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ABSTRACT

In this paper, we explore the potential of abstracting complex visual information
into discrete, structured symbolic sequences using self-supervised learning (SSL).
Inspired by how language abstracts and organizes information to enable better rea-
soning and generalization, we propose a novel approach for generating symbolic
representations from visual data. To learn these sequences, we extend the DINO
framework to handle both visual and symbolic information. Initial experiments
suggest that the generated symbolic sequences capture a meaningful level of ab-
straction, though further refinement is required. An advantage of our method is
its interpretability: the sequences are produced by a decoder transformer using
cross-attention, allowing attention maps to be linked to specific symbols and of-
fering insight into how these representations correspond to image regions. This
approach lays the foundation for creating interpretable symbolic representations
with potential applications in high-level scene understanding.

1 INTRODUCTION

In recent years (Bengio et al., 2013; Krizhevsky et al., 2017), advances in computer vision and ma-
chine learning have significantly improved our ability to learn from complex visual data. However,
most learned representations remain continuous and unstructured(LeCun et al., 2015), making it
difficult to reason about high-level abstractions and relationships in the data. Inspired by language
structure, which allows us to abstract and generalize from perceptual input, we explore whether it
is possible to generate discrete, structured symbolic representations from visual data through self-
supervised learning (SSL).

Language provides a compelling framework for abstraction(Bisk et al., 2020): it captures mean-
ing through compositional symbols that represent and generalize complex information, enabling
higher-level reasoning. Translating this capacity to machine learning could be a key step toward
more interpretable and generalizable models(Lake et al., 2016). However, current approaches to
visual representation learning primarily focus on learning dense, continuous features, which lack
the compositional properties needed for symbolic reasoning. This gap motivates our investigation
into generating symbolic sequences from visual input, where structured symbols can encapsulate
the variations and complexities of visual data in a compact, interpretable form.

In this work, we introduce a novel approach to generating symbolic representations from visual data
using an extended version of the DINO framework(Caron et al., 2021; Oquab et al., 2024), which is
designed to handle both visual and symbolic information. Our method leverages pre-trained visual
representations from a Vision Transformer (ViT)(Dosovitskiy et al., 2021) and extends them to pro-
duce symbolic sequences that can abstract the compositional properties of visual scenes. By utilizing
a decoder transformer with cross-attention mechanisms, we ensure that the generated symbols can
be interpreted and linked to specific regions in the input data, providing a more interpretable model.

Our main contributions are as follows: (1). We propose a novel method for generating structured
symbolic sequences from visual data through self-supervised learning, inspired by linguistic abstrac-
tion. (2). We extend the DINO framework to handle both visual and symbolic information, enabling
the learning of compositional symbolic representations. (3). We demonstrate the interpretability
of our method by linking the generated symbols to visual regions through attention maps, offering
insights into how these symbols correspond to image features. (4). Initial experiments show that
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Figure 1: Visualization of four sample images alongside their generated sequences and correspond-
ing attention masks, produced by our model. The sequences are generated using a temperature-
softmax discretization process with a temperature of 0.12 during training. Attention masks, associ-
ated with each sequence element, are extracted from the cross-attention layers in the deepest layer of
the descriptor module. From left to right: The first column shows the input sample images, followed
by the generated sequences and their corresponding attention masks.

our approach captures a meaningful level of abstraction, though further refinement is needed. This
suggests potential for high-level scene understanding and interpretability.

By bridging the gap between continuous visual representations and discrete symbolic reasoning, our
approach opens the door to more interpretable models. It lays the groundwork for further exploration
in abstract visual understanding.

2 RELATED WORK

Visual Representation Learning and Discrete Latent Representations Self-supervised learning
(SSL)(Chen et al., 2020; Radford et al., 2021) has led to significant progress in visual representation
learning, with Vision Transformers (ViT) proving particularly effective at extracting meaningful
features by attending to different regions of an image. Methods like DINO build on ViT to cap-
ture dense, continuous representations from visual data. However, while these representations are
powerful, they often lack the structure necessary for symbolic reasoning and high-level abstrac-
tions. A growing body of work addresses this limitation by introducing discrete latent representa-
tions(van den Oord et al., 2018; Yu et al., 2022), which transform continuous visual features into
discrete codes or tokens. These discrete representations offer a more structured and interpretable
way to model complex visual inputs. However, while they provide compact encodings, they typ-
ically do not impose specific structural properties or constraints on the learned codes, leaving the
challenge of generating meaningful, compositional symbolic sequences open. Our work builds on
this by adopting discrete representations and focusing on learning structured symbolic sequences
that capture the underlying compositional nature of visual data.

Image Captioning and Encoder-Decoder Models Traditional image captioning models typically
follow an encoder-decoder architecture(Vinyals et al., 2015; Xu et al., 2016), where the encoder
(often a CNN or Vision Transformer) processes the image into a dense, continuous representation,
and the decoder (such as an RNN or Transformer)(He et al., 2015; Vaswani et al., 2023) generates
descriptive language sequences based on these features. These models rely on explicit supervi-
sion, using labelled datasets with human-annotated captions to guide the mapping from images to
text. However, our approach differs fundamentally. While we also employ a standard encoder-
decoder architecture with a pretrained Transformer to capture visual features, our method does not
rely on human-provided labels, predefined language targets, or prior training on linguistic models.
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Figure 2: Schematic drawing of the teacher-student setup. The teacher model consists as usual of an
encoder and projector, while the student models consist of a decoder and encoder plus the regular
projector. The input images are passed to a pretrained teacher, and the representations of it are then
fed to the student. finally, the outputs of the projectors are compared. The student weights are then
adjusted to mimic the output of the teacher. In our experiments, we work under the assumption of
an existing visual encoder and focus solely on training the projector layer of the teacher using EMA
while keeping the rest of it frozen.

Instead, we autonomously generate symbolic sequences directly from visual data in a self-supervised
manner, discovering structured outputs without the guidance of any external symbolic or linguistic
framework. This makes our task more challenging and allows for the emergence of abstract and
compositional visual representations in a fully unsupervised setting.

Neuro-Symbolic Learning and Symbolic Reasoning Neuro-symbolic approaches(Susskind et al.,
2021) aim to combine the pattern recognition capabilities of neural networks with the logical, in-
terpretable reasoning strengths of symbolic AI. These models use neural networks to process raw
data (such as images or text) and output symbolic representations or logical rules for high-level rea-
soning tasks. Recent advances have introduced methods for generating symbolic sequences directly
from visual data, allowing models to infer perceptual features and symbolic abstractions in a uni-
fied framework. Our work aligns with this direction by generating symbolic sequences from visual
input, directly integrating perception with structured symbolic reasoning without requiring external
symbolic systems.

Interpretability through Attention Mechanisms and Discrete Representations Attention mech-
anisms, particularly in Transformer architectures, have proven essential for improving the inter-
pretability of models by highlighting which parts of the input data are most relevant for a given
prediction. In visual models, attention maps make it possible to understand how specific regions
of an image contribute to the output. Some approaches (Zhang et al., 2021) go further by tok-
enizing images into discrete units, which can then be mapped to symbolic representations, offering
a more interpretable and structured view of the visual data. Our method builds on this by using
cross-attention to link symbolic sequences to specific image regions, ensuring that the learned rep-
resentations are not only abstract and symbolic but also interpretable, providing transparency in how
the model processes and understands visual scenes.

3 METHOD

Our proposed method follows a teacher-student framework(Hinton et al., 2015) for generating sym-
bolic representations from visual data, incorporating cross-attention mechanisms, discretization
strategies, and symbolic token embedding. The teacher network, which uses a pretrained Vision
Transformer (ViT), provides stable visual representations, while the student network is trained to
generate symbolic sequences that approximate these representations. We outline the method in four
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major components: (1) Teacher-Student Framework, (2) Symbolic Token Discretization and Em-
bedding, (3) Training Procedure, and (4) Exploration Strategies.

3.1 TEACHER-STUDENT FRAMEWORK

The core of our approach is a teacher-student framework, where the teacher provides pretrained
visual features, and the student learns to represent these features symbolically. The student generates
symbolic sequences using a decoder and re-embeds them into a joint distribution space through an
encoder. We will now describe each network in detail.

Teacher Network The teacher network T consists of an encoder module ET , which is a pretrained
Vision Transformer (ViT-B/16) from the DINO method, and a projector module PT . Given an input
image x, the teacher’s encoder produces a visual representation zt:

zt = ET (x),

which is then projected by the teacher’s projector PT into a joint distribution space:

pt = PT (zt).

The teacher network is frozen during training, except for the projector head PT , which is updated
using an Exponential Moving Average (EMA) of the student projector weights:

θPT
← λθPT

+ (1− λ)θPS
,

where λ is the EMA decay factor, θPT
denotes the teacher’s projector weights, and θPS

denotes the
student’s projector weights.

Student Network The student network S is composed of three main components: a decoder mod-
ule DS , an encoder module ES , and a projector module PS . Unlike the teacher, the student is ini-
tialized randomly and trained to align its representations with the teacher’s by generating symbolic
sequences that abstract visual information. The student model operates in two phases: symbolic
sequence generation and embedding alignment.

• Symbolic Sequence Generation: To generate descriptions of varying levels of detail, the
descriptor DS autoregressively transforms the teacher’s visual representations zt into sym-
bolic sequences ss using cross-attention mechanisms. These sequences represent high-level
semantic abstractions, capturing key features of the input. By generating symbolic se-
quences of different lengths for the same scene, shorter sequences focus on broad semantic
features, while longer sequences capture more specific details. This approach encourages
the student model to learn a general-to-specific behavior, enabling it to adjust to different
levels of abstraction in the data.

ss = DS(zt),

• Discretization and Re-Embedding: To ensure gradients can propagate through the sym-
bolic sequence ss, a discretization process is applied over the token embeddings rather
than performing a hard, non-differentiable operation. For each logit in the sequence, an
approximation to the maximum is computed to assign a token, which is then mapped to its
corresponding embedding. This approach allows the model to maintain trainability while
preserving the symbolic nature of the sequence. By discretizing ss into distinct tokens,
we ensure that each token represents a unique and well-defined semantic concept, avoid-
ing blended or ambiguous representations. These discrete tokens are then re-embedded
into continuous representations zs through the interpreter, creating meaningful embeddings
aligned with the symbolic abstractions. Finally, these embeddings are processed by the stu-
dent’s projector, PS , to map them into a joint distribution space, facilitating alignment with
the teacher’s representations:

ps = PS(ES(ss)),
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Figure 3: Training process of nine variations of our method, including three discretization variations
with varied vocabulary sizes in symbolic descriptions. From left to right: (a) shows the teacher en-
tropy over training steps; (b) displays the KL divergence between teacher and student distributions;
(c) presents the evaluation performance using a k-NN metric across the different variations.

3.2 SYMBOLIC TOKEN DISCRETIZATION AND EMBEDDING

Discretization is crucial to our method, as it converts continuous visual representations into struc-
tured symbolic sequences. We explore three different discretization strategies to evaluate the effec-
tiveness of the symbolic abstraction:

1. Low-Temperature Softmax: To approximate a maximum operation, we apply a softmax
function with a very low temperature, which selects the most probable token for each step
in the sequence.

sq = softmax
(ss
τ

)
, with τ → 0.

2. Gumbel Softmax: The Gumbel-Softmax (Jang et al., 2017) trick samples discrete tokens
while maintaining differentiability, allowing backpropagation through discretization.

sq = GumbelSoftmax(ss, τ).

3. Vector Quantization (VQ): In this variant, we apply a Vector Quantization (VQ) layer over
the continuous output of the decoder, which maps each continuous output to the nearest
code in a fixed codebook.

sq = argmin
ei∈C
∥ss − ei∥2 ,

where C is the codebook of quantized vectors.

Once the sequence is discretized, we embed the symbolic tokens sq through an encoder-only trans-
former ES . To encourage compositionality, we split the sequence into subsequences of increasing
length (powers of two). We start with a sequence of length 1 and progressively generate subse-
quences of lengths 2, 4, and 8, where each subsequence s

[:n]
q contains all previous elements. For

each subsequence, we obtain an embedding:

p(n)
s = PS(ES(s

[:n]
q )) forn = 1, 2, 4, 8.

The final joint distribution is the aggregated sum of the subsequences:

ps =

8∑
n=1

p(n)
s .
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Figure 4: Training curves for three exploration strategies: (a) Base Strategy, (b) Entropy Encour-
agement Strategy, and (c) Information Maximization Strategy. Each plot tracks multiple metrics
over training steps: top-1 and top-5 classification accuracy (probing), training loss, teacher entropy,
KL divergence between teacher and student distributions, information content of the generated se-
quences, and entropy of the logits from the decoder transformer. These metrics reflect the effects
of the different strategies on exploration, variability, and performance during the symbolic sequence
generation process.

3.3 TRAINING PROCEDURE

We follow a self-supervised learning approach, where the teacher visual encoder generates visual
representations using images from CIFAR-10 with standard data augmentation (random cropping,
flipping, etc.) and the student network is trained with them. The visual encoder ET is pretrained on
the DINO method and kept frozen throughout training, while the focus is on learning the symbolic
representations.

Loss Function The loss function is designed to guide the student model in learning from both
continuous and symbolic representations. Building on the DINO loss, we introduce a granularity loss
that accounts for varying levels of detail in the symbolic representations. This term adapts the local-
to-global strategy from the DINO framework, encouraging the student to align its representations
with those of the teacher across different levels of abstraction. The granularity factor allows the
student to focus on both high-level and more detailed features of the input.

The overall loss function LSSL is defined as:

LSSL =

V∑
i=1

D∑
j=1

λj ×H(p(i)
t ,p(i,j)

s )

where H(p(i)
t ,p

(i,j)
s ) is the cross-entropy between the teacher’s visual representations pt and the

student’s symbolic representations at different granularities ps, with λj acting as a scaling factor for
each level of detail.

Optimization We use the AdamW optimizer with gradient clipping (factor of 2) and mixed-
precision training. The learning rate is scheduled similarly to DINO, and we train for 140 epochs
with a batch size of 64 on a single GPU. A k-NN probing task is performed periodically to monitor
the quality of the learned representations.

3.4 EXPLORATION STRATEGIES

We apply various exploration strategies to further enhance the diversity and richness of the symbolic
sequences generated by the student network. These strategies are specifically used in the context
of the Gumbel Softmax variation of the discretization process, where we investigate the effects of
different loss terms to encourage exploration and variability in the symbolic sequences.
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• Base Strategy: In the base strategy, we only modify the teacher temperature (T ) and apply
a scheduler to gradually decrease the Gumbel Softmax temperature (τ ), allowing the pre-
dictions to better approximate a maximum as training progresses. No additional loss terms
are introduced in this baseline approach.

• Entropy Encouragement Strategy: Inspired by entropy-based exploration in Reinforce-
ment Learning (e.g., SAC), we introduce a loss term that penalizes low entropy in the
Gumbel Softmax predictions, encouraging the model to maintain higher entropy during
training. This term is designed to foster more diverse symbolic sequences:

Lentropy = −αH(p),

where H(p) is the entropy of the predicted sequence distribution, and α is a scaling factor.

• Information Maximization Strategy: We introduce another exploration strategy where a
penalty is applied to sequences with low information content, measured using information
theory. This encourages the model to produce sequences with high variability, avoiding
the repetition of the same symbols. The relative or sampled information in the generated
sequences is computed during training, and a penalty is applied based on the rate of symbol
repetition:

Linfo = −βI(s),

where I(s) measures the information content of the symbolic sequence.

4 RESULTS

The evaluation of our symbolic representations centres on two key aspects: their effectiveness in
downstream tasks and their interpretability.

Probing Task To assess the quality of the student network’s representations during and after train-
ing, we first use a k-NN probing method, these evaluations are conducted on a classification task,
using the test set labels solely as a metric for performance, varying systematically the number of
neighbors (e.g., 10, 20, 100, 200). This provides an initial measure of how the representations clus-
ter around meaningful patterns. After training, we employ a linear probing task to further assess the
ability of these representations to encode useful and interpretable information. By training linear
classifiers on the learned symbolic representations, we quantify the alignment of these features with
human-understandable concepts, offering insights into their utility for downstream tasks.

Table 1: KNN and Linear Probing Results
Model KNN Linear

Top1 Top5 Top1 Top5
DINO 91.08 99.35 - -
VQVAE 512 21.71 65.14 - -
VQVAE 256 26.37 72.55 - -
VQVAE 128 31.67 76.97 - -
Our(VQ 512) 34.2825 88.365 0.3365 0.9030
Our(VQ 256) 20.7375 78.810 0.2082 0.7992
Our(VQ 128) 25.3150 80.0675 0.2202 0.8299
Our(SS 512) 31.6525 88.640 0.3335 0.9108
Our(SS 256) 10.1450 50.2425 0.0995 0.4976
Our(SS 128) 30.7925 86.6575 0.2868 0.8982
Our(GS 512) 49.1250 93.810 0.5248 0.9686
Our(GS 256) 50.0150 94.185 0.5301 0.9674
Our(GS 128) 47.3075 91.105 0.4983 0.9456

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Subsequence Analysis We evaluate the quality of symbolic representations by analyzing sub-
sequences of varying lengths (e.g., 1-symbol, 2-symbol, etc.) and comparing three exploration
strategies: Information, Entropy, and Base. As shown in Table 2, the Top1 and Top5 accuracies
improve with increasing subsequence length, reflecting the compositional nature of the representa-
tions. For 1-symbol subsequences, the Information Strategy achieves 28.50% Top1 accuracy, while
the Entropy and Base strategies score 27.13% and 27.52%, respectively. As subsequence length in-
creases, all strategies improve significantly, with the 8-symbol sequences achieving Top1 accuracies
of 41.95%, 42.43%, and 43.90%, respectively. This suggests that longer subsequences capture more
meaningful information, and highlights the growing symbolic richness as sequence length increases.

Table 2: Subsequence Analysis on the different exploration strategies
Subsequence Length Information Strategy Entropy Strategy Base Strategy

Top1 Top5 Top1 Top5 Top1 Top5
1 symbol(s) 28.50 78.96 27.13 77.62 27.52 76.88
2 symbol(s) 34.48 85.49 34.10 84.76 33.90 82.39
4 symbol(s) 38.67 88.81 38.46 89.70 39.55 86.77
8 symbol(s) 41.95 91.20 42.43 91.87 43.90 89.85

Symbolic Interpretability Our approach provides interpretability by mapping discretized sym-
bolic sequences to distinct visual features or concepts, which can be traced back to specific regions
in the input image. To explore this interpretability, we generate attention maps that highlight these
regions, allowing us to observe how the model encodes visual information. Through a qualitative
analysis of symbolic tokens within specific classes, we observe consistent patterns in classes with
lower visual variability, such as birds, where certain symbols, like the one shown in Fig. 5), often
correspond to specific object parts. However, in more diverse classes like ships (not shown), the
patterns are less distinct, with shared symbols frequently associated with background elements. The
best results were achieved using a temperature-softmax discretization process, likely due to reduced
noise during training. These observations provide insights into how the model organizes symbolic
representations across different levels of intra-class variability.

5 DISCUSSION AND CONCLUSIONS

In this work, we explored a novel SSL approach to generate symbolic representations from visual
data. Our experiments demonstrated the potential of combining discretization strategies with self-
supervised learning to produce symbolic sequences that abstract visual information meaningfully.
Despite several challenges, we observed promising results in both the interpretability and perfor-
mance of our symbolic representations.

5.1 KEY INSIGHTS

Symbolic Representation Effectiveness Our method successfully generated symbolic sequences
that aligned with visual representations from a pretrained Vision Transformer. As seen in the prob-
ing tasks, the student model’s symbolic representations performed well, especially in the Gumbel-
Softmax discretization strategy. This indicates that symbolic abstraction can retain relevant infor-
mation and facilitate downstream tasks like classification. However, we also observed that accuracy
improves with sequence length, suggesting that compositionality is critical for capturing more de-
tailed aspects of visual data.

Interpretability of Symbolic Representations A core strength of our approach lies in the in-
terpretability of the symbolic sequences. As shown in the qualitative analysis (Fig. 5), symbolic
tokens consistently corresponded to specific visual concepts, particularly in low-variability classes
like birds. This transparency is a significant step toward more explainable AI systems, as it allows us
to trace how symbolic representations map to visual input. However, more diverse classes showed
less consistency, underscoring the need for future work to handle high intra-class variability better.
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Figure 5: Qualitative analysis of symbolic interpretability for the ”bird” class, focusing on the ap-
pearance of symbol 279 across multiple samples. The figure shows input images, followed by atten-
tion maps that highlight regions corresponding to symbol 279. This symbol consistently appears in
specific locations across different samples, often linked to parts of the bird, such as the body. Such
patterns are common in classes with low visual variability, like birds, whereas classes with higher
variability (e.g., ships, not shown) exhibit more localized and less consistent behavior. All sequences
and attention maps are generated using a temperature-softmax discretization with a temperature of
0.12.

5.2 LIMITATIONS AND FUTURE WORK

Despite the positive outcomes, our method faces several limitations:

Training Constraints Due to computational limits, we trained models for under 200 epochs,
which may have constrained their performance. Additionally, training was limited to the CIFAR-10
dataset, which may restrict the generalizability of our findings. Future work should aim to train on
larger datasets, such as CIFAR-100 or more complex synthetic datasets, to explore the scalability of
our method.

Challenges in Discretization and Exploration We found that discretization strategies plateaued
in performance around 50% accuracy, but this improved to 60% by using a combined strategy during
training. Nonetheless, the Gumbel-Softmax approach introduced noise, limiting both interpretability
and performance. Future work could focus on refining these discretization techniques and under-
standing how symbolic diversity correlates with model accuracy. Additionally, exploration strate-
gies, while promising for increasing sequence variability, did not significantly boost performance,
indicating that further research is needed to optimize this aspect.

5.3 CONCLUSIONS

This study highlights the viability of symbolic representations for visual data, offering a pathway
to more interpretable models that maintain strong performance on downstream tasks. While there
is room for improvement in terms of generalization and efficiency, the success of our approach in
extracting meaningful symbolic information provides a foundation for future research into symbolic
reasoning and representation in AI systems.
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