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Abstract

Simulation models often lack tractable likelihood
functions, making likelihood-free inference meth-
ods indispensable. Approximate Bayesian compu-
tation generates likelihood-free posterior samples
by comparing simulated and observed data through
some distance measure, but existing approaches are
often poorly suited to time series simulators, for
example due to an independent and identically dis-
tributed data assumption. In this paper, we propose
to use path signatures in approximate Bayesian
computation to handle the sequential nature of
time series. We provide theoretical guarantees on
the resultant posteriors and demonstrate compet-
itive Bayesian parameter inference for simulators
generating univariate, multivariate, and irregularly
spaced sequences of non-iid data.

1 INTRODUCTION

Simulation models are an increasingly popular tool in a
broad range of scientific disciplines including cosmology
[Alsing et al., 2018], economics [Geanakoplos et al., 2012],
and the biological sciences [Christensen et al., 2015]. A
drawback of such models is that, while they are straightfor-
ward to sample from, their complexity typically does not
allow for explicit evaluation of the associated likelihood
function. Consequently, traditional approaches to statistical
inference are infeasible and alternative likelihood-free infer-
ence (LFI) methods are usually adopted.

Many LFI approaches have been proposed. One of the most
widely used LFI methods is approximate Bayesian com-
putation (ABC) [Tavaré et al., 1997, Pritchard et al., 1999,
Beaumont et al., 2002], in which the Bayesian posterior dis-
tribution is approximated by sampling parameters θ from a
prior distribution and synthetic datasets x from a stochastic
simulator – with likelihood denoted p(x | θ) – and compar-

ing the output x with real data y. If the simulator output
is sufficiently ‘close’ to the observation, then θ is retained
as a sample from the approximate posterior distribution;
otherwise, it is discarded.

However, measuring closeness between model outputs is
known to be challenging. This is particularly the case for
time series data, which can exhibit complex dependency
structures and may be multivariate and sampled at irregular
time intervals. A common approach is to attempt to distil
important features of the data using summary statistics and
compare these instead (see e.g. Prangle [2018]). In practice,
informative summary statistics are difficult to craft, which
presents a trade off: a poor choice can materially degrade
ABC-based posterior approximations, yet constructing a
sufficiently powerful choice can require substantial domain
expertise, problem insight, and costly experimentation (see
e.g. Drovandi and Frazier [2021] for a recent comparison of
methods with and without summaries).

In other approaches the engineering of summary statistics is
bypassed altogether in favour of distances on the full data-
set [e.g. Park et al., 2016, Jiang, 2018, Bernton et al., 2019,
Nguyen et al., 2020]. However, in many such cases the focus
is on iid data, with non-iid or sequential data appearing as
an afterthought. The result of this is that there is a scarcity of
automatic approaches to performing approximate Bayesian
inference for generic dynamic, stochastic simulation models
in the ABC literature. Developing automatic approaches
to ABC that are more tailored to simulators generating se-
quences of dependent points will thus increase the ease with
which ABC methods can be deployed in a broader range of
real-world inference settings.

In response to this challenge, we present here two novel
methods for performing ABC for time series models that
bypass the difficult problem of manually constructing sum-
mary statistics for sequential data. Our approach leverages
so-called path signatures, a key object in the mathematics
of rough path theory and the theory of controlled differen-
tial equations [see e.g. Lyons et al., 2007, Lyons, 2014],
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to generate ABC schemes that places sequential data at
centre stage. Signatures have been employed successfully
in a variety of machine learning tasks (see, e.g., [Li et al.,
2017, Moore et al., 2019]), and constitute a natural feature
set for multivariate and even irregularly sampled sequen-
tial data [Salvi et al., 2021]. We demonstrate that the path
signature can be employed in two different ways to con-
struct useful distance measures for time series data in ABC:
either directly as a summary statistic, or in the context of
a regression-based semi-automatic ABC approach. We fur-
ther show that such approaches can recover more accurate
posteriors than existing techniques.

2 BACKGROUND

In this section, we recapitulate some standard approaches to
ABC with an emphasis on time series data, and provide an
overview of path signatures. Appendix B expands on this
introduction to path signatures for the unfamiliar reader.

2.1 APPROXIMATE BAYESIAN COMPUTATION

Let Xn be the space of length n sequences taking val-
ues in a set X . Suppose we have time series data y =
(yt1 ,yt2 , . . . ,ytn) with each yti ∈ X , observed at real
times 0 = t1 < t2 < . . . < tn = T , and assumed to have
been drawn from a model with measure µθ parameterised
by θ = (θ1, . . . ,θp) ∈ Θ ⊆ Rp. We assume that µθ has
density pθ with respect to the Lebesgue measure. Given a
prior density π (also wrt Lebesgue) on Θ, the central object
in Bayesian inference is the posterior distribution

π(θ | y) ∝ pθ(y)π(θ). (1)

For simulation models, evaluating the likelihood function
pθ(y) is commonly intractable, making standard Bayesian
approaches to posterior inference such as Markov chain
Monte Carlo (MCMC) infeasible.

In such scenarios, an established alternative is approximate
Bayesian computation (ABC) [Tavaré et al., 1997, Pritchard
et al., 1999, Beaumont et al., 2002] which allows the user
to approximate the true posterior (1) using only forward
simulations. Broadly, the user specifies summary statistics
s : Xn → S (usually S = Rk for some k ≥ 1), and a
distance measure ρ; pθ(y) is then approximated as

p̃ε{s(y) | θ} =
∫
Kε [ρ{s(y), s(x)}] pθ(x) dx, (2)

where Kε(·) = K(·/ε)/ε is a kernel function with band-
width parameter ε. The resulting ABC posterior is then

πε{θ | s(y)} ∝ p̃ε{s(y) | θ}π(θ). (3)

The approach as presented above leaves open a plethora
of possible choices for s, ρ and Kε(·). We summarise here
some of the most common and well-known choices.

Rejection ABC The standard rejection ABC (REJ-ABC)
algorithm corresponds to choosing a uniform kernel
Kε(·) ∝ 1 (· ≤ ε). The choice of threshold ε is left to the
experimenter, and for example may be determined in ad-
vance of the inference procedure, or chosen after simulation
time such that a certain proportion of the total simulation
budget is retained [Cornuet et al., 2008].

Semi-automatic ABC Fearnhead and Prangle [2012] pro-
pose semi-automatic ABC (SA-ABC), in which an estimate
of the posterior mean, s(y) = E (θ | y), acts as the sum-
mary statistic, and the Euclidean distance is used as ρ. Given
a set of N training data points

(
x(i),θ(i)

)
∼ pθ(x)π(θ),

i = 1, . . . , N , and a candidate vector g(·) of J summary
statistics, the method performs vector-valued regression
from g(x(i)) to θ(i) to estimate s(y). A drawback of this
method is that it requires the construction of an initial set
of candidate summaries, which would need to be informat-
ive. Other approaches in this vein include Nakagome et al.
[2013], in which the authors propose the use of SA-ABC
using kernel ridge regression to exploit the nonlinearities
induced by kernel methods.

K2-ABC Park et al. [2016] propose double kernel ABC
(K2-ABC), which bypasses the problem of constructing
summary statistics for iid data by using the maximum mean
discrepancy (MMD) between (a) the simulator’s distribution
fθ , where x = (x1, . . . ,xn) ∼ pθ(x) =

∏n
i=1 fθ(xi), and

(b) the true density f∗ giving rise to the iid observations
comprising y, respectively. That is, from a kernel κ : X ×
X → R, the discrepancy between x and y is taken to be

MMD2 = ∥Ez∼fθ [κ(z, ·)]− Ez′∼f∗ [κ(z′, ·)]∥2H, (4)

where H is the reproducing kernel Hilbert space (RKHS)
associated with κ. In this way, the choice of summary stat-
istics (e.g. as required in SA-ABC) can be seen as being
replaced by the choice of kernel κ. For time series data,
the authors suggest that the dependency structure can be
ignored, and that the observation {yi : i = 1, . . . , n} and
simulation output {xi : i = 1, . . . ,m} can still be treated as
iid data from the marginal densities fθ and f∗, respectively.

Wasserstein ABC (W-ABC) Bernton et al. [2019] pro-
pose to use as its measure of discrepancy the p-Wasserstein
distance between the empirical distribution of observa-
tions y = (y1,y2, . . . ,yn), and simulated data x =
(x1,x2, . . . ,xm), with yi,xj ∈ Rd. That is, the distance ρ
is taken to be

Wp(y,x)
p = inf

γ∈Γn,m

n∑
i=1

m∑
j=1

ρ0(yi,xj)
pγij (5)

where ρ0 is a distance on Rd and Γn,m is the set of n ×
m matrices with non-negative entries, columns summing
to m−1, and rows summing to n−1. The authors discuss



multiple strategies to account for the structured and ordered
nature of time series data, such as the Wasserstein curve
matching distance, in which a time augmentation yti 7→
(ti,yti) is applied to the data, and the following ground
distance between elements of the sequence used:

ρ0{(ti,yti), (tj ,xtj );λ} = ∥yti − xtj∥+ λ|ti − tj |. (6)

In the above, λ > 0 is a free parameter that interpolates
the distance in (5) between the sum of Euclidean distances∑

i ∥yti−xti∥ (when n = m) and the Wasserstein distance
between the empirical marginal distributions of y and x.
Such an approach is however of limited suitability for time
series data: the curve matching distance will not in general
respect the ordering of the observations in x and y, and will
ultimately still permit permutations of their elements (see
Appendix A for a simple example).

2.2 PATH SIGNATURES

LetH be a Hilbert space carrying an inner product ⟨·, ·⟩H,
and h : [0, T ] → H be a H-valued path on the interval
[0, T ]. Further, let ζ(0, T ) = {t1, . . . , tn} denote a finite
partition of the interval [0, T ], with 0 = t1 < · · · < tn = T .
Throughout, we will consider H-valued paths of bounded
variation over the interval [0, T ], i.e. paths for which

∥h∥1−var := sup
ζ(0,T )

n−1∑
i=1

∥∥hti+1
− hti

∥∥
H <∞,

where the supremum is taken over all finite partitions of the
domain and n = |ζ(0, T )|. We denote with BV[0,T ](H) the
space of such paths. By defining the product Hilbert space∏
m≥0

H⊗m := R⊕H⊕ (H⊗H)⊕· · ·⊕H⊗m⊕ . . . , (7)

endowed with an addition operation, inner product, and
norm acting on any A = (a0, a1, . . . ), B = (b0, b1, . . . ) ∈∏

m≥0H⊗m as, respectively,

A+B := (a0 + b0, a1 + b1, . . . ), (8)

⟨A,B⟩ :=
∑
m≥0

⟨am, bm⟩H⊗m (9)

where

⟨u1 ⊗ · · · ⊗ um, v1 ⊗ · · · ⊗ vm⟩H⊗m =

m∏
j=1

⟨uj , vj⟩H ,

and

∥A∥ :=
√∑

m≥0

∥am∥2H⊗m , (10)

the path signature [see e.g. Lyons et al., 2007] of h ∈
BV[0,T ](H), denoted Sig(h), maps h to an infinite series of
tensors as

h 7→ {1, S1(h), S2(h), . . . } ∈ E ⊂
∏
m≥0

H⊗m. (11)

In the above, E is the subspace of
∏

m≥0H⊗m consisting
of the elements of the product Hilbert space that have finite
norm. The terms of the signature are defined as

Sm(h) :=

∫ T

0

dh⊗m =

∫
· · ·
∫

0≤t1<···<tm≤T

dht1 ⊗· · ·⊗dhtm .

We adopt the convention that H⊗0 = R. The number m
of integrals comprising the terms of the signature is often
referred to as the depth of that signature term, and we ad-
opt this terminology throughout. The collection of all such
integrals at every depth m ≥ 0 is a set of statistics for path-
valued random variables that describe geometric features of
the path and behave analogously to monomials.

The following simple example of a two-dimensional path
provides a demonstration of the sort of geometric informa-
tion captured by the signature:

Example 1 (Example 2.3, Kiŕaly and Oberhauser [2019]).
Let ht take values in R2, ht = (at, bt). Then dht =
(dat,dbt), such that

S1(h) =


∫ T

t=0

dat∫ T

t=0

dbt

 , and

S2(h) =


∫ T

t′=0

∫ t′

t=0

datdat′

∫ T

t′=0

∫ t′

t=0

datdbt′∫ T

t′=0

∫ t′

t=0

dbtdat′

∫ T

t′=0

∫ t′

t=0

dbtdbt′

 .
In the above, the variables t and t′ are dummy time indices
that are being integrated over. These terms can be further
interpreted geometrically: the terms in S1(h) capture the
increments along each dimension, while the off-diagonal
elements of S2(h) capture the areas above and below the
curve; see Figure 1. Higher order terms capture higher or-
der notions of area that are harder to visualise and interpret.

Signatures have a number of desirable properties; for ex-
ample, they are a universal nonlinearity. This means that
for any compact set K of paths of bounded variation, any
continuous, real-valued function f on K can be approxim-
ated uniformly by linear functionals of the signature, i.e. for
any ε > 0 there exists a linear functional L

sup
h∈K

∣∣∣f(h)− L [Sig(h)]
∣∣∣ < ε.

Appendix B.4 provides further details. Further, signatures
have the desirable property of being an essentially inject-
ive map (see Appendix B.2), an important consequence of
which in the context of approximate inference is that the
path signature for a sequence of data can be seen as a suf-
ficient statistic, since by the Fisher-Neyman factorization
theorem [see, e.g., Schervish, 1995, Theorem 2.21] an in-
jective function of a sufficient statistic is also sufficient.



Figure 1: Geometric interpretation of the signature terms
for the two-dimensional path from Example 1, shown as
the dark green curve. Depth-1 terms correspond to the in-
crements aT − a0 and bT − b0, while the depth-2 terms
[S2(h)]21 and [S2(h)]12 correspond to the blue and yellow
areas, respectively.

2.2.1 The Signature Kernel

The signature can be kernelised following Kiŕaly and Ober-
hauser [2019]:

Definition 1 (Signature kernel, Kiŕaly and Oberhauser
[2019]). The signature kernel acts on h, g ∈ BV[0,T ](H) as

k : (h, g) 7→ ⟨Sig(h),Sig(g)⟩ ∈ R, (12)

where the inner product is defined as in Equation (9).

A key insight of Kiŕaly and Oberhauser [2019] was to recog-
nise that evaluation of the signature kernel – which operates
on paths in H – can be performed using only evaluations
of an inner product κ that operates on points in the path,
amounting to a kernel trick for the signature kernel. Kiŕaly
and Oberhauser [2019] further describe an efficient Horner
scheme to evaluate a truncated signature kernel that approx-
imates Equation (12). Salvi et al. [2021] extend this work
by recognising that the signature kernel solves a Goursat
partial different equation, permitting numerical estimation
of the signature kernel using finite difference methods.

2.2.2 Path Signatures in Practice

In light of their interesting and useful properties described
above, signatures can be seen as a canonical feature trans-
formation for path-valued random variables. However, there
exists an incongruity between our discussion so far and
the scenarios faced in real-world settings: in reality and
from the output of simulation models, we tend to observe
discretely sampled data x = (xt1 ,xt2 , . . . ,xtn) at times
0 = t1 < t2 < · · · < tn = T , where xt ∈ X for

some finite-dimensional space X (for example Rd for some
d ≥ 1), rather than continuous paths x ∈ BV[0,T ](H). The
incongruity is fixed in the following way:

(a) As noted by Kiŕaly and Oberhauser [2019], the afore-
mentioned signature kernel trick can be used to intro-
duce nonlinearities and embed the X -valued sequence
x in a Hilbert space. In particular, by choosing a repro-
ducing kernel κ : X × X → R with RKHSH and ca-
nonical feature map κ(xt, ·) ∈ H as the inner product
on the data space X , we may implicitly construct a
sequence (κ(xt1 , ·), κ(xt2 , ·), . . . , κ(xtn , ·)) of points
inH from sequences of data in X .

(b) To construct continuous paths from the discrete se-
quence above, an interpolation scheme is employed.
While many interpolation schemes are possible, the
most common is linear interpolation. Indeed, Kiŕaly
and Oberhauser [2019] and Salvi et al. [2021] assume
a linear interpolation to construct discretised signature
kernels operating on sequences of points, and we use
this interpolation scheme throughout this work.

By combining these two steps, we progress from a sequence
x of points in X to a H-valued, piecewise linear path h,
which for i = 1, . . . , n− 1 and t ∈ [ti, ti+1] is given by

ht := κ(xti , ·) +
t− ti

ti+1 − ti
{κ(xti+1

, ·)− κ(xti , ·)}. (13)

Piecewise linear paths constructed in this way are natur-
ally of bounded variation if, for example, κ is a continuous
and/or uniformly bounded kernel (see Proposition 6 in Ap-
pendix C). We will assume this throughout, such that all
observed sequences in X lift to piecewise linear paths of
bounded variation inH under the feature map corresponding
to κ.

3 METHODS

Given its unique properties, the path signature and its as-
sociated kernel are natural candidates for feature maps and
discrepancy measures in ABC to handle time series data of
different kinds. In this section, we introduce and investigate
two techniques for incorporating signatures into ABC.

3.1 SIGNATURE ABC

The first approach we consider entails using the signature
directly as a summary statistic in ABC. Though signatures
are infinite-dimensional objects, we can leverage their kernel
representation (see Definition 1) to compute the distance
between two sequences x,y as the norm induced by the
associated signature inner product. That is, for two time
series x and y, we can interpret the signature of their lifted
paths as a sufficient summary statistic, s(x) = Sig(x), and



compute

ρ{s(x), s(y)} :=∥Sig(x)− Sig(y)∥2 (14)
=k(x,x) + k(y,y)− 2 k(x,y),

where k(x,y) = ⟨Sig(x),Sig(y)⟩. The resulting distance
can be computed easily using existing software1 and used to
derive an ABC posterior via Equations (2)-(3). For example,
it may be embedded in rejection ABC, yielding

πε(θ | y) ∝ π(θ)
∫
1
(
∥Sig(x)− Sig(y)∥2 ≤ ε

)
µθ(dx),

as the ABC posterior. We term this approach Signature ABC
(S-ABC). Injectivity of the path signature, and continuity of
the norm the inner product induces, further guarantees the
asymptotic correctness of this S-ABC posterior as ε → 0
with n fixed:

Proposition 1. Let X := Rd, y = (y1, . . . ,yn) ∈ Xn,
and let ρ be as in Equation (14), resulting in the S-ABC
posterior πε. Suppose the density function pθ(x) satisfies

sup
θ∈Θ\NΘ

pθ(y) <∞,

where NΘ is a set such that π(θ) = 0∀θ ∈ NΘ, and that
there exists ε̄ > 0 such that

sup
θ∈Θ\NΘ

sup
z∈Aε̄

pθ(z) <∞,

where Aε̄ := {z ∈ Xn : ρ{s(y), s(z)} ≤ ε̄}. Then for any
measurable B ⊂ Θ,

lim
ε→0

∫
B

πε(θ | y) dθ =

∫
B

π(θ | y) dθ. (15)

The proof is provided in Appendix C.

3.2 SIGNATURE REGRESSION ABC

We consider a second use of path signatures in ABC, namely
in the SA-ABC method described by Fearnhead and Prangle
[2012]. Given its status as a universal nonlinearity as dis-
cussed in Section 2.2, the path signature provides a natural
basis for learning functions on sequences, and a natural set
of summary statistics for the regression task required in
SA-ABC. Regression on the full path signature is of course
impossible, since the signature is infinite-dimensional. How-
ever, this may once again be circumvented using the sig-
nature kernel and corresponding kernel trick (see Defin-
ition 1) in kernel ridge regression [Hastie et al., 2001]
to implicitly regress parameters onto the full signature,
which is in a sense equivalent to using the infinitely long
path signature as the candidate set of summary statistics

1E.g., sigkernel or KSig.

Algorithm 1: Rejection sampling scheme
Input: prior π, observation y, distance function D(·, ·),
number of particles N , final sample size M < N ;

Result: Posterior samples {θ(i)}Mi=1

for i = 1, . . . , N do
Sample θ(i) ∼ π;
Simulate x(i) ∼ pθ(i) ;
Evaluate distance D(x(i),y);

end
Retain the M particles {θ(i)}Mi=1 with the lowest
distances

in semi-automatic ABC. That is, using training examples
(x(i),θ(i)) ∼ pθ(x)π(θ), i = 1, . . . , R, we find a func-
tion θ̂j in the RKHS associated with the signature kernel k,
which by the Representer Theorem has the following form
for each component θj , j = 1, . . . , p of the p-dimensional
parameters {θ(i)}Ri=1:

θ̂j(x) =

R∑
i=1

ω
(j)
i k(x,x(i)) (16)

with ω(j) = (G+ αIR)
−1
ψ(j), ψ(j) =[

θ
(1)
j ,θ

(2)
j , . . . ,θ

(R)
j

]′
with ′ denoting matrix trans-

position, Gmn = k(x(m),x(n)), IR an R × R identity
matrix, and α ≥ 0 is a regularisation parameter to be tuned.
In this way, path signatures also enable the semi-automatic
construction of summary statistics in SA-ABC. This
approach to ABC is somewhat similar to that of Nakagome
et al. [2013], who employ kernel ridge regression with a
Gaussian RBF kernel to perform SA-ABC. Our approach
differs, however, in that Nakagome et al. [2013] propose
the use of hand-crafted summary statistics as input to the
kernel ridge regression model, while we use the full data.

Once the data is summarised with this regression model, the
discrepancy between simulation and observation is taken as
the Euclidean distance between their corresponding outputs
from the kernel ridge regression model. We herein refer
to this approach as Signature regression ABC (SR-ABC).
Further technical details are provided in Appendix D.1.

4 EXPERIMENTS

In this section, we present experiments comparing the per-
formance of our methods, S-ABC and SR-ABC, against
the use of the Wasserstein distance [Bernton et al., 2019]
(W-ABC) and the MMD [Park et al., 2016] (K2-ABC) as
measures of discrepancy in ABC, along with SA-ABC
[Fearnhead and Prangle, 2012]. The models with which
we conduct experiments were chosen to cover a range ap-
plication domains, namely: ecology, finance, and public

https://github.com/crispitagorico/sigkernel
https://github.com/tgcsaba/KSig


Figure 2: (Ricker model) (a) Wasserstein distances and (b) maximum mean discrepancies between the posteriors recovered
from each ABC method and an approximate ground truth from particle Markov chain Monte Carlo (pMCMC). (c) Squared
distances between the means of the ABC posteriors and the posterior mean from pMCMC. Our methods are shown in blue.

health/epidemiology. These models were also chosen due to
the fact that approximate ground-truth posteriors are read-
ily available via standard MCMC techniques, permitting a
proper evaluation of the methods’ performance in the pos-
terior inference task. Finally, they were also chosen for the
variety of outputs they produce: chaotic, integer-valued time-
series in the first example; non-stationary, real-valued se-
quences in the second; and continuous-time, variable-length
sequences of multivariate and irregularly spaced points in
the final case. Further details on the experiments we present
below, along with additional results, are provided in Ap-
pendix D.

4.1 IMPLEMENTATION DETAILS

For all distances, we sample from the ABC posterior using
a simple REJ-ABC scheme as outlined in Algorithm 1 and,
unless stated otherwise, use N = 105 and M = 103. While
other, more sophisticated schemes exist, we choose this
to facilitate a simple and transparent comparison of the
different distance measures. To assess the quality of the
recovered posteriors, we compute the 1-Wasserstein distance
and an unbiased estimate of the maximum mean discrepancy
(MMD) between the approximate ground truth posteriors
π̂·|y and empirical posteriors π̂ABC. In both cases, smaller
values indicate a closer match to the approximate ground
truth. To estimate the MMD between posteriors, we use
a Gaussian RBF kernel with scale parameter chosen with
the median heuristic [Briol et al., 2019]. For S-ABC and
W-ABC, we also report results obtained by applying a (lag-
1) delay transformation to the time series before distance
computations, which acts on a time series x as

(xt1 ,xt2 , . . . ,xtn) 7→
((xt1 ,xt2), (xt2 ,xt3), . . . , (xtn−1

,xtn)).

Such a transformation was considered in Bernton et al.
[2019] for time series data, and may improve the accur-

acy of the ABC posteriors in practical, non-asymptotic set-
tings. Results obtained with such a transformation are indic-
ated by a “(delay)” suffix. All other implementation details
are provided in Appendix D.2. Code for the experiments
is available at https://github.com/joelnmdyer/
SignatureABC.

4.2 THE RICKER MODEL

The Ricker model is a simple model of ecological dynam-
ics that exhibits chaotic behaviour and has an intractable
likelihood function. The state of the model, which tracks
the size Nt ∈ R≥0 of a population over discrete time steps
t = 1, . . . , n, evolves as

logNt+1 = log r + logNt −Nt + σϵt, (17)

where r > 0 is a growth parameter and ϵt ∼ N (0, 1). Fol-
lowing Wood [2010], we assume Poissonian observations

yt ∼ Po(ϕNt) ∈ N, (18)

where ϕ > 0 is a scale parameter. We assume the
task of recovering the posterior distribution for θ =
(log r, ϕ, σ) given a time series of length n = 50, y =
(y1,y2, . . . ,yn) ∼ pθ∗ with θ∗ = (4, 10, 0.3). We take
N0 = 1. We further assume the following independent,
uniform priors for each parameter:

log r ∼ U(3, 8), ϕ ∼ U(0, 20), σ ∼ U(0, 0.6). (19)

For SA-ABC, the hand-crafted summary statistics we use
are those proposed in Wood [2010], and consist of: the
autocovariances to lag 5; the mean; the number of zeros
in the sequence; the coefficients of the regression x0.3

t+1 =
β1x

0.3
t + β2x

0.6
t + ϵt for error term ϵt; and the coefficients

of the cubic regression of the ordered differences xt − xt−1

on their observed values.

https://github.com/joelnmdyer/SignatureABC
https://github.com/joelnmdyer/SignatureABC


Figure 3: (Geometric Brownian motion) (a) Wasserstein distances and (b) maximum mean discrepancies between the
posteriors obtained with each ABC method and an approximate ground truth from Metropolis-Hastings (MH). (c) Squared
distances between the means of the ABC posteriors and the posterior mean from MH. Our methods are coloured blue.

In Figure 2, we show boxplots for the Wasserstein distances
and MMDs between samples from the ABC posteriors –
denoted with π̂ABC – and samples from an approximation
of the true posterior obtained using pMCMC (Andrieu et al.
[2010]; see Appendix D.3 for details), which we denote
with π̂·|y. We also show boxplots for the Euclidean dis-
tances between the ABC posterior means and the pMCMC
posterior mean. These boxplots are all obtained by running
the ABC procedure 20 times with the same observed dataset
but different seeds for the ABC procedure.

From this, we see that the signature-based methods tend
to produce better performance across all three metrics con-
sidered. In more detail, the estimate of the approximate
ground truth posterior obtained with the signature-based
methods are more accurate than K2-ABC and W-ABC, as
reflected in the Wasserstein distances and MMDs. For S-
ABC, this performance gap is enhanced with the additional
application of the lag-1 delay transformation, which is indic-
ated with suffix “(delay)” in Figure 2. No such improvement
is observed when this transformation is applied to competing
methods. We note that SA-ABC performs particularly well
in this example, as a consequence of its use of hand-crafted
summary statistics developed specifically for this simulation
model. However, the potential power of our signature-based
methods is demonstrated by the fact that SR-ABC is able to
outperform SA-ABC in all three metrics, despite the latter
using summary statistics carefully engineered by experts.
Finally, we observe more accurate estimates of the true pos-
terior mean using our signature-based methods than using
W-ABC and SA-ABC. The posterior mean estimates from
S-ABC without the delay transformation and SR-ABC are
also more accurate than those of MMD, further evidencing
the usefulness of our signature-based methods.

4.3 GEOMETRIC BROWNIAN MOTION

Geometric Brownian motion (GBM) is a stochastic differen-
tial equation widely used in mathematical finance to model
a stock price xt evolving with time t according to

dxt = µxtdt+ σxtdWt, (20)

where µ is the percentage drift, σ is the volatility, and Wt is
a Brownian motion. With ϵi ∼ N (0, 1), this model permits
an exact discretisation for i = 1, 2, . . . , n− 1 as

log
(
xi∆t/x(i−1)∆t

)
=

(
µ− 1

2
σ2

)
∆t+σ

√
∆t ϵi, (21)

which implicitly defines the model pθ from which we simu-
late. We fix x0 = 10, n = 100, and ∆t = 1/(n − 1), and
simulate the dynamics over the interval [0, 1].

We consider the task of recovering the pos-
terior for θ = (µ, σ) given an observation
y = (y0,y∆t,y2∆t, . . . ,y(n−1)∆t) ∼ pθ∗ with
θ∗ = (0.2, 0.5). We assume independent, uniform
priors µ ∼ U(−1, 1), σ ∼ U(0.2, 2). Inference is amenable
to standard, exact likelihood-based Bayesian techniques
such as Metropolis-Hastings (MH) sampling using the
transition density implied by (21), enabling a comparison
against an approximate ground truth posterior. For SA-ABC,
we follow Fearnhead and Prangle [2012] and regress the
parameters θ onto the first, second, third, and fourth powers
of summary statistics of the time series. Specifically, we
take the first, second, third, and fourth powers of the
variance and lag-1 and -2 autocorrelations of the increments
of the log time series, log (xi∆t/x(i−1)∆t), since these are
informative of the parameters being inferred.

In Figure 3, we show boxplots for the Wasserstein distances
and MMDs between the different ABC posteriors and the
approximate ground truth posterior obtained with MH, in ad-
dition to the Euclidean distance between the ABC posterior



Table 1: Median (1st quartile–3rd quartile) Performance Metrics for Section 4.4. Best Performance in Bold.

Method W1(π̂ABC, π̂·|y) (×10−3) MMD2(π̂ABC, π̂·|y) (×10−2) ∥θ̂ABC − θ̂True∥2 (×10−5)

Signature ABC 4.8 (4.3–5.6) 6.1 (4.1–7.8) 0.32 (0.22–0.43)
Wasserstein ABC 7.3 (6.4–7.7) 7.6 (6.8–9.1) 0.46 (0.29–0.72)

K2-ABC 520.4 (519.8–521.3) 34.44 (34.39–34.49) 27036 (26947–27126)

means and the MH posterior mean. The boxplots were gen-
erated by repeating the rejection ABC procedure for each
distance measure with 20 different random seeds. We see
that the signature-based methods once again produce lower
Wasserstein distances and MMDs between their ABC pos-
teriors and the MH posterior. Indeed, S-ABC with the lag-1
delay transformation uniformly dominates the non-signature
methods across all three metrics.

4.4 IRREGULAR, MULTIVARIATE SEQUENCES:
GENERALISED STOCHASTIC EPIDEMICS

The signature method naturally allows for inference with
multivariate and/or irregularly spaced time series. To demon-
strate this, we consider a generalised stochastic epidemic
model [Kypraios, 2007], which simulates the spread of an
infection through a fixed population of Z individuals. Indi-
viduals are initially susceptible, may become infected, and
subsequently recover without the possibility of reinfection.
The dynamics of the model are determined by parameters
β and γ, which control the rate of infection and recovery
according to the following transition probabilities:

PI := P ((δXt, δYt) = (−1, 1) | Ht) = βXtYtδt+ o(δt),

PR := P ((δXt, δYt) = (0,−1) | Ht) = γYtδt+ o(δt),

P ((δXt, δYt) = (0, 0) | Ht) = 1− (PI + PR) + o(δt),

where Xt and Yt are the number of susceptible and infec-
ted individuals at time t ∈ [0, T ], respectively, and Ht is
a sigma-algebra generated by the process up until time t.
These three transition probabilities thus capture infection,
recovery, and an absence of activity, respectively.

We consider the problem of recovering the posterior density
for θ = (β, γ) given observations of the infections and
recoveries occurring in the observation period [0, 50] in
a system of Z = 100 individuals. For every simulation,
the epidemic begins with one infected individual at time
t = 0. We generate “empirical” data at parameters θ∗ =
(10−2, 10−1), and assume priors β ∼ Γ(λβ , νβ) and γ ∼
Γ(λγ , νγ), with concentration and rate parameters λβ = 0.1,
νβ = 2, λγ = 0.2, and νγ = 0.5. It can be shown [Kypraios,
2007] that this prior is conjugate for the model, leading to
a tractable posterior density; further details are provided in
Appendix D.6. Thus, samples can be drawn from the exact
posterior for a given dataset simulated by this model.

We simulate the model using the Gillespie algorithm

[Gillespie, 1977], such that the lengths of the simulated
sequences, and the spacing between points in the sequences,
are random. Operationally, the model is simulated as fol-
lowed: given that an infection/recovery event occurred at
time t, the time ∆t until the next event is simulated as
∆t ∼ Exp(1/Rt) where Rt = βXtYt + γYt, and the event
is chosen to be an infection (resp. recovery) event with
probability βXtYt/Rt (resp. γYt/Rt).

We show in Table 1 the median and first and third quartiles
for the Wasserstein distances and MMDs between samples
from W-ABC, S-ABC, and K2-ABC posteriors to samples
from the exact posterior. To obtain these approximate pos-
teriors, we run Algorithm 1 with the same observed time
series withN = 105 andM = 100 for 20 different seeds for
the ABC procedure. We also show the same for the squared
distance between the posterior means and the exact posterior
mean. Contour plots obtained by running the inference pro-
cedure at these 20 different seeds for the ABC procedure
and pooling the best M distances from each (giving 2000
samples) are shown in Figure 4, along with samples from
the exact posterior. The MMD performed especially poorly
in this experiment; we thus omit samples from the K2-ABC
posterior in Figure 4 for clarity.

From this, we see that the natural notion of distance between
multivariate and irregularly sampled time series data of dif-
ferent lengths, enabled by the use of path signatures, mani-
fests as better recovery of both the true posterior distribution
and the true posterior mean in this example, in which the
Wasserstein distances and MMDs between posteriors and
Euclidean distances between posterior means for S-ABC are
generally lower than those obtained using the Wasserstein
distance and the MMD is distances in ABC.

4.5 COMPUTATIONAL COMPLEXITY AND COST

Evaluating the signature kernel for two streams y ∈ Xn and
x ∈ Xm with X = Rd has complexity that is linear in d and
linear in the product nm [Salvi et al., 2021]. This is likewise
the case for MMD, which has complexity O

(
n2
)

[Park
et al., 2016], and compares favourably with the Wasserstein
distance, which in multivariate settings is known to scale
poorly with n. Bernton et al. [2019], for example, note
costs of order n3 when the Hungarian algorithm is used to
solve the assignment problem. Alternative algorithms with
favourable performance are an active area of research.



Figure 4: (Stochastic epidemic) Contour plot of the joint
posterior density recovered with the Wasserstein distance
(dashed purple lines) and Signature ABC (solid blue lines),
and samples from the true posterior (filled yellow contours).

While the complexity of signature evaluations compares
favourably to alternative distance measures, we observe in
our experiments that our signature-based approaches ten-
ded to incur larger computational costs with current im-
plementations; see Table 2. These increased costs may not
be an inherent feature of signature-based methods, how-
ever: research on signature methods in machine learning
and computational statistics is active and relatively nascent,
and it is plausible that more efficient implementations of
signature computations will emerge with time. Additionally,
techniques for reducing the computational burden of the
signature-based methods we introduce can be employed,
such as the Nyström method [Williams and Seeger, 2000]
or random Fourier features [Rahimi and Recht, 2007, Yang
et al., 2012] in SR-ABC, and the truncated signature kernel
[Kiŕaly and Oberhauser, 2019] in both S-ABC and SR-ABC.
While we have not experimented with these cost-reduction
techniques in the current work, future practical implementa-
tions of S-ABC and SR-ABC may incorporate such approx-
imations, each of which have been implemented in, e.g., the
KSig package. Such approximations introduce further hy-
perparameters such as the truncation degree, however, which
must be tuned; in the case of SR-ABC, this can be done with
cross-validation, but it is less clear how this might be done
for S-ABC. Furthermore, in the case of S-ABC, too severe
a truncation may destroy the asymptotic results presented in
Proposition 1. Nevertheless, these are avenues that can be
explored in future work in order to reduce the computational
burden of these methods.

5 CONCLUSION

In this paper, we introduced two novel approaches – Signa-
ture ABC and Signature Regression ABC – to performing
approximate Bayesian computation with time series simula-
tion models. Each method relies on the path signature – an
object that is fundamental to the theory of controlled differ-
ential equations and rough paths – which is associated with
the path traversed by a sequence of data points. In particular,
we make use of the signature kernel to construct and com-
pute discrepancies between time series data arising in ABC
settings without manually contriving summary statistics.

We show that the natural notion of distance between time
series to which such an approach leads generates an ABC
posterior that converges to the ground-truth posterior as the
ABC tolerance parameter reduces to 0. To illustrate our pro-
posed methods, we present multiple examples of Bayesian
inference tasks in which our approaches outperform existing
techniques that are common in the approximate Bayesian in-
ference literature; indeed, in each experiment we consider, at
least one signature-based method uniformly dominates com-
peting methods across all three of the metrics considered in
this paper. We furthermore demonstrate that our methods
are applicable to more complex settings than univariate time
series, for example simulators generating complex multivari-
ate and irregularly sampled sequences.

While we have compared the different distance measures
using a basic rejection algorithm in this paper in the in-
terest of a simple and transparent comparison, we note that
our proposed methods can be embedded within other more
sophisticated sampling algorithms, for example MCMC or
sequential Monte Carlo methods. Additionally for the Sig-
nature Regression ABC method, there is the possibility of
incorporating mechanisms for generating more accurate
regression results, for example using a pilot run to determ-
ine regions of non-negligible posterior mass as described
in Fearnhead and Prangle [2012]. This may allow for im-
proved approximations to the true posterior density. With
respect to the choice of S-ABC vs. SR-ABC: whether one
should be preferred over the other depends to a large extent
on what is of interest to the experimenter, given that semi-
automatic approaches to ABC were originally motivated by
the desire to accurately recover point estimates of interest
[Fearnhead and Prangle, 2012] while other ABC methods
aim to accurately approximate the full posterior. Addition-
ally, we observe empirically that SR-ABC and SA-ABC
seem to exhibit a somewhat larger variation in performance
over non-semi-automatic approaches (see, e.g., Figures 2,
3, and 6), which may be a manifestation of the additional
stochasticity introduced in training a regression model prior
to posterior construction.

https://github.com/tgcsaba/KSig


Table 2: Approximate Average CPU Times (in seconds) for each ABC Approach. (Simulation Budgets and Hardware
Availability are Constant).

Experiment Method

S-ABC S-ABC (delay) SR-ABC W-ABC W-ABC (delay) SA-ABC K2-ABC

Ricker 2× 102 2× 102 2× 104 6× 101 8× 101 102 4× 101

GBM 103 104 6× 104 4× 103 4× 103 9× 102 4× 103

GSE 104 – – 2× 102 – – 105
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Franz J. Kiŕaly and Harald Oberhauser. Kernels for se-
quentially ordered data. Journal of Machine Learning
Research, 20:1–45, 2019. ISSN 15337928.

Theo Kypraios. Efficient Bayesian inference for partially
observed stochastic epidemics and a new class of semi-
parametric time series models. PhD thesis, Lancaster
University, June 2007.

Chenyang Li, Xin Zhang, and Lianwen Jin. LPSNet: A
Novel Log Path Signature Feature Based Hand Ges-
ture Recognition Framework. Proceedings - 2017 IEEE
International Conference on Computer Vision Work-
shops, ICCVW 2017, 2018-January:631–639, 2017. doi:
10.1109/ICCVW.2017.80.

T. J Lyons, Michael Caruana, and Thierry Lévy. Differ-
ential equations driven by rough paths : École d’été de
probabilités de Saint-Flour XXXIV-2004 [electronic re-
source]. Lecture notes in mathematics (Springer-Verlag)
; 1908. Springer, Berlin ; New York, 2007. ISBN
9783540712855.

Terry Lyons. Rough paths, signatures and the modelling of
functions on streams. arXiv preprint arXiv:1405.4537,
2014.

Terry Lyons, Zhongmin Qian, et al. System control and
rough paths. Oxford University Press, 2002.

P. J. Moore, T. J. Lyons, and J. Gallacher. Using path
signatures to predict a diagnosis of Alzheimer’s dis-
ease. PLoS ONE, 14(9):1–16, 2019. ISSN 19326203.
doi: 10.1371/journal.pone.0222212. URL http://dx.
doi.org/10.1371/journal.pone.0222212.

James Morrill, Andrey Kormilitzin, Alejo Nevado-Holgado,
Sumanth Swaminathan, Sam Howison, and Terry Lyons.
The Signature-Based Model for Early Detection of Sepsis
from Electronic Health Records in the Intensive Care Unit.
Computing in Cardiology, 2019-Septe:2–5, 2019. ISSN
2325887X. doi: 10.23919/CinC49843.2019.9005805.

James Morrill, Adeline Fermanian, Patrick Kidger, and
Terry Lyons. A Generalised Signature Method for Time
Series. arXiv preprint, 2020.

Shigeki Nakagome, Kenji Fukumizu, and Shuhei Mano.
Kernel approximate Bayesian computation in population
genetic inferences. Statistical Applications in Genetics
and Molecular Biology, 12(6):667–678, 2013. doi: doi:10.
1515/sagmb-2012-0050. URL https://doi.org/
10.1515/sagmb-2012-0050.

Hien Duy Nguyen, Julyan Arbel, Hongliang Lü, and
Florence Forbes. Approximate Bayesian computation
via the energy statistic. IEEE Access, 8:131683–131698,
2020.

Mijung Park, Wittawat Jitkrittum, and Dino Sejdinovic. K2-
ABC: Approximate Bayesian computation with kernel
embeddings. Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics, AISTATS
2016, 41:398–407, 2016.

http://jmlr.org/papers/v22/20-451.html
http://jmlr.org/papers/v22/20-451.html
https://www.aeaweb.org/articles?id=10.1257/aer.102.3.53
https://www.aeaweb.org/articles?id=10.1257/aer.102.3.53
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
http://dx.doi.org/10.4007/annals.2010.171.109
http://dx.doi.org/10.4007/annals.2010.171.109
http://dx.doi.org/10.1371/journal.pone.0222212
http://dx.doi.org/10.1371/journal.pone.0222212
https://doi.org/10.1515/sagmb-2012-0050
https://doi.org/10.1515/sagmb-2012-0050


Donovan Platt. A comparison of economic agent-based
model calibration methods. Journal of Economic
Dynamics and Control, 113:103859, 2020. ISSN 0165-
1889. doi: https://doi.org/10.1016/j.jedc.2020.103859.
URL https://www.sciencedirect.com/
science/article/pii/S0165188920300294.

Dennis Prangle. Summary statistics in approximate
Bayesian computation. In Scott A Sisson, Yanan Fan,
and Mark Beaumont, editors, Handbook of approximate
Bayesian computation, pages 125–152. FL: CRC, 2018.

Jonathan K Pritchard, Mark T Seielstad, Anna Perez-
Lezaun, and Marcus W Feldman. Population growth
of human Y chromosomes: a study of Y chromosome
microsatellites. Molecular biology and evolution, 16(12):
1791–1798, 1999.

Ali Rahimi and Benjamin Recht. Random features for large-
scale kernel machines. Advances in neural information
processing systems, 20, 2007.

Cristopher Salvi, Thomas Cass, James Foster, Terry Lyons,
and Weixin Yang. The signature kernel is the solution
of a goursat pde. SIAM Journal on Mathematics of Data
Science, 3(3):873–899, 2021.

M.J. Schervish. Theory of Statistics. Springer series in
statistics. 3Island Press, 1995. ISBN 9781461242512.
URL https://books.google.co.uk/books?
id=fvOCoAEACAAJ.

S M Schmon, G Deligiannidis, A Doucet, and M K
Pitt. Large-sample asymptotics of the pseudo-marginal
method. Biometrika, 108(1):37–51, 03 2021. ISSN
0006-3444. doi: 10.1093/biomet/asaa044. URL https:
//doi.org/10.1093/biomet/asaa044.

Sebastian M Schmon and Philippe Gagnon. Optimal scaling
of random walk metropolis algorithms using bayesian
large-sample asymptotics. Statistics and Computing, 32
(2):1–16, 2022.

Simon Tavaré, David J Balding, Robert C Griffiths, and
Peter Donnelly. Inferring coalescence times from dna
sequence data. Genetics, 145(2):505–518, 1997.

Matthew Thorpe, Serim Park, Soheil Kolouri, Gustavo K
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A A SIMPLE EXAMPLE OF THE WASSERSTEIN CURVE MATCHING DISTANCE FOR
TIME SERIES DATA

In Section 2, we discuss that the Wasserstein curve matching distance will generally permit permutations of the elements
within the two time series that are being compared, and that this limits the suitability of the method for time series data – a
data type for which the ordering of the data is in general of ultimate importance.

As a simple example of this feature of the behaviour of the Wasserstein curve matching distance, consider the following two
time series with elements observed at times t = 0, 1, 2:

x = (x0,x1,x2) = (1, 3, 2)

y = (y0,y1,y2) = (5, 1, 4).

The matrix of pairwise distances for each element of x with each element of y under the distance in Equation (6) is then

M(x,y) =

 4 0 3

2 2 1

3 1 2

+ λ

 0 1 2

1 0 1

2 1 0

 . (22)

With the choice of λ = 1, the minimal-cost assignment of elements in x to elements in y will be to match x0 with y1, x1

with y0, and x2 with y2, with a total associated cost of 2. This example demonstrates that this approach continues to treat
the elements of the time series as fundamentally exchangeable, despite the incorporation of information regarding their
ordering in the distance measure used. Such an approach has limited suitability to time series data for this reason.

B PATH SIGNATURES

B.1 FURTHER BACKGROUND ON PATH SIGNATURES

In the main text, we introduced path signatures as maps from h ∈ BV[0,T ](H) to elements of
∏

m≥0H⊗m with finite norm,
where the mth term of the signature takes value

Sm(h) :=

∫ T

0

dh⊗m :=

∫ T

0

∫ t

0

dh⊗(m−1) ⊗ dht =

∫
· · ·
∫

0≤t1<···<tm≤T

dht1 ⊗ · · · ⊗ dhtm . (23)

This introduction to path signatures, provided in Section 2, is quite general. To introduce signatures more completely, it is
instructive to consider the special case of a smooth, finite-dimensional path x : [0, T ] → H with H = Rd. The depth-m
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term of the path signature for x can then be written as

Sm(x) =

∫ T

0

dx⊗m =

∫
· · ·
∫

0≤t1<···<tm≤T

(
dx

dt

∣∣∣∣
t1

⊗ · · · ⊗ dx

dt

∣∣∣∣
tm

)
dt1 . . . dtm, (24)

where for a ∈ Rα1×···×αk and b ∈ Rβ1×···×βl the tensor product ⊗ operates as (ai1,...,ik , bj1,...,jl)
7→ ai1,...,ikbj1,...,jl and the integrals can be taken in the Riemann-Stieltjes sense.

Remark 1. Since we have assumed our paths to be of bounded variation, the integrals above can be understood as the
Riemann-Stieljes integrals with respect to h. When the underlying path is not smooth, the integrals are taken to be stochastic
or rough path integrals [Chevyrev and Oberhauser, 2018]. For example, in the case of Brownian motion in Rd, the integrals
are stochastic and can be taken in the Stratonovich sense. For a larger class of stochastic processes, rough path theory
[Lyons et al., 2007] provides an integration theory that enables the computation of the terms in the signature. As we will
discuss later, this work considers throughout only linear interpolations between points in time series, so all paths considered
here are of finite variation.

Path signatures are thus infinite sequences of statistics for path-valued random variables capturing information regarding the
order of observations along, and the interaction between, different channels of the path. They are grounded in the theory of
(CDEs) and stochastic analysis, and appear in the solutions of CDEs and (SDEs) as obtained through a procedure analogous
to Picard iterations for ordinary differential equations.

To see this, we follow Lyons et al. [2007] and let V and W be two Banach spaces, B : V → L(W,W ) be a bounded
linear map – where L(W,W ) denotes the space of bounded linear mappings from W → W — and h : [0, T ] → V be a
continuous path of bounded variation. Consider the following set of linear equations:

dgt = Bgt dht, g0 ∈W (25)
dϕt = Bϕt dht, ϕ0 ∈ L(W,W ). (26)

Here, Bgt dht is taken to mean {B(dht)} (gt) while Bϕt dht is B(dht) ◦ ϕt. By applying the aforementioned iterative
procedure to recover the solution ϕt to (26), we obtain

ϕt =
∑
m≥0

B⊗m

∫ t

0

dh⊗m, (27)

in which we see that the signature terms, Equation (23), appear in the summand. The solution to (25) is then obtained from
the flow ϕt as gt = ϕt(h0). Similarly, a solution to the following linear SDE driven by Brownian motion W ,

dYt = A(Yt) ◦ dWt, Y0 = y0

for some linear operator A, can be obtained as

Yt =
∑
m≥0

A⊗mSm,[0,t](W ) y0,

where Sm,[0,t](W ) is the order-m tensor in the signature of Wt over interval [0, t] and the integrals are taken in the
Stratonovich sense [Lyons et al., 2007, Section 3.3.2]. As we have seen here, signatures arise naturally as good approximations
to solutions of CDEs and SDEs, and accurately describe the response of systems such as that of Equations (25)-(26) to an
input signal h, where the inclusion of terms of increasing order further refine the approximate solution. The above sums,
such as in Equation (27), converges as a result of the factorial rate of decay of the terms in the signature:

Proposition 2 (Proposition 2.2, Lyons et al. [2007]). Let V be a Banach space and h ∈ BV[0,T ](V ). Then, for each m ≥ 0,∥∥∥∥∥
∫ T

0

dh⊗m

∥∥∥∥∥
V ⊗m

≤ ∥h∥1−var

m!
. (28)

Remark 2. The signature of a univariate path consists only of powers of the difference between the final and initial points
in the stream [see e.g. Chevyrev and Kormilitzin, 2016, Example 5]. Therefore in practice one always considers paths in at
least two dimensions. This can always be achieved by including the observation time as a channel in the path.



B.2 INVARIANCES

Further properties of the signature include its translation and reparameterisation invariance (Section 2.2.2, Lyons et al.
[2007]; Theorem 3.4.2, Geng [2015]):

Proposition 3. Let h ∈ BV[0,T ](H), a ∈ H, and ψ : [0, T ]→ [0, T ] a non-decreasing surjection. Then Sig(h+a) = Sig(h)
and Sig(h ◦ ψ) = Sig(h).

In this way, signatures are able to factor out nuisance and potentially infinite-dimensional symmetries where this is beneficial.
However, when such invariances are disadvantageous, they can easily be destroyed with two extremely simple preprocessing
techniques: time-augmentation, in which the path (t, ht) is instead considered, and basepoint augmentation, in which h0 = c
for some fixed constant c ∈ H is enforced for all paths under consideration.

Another more interesting invariance property results from the signature’s inability to identify regions of the path in which,
informally speaking, a retracing of the path occurs [Chen, 1958, Hambly and Lyons, 2010, Boedihardjo et al., 2016]; that is,
for example, paths of the form a ⋆ b ⋆

←−
b ⋆ c for a, b, c ∈ BV[0,T ](H), where ⋆ denotes concatenation and

←−
b is the path b

“run-backwards”. Paths in which such retracings occur are referred to as tree-like equivalent to their reduced paths such that,
for example, a ⋆ b ⋆

←−
b ⋆ c ∼t a ⋆ c, where ∼t denotes tree-like equivalence. While this phenomenom has previously been

studied in more specific cases [Chen, 1958, Hambly and Lyons, 2010], the most general form of this invariance property is
provided by Boedihardjo et al. [2016], a special case of which may be stated as follows:

Theorem 1 (Hambly and Lyons [2010], Boedihardjo et al. [2016]). Let V be a Banach space and h, g ∈ BV[0,T ](V ). Then
Sig(h) = Sig(g) iff h ∼t g.

In the real world, however, tree-like equivalent paths are rare and can straightforwardly be avoided by considering only
time-augmented paths h : [0, T ]→ H× [0, T ], t 7→ (t, ht). Such a transformation ensures that the path is injective, meaning
no partial retracing can occur at any point along the path. This, along with their universal nonlinearity property, demonstrates
that signatures are powerful and faithful representations of paths and are, essentially, an injective feature map for path-valued
random variables. Signatures are therefore an appealing option for performing inference for stochastic process simulators.

B.3 SHUFFLE-PRODUCT PROPERTY

The terms of the path signature exhibit a so-called shuffle-product property:

Theorem 2 (Theorem 2.29, Lyons et al. [2007]). Let h ∈ BV[0,T ](H). Then

∫ T

0

dh⊗m ⊗
∫ T

0

dh⊗m′
=
∑
σ

σ

(∫ T

0

dh⊗(m+m′)

)
,

where the sum is taken over all order shuffles, defined as

{σ : σ is a permutation of {1, . . . ,m+m′} with σ(1) < · · · < σ(m), σ(m+ 1) < · · · < σ(m+m′)}.

σ then acts onH⊗(m+m′) as σ(ei1 ⊗ · · · ⊗ eim+m′ ) = eσ(i1) ⊗ · · · ⊗ eσ(im+m′ ).

B.4 FUNCTION APPROXIMATION CAPABILITIES

We state informally in the main text that signatures enjoy a universal nonlinearity property. This may be stated more formally
as follows:

Theorem 3 (Appendix A.2, Kiŕaly and Oberhauser [2019]). Let K be a compact set of non-tree-like (see Appendix B.2)
paths of bounded variation, and C(K,R) be the space of continuous, real-valued function on K. Then the space of linear
functionals on signatures of paths in K is dense in C(K,R); that is, for any f ∈ C(K,R) and any ε > 0, there exists an
L ∈

⊕
m≥0H⊗m such that

sup
h∈K

∣∣∣f(h)− L{Sig(h)}∣∣∣ < ε.



This is a consequence of the shuffle product property of signatures (see Appendix B.3 above) and the Stone-Weierstrass
theorem. (An issue that arises in the application of the classical Stone-Weierstrass theorem in this context is that the space of
interest to us – BV[0,T ](H) – is not locally compact. The classical Stone-Weierstrass theorem therefore cannot strictly be
applied here. However, Chevyrev and Oberhauser [2018] demonstrate that a Stone-Weierstrass result exists by equipping
the space of continuous bounded real-valued functions on BV[0,T ](H) with an appropriate topology. See Chevyrev and
Oberhauser [2018] for details.)

B.5 ADDITIONAL PRE-PROCESSING

Prior to lifting the sequence to a path inH, and depending on the nature of the data at hand, it is sometimes appropriate to
apply a transformation to the data: certain transformations may enable the signature to represent information in the stream
more conveniently for the learning task at hand. A large set of such transformations have been proposed in the literature on
inference using path signatures; see Morrill et al. [2020] for a recent summary and comparison of many of these. Here, we
describe two such pre-signature transformations that we will use in this paper.

Cumulative sum Recall from Figure 1 that the depth 1 signature terms correspond to the increment along the path, and
that a subset of the depth 2 terms correspond to the areas above and below the curve. For certain data types, for example
non-negative binary or spiking data, the data may not be well-characterised by these terms by default. In such cases it can be
beneficial to consider instead the cumulative sum of the observations [Kiŕaly and Oberhauser, 2019], which can intuitively
be thought of as propagating information from earlier in the sequence to later in the stream, more readily exhibiting the
structure of the stream. The effect of this can be to shift information into lower order terms in the signature, for example the
increments (depth 1 terms).

Delay transformation A transformation that is common in time series analysis is a delay transformation, for example the
lag-1 delay transformation:

(xt1 ,xt2 , . . . ,xtn) 7→ ((xt1 ,xt2), (xt2 ,xt3), . . . , (xtn−1
,xtn)). (29)

Applying this transformation before applying the signature may help to encode temporal features of the time series.

B.5.1 Augmentations

As noted previously, two augmentations can be applied to remove the signature’s translation and reparameterisation
invariance properties:

Time augmentation In this transformation, the uniformly increasing time index 0 = t1 < t2 < · · · < tn = T is added as
a channel in the sequence:

(xt1 ,xt2 , . . . ,xtn) 7→ ((t1,xt1), (t2,xt2), . . . , (tn,xtn)) , (30)

denoting the times at which the points in the series occurred.

Basepoint augmentation With this transformation, all sequences are enforced to assume a common but otherwise arbitrary
initial value. This can be achieved by simply concatenating an arbitrary constant value to the beginning of each sequence.

Lead-lag transformation This transformation operates on a sequence x = (xt1 ,xt2 , . . . ,xtn) as follows:

(xt1 ,xt2 , . . . ,xtn) 7→
(
(xt1 ,xt1), (xt1 ,xt2), (xt2 ,xt2), . . . , (xtn−1 ,xtn), (xtn ,xtn)

)
. (31)

Under this transformation, the number of channels in the sequence doubles, and the sequence length increases from n to
2n− 1. Applying this transformation enables the signature to emphasise certain properties of the path such as the quadratic
variation and the Lévy area when combined with the cumulative sum [Gyurk, 2014, Chevyrev and Kormilitzin, 2016]. For
datasets for which these quantities are believed to be important, applying the lead-lag transformation may be appropriate.

C PROOF OF PROPOSITION 1

In this section, we denote the space of piecewise linear paths of bounded variation in H over time interval [0, T ] with
P[0,T ](H). We will furthermore abuse notation slightly by letting κ(x, ·) ∈ P[0,T ](H) denote the path in Equation (13), i.e.



the linear interpolation of the lifted points (κ(xt1 , ·), κ(xt2 , ·), . . . , κ(xtn , ·)), while denoting the feature map for xt with
κ(xt, ·) ∈ H. Finally, we will take k(x, ·) := Sig(x) to mean the signature of the piecewise linear,H-valued path κ(x, ·),
while Sig(g) denotes the signature of a path g ∈ BV[0,T ](H).

We demonstrate that the discrepancy measure in Equation (14) satisfies the conditions specified in Proposition 3.1 of Bernton
et al. [2019], which gives a statement on the convergence of ABC posteriors to the true posterior under certain regularity
conditions on the simulator’s likelihood function as ε→ 0. A specific case of the statement is as follows:

Proposition 4 (Proposition 3.1, Bernton et al. [2019]). Let X := Rd, y = (y1, . . . ,yn) ∈ Xn, and D : Xn ×Xn → R≥0

be a non-negative distance measure on Xn. Suppose pθ(x) is the continuous density (with respect to the Lebesgue measure)
associated with simulated data x ∈ Xn and that

sup
θ∈Θ\NΘ

pθ(x) <∞,

where NΘ is a set such that π(θ) = 0∀θ ∈ NΘ. Suppose further that there exists ε̄ > 0 such that

sup
θ∈Θ\NΘ

sup
z∈Aε̄

pθ(z) <∞,

where Aϵ̄ := {z : D(y, z) ≤ ε̄}. Suppose that D is continuous. If D(y, z) = 0 iff y = z, keeping y fixed, then for any
measurable B ⊂ Θ,

lim
ε→0

∫
B

πε(θ | y) dθ =

∫
B

π(θ | y) dθ. (32)

Therefore, provided that the stated regularity conditions on the simulator’s likelihood function are met, showing that the
distance function in Equation (14) is continuous and injective is sufficient to show that the S-ABC posterior converges to the
true posterior as ε→ 0. These requirements are indeed met under the assumptions of Proposition 4 and under additional
benign conditions:

Proposition 5. Let X := Rd, y = (y1, . . . ,yn) ∈ Xn be the fixed real-world dataset, and x be a simulated dataset.
Assume both y and x are time- and basepoint-augmented, and that κ : X × X → R is a uniformly bounded kernel with
continuous, injective canonical feature map. Let D(y, ·) be as in Equation (14), i.e.,

D(y, ·) := ρ {Sig(y), ·} ◦ Sig ◦ κ : Xn → R≥0, x 7→ ∥Sig(y)− Sig(x)∥2 (33)

consisting of lifting the sequence x ∈ Xn to a piecewise linear path inH, before computing the squared distance between
its signature and Sig(y). Then this map is uniformly continuous.

We will proceed by noting that each constituent map in the above operation is a continuous map, and the result follows since
compositions of continuous maps are continuous.

Lemma 1. Let Xn be the space of length-n basepoint-augmented sequences in X = Rd and x, z ∈ Xn. Then the
one-variation

∥x∥1−var =

n−1∑
i=1

∥xi+1 − xi∥X (34)

is a norm on Xn.

Proof. The triangle inequality follows immediately as a result of the triangle inequality for the norm on X :

∥x+ z∥1−var =

n−1∑
i=1

∥(xi+1 + zi+1)− (xi + zi)∥X

≤
n−1∑
i=1

∥xi+1 − xi∥X + ∥zi+1 − zi∥X

= ∥x∥1−var + ∥z∥1−var.



Absolute homogeneity is also immediate:

∥sx∥1−var =

n−1∑
i=1

∥sxi+1 − sxi∥X = |s|
n−1∑
i=1

∥xi+1 − xi∥X = |s|∥x∥1−var.

Finally, since the streams are basepoint-augmented, meaning x1 = 0 for all x ∈ Xn, we have that ∥x∥1−var = 0 iff
x = (0, 0, . . . , 0):

∥x∥1−var = 0 =⇒ ∥xi+1 − xi∥X = 0 ∀ i = 1, . . . , n− 1 =⇒ xi = x1 = 0 ∀ i.

We next show that lifting length-n basepoint-augmented sequences in X to sequences inH is continuous if the canonical
feature map ϕ associated with κ is itself continuous:

Lemma 2. Let Xn be the space of length-n basepoint-augmented sequences in X = Rd, x, z ∈ Xn, and ϕ : X → H be the
canonical feature map associated with kernel κ with RKHSH. Assume ϕ is continuous. Then the map x 7→ κ(x, ·) – where
κ(x, ·) is the linear interpolation of the points (ϕ(x1), . . . , ϕ(xn)) inH – is continuous in the one-variation topology.

Proof. By Lemma 1, the one-variation is a norm on length-n basepoint-augmented sequences in X . We will proceed by
showing that the one-variation is an equivalent norm to the 1-product norm, defined as

∥x∥Xn :=

n∑
i=1

∥xi∥X , (35)

which induces the product topology on Xn. By showing this, we will have the following implications: from the definition of
the 1-product norm,

∥x− z∥Xn < δ̃ =⇒ ∥xi − zi∥X < δ̃ also; (36)

by continuity of ϕ, we have that ∀ ϵ̃ > 0, ∃ δ̃ > 0 such that

∥xi − zi∥X < δ̃ =⇒ ∥ϕ(xi)− ϕ(zi)∥H < ϵ̃; (37)

and that choosing ϵ̃ = ϵ/2(n− 1) for any ϵ > 0 means that ensuring ∥ϕ(xi)− ϕ(zi)∥H < ϵ̃ for all i means

∥κ(x, ·)− κ(z, ·)∥1−var =

n−1∑
i=1

∥{ϕ(xi+1)− ϕ(zi+1)} − {ϕ(xi)− ϕ(zi)}∥H

≤
n−1∑
i=1

∥ϕ(xi+1)− ϕ(zi+1)∥H + ∥ϕ(xi)− ϕ(zi)∥H

< 2(n− 1)ϵ̃

= ϵ. (38)

We therefore have the following chain of implications: for every ϵ > 0 there is a δ̃ > 0 such that

∥x− z∥Xn < δ̃ =⇒ ∥xi − zi∥X < δ̃ =⇒ ∥ϕ(xi)− ϕ(zi)∥H < ϵ̃

=⇒ ∥κ(x, ·)− κ(z, ·)∥1−var < ϵ. (39)

It therefore suffices to show that for any δ̃ > 0 there is a δ > 0 such that ∥x− z∥1−var < δ =⇒ ∥x− z∥Xn < δ̃, which by
this chain of implications would imply that ∀ ϵ > 0, ∃ δ > 0 such that ∥x− z∥1−var < δ =⇒ ∥κ(x, ·)− κ(z, ·)∥1−var < ϵ.
This follows immediately, since ∥ · ∥1−var and ∥·∥Xn are norms on finite-dimensional vector spaces, and are thus equivalent
norms. In particular, we have that ∥x∥Xn ≤ ∥x∥1−var/c, such that for all δ̃ > 0, we have that

∥x− z∥1−var < δ := cδ̃ =⇒ ∥x− z∥Xn < δ̃, (40)

and so we are done.



We consider next the continuity of the signature map for piecewise linear paths of bounded variation inH. For such paths,
the signature truncated at degree 1 is a multiplicative functional with bounded variation (see Lyons et al. [2002, Section
3.1.2]) and, consequently, a special case of Lyons et al. [2002, Theorem 3.1.3] applies:

Lemma 3. Let V be a Banach space, x, z ∈ BV[0,T ](V ) be two bounded variation paths in V , and τ be a constant such
that

τ ≥ 2

{
1 +

∞∑
r=3

(
2

r − 2

)2
}
.

If φ is a constant such that

∥x∥1−var, ∥z∥1−var ≤
φ

τ
and ∥x− z∥1−var ≤ χ

φ

τ

for some χ > 0, then for all m ≥ 1

∥Sm(x)− Sm(z)∥V ⊗m ≤
χ

τ
· φ

m

m!
. (41)

An immediate consequence of this is that the signature map is continuous in the 1-variation topology for bounded variation
paths in Banach spaces:

Corollary 1. LetH be a Hilbert space, x, z ∈ BV[0,T ](H) be two bounded variation paths inH, and τ be as in Lemma 3.
If φ is a constant such that

∥x∥1−var, ∥z∥1−var ≤
φ

τ
and ∥x− z∥1−var ≤ χ

φ

τ

for some χ > 0, then

∥Sig(x)− Sig(z)∥ ≤ χ

τ
exp

(
φ2

2

)
.

Proof. By definition of the norm on
∏

m≥0H⊗m,

∥Sig(x)− Sig(z)∥ =
√∑

m≥0

∥Sm(x)− Sm(z)∥2H⊗m

=

√
0 +

∑
m≥1

∥Sm(x)− Sm(z)∥2H⊗m (S0(x) = 1 ∀x ∈ BV[0,T ](H))

≤

√√√√∑
m≥1

χ2

τ2
·
(
φm

m!

)2

(from (41) above)

=
χ

τ

√√√√∑
m≥1

(φ2)
m

(m!)
2

≤ χ

τ

√√√√∑
m≥1

(φ2)
m

m!
(smaller denominator)

≤ χ

τ
exp

(
φ2

2

)
. (convergent series)

We show next that the map ρ (Sig(y), ·) :
∏

m≥0H⊗m → R≥0, s 7→ ∥Sig(y)− s∥2 is continuous. To do so, we make use
of the following result:

Lemma 4. Let κ be a uniformly bounded kernel i.e. one for which supx∈X
√
κ(x, x) <∞, and let κ(x, ·) ∈ P[0,T ](H) be

aH-valued piecewise linear path with knots at κ(xi, ·), i = 1, . . . , n, and Sig(x) its signature. Then

sup
x∈Xn

∥Sig(x)∥ <∞. (42)



Proof. For all x ∈ Xn, we have

∥κ(x, ·)∥1−var =

n−1∑
i=1

∥κ(xi+1, ·)− κ(xi, ·)∥H (piecewise linear)

≤
n−1∑
i=1

∥κ(xi+1, ·)∥H + ∥κ(xi, ·)∥H (triangle inequality)

=

n−1∑
i=1

√
κ(xi+1,xi+1) +

√
κ(xi,xi) (reproducing property)

≤ 2(n− 1) sup
z∈X

√
κ(z, z). (κ bounded)

Let v := 2(n− 1) supz∈X
√
κ(z, z). Then ∀x ∈ Xn,

∥Sig(x)∥ ≤

{ ∞∑
m=0

(∥κ(x, ·)∥21−var)
m

(m!)
2

} 1
2

(Proposition 2)

≤

{ ∞∑
m=0

(v2)m

m!

} 1
2

= e
v2

2 , (exponential series)

where in the first inequality we make use of the factorial decay property of signatures. We obtain the result by taking the
supremum over Xn:

sup
x∈Xn

∥Sig(x)∥ ≤ e v2

2 <∞.

Lemma 5. Let κ be a uniformly bounded kernel i.e. one for which supz∈X
√
κ(z, z) <∞, and let κ(y, ·) ∈ P[0,T ](H) be

the observedH-valued piecewise linear path with Sig(y) its signature. Denote the signature kernel as

k(x, z) = ⟨Sig(x),Sig(z)⟩ (43)

Then the distance function
ρ (Sig(y), ·) :

∏
m≥0

H⊗m → R≥0, s 7→ ∥s− Sig(y)∥2 (44)

is Lipschitz continuous in s.

Proof. ∣∣D(y,x)−D(y, z)∣∣ = ∣∣∣∥Sig(x)− Sig(y)∥2 − ∥Sig(z)− Sig(y)∥2
∣∣∣

=
∣∣∣k(x,x)− k(z, z) + 2 (k(z,y)− k(x,y))

∣∣∣
≤
∣∣∣k(x,x)− k(z, z)∣∣∣+ 2

∣∣∣k(z,y)− k(x,y)∣∣∣ (triangle inequality)

Considering the first of these terms and making use of the reproducing property and symmetry of k:∣∣∣k(x,x)− k(z, z)∣∣∣ = ∣∣∣k(x,x)− k(x, z) + k(z,x)− k(z, z)
∣∣∣

=
∣∣∣⟨k(x, ·), k(x, ·)− k(z, ·)⟩+ ⟨k(z, ·), k(x, ·)− k(z, ·)⟩∣∣∣

≤
∣∣∣⟨k(x, ·), k(x, ·)− k(z, ·)⟩∣∣∣+ ∣∣∣⟨k(z, ·), k(x, ·)− k(z, ·)⟩∣∣∣

≤ (∥Sig(x)∥ + ∥Sig(z)∥) · ∥Sig(x)− Sig(z)∥ ,



where in the penultimate and final lines we use the triangle inequality and the Cauchy-Schwarz inequality twice, respectively.
Considering now the second term:∣∣∣k(z,y)− k(x,y)∣∣∣ = ∣∣∣⟨Sig(y),Sig(x)− Sig(z)⟩

∣∣∣
≤ ∥Sig(y)∥ ∥Sig(x)− Sig(z)∥ , (Cauchy-Schwartz)

where in the first line we use the definition and symmetry of the inner product. Putting the two terms together and using
Lemma 5, we have ∣∣D(y,x)−D(y, z)∣∣ ≤ (∥Sig(x)∥ + ∥Sig(z)∥ + 2 ∥Sig(y)∥) ∥Sig(x)− Sig(z)∥

≤ 4e
v2

2 ∥Sig(x)− Sig(z)∥

where v is as in Lemma 4. Thus ρ (Sig(y), ·) is Lipschitz continuous.

We finally arrive at the conclusion:

Proof of Proposition 5. Compositions of continuous maps are continuous, and each of the constituent maps are continuous
from the Lemmas and Corollaries presented above.

Injectivity of the signature map is also guaranteed under these conditions:

Proposition 6. LetX := Rd, x,y ∈ Xn. Assume both x and y are time- and basepoint-augmented, and that κ : X×X → R
is a uniformly bounded kernel with continuous, injective canonical feature map. Then Sig(x) = Sig(y) iff x = y.

Proof. Obtaining a signature from a length-n data stream x entails: (1) lifting the points xi in x to the RKHSH associated
with κ as κ(xi, ·); (2) applying a linear interpolation to obtain a piecewise linear H-valued path κ(x, ·); and (3) finally
taking the signature of κ(x, ·). To show injectivity of this composite map, it suffices to show injectivity of each of these
three steps since the composition of injective maps is injective.

(1) is trivially injective, due to the assumed injectivity of κ. (2) is by definition injective for a length-n sequence inH. To
show injectivity of (3), we note that time-augmentation of the sequences, along with injectivity of κ, ensure that the lifted
paths are injective, such that no tree-like equivalence is observed between the interpolated paths inH. Time-augmentation
further makes the signature sensitive to parameterisation, removing its parameterisation invariance property. Uniform
boundedness of κ ensures that κ(x, ·) is of bounded variation, such that κ(x, ·) ∈ P[0,T ](H). To see this, note that for a
piecewise linear path κ(x, ·),

∥κ(x, ·)∥1−var =

n−1∑
i=1

∥κ(xi+1, ·)− κ(xi, ·)∥H ≤ 2(n− 1) sup
z∈X

√
κ(z, z) <∞,

where we have used the reproducing property of κ and the triangle inequality. Finally, since basepoint augmentation makes
the signature sensitive to paths that differ only by translations, the desired result follows from Theorem 1.

D FURTHER EXPERIMENTAL DETAILS

D.1 SIGNATURE REGRESSION ABC

For SR-ABC, we proceed as follows:

(a) fit a kernel ridge regression model using training data {x(i),θ(i)}Ri=1 ∼ pθ(x)π(θ). This amounts to solving the

following optimisation problem for each of the p components j = 1, . . . , p of the {θ(i)}Ri=1:

min
θ̂j∈Hk

R∑
i=1

{
θ
(i)
j − θ̂j

(
x(i)
)}2

+ α∥θ̂j∥2Hk
, (45)



where k is the signature kernel,Hk is the RKHS associated with k, θ̂j is – by the Representer Theorem – a function of
the form

θ̂j(x) =

R∑
i=1

ω
(j)
i k(x,x(i)) (46)

with

ω(j) = (G+ αIR)
−1
ψ(j), Gmn = k(x(m),x(n)), ψ(j) =


θ
(1)
j

θ
(2)
j
...

θ
(R)
j

 , IR = diag(1, 1, . . . , 1) ∈ RR×R,

and α ≥ 0 is a regularisation parameter;

(b) summarise the observation y and all future simulations x ∼ pθ using this trained kernel ridge regression model, i.e. use

s(x) =


θ̂1 (x)

θ̂2 (x)
...

θ̂p (x)

 ; (47)

(c) use the squared difference between the summaries of y and x as the measure of discrepancy between simulation and
observation,

ρ {s(y), s(x)} = ∥s(y)− s(x)∥22. (48)

D.2 FURTHER IMPLEMENTATION DETAILS

For all signature kernel computations, we use the sigkernel package [Salvi et al., 2021] and we normalise the time series
by dividing by the range of the simulation output when this is known or, when this is unknown, with the expected range of
the training set of size R = 300 for SR-ABC or R = 300 samples from the prior predictive distribution for S-ABC.

Unless stated otherwise, we remove the translation invariance and reparameterisation-invariance properties of the signature –
discussed in Appendix B.2 – by applying basepoint and time-augmentations to all time series in every experiment.

Unless stated otherwise, we take κ to be a Gaussian RBF kernel with scale hyperparameter σ. To tune σ and the regularisation
hyperparameter for SR-ABC, we perform a grid search with 5-fold cross-validation on the training set. For S-ABC, we
use the median of all pairwise Euclidean distances between points in the observation y for σ, although we note that other
approaches could be taken, such as using the same method as for SR-ABC.

Both SA-ABC and SR-ABC require training data; for both we useR = 300 training examples {x(j),θ(j)}Rj=1 ∼ pθ(x)π(θ).
When π(·) has bounded support, we normalise the parameters {θ(i)}Ri=1 in the training set with the range of the prior in each
dimension. We also tune the bandwidth parameter for the Gaussian RBF kernel employed in the MMD distance for K2-ABC
using the median of the pairwise absolute differences between observations in y, as recommended by Park et al. [2016].

In all experiments, “Wasserstein” and “W-ABC” indicates the use of the 1-Wasserstein distance with curve matching, which
as described in Section 2 is a method for using the Wasserstein distance for time series recommended in Bernton et al.
[2019], in the rejection ABC sampling scheme. To determine the λ coefficient, we follow the guidance of Thorpe et al.
[2017] and choose

λ ≃ V

T
, (49)

where V is the expected vertical range and T is the length of the time interval over which observations are made, in order
to balance the effects of vertical and horizontal transport. Where the value of V is not apparent a priori, we estimate it
using R = 300 samples from the prior predictive distribution. Distances are computed using the Python Optimal Transport
package [Flamary et al., 2021].



Figure 5: (Geometric Brownian motion) Examples of marginal posterior distributions recovered using each distance function
and the approximate ground-truth posterior recovered with a Metropolis-Hastings (MH) random walk. Panels a and b show
the marginal posteriors recovered using our signature methods (S-ABC and Signature regression ABC (SR-ABC)) and the
approximate ground-truth posterior (MH). Panels c and d show the marginal posteriors recovered using the Wasserstein curve
matching distance (Wasserstein), double kernel ABC (K2-ABC) (maximum mean discrepancy (MMD)), and semi-automatic
approximate Bayesian computation (ABC) with powers of the variance and lag-1 and -2 autocorrelations of the increments
of the log time series as regressors (semi-automatic ABC (SA-ABC)).

D.3 REFERENCE POSTERIORS USING MCMC

Metropolis-Hastings For the geometric Brownian motion (GBM) and Brock & Hommes models, we obtain samples from
the ground truth posterior using Metropolis-Hastings (MH). We follow the guidelines of Schmon and Gagnon [2022] and
use a multivariate normal proposal, for which we estimate the covariance matrix using a pilot run. We subsequently tune the
MH algorithm according to Schmon and Gagnon [2022, Table 1] and run the MH for 105 steps, keeping a thinned subset of
103 samples as our baseline.

Particle MCMC To obtain samples from the ground truth posterior of the Ricker model we employ particle Markov chain
Monte Carlo (pMCMC) using a simple bootstrap particle filter. We follow the guidelines of Schmon et al. [2021], first
estimating the posterior covariance in a shorter prior run and then tuning the random walk proposal as well as the particle
filter. PMCMC commonly exhibits worse convergence behaviour than standard MH and hence we run the algorithm for
2× 105 iterations eventually retaining a thinned subset of 103 samples as our baseline.

D.4 FURTHER EXPERIMENTAL DETAILS: THE RICKER MODEL

The time series generated by the Ricker model tend to consist of many zero terms, with occasional spikes. For this reason, we
use the cumulative sum pre-signature transformation (see Appendix B.5) for Signature ABC (S-ABC), which is a common
transformation for spiking data such as medical data [Morrill et al., 2019]. In our experiments, we also found that W-ABC
and K2-ABC benefited from this transform and were not competitive without it. We therefore also report the results obtained
with W-ABC and K2-ABC with this cumulative sum transform applied.



D.5 FURTHER EXPERIMENTAL RESULTS: GEOMETRIC BROWNIAN MOTION

We show in Figure 5 the marginal posteriors recovered using the Metropolis-Hastings (MH) approximation (see Appendix
D.3 for details) and the true likelihood function, along with the approximate posteriors obtained using the rejection sampling
scheme in Algorithm 1 and each of the distance measures considered. The suffix “(delay)” once again indicates that the lag-1
delay transformation was applied. From this, we see that and SR-ABC and S-ABC track the shape of the approximate ground
truth marginal posterior generated by MH for µ more closely than all other methods, and that the marginal distribution for
σ concentrates in the neighbourhood of the approximate ground-truth marginal posterior for σ. This is in contrast to, for
example, the MMD, which is overly dispersed and biased for σ.

In this example, SA-ABC has been able to very accurately approximate the marginal density for σ as a consequence of the
informative set of summary statistics provided to this method. However, SA-ABC has experienced difficulty recovering the
shape of the marginal density for µ, despite the provided summary statistics also being informative of this parameter. The
fact that the signature- and Wasserstein-based methods are able to outperform SA-ABC, despite the advantage the latter has
been afforded, illustrates the potential power of these methods in cases where the model structure is too complex to easily
derive summary statistics that are informative of the parameters.

D.6 FURTHER EXPERIMENTAL DETAILS: GENERALISED STOCHASTIC EPIDEMICS

For the priors reported in the main text, the posterior density can be written as

π(β, γ | I,R) ∝ βλβ+nI−2 exp

{
−β

(∫ T

ϕ1

XtYt dt+ νβ

)}
γλγ+nR−1 exp

{
−γ

(∫ T

ϕ1

Yt dt+ νγ

)}
, (50)

where I and R are the infection and recovery times, respectively, nI and nR are the total number of individuals in the model
that are infected and that recover over the course of the simulation, respectively, and ϕ1 is the time of the first infection.

To perform S-ABC, we bring all three channels of the multivariate stream — the number of infected individuals, number of
recovered individuals, and time — into the range [0, 1] by dividing by Z, Z, and T , respectively. For W-ABC (“Wasserstein”),
we set λ = 2, since the expected vertical range is approximately twice that of the horizontal range T = 50 when Z = 100.

D.7 FURTHER EXPERIMENT: THE BROCK & HOMMES MODEL

In this experiment, we consider a heterogenous agent model proposed by Brock and Hommes [1998] which simulates the
dynamics of a set of traders operating under different trading strategies. The system of coupled equations comprising the
model may be written succinctly with the following transition density:

pθ(yt+1 | y1:t) = N
{
f(yt−2:t,θ),

σ2

R2

}
,

where

f (yt−2:t,θ) =
1

R

J∑
j=1

exp {β (yt −Ryt−1) (gjyt−2 + bj −Ryt−1)}∑J
j′=1 exp {β (yt −Ryt−1) (gj′yt−2 + bj′ −Ryt−1)}

(gjyt + bj)

and R, β, σ are parameters. In this way, we are able to obtain an approximate ground truth posterior with standard Markov
chain Monte Carlo (MCMC) techniques such as MH. We follow Platt [2020], Dyer et al. [2024] and assume the following
parameter values: J = 4, R = 1.0, σ = 0.04, β = 10, g1 = b1 = b4 = 0 and g4 = 1.01.

The parameters gj ∈ R capture the trend-following tendencies of the agents, while the parameters bj ∈ R determine the
biases towards different trading strategies. In our experiments, we consider the task of estimating the posterior π (θ | y),
where θ = (g2, b2, g3, b3), y = (y1, . . . ,yn) ∼ pθ∗ is the pseudo-observation, n = 100, and θ∗ := (−0.7,−0.4, 0.5, 0.3)
is the parameter setting used to generate y.

We show in Figure 6 boxplots for the Wasserstein distance and MMD between the ABC posteriors, denoted with π̂ABC,
and the approximate ground-truth posterior obtained with MH, denoted with π̂·|y. We also show boxplots for the Euclidean
distance between the ABC posterior means and the MH posterior mean. These boxplots were created by running the rejection
ABC (REJ-ABC) algorithm with the same 20 random seeds. In this experiment, SA-ABC uses the first and second powers of
l evenly spaced order statistics of the output data x, as considered in Fearnhead and Prangle [2012], where we take l = 10.



Figure 6: (Brock & Hommes) (a) Wasserstein distances between the posteriors recovered from the different distance
measures and samples from the exact posterior. (b) Maximum mean discrepancies between the posteriors recovered from
the different distance measures and samples from the exact posterior. (c) Squared distances between the means of the ABC
posteriors and the exact posterior mean. Our methods are shown in blue.

From this, we see that the signature-based methods tend to generate lower values in all three metrics compared to existing
methods. In particular, we see that S-ABC with the lag-1 delay transformation once again dominates existing methods
uniformly across all three metrics, while the same transformation applied to Wasserstein distance (Wass) does not result
in the same improvement. This demonstrates the potential power of our signature-based methods as automatic distance
measures for ABC for dynamic, stochastic simulators.
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