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Active learning-assisted directed evolution

Jason Yang 1,6, Ravi G. Lal1,6, James C. Bowden2,5, Raul Astudillo2,
Mikhail A. Hameedi 3, Sukhvinder Kaur4, Matthew Hill4, Yisong Yue 2 &
Frances H. Arnold 1,3

Directed evolution (DE) is a powerful tool to optimize protein fitness for a
specific application. However, DE can be inefficient when mutations exhibit
non-additive, or epistatic, behavior. Here, we present Active Learning-assisted
Directed Evolution (ALDE), an iterativemachine learning-assisted DEworkflow
that leverages uncertainty quantification to explore the search space of pro-
teins more efficiently than current DE methods. We apply ALDE to an engi-
neering landscape that is challenging for DE: optimization of five epistatic
residues in the active site of an enzyme. In three rounds of wet-lab experi-
mentation, we improve the yield of a desired product of a non-native cyclo-
propanation reaction from 12% to 93%. We also perform computational
simulations on existing protein sequence-fitness datasets to support our
argument that ALDE can bemore effective than DE. Overall, ALDE is a practical
and broadly applicable strategy to unlock improved protein engineering
outcomes.

Protein engineering is an optimization problem, where the goal is to
find the amino acid sequence that maximizes “fitness,” a quantitative
measurement of the efficacy or functionality for a desired application,
from chemical synthesis to bioremediation and therapeutics1. Protein
fitness optimization can be thought of as navigating a protein fitness
landscape, amapping of amino acid sequences to fitness values, to find
higher-fitness variants2. However, since protein sequence space is vast,
as a protein of length N can take on 20 N distinct sequences and
functional proteins are vanishingly rare, finding an optimal sequence is
hard. Because functional proteins are surrounded by other functional
proteins one mutation away3, protein engineers often use directed
evolution (DE) to optimize protein fitness4,5.

In its simplest form, DE involves accumulating beneficial muta-
tions by searching through sequences near one that exhibits some
level of desired function for variants that exhibit enhanced perfor-
mance on a target fitness metric (Fig. 1A). This approach can be
thought of as greedy hill climbing optimization across the protein
fitness landscape (Fig. 1B). DE is limited because screening for per-
formance can only explore a small, local region of sequence space.
Additionally, taking one mutational step at a time can cause the
experiment to become stuck at a local optimum, especially on rugged

protein fitness landscapes where mutation effects exhibit epistasis6.
Machine learning (ML) techniques offer a pathway to circumvent these
obstacles, providing strategies to more efficiently navigate these
complex landscapes7–11.

While supervised ML has been used to propose ideal combina-
tions of mutations–such as in ML-assisted DE (MLDE)12,13–these
approaches areoften limited to small design spaces as they donot take
advantage of the fundamentally iterative manner in which protein
engineering can take place in real-world applications. By contrast,
active learning is an ML paradigm that gathers data iteratively using a
supervised model which is, in turn, updated as new data are acquired
(Fig. 1C). By leveraging uncertainty quantification to choose which
variants should be tested at each step, active learning has the potential
to unlock improved engineering outcomes (Fig. 1D)14–18. Approaches
related to active learning have been used in the wet lab to optimize
artificial metalloenzymes, nucleases, and other proteins19–23. Past work
has also explored the use of Bayesian optimization (BO), a particular
class of active learning algorithms, to experimentally improve the
thermostability of protein chimeras24,25 and to optimize proteins with
one to severalmutations14,26,27. However, few studies have explored the
utility of active learning methods in comparison to DE, especially
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where epistatic effects are prevalent20,28. In addition, understanding of
the practical role of uncertainty quantification in the context of deep
learning29–31 and high-dimensional32 representations learned from
protein language models33,34 is limited.

To address the limitations of existing methods, we introduce
Active Learning-AssistedDirected Evolution (ALDE), a computationally
assistedworkflow for protein engineering that employs batchBayesian
optimization. ALDE alternates between collecting sequence-fitness
data using a wet-lab assay and training an ML model to prioritize new
sequences to screen in the wet lab (Fig. 1C); it resembles existing wet-
lab mutagenesis and screening workflows for DE and is generally
applicable to any protein engineering objective. In this study, we use
ALDE to find the ideal combination of five mutations in the active site
of a biocatalyst based on a protoglobin from Pyrobaculumarsenaticum
(ParPgb) for performing a non-native cyclopropanation reaction with
high yield and stereoselectivity. We chose this model system because
the residues of interest are in close structural proximity and there is
evidence of negative epistasis, which hinders DE. After performing
three rounds of ALDE (exploring only ~0.01% of the design space), the
optimal variant has 99% total yield and 14:1 selectivity for the desired
diastereomer of the cyclopropane product. The mutations present in
the final variant are not expected from the initial screen of single
mutations at these positions, demonstrating that the consideration of
epistasis through ML-based modeling is important. We solidify our

argument that ALDE is more effective than DE by computationally
simulating ALDE on two combinatorially complete protein fitness
landscapes. We also provide an extensive analysis of the effects of
protein sequence encodings, models, acquisition functions, and
uncertainty quantification for protein fitness optimization, to deter-
mine best practices for real-world engineering campaigns. In short, we
find that frequentist uncertainty quantification works more con-
sistently than typical Bayesian approaches, and incorporating deep
learning does not always boost performance. Ultimately, we demon-
strate that ALDE is a practical and effective tool for navigating protein
fitness landscapes and provide experimental and computational tools
(https://github.com/jsunn-y/ALDE) so that the method is easy to use
and broadly applicable.

Results
Practical implementation of ALDE
Broadly, ALDE alternates between library synthesis/screening in the
wet lab to collect sequence-fitness labels and computationally training
an ML model to learn a mapping from sequence to fitness in order to
suggest a new batch of sequences to test (Fig. 1C), resembling batch
BO. Before beginning ALDE, a combinatorial design space on k resi-
dues is defined, corresponding to 20k possible variants. The choice of k
will vary depending on the system, as larger values of k can consider a
greater extent of epistatic effects (allowing for better possible

Fig. 1 | Conceptual differences betweenDE and ALDE. A A commonworkflow for
DE, where a starting protein is mutated and fitnesses of variants are measured
(screened). The best variant is used as the starting point for the next round of
mutation and screening, until desiredfitness is achieved.BConceptualization ofDE
as greedy hill climbing optimization on a hypothetical protein fitness landscape.
C Workflow for ALDE. An initial training library is generated, where k residues are
mutated simultaneously (for example k = 5). A small subset of this library is ran-
domly picked, after which the variants are sequenced and their fitnesses are
screened. A supervisedMLmodel with uncertainty quantification is trained to learn

amapping fromsequence to fitness. Anacquisition function is used topropose new
variants to test, balancing exploration (high uncertainty) and exploitation (high
predicted fitness). The process is repeated until desired fitness is achieved.
D Conceptualization of active learning on a hypothetical protein fitness landscape.
Active learning is oftenmore effective thanDE for finding optimal combinations of
mutations. In these conceptualizations, a single sequence is queried in each round,
but in practical settings, active learning operates in batch where multiple sequen-
ces are tested in each round.
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outcomes) but will likely require collecting more data to find an opti-
mal variant. First, those k residues are simultaneouslymutated, and an
initial roundof sequence-fitnessdata is collected in thewet lab. ALDE is
compatible with low-N, batch protein engineering settings where tens
to hundreds of sequences are screened in each round. The collected
sequence-fitness data are then used to computationally train a super-
visedMLmodel that can predict sequence from fitness. Different ways
to encode protein sequence numerically and different types ofmodels
which can provide uncertainty quantification are analyzed in this
study. Afterward, an acquisition function is applied to the trained
model to rank all sequences in the design space, from most to least
likely to have high fitness. Several acquisition functions are evaluated
in this study, to balance exploration of new areas of protein space with
exploitation of variants that are predicted to have high fitness (Fig. 1D).
The computational component of ALDE can be performed using the
codebase at https://github.com/jsunn-y/ALDE. For the next round of
ALDE, the top N variants from the ranking are then assayed in the wet-
lab to provide additional sequence-fitness data, and the cycle is repe-
ated until fitness is sufficiently optimized.

The active site of ParPgb is a challenging design space for
standard DE
To initiate wet lab studies with ALDE, we identified a target enzymatic
activity on a protein design space that would be difficult to engineer
with simple DEmethods. Enzyme-catalyzed carbene transfer reactions
have the potential to be useful in many synthetic chemistry applica-
tions, and thus we decided to focus on the cyclopropanation of
4-vinylanisole (1a) using ethyl diazoacetate (EDA) as a carbene pre-
cursor to afford the 1,2-disubstituted cyclopropanes trans-2a and cis-
2a (Fig. 2A). Enzymeengineering for styrenyl cyclopropanationposes a
stimulating challenge for evolution toward two properties, higher

yield and improved selectivity toward one of the diastereomers of the
cyclopropane product. While this non-native chemistry has been
demonstrated with cytochromes P41135, we decided to engineer this
activity in a protoglobin. Protoglobins are archaeal hemoproteins,
which are attractive engineering targets due to their high thermo-
stability (T50 ~ 60 °C), small size (~200 amino acids)36, and ability to
perform novel carbene and nitrene transfer chemistries37–40. After
screening a diverse set of protoglobins, including wild-types and
engineered homologs, for cyclopropanation activity (Fig. S31 of Sup-
plementary Information), we decided to proceed with ParPgb W59L
Y60Q (ParLQ) as a starting point (parent) for ALDE. Because our goal
was to arrive at a variant with high yield and high selectivity for the cis-
product, we defined the objective to be explicitly optimized as the
difference between the yield of cis-2a and the yield of trans-2a. The
ParLQ variant demonstrates only moderate cyclopropanation yield
(~40% yield) and stereoselectivity (3:1 preferring trans-2a) under
screening conditions, andno knownprotein variant ofParPgbhashigh
fitness for our objective.

Based on previous engineering studies using protoglobin scaf-
folds, we selected five active-site residues (W56, Y57, L59, Q60, and
F89; WYLQF) positioned above the distal face of the heme cofactor,
which display epistatic effects and are known to impact non-native
activity (Fig. 2B)38,39. Single-site saturation mutagenesis (SSM) was
performed at these sites, and variants were screened by gas chroma-
tography for their cyclopropanation products. None of the screened
mutants demonstrated a significant, desirable shift in the value of the
objective (Fig. 2C) or related metrics such as cis yield and cis/trans
selectivity (Figs. S32–S46). Given these data, a protein engineer might
opt to perform a simple recombination of all positive variants to
exploit the typically additive character of mutations41. However, in our
recombination studies of the single-site mutants with the highest fold-

Fig. 2 | A challenging, epistatic protein design space: optimizationoffive active
site residues inParPgb. AOur objectivewas to optimize an enzyme to catalyze the
formation of the cis product of a cyclopropanatiom reaction with high yield and
high selectivity, which we quantify in a single value as cis – trans Yield.BThe parent
protein ParLQ is two mutations (W59L and V60Q) away from the wild-type ParPgb
sequence. Five residues in the active site of ParLQ which were likely to exhibit
epistasis were targeted: W56, Y57, L59, Q60, and F89. C The single mutations from
parent at the five targeted sites do not offer significant improvements to the
objective of cis – trans Yield. Very few single-mutation variants have the desired
selectivity (positive cis – trans Yield), and it would not be obvious which variant to

take forward in a DE campaign. Parent yields vary between runs but consistently
show moderate yield and selectivity for the trans product. D Various recombina-
tions of ideal single mutations are not effective proteins for the desired objective
(cis–trans Yield), and related metrics such as cis Yield and cis/trans Selectivity.
DAYFW, DGMDW, and DGMVW are the ideal combinations of single mutations
naively predicted to have the highest cis Yield, cis – trans Yield (objective), and
cis/trans Selectivity, respectively. Yields were measured in biological triplicate.
Overall, these results suggest an optimization problem that is challenging for
standard DE methods. Source data are provided as a Source Data file.
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change in cis yield (DAYFW), the objective (DGMDW), or the selectivity
(DGMVW), respectively, we did not observe a variant which generated
cis-2a with high yield and selectivity (Fig. 2D). Overall, these findings
suggest that our design problem is quite challenging for standard DE
approaches.

Using ALDE to efficiently optimize ParPgb for a non-native car-
bene transfer reaction
With the design space confined to five residues and a well-defined
objective, we began an ALDE engineering campaign. First, we synthe-
sized an initial library of ParLQ variants which were mutated at all five
positions under study (Fig. 3A). Mutants in this library were generated
through sequential rounds of PCR-based mutagenesis methods uti-
lizing NNK degenerate codons. We elected to use random selection
from this library because we did not know if any zero-shot predictors
might enrich the starting library with useful variants8,13. In fact, retro-
spective analysis of the initial library revealed that our objective is not
strongly correlated with conventional zero-shot predictors13,42, likely
because the objective involves non-native chemistry, for which fitness
is not sufficiently captured by evolutionary or stability-based metrics
alone (Fig. S72 of Supplementary Information). Four 96-well plates of
these random variants were picked and sequenced using the LevSeq
long-read pooled sequencing method (Figs. S7–10 of Supplementary
Information)43, yielding 216 unique variants without stop codons.
Screening revealed that nearly all of the variants had higher cyclo-
propanation activity than free-heme background activity, likely
because ParLQ was moderately active to begin with, and its high
thermostability allows it to tolerate multiple mutations. The majority
of variants displaying improved cyclopropanation yield strongly
favored formation of trans-2a; however, several of the randomly
selected sequences were capable of forming cis-2a in much higher
yield than any previously tested ParLQ variant (Fig. 3B). Notably, the
F89Y mutation was particularly important for inverting selectivity to

favor the cis-2a, but only in the context of certain mutations at posi-
tions 56, 57, 59, and 60.

The ALDE computational package was used to train a predictive
model on sequences and labels in the initial 216-member library
and to suggest sequences for testing based on our acquisition
function. Based on our extensive computational simulations (descri-
bed in the following section), we decided to use the DNN ensemble
with one-hot encoding of the five targeted residues for model
training and Thompson sampling as the acquisition function. Genes
encoding the top 90 amino acid sequences, optimized for expression
in E. coli, were prepared by exact DNA synthesis for screening
(Round 1, Fig. 3B). Details regarding DNA sequence design are descri-
bed in the included supplementary materials. Subsequent activity
screening of these sequences in triplicate showed that nearly a third of
Round 1 sequences met the objective better than the best variant in
the initial, randomly selected set (Fig. 3B). The best variant in the
Round 1 library,MKFNY (W56MY57K L59FQ60NF89Y), demonstrated
a total cyclopropanation yield of 93% and a cis:trans selectivity
ratio of 12:1.

We then gave the newly collected data back to the ALDE com-
putational algorithm for a second round of active learning. The top 90
predicted sequences were again synthesized and tested exactly as
before (Round 2, Fig. 3C). Interestingly, the model explored the
sequence space more in this round, as reflected in the expanded
mutational diversity present in Round 2 and the increased variance in
the activities of these sequences (both reaction yield and diastereos-
electivity) (Fig. 3D–F). Impressively, the top-performing variant among
these sequences (MPFDY) displayed a total cyclopropane yield of 99%
and a 14:1 cis:trans selectivity ratio. None of the mutations in MPFDY
obviously optimized the objective in the single-site mutagenesis stu-
dies (Fig. 2C); they work together, however, to deliver an optimal
variant. Furthermore, after screening the reaction products of all
predicted variants with chiral gas chromatographymethods, we found

Fig. 3 | ALDEoptimization trajectory ontheParPgbactive site.Theoptimization
campaign started with (A) constructing an initial library with mutations at all five
sites under study using NNK degenerate codons, randomly selecting 384 for
screening for product formation, and mapping to sequences using LevSeq. This
was followed by two rounds of ALDE–(B) Round 1 and (C) Round 2. In Round 1 and
Round2, exact genes were ordered as ENFINIA DNA produced by Elegen Corp. and
screened for product formation. For each round, we present the distribution of
amino acids sampled at each site and the distribution of yields for the cis and trans

products, with a few of the top-performing variants labeled. Overall improvement
in (D) cis – trans Yield, (E) Total Yield, and (F) cis/trans Selectivity over several
rounds of ALDE for the best variant in each round and the mean across variants in
each round. The best variant in each round, defined by the obejctive of cis – trans
Yield is labeled. Error bars indicate the standard deviation across variants in the
round. Yields were measured in biological triplicate. Source data are provided as a
Source Data file.
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that all of these sequences were generally capable of generating cis-2a
in high enantiopurity (Fig. S71 of Supplementary Information).

Having concluded the ALDE-based evolutionary campaign with
substrate 1a, we sought to understand the substrate scope of the
sequences explored in this project. We screened eight styrene deri-
vatives (1b–1i) for cyclopropanation using the sequences from Round
2 of ALDE (Fig. S50 of Supplementary Information). The variants show
different yields for each of the substrates, even though some of these
substrates differed from 1a only by a single atom. Nevertheless, for
every substrate, nearly all of the Round 2 variants were higher yielding
and more selective for their respective cis- diastereomers than the
parent protein, ParLQ (Figs. S52–67 of Supplementary Information).
Interestingly, the top-performing variants for each substrate differed
in sequence fromMPFDY, the top enzyme for 1a cyclopropanation. For
all the predicted variants in Round 1 and 2 of ALDE, sequences were
confirmed with LevSeq, and the yield and selectivity of the top variant
from each round was validated in vial format, showing good overall
consistency (Fig. S30b).

Computational simulations on combinatorial protein datasets
support the utility of ALDE
The design choices used for the wet-lab ALDE campaign were deter-
minedbyperforming computational simulationson twocombinatorial
landscape datasets for GB144 andTrpB45. On these landscapes, fitnesses
have beenmeasured experimentally for nearly all of the 204 = 160,000

variants in a librarywhere four amino acid residues weremutated to all
possible amino acids. GB1 refers to the B1 domain of protein G, an
immunoglobin binding protein where fitness is measured by binding
affinity-based sequence enrichment. The fitness of TrpB, the β-subunit
of tryptophan synthase, was measured by coupling growth to the rate
of tryptophan formation. Our baseline was DE greedy walk, where one
residuewasmutated to all possible amino acids, the bestmutationwas
fixed, and the processwas repeated at eachof the residues under study
(Fig. 4A). DE simulations were performed from all active variants as
starting points, using all 24 possible orders to enumerate the residues
under interest.

TheALDE simulation consisted of batchBO, as shown in Fig. 4B. In
each simulation, a random batch of 96 initial samples was selected,
followed by four rounds of 96 samples each, with the surrogatemodel
retrained and proposing new samples (via the acquisition function) in
each round. This simulation setup was chosen to closely imitate a real
wet-lab active learning campaign. The different parameters explored
for ALDE, including encodings, models, and acquisition functions, are
summarized in Table 1. We expanded the analysis beyond Gaussian
process (GP)models, which are the typical surrogatemodels for BO, to
deep kernel learning (DKL) models29,31 and frequentist models based
on boosting and deep neural network (DNN) ensembles. This was
motivated by the rise of high dimensional encodings of protein
sequences, such as those from protein language models (i.e. ESM233),
which have shown utility in certain property prediction tasks46,47.

Fig. 4 | Performance of simulated ALDE campaigns on two combinatorially
complete protein datasets, GB1 and TrpB. A Each DE simulation as a greedy
single-step walk on four residues, where each residue is fixed to the optimal
mutation until all four residues have been iterated across. DE simulations start from
every variant that has some measurable function, with all 24 possible orderings of
four residues simulated.B EachALDE simulation starts froma randomsampleof 96
variants on the 4-site landscape, with four rounds of learning and proposing new
sequences to test, each with 96 protein variants.CHypothetical visualization of the

three acquisition functions explored in this work: greedy, upper confidence bound
(UCB), and Thompson sampling (TS).D ALDE for four encodings, four models, and
three acquisition functions generally outperforms the average DE simulation and
random sampling on the GB1 and TrpB datasets. Performance is quantified as the
normalizedmaximum fitness achieved by the endof theALDE campaign. Error bars
indicate standard deviation across 70 random initializations. Source data are pro-
vided as a Source Data file.
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Visualizations of the acquisition functions (greedy, upper confidence
bound (UCB), and Thompson sampling (TS)) on hypothetical models
are given in Fig. 4C, with more details inMethods.

The performance of each simulated ALDE campaign was quanti-
fied as the maximum fitness achieved at the end of the campaign,
normalized to the variant with maximum fitness in the design space
(Fig. 4D). Full optimization trajectories at each iteration of the cam-
paign are provided in Fig. S73. We conclude that active learning can
significantly outperform the average performance of DE and random
sampling, and results are consistent across the two different protein
datasets. ALDE is competitive with similar methods14,15 and also out-
performs a single round of MLDE (Fig. S74 of Supplementary Infor-
mation). Higher dimensional encodings (Onehot and ESM2) generally
work better with deep learning-based models (DNN Ensemble and
DKL), while non-deep learning models might learn better from low
dimensional AAIndex and Georgiev parameters. The simulations fur-
ther suggest that encodings from protein language models may not
offer much benefit, which corroborates previous findings13 but stands
in contrast to other protein properties that can be predicted more

effectively by transfer learning fromprotein languagemodels21,46,47.We
find that ESM2 encodings cannot be used by GPs, likely because they
are too high dimensional. Other studies suggest that using the right
length-scale priors with GP can enable them to work in these
settings48,49; while we did not observe this same effect for our appli-
cation, further exploration may be interesting here. In our acquisition
functions, samples in the batch were sampled independently of each
other. We also explored batch expected improvement50, but this ran
extremely slowly without noticeable improvement in performance.
Overall, the frequentist ensemble models perform the most con-
sistently across different encodings.

To better understand which models are the most advantageous,
we assessed howwell calibrated their uncertaintieswere (Fig. 5A). For a
calibrated model, an n% confidence interval should contain n% of true
labels across different values of n, which can be evaluated and visua-
lized based on a calibration curve. Hypothetical calibrated, under-
confident, and overconfident models are visualized in Fig. 5B, with
their associated calibration curves. The calibration curves for different
encodings and models are given in Fig. S75. The area between a

Table 1 | Summary of encodings of protein sequences, models, and acquisition functions tested in this work

Encoding Dimension per Residue Description

AAIndex 4 Continuous fixed amino acid descriptors

Georgiev71 19 Continuous fixed amino acid descriptors

Onehot 20 Categorical (which amino acid)

ESM233 1280 Learned embedding from a protein language model (ESM2 with 650 million parameters)

Model Bayesian? Deep Learning? Description

Boosting Ensemble N N An ensemble of 5 boosting models

Gaussian Process (GP) Y N A collection of continuous functions described by a posterior

DNN Ensemble N Y An ensemble of 5 multilayer perceptrons (deep neural networks, DNNs)

Deep Kernel Learning (DKL)29 Y Y A GP on the last layer of a deep neural network

Acquisition Function Deterministic? Description

Greedy Y Acquires the maximum value of the mean from the posterior

Upper Confidence Bound (UCB) Y Acquires the maximum value of a certain confidence interval from the posterior (tuned by a
hyperparameter)

Thompson Sampling (TS) N Acquires the maximum value of a random function sampled from the posterior

Fig. 5 | Analysis of uncertainty quantification on simulated ALDE campaigns.
AMetrics used to evaluate howwell calibrated each of the four models are for four
encodings. Metrics for evaluation are the mean absolute error (MAE), the mis-
calibration area for the calibration curve, and the Spearman correlation between
uncertainty and error. Allmetrics are calculated basedon allmeasuredpoints in the
combinatorial design space. All results are based on the campaigns using UCB as

the acquisition function, during thefinal round of the campaign. Error bars indicate
standard deviation across 70 random initializations. B Visualizations of three
hypothetical models with underconfident, calibrated, and overconfident uncer-
tainties, and their respective calibration curves. C Visualization of how the Spear-
man correlation between uncertainty and error is calculated. Source data are
provided as a Source Data file.
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calibration curve and perfect calibration (dashed line) is defined as its
miscalibration area, which should be low. Another way to measure
uncertainty calibration is by measuring the Spearman correlation
between uncertainty from the model (σ) and the mean absolute error
from the model (MAE), which should be high.

Overall, the Boosting and DNN Ensembles have the lowest MAEs,
which suggests that they are the most accurate models (Fig. 5A). DNN
ensembles have the lowest miscalibration areas, suggesting that they
are the most calibrated and best models overall. These results are
generally consistent across encodings anddatasets, with a fewoutliers.
In general, calibrated uncertainty is desirable51,52, and it is thought that
it is important to understandhowcalibration shiftswhen extrapolating
beyond the training set53,54. However, in this study, we find that per-
formance in ALDE simulations (by max fitness achieved) is not neces-
sarily correlated to how calibrated the uncertainties are for each
model. For example, DKL performs the best for the ESM2 encoding,
but these models have the least calibrated uncertainties and the
highest MAEs. The poor calibration of DKL models may result from
some mode collapse where out-of-distribution inputs are mapped
close to the training representations by the neural network55. Because
calibration is measured on the entire combinatorial design space, it
may not directly correspond to the ability to find an optimal variant.

Discussion
Overall, ALDE is an effective method for navigating protein fitness
landscapes, and it offers several advantages compared to DE. First,
ALDE can unlock engineering outcomes not possible with simple DE.
By considering multiple interacting positions, ALDE can search for
combinations ofmutations whichmay demonstrate desirable epistatic
effects56,57 and reduce the risk of getting trapped at a local optimum.
We demonstrated the advantage of ALDE on ParPgb as a particular
wet-lab case study—though proof is not possible without testing every
DE greedy single-step walk (which is experimentally intractable in the
wet lab). Computational simulations of ALDE support this conclusion,
as ALDE consistently outperformsMLDE andDE baselines.While ALDE
and MLDE12,13 are similar conceptually and practically, MLDE only uses
greedy acquisition, whereas ALDE can consider model uncertainty,
which is potentially useful for exploring larger design spaces. Com-
pared toprevious computational studies onBO for protein variants14,26,
our study examines a more comprehensive range of encodings,
models, and acquisition functions, and it introduces analysis of the
role of calibrated uncertainty quantification. Interestingly, we found
that frequentist ensembles work the best in terms of performance and
uncertainty quantification30,58, rather than Bayesian approaches such
as typical GP models used in BO. Other ways to quantify uncertainty
and improve overall performance could be explored in the future16,30.
Overall, classical notions of uncertainty quantification seem to play a
more limited role than expected in these real-world applications. In a
related study, we show that ALDE can be combined with various zero-
shot predictors and that our findings here still hold for 16 different
protein-fitness landscapes, including thosewith fewer active variants59.

In the wet-lab engineering campaign, wewere pleased to find that
ALDE enabled access to a compilation of enzymes which, when con-
sidered together, demonstrate a broader substrate scope than thatof a
single enzyme. By contrast, DE is limited because it often “locks” one
into high yield for only a single substrate or closely related ones, as the
final variant is generally a single optimized sequence. Here, we observe
an emergent advantage inherent to ALDE: since sequences that bal-
ance exploration and exploitation for a given task are proposed, they
can be serendipitously proficient at related tasks.

ALDE is enabled by several recent advancements in biotechnol-
ogy. For the initial library constructed using degenerate codons, high-
throughput sequencing was necessary to identify the sequences of
variants in each well. For this work we utilized LevSeq43,60, a method
that leverages real-time nanopore sequencing. Furthermore, rapid and

reliable access to directly synthesized DNA was instrumental to the
speed with which evolution was performed. The ALDE workflow was
significantly enhancedwith (1) the delivery of exact genes in oneweek,
which shortened time between rounds of evolution, (2) the high fide-
lity of the delivered gene products meant that no sequencing was
required for Rounds 1 and 2 of ALDE, and (3) no over-screening was
needed because the exact sequences were arrayed individually. Over-
all, the time and screening cost of the wet-lab engineering campaign
with ALDEwas lower than for a greedy walk strategy with DE. A total of
six 96-well plates were screened before arriving at a final variant: four
plates of random variants, and two plates of predicted sequences
within three rounds. By comparison, a greedywalkwith DEwould have
required around five rounds of evolution–typically one mutation is
accumulated in each round of a DE greedy walk–with increased
screening in the later rounds, which would require greater experi-
mental resources such as chemical reagents and analysis time. We
expect that exact gene synthesis will be increasingly important for
powering active learning workflows in protein engineering.

In this work, we illustrated ALDE’s power for simultaneously
increasing the activity and selectivity of an enzyme for a non-natural
reaction, but ALDE is a general workflow that can be used for a broad
range of protein engineering applications. Additionally, ALDE could be
integrated into robotic systems for automated and efficient protein
engineering workflows, and library design could utilize tools such as
DeCOIL61. While we only engineered on five residues in this study,
ALDE should naturally extend to even larger design spaces on more
residues, as long as assay-labeled data is collected on variants with
mutations spread across those residues. Determining the residues to
target is an open challenge: these residues should tolerate mutations
and have the potential to increase the fitness of interest. Initial domain
knowledge, evolutionary conservation, or initial mutational screening
may be useful here. Library design could also benefit from limiting the
number of simultaneous mutations or using zero-shot scores13,19.
Despite our in silico simulations using combinatorially complete
datasets and wet-lab demonstration of ALDE, it remains an open
question how generally our findings can be applied to the engineering
of other enzymatic systems. Further work is needed to understand
how the number of samples and/or rounds required to achieve suc-
cessful engineering outcomes will increase (linearly or exponentially)
with the number of sites explored simultaneously and how epistasis
affects this. Futureworkheremay also involve generativemodeling if it
is not possible to enumerate the acquisition function on the entire
design space. Overall, accompanied by a user-friendly codebase, ALDE
is a broadly applicable tool that can unlockmore efficient and effective
protein engineering.

Methods
Cloning of random ParPgb variants
Cloning for single site-saturation mutagenesis. Chemically compe-
tent Escherichia coli (E. coli) cells (T7 Express Competent E. coli) were
purchased from New England Biolabs (NEB, Ipswich, MA). Phusion
polymerase and DpnI were purchased from NEB. SSM experiments
were performed using primers bearing degenerate codons (NNK)
using a modified QuikChange™ protocol62. The PCR conditions were
(final concentrations): Phusion HF Buffer 1x, 0.2mM dNTPs each,
0.5μM of forward primers, 0.5μM reverse primer, and 0.02 U/μL of
Phusion polymerase. The standard Phusion PCR protocol was used.
Upon completion of PCRs, the remaining template was digested with
DpnI. Gel purification was performed with a Zymoclean Gel DNA
Recovery Kit (Zymo Research Corp, Irvine, CA). The purified PCR
product was then assembled using the Gibson assembly protocol63.

Transformation of single site mutants. 96-well deep-well plates are
shaken in an INFORS HT Multitron Shaker in all instances. The
assembly products obtained were used to transform T7 Express

Article https://doi.org/10.1038/s41467-025-55987-8

Nature Communications |          (2025) 16:714 7

www.nature.com/naturecommunications


Competent E. coli (High Efficency) cells (NEB, Ipswich, MA) following
the recommended protocol. Upon heat-shock transformation, mix-
tures were recovered in 0.4mL Luria-Bertani medium (LB) (Research
Products Int.), after which the cells were incubated at 37 °C with
shaking at 220 rpm for 30min before being plated on LB-agar plates
with 100μg/mL ampicillin (LB-amp agar plates). Single colonies from
LB-agar plates were picked using sterilized toothpicks, which were
used to individually inoculate 400μL of LB containing 100μg/mL of
ampicillin (LB-amp) in 2mL 96-well deep-well plates. The plates were
incubated at 37 °C and shaken at 220 rpm for 16-18 h. The following
morning 50μL of preculture fromeach well were added to the wells of
a 96-well flat-bottom tissue culture plate (ThermoFisher) preloaded
with 50μL of 50% glycerol solution. These glycerol stocks were stored
at −80 °C for future inoculation. Additionally, the sequences of pro-
toglobin genes contained in every well were sequenced using the
evSeq protocol60.

Cloning for multisite-saturation mutagenesis. Mutations were
simultaneously incorporated as with single SSM using the ParLQ_-
quadNNK primers (Table S4). The library transformation was recovered
in 0.4mL LB. 50μL of transformation mixture were used to inoculate
6mL of LB-Amp in a 15mL plastic culture tube. This culture was allowed
to shake overnight at 37 °C. The following morning, this library pre-
culture was miniprepped using a QIAprep Spin Miniprep Kit (Qiagen,
Hilden, Germany). This miniprep sample was used as the new template
for mutagenesis with the primers for SSM of site 89. The Gibson pro-
ducts for the new five-site library were transformed using the recom-
mended protocol into T7 Express Competent E. coli. Upon heat-shock
transformation, mixtures were recovered in 0.4mL Luria-Bertani med-
ium (LB) (Research Products Int.), after which the cells were incubated at
37 °Cwith shaking at 220 rpm for 30min before being plated on LB-agar
plates with 100μg/mL ampicillin (LB-amp agar plates). Single colonies
from LB-agar plates were picked using sterilized toothpicks, which were
used to individually inoculate 400μL of LB containing 100μg/mL of
ampicillin (LB-amp) in 2mL 96-well deep-well plates across 4 separate
plates. The plates were incubated at 37 °C and shaken at 220 rpm for 16-
18 h. The following morning 50μL of preculture from each well were
added to the wells of a 96-well flat-bottom tissue culture plate (Ther-
moFisher) preloadedwith 50μL of 50% glycerol solution. These glycerol
stocks were stored at −80 °C for future inoculation. Additionally, the
sequences of protoglobin genes contained in everywell were sequenced
using LevSeq sequencing43.

Cloning of ParPgb predicted sequences
96-well plate gibson protocol. Exact genes encoding ParLQ mutants
predicted by Active Learning-Assisted Directed Evolution (ALDE) were
synthesized and delivered by Elegen Corp. (San Carlos, CA). DNA
fragments were received as dry residues in 96-well PCR plates in 2-4μg
quantities. These DNA samples were dissolved in 100 μL of double-
distilled H2O (ddH2O), yielding concentrations between 20-40 ng/μL.
0.7μL of these gene solutions were added to the wells of a 96-well PCR
plate (Globe Scientific Inc., Mahwah, NJ). 1.0μL of an aqueous solution
containing 60 ng/μL of linearized pET−22b(+) backbone with over-
hangs designed for Gibson ligation with the ordered DNA sequences
was added to each of the wells of this plate. Finally, to each well was
added 5μL of Gibson assembly mix. The 96-well plate was then incu-
bated at 50 °C for 60min, afterwhich theGibsonproductswereplaced
on ice. These Gibson products could then either be directly used for
transformation or stored at −20 °C for later use.

96-well plate transformation protocol. To eachwell of the previously
described Gibson assembly plate was added 5μL of T7 Express Com-
petent E. coli. The cell solutions were allowed to incubate on ice for
20min, after which they were heat-shocked at 42 °C for 10 s in a water
bath. The cells were then recovered with the addition of 100μL of LB.

Without outgrowth at 37 °C, 10μL of each transformationmixture was
used to inoculate the wells of a 2mL 96-well deep-well plate in which
the wells had been preloaded with 400μL LB-Amp. This plate was
incubated at 37 °C and shaken at 220 rpm for 16-18 h. The following
morning the plate was removed from shaking and allowed to sit at
room temperature for 8-10 h. After this rest phase, 1μL from each well
was used to reinoculate yet another 96-well deep-well plate preloaded
with 400μL LB-Amp. This cell passage platewas incubated at 37 °C and
shaken at 220 rpm for 16-18 h. The following morning 50μL of pre-
culture from each well was added to the wells of a 96-well flat-bottom
tissue culture plate (ThermoFisher) preloaded with 50μL of 50% gly-
cerol solution. These glycerol stocks were stored at −80 °C for future
inoculation. The sequences of transformants generated in this manner
were confirmed by LevSeq long-read sequencing.

Protocols for the screening of ParPgb variants
96-well plate library expression. The wells of 2mL, 96-well deep-well
plates were filled with 400μL LB-Amp. Previously generated 96-well
plate glycerol stockswere removed from−80 °C storage andplaced on
dry ice. Multichannel pipet tips were used to scratch the frozen gly-
cerol stock surface and used to inoculate the aforementioned deep-
well plate. These pre-expression cultures were incubated at 37 °C and
shaken at 220 rpm for 16-18 h. For expression cultures, the following
morning 50μL of these precultures were used to inoculate 900μL of
Terrific Broth (TB) (Research Products Int.) with 100μg/mL of ampi-
cillin (TB-amp) per well in 96-well deep-well plates. These expression
cultures were initially incubated at 37 °C and 220 rpm for 2.5 h, at
which point they were allowed to sit at room temperature for 30min.
Expression of proteinswas inducedwith isopropyl-β-D-thiogalactoside
(IPTG) and cellular heme production was increased with
5-aminolevulinic acid (ALA). An inductionmixture containing IPTG and
ALA in TB-amp (50μL) was added to each well such that the final
concentrations of IPTG and ALA were 0.5mM and 1.0mM, respec-
tively. The total culture volumes were 1mL. The plates were then
incubated at 22 °C and 220 rpm overnight.

96-well plate library reactions and screening. Expression cultures
containing E. coli expressing hemoproteins of interest were cen-
trifuged at 4000 × g for 10min at 4 °C. The supernatant was discarded,
and nitrogen-free M9 minimal medium (M9-N, 380μL) was added to
each well. The pellets were resuspended in this medium via shaking at
room temperature for 30min. The plates were then transferred into a
vinyl Coy anaerobic chamber (0–30 ppm O2). To each well was added
20μL of a MeCN solution with 200mM of the desired styrene sub-
strate and 300mM of ethyl diazoacetate (EDA). The final reaction
volume was 400 μL, and the final concentrations of the styrene and
EDA were 10mMand 15mM, respectively. The plates were then sealed
carefully with a foil cover and shaken at room temperature for 16 h in
the Coy chamber. Once complete, plates were worked up for proces-
sing by adding 600μL of a 1:1 solution of ethyl acetate:cyclohexane
containing 1,3,5-trimethoxybenzene as an internal standard (1.0mM
concentration). A silicone sealing mat (AWSM1003S, ArcticWhite) was
used to cover the plate and the two layers were thoroughly mixed by
rapid inversion of the plate. The plate was then centrifuged (5000× g
for 5min at room temperature) to separate the phases. Afterwards, a
200μL aliquot of the organic layerwas transferred to aGC vial insert in
a GC vial, and the samples were analyzed by GC-FID.

Machine learning details
The initial training data for the ParPgb campaign was obtained by
merging sequencing data with screening yield data. Measured yields
were averaged for sequences with the same amino acid combination
and normalized to the yield of the cis product formation of the parent
variants (WYLQF) on each plate. These normalized values were used
for model training and acquiring new points, which followed the same
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protocol as the computational simulations on GB1 and TrpB. For the
wet-lab campaign, we trained the model with onehot encodings, the
DNN ensemble with 5 models and bootstrapping using 90% of the
available training data for eachmodel, and Thompson sampling as the
acquisition function. These design choices correspond to the most
consistent strategy based on the computational simulations. Detailed
instructions on how to reproduce our results and run ALDE for other
engineering campaigns are provided at https://github.com/jsunn-
y/ALDE.

Most Bayesian optimization algorithms consist of two main
components: (1) a probabilistic surrogate model of the objective
function and (2) an acquisition function. The surrogatemodel predicts
the objective function values at unobserved inputs, while the acquisi-
tion function quantifies the potential benefit of evaluating any given
batch of inputs based on these predictions. In each iteration of the
Bayesian optimization loop, a new batch of inputs is selected by
maximizing the acquisition function. After evaluating the objective
function at these new inputs, the surrogate model is updated, and the
process repeats. Below, we describe in detail the probabilistic models
and acquisition functions explored in this work, which were imple-
mented using BoTorch64 and GPyTorch65.

Probabilistic models for bayesian optimization
Let X denote the input space (i.e., the space of feasible protein
sequences) and let f : X ! R denote the objective function (i.e., the
metric we wish to optimize). In this work, we explore four classes of
probabilistic surrogate models of the objective function: regular
Gaussian processes (GP), deep kernel Gaussian processes (DKL), deep
ensembles (DNN ensemble), and boosting ensembles.

GaussianProcesses. A Gaussian processmodel is defined in terms of
a prior mean function μ0 : X ! R and a prior covariance function
K0 : X ×X ! R and it encodes a Bayesian prior distribution over f .
Given a dataset of n evaluations of the objective function, denoted as
Dn = fðxi, yiÞgni = 1, one can derive the posterior distribution of f given
Dn. If these evaluations are corrupted by i.i.d. additive Gaussian
noise, i.e., yi = f xi

� �
+ ϵi, where ϵ1, . . . , ϵn are i.i.d. Gaussian with mean

zero and variance σ2, the posterior is again a Gaussian process
characterized by a posterior mean function μn : X ! R and a pos-
terior covariance function Kn : X ×X ! R. These functions can be
computed in closed form in terms of the prior mean and covariance
functions as well as the data using the classical Gaussian process
regression formulas66. The noise variance σ2 and other hyperpara-
meters of the model (such as the length-scale parameters) can be
estimated by maximizing the log marginal likelihood.

Deep kernel learning. Gaussian process models with classical covar-
iance functions, such as theMatern or squared exponential covariance
functions, are known to perform poorly in high-dimensional input
spaces32. To address this limitation, Wilson et al. (2015) proposed deep
kernel learning29. Succinctly, this approach uses a covariance function
of the form K x, x0ð Þ= k ϕw xð Þ,ϕw x0ð Þ� �

, where k is a regular covariance
function (e.g., squared exponential) and ϕw is a deep neural network
with weightsw. These weights are treated like hyperparameters of the
model, which can also be estimated by maximizing the log marginal
likelihood.

Boosting ensembles. Boosting models leverage a sequential training
strategy where each new model is trained to correct the errors of the
previously combinedmodels67. The final prediction is often aweighted
sum of the predictions made by earlier models, where the weights
reflect each model’s accuracy. Unlike methods such as bagging, which
train models independently and in parallel, boosting specifically
designs each new model to address the weaknesses of the existing
ensemble, thereby creating a strong predictivemodel froma sequence

of weaker ones. While boosting does not inherently offer a probabil-
istic interpretation like Bayesian methods, it is highly effective for
reducing bias and variance in predictivemodeling tasks. Here, we train
theboosting ensembleswith bootstrapping; eachensemble consists of
5 models where 90% of the total training data is randomly seen during
training.

Deep ensembles. Deep neural network (DNN) ensemble models are
constructed by training identical deep neural network architectures
multiple times, eachwith different random initializations of theweight
parameters. Here, we train the deep ensembles with bootstrapping;
each ensemble consists of 5 models where 90% of the total training
data is randomly seen during training. These independently trained
networks are then collectively used as if they were samples from a
Bayesian posterior distribution over the objective function f . Unlike
Gaussian processes, deep ensembles lack a proper Bayesian inter-
pretation. However, Izmailov and Wilson argue it is possible to see
thesemodels as a form of approximate Bayesian inference58. We adopt
this view in our work.

Acquisition functions for bayesian optimization
Expected improvement. The expected improvement (EI) acquisition

function is given by αnðxÞ= En½ff ðxÞ � f *ng + �, where f *n =maxi = 1, ...,nf

xi
� �

and the expectation is computed with respect to the posterior
distribution givenDn

50. For Gaussian posterior distributions and noise-

free observations (where f *n is a constant rather than a random vari-
able), the EI can be expressed in a closed form using the posterior
mean and variance. In scenarios where these conditions do not
hold, computing the EI often requires approximate calculation,
typically through Monte Carlo sampling techniques. When extending
the EI to the batch setting, the acquisition function becomes

αnðX Þ= En½fmaxx2X f ðxÞ � f *ng+ �, where X = ðx1, . . . , xqÞ 2 Xq is a batch
of q inputs (qEI). Maximizing the batched EI poses significant com-
putational challenges due to the requirement to optimize over Xq.
However, by exploiting the submodularity of the acquisition function,
an efficient approximation can be achieved through a greedy optimi-
zation strategy, selecting each input in the batch sequentially. In this
study,we testedqEI, but it ran slowlywithout noticeable improvement,
so it was not included in the final results.

Upper confidence bound. The upper confidence bound (UCB)
acquisition function is defined by αn xð Þ=μn xð Þ+β1=2

n σnðxÞ, where
μn xð Þ and σnðxÞ are the posterior mean and standard deviation,
respectively, and βn is a parameter that controls the exploration-
exploitation trade-off. In our experiments, we set βn =4. While there
are sophisticated batch extensions of the UCB acquisition function
available in the literature68, our approach utilizes a straightforward
heuristic. Specifically, we form batches by selecting the q inputs that
yield the highest values of αn xð Þ, evaluated across all discrete x in the
design space. The Greedy acquisition function can be thought of as a
specific case of UCB with βn =0 so the acquisition function becomes
αn xð Þ=μn xð Þ: For the frequentist ensemble models, we evaluate μn xð Þ
and σnðxÞ as the mean and standard deviation of all models in the
ensemble, respectively.

Thompson sampling. Thompson Sampling (TS) is a randomized
selection strategy where the next input to evaluate is obtained by
drawing a sample (function) from the posterior distribution of f and
selecting the point that maximizes this sample. For the GP and DKL
models, we approximate samples from the posterior using 1000 ran-
dom Fourier features69. For the frequentist ensemble models, the
random function sample is drawn as one of the models in the
ensemble. In the batch setting, each input in the batch is obtained as an
independent sample. Unlike the EI andUCB, TS is inherently stochastic
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as opposed to deterministic; however, we note that since our ensem-
bles have five models each, TS is less stochastic in this setting.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All experimental and simulation data that support the findings of this
study are available at https://github.com/jsunn-y/ALDE and https://
zenodo.org/records/12196802. Source data are provided with
this paper.

Code availability
All code that accompanies this study is available at https://github.com/
jsunn-y/ALDE under the MIT license70.
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