equation (13)
12: end while
13: /* M-step */
14: while not MaxEpoch do
15: L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (H∗, S∗)
16: 𝜃 = 𝐴𝑑𝑎𝑚(L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 ,Θ)
17: end while
18: end while

A.3 Theoretical Analysis
TheoRem A.1. Let Θ, 𝑘 and 1G denote the parameters of the

GNN encoder, the number of subspaces (blocks), and the subspace
indicator, respectively, the proposed ROSEN follows the Expectation-
Maximization (EM) algorithm, in which the structure inference and
the maximization of the lower bound on the mutual information of
the contrastive pairs’ representation are equivalent to the E step and
the M step, respectively.

PRoof. In the localized GCL framework with the variable pos-
itive sample set, the optimal parameters of the GNN encoder is
learned by maximizating the function L (Θ,Ω). This can be formu-
lated as

Θ∗ = argmax
Θ

∑
𝑣∈𝑉

log
∑

𝑢∈𝑁 (𝑣,Ω)
𝑝 (h𝑣, h𝑢 |Θ) (15)

However, since the latent variables, the directly computation of
Equation 15 is difficult. With the help of Amortized Variational
Inference [34], this problem can be alleviated by introducing the
approximated posterior 𝑝 (h𝑢 |h𝑣,Θ). Therefore, the log-likelihood
function L (Θ,Ω) in Equation 15 can be reformulated as

L (Θ,Ω) =
∑
𝑣∈𝑉

log
∑

𝑢∈𝑁 (𝑣,Ω)
𝑝 (h𝑢 |h𝑣,Θ)

𝑝 (h𝑣, h𝑢 |Θ)
𝑝 (h𝑢 |h𝑣,Θ)

≥
∑
𝑣∈𝑉

∑
𝑢∈𝑁 (𝑣,Ω)

𝑝 (h𝑢 |h𝑣,Θ) log𝑝 (h𝑣, h𝑢 |Θ)

−𝑝 (h𝑢 |h𝑣,Θ) log𝑝 (h𝑢 |h𝑣,Θ)

(16)

where the inequality holds due to the Jensen’s inequality. It is worth
noting that −𝑝 (h𝑢 |h𝑣,Θ)𝑙𝑜𝑔𝑝 (h𝑢 |h𝑣,Θ) is the entropy operator,
which does not affect the update of the parameter Θ. Overall, the
log-likelihood function can be formulated as

𝑙 =
∑
𝑣∈𝑉

∑
𝑢∈𝑁 (𝑣,Ω)

log 𝑝 (h𝑢 |h𝑣,Θ)𝑝 (h𝑣, h𝑢 |Θ) (17)

Accordingly, the EM algorithm for optimizating this function can
be described as inferencing structure in E step and maximizating
the lower bound on the mutual information in M step.
E step.To infer the approximated posterior probability𝑝 (h𝑢 |h𝑣,Θ),
the proposed structure inference module introduce the bloack di-
agonal constraint. Thus, this probability can be formulated as

𝑝 (h𝑣 |h𝑢 ,Θ) =
𝑘∑
𝑡=1

𝑝 (h𝑢 |h𝑣, 𝑡,Θ)𝑝 (𝑡 |h𝑣,Θ)

It can be obtained from the local block diagonal graph structure
inference in Section 3.1.1, namely 𝑝 (h𝑣 |h𝑢 ,Θ) = 1G𝑣,𝑢 , which as-
sumes that the neighbour nodes which belong to the same sub-
space are of the same class (1G𝑣,𝑢 = 1), i.e., TRUE positive sam-
ples.
M step. Based on the E step, the M step focuses on maximizating
the lower-bound of Equation 17. In particular, there are

𝑙 =
∑
𝑣∈𝑉

∑
𝑢∈𝑁 (𝑣,Ω)

𝑝 (h𝑢 |h𝑣,Θ) log𝑝 (h𝑣, h𝑢 |Θ) (18)

=
∑
𝑣∈𝑉

∑
𝑢∈𝑁 (𝑣,Ω)

1G𝑣,𝑢 log 𝑝 (h𝑣, h𝑢 |Θ) (19)
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Algorithm 2 Structure Inference
Input: Ego embeddings of node Hi

∗, number of subspaces 𝑘
Output: The coefficient matrices Z, B
1: Initialize Z = B = W = 0, 𝜖 = 1𝑒 − 8
2: while not MaxEpoch do
3: Update Zk+1 by Z𝑘+1 = argmin

Z

1
2 ∥X − XZ∥2 + 𝜆

2 ∥Z − B∥2

4: Update Bk+1 by B𝑘+1 = argmin
B

𝜆
2 ∥Z − B∥2 + 𝛾 ⟨Diag(B1) − B,W⟩, s.t. diag(B) = 0,B ≥ 0,B = B⊤

5: Update Wk+1 by W𝑘+1 = argmin
W

⟨Diag(B1) − B,W⟩, s.t. 0 ⪯ W ⪯ I,Tr(W) = 𝑘

6: Check the convergence conditions
∥Zk+1 − Zk∥∞ ≤ 𝜖, ∥Bk+1 − Bk∥∞ ≤ 𝜖

7: end while
8: return The coefficient matrices Z, B

and 𝑝 (h𝑣, h𝑢 |Θ) = 1
|𝑁 (𝑣,Ω) | 𝑝 (h𝑢 |h𝑢 ,Θ). Since we consider that the

prior obeys a uniform distribution, and describe the distribution
of each sample in the feature space with isotropic Gaussian, thus
there is

𝑝 (h𝑣 |h𝑢 ,Θ) =
1

2𝜎2𝑖
exp

(
− 1

2𝜎21
(h𝑣 − h𝑢 )𝑇 · (h𝑣 − h𝑢 )

)
(20)

=
1

2𝜎2𝑖
exp

©­­«−
(
h𝑇𝑣 · h𝑢 − 1

)
2𝜎21

ª®®¬ (21)

where the last equivalence due to the L2 normalization for the fea-
tures H. Setting 𝜏 = 𝜎2 as the hyperparameter for all terms, ignor-
ing the constant term, and taking Equation 21 into Equation 19, it
can be obtained as

∑
𝑣∈𝑉

𝑙𝑜𝑔

∑
𝑣+∈𝑁𝑆

𝑣

1G𝑣,𝑣+ ∗ 𝑒𝜃 (h𝑣 ,h𝑣+ )/𝜏∑
𝑣+∈𝑁𝑆

𝑣

1G𝑣,𝑣+ ∗ 𝑒𝜃 (h𝑣 ,h𝑣+ )/𝜏 +
∑

𝑣−∈{𝑉 \N𝑆
𝑣 }

𝑒𝜃 (h𝑣 ,h𝑣− )/𝜏

It can be discovered that when considering weights which reflect
local higher-order relationships, the objective is equivalent to the
ROSEN. □
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