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Abstract

Recently, utilizing reinforcement learning (RL) to generate molecules with de-
sired properties has been highlighted as a promising strategy for drug design. A
molecular docking program – a physical simulation that estimates protein-small
molecule binding affinity – can be an ideal reward scoring function for RL, as it is
a straightforward proxy of the therapeutic potential. Still, two imminent challenges
exist for this task. First, the models often fail to generate chemically realistic and
pharmacochemically acceptable molecules. Second, the docking score optimization
is a difficult exploration problem that involves many local optima and less smooth
surfaces with respect to molecular structure. To tackle these challenges, we propose
a novel RL framework that generates pharmacochemically acceptable molecules
with large docking scores. Our method – Fragment-based generative RL with Ex-
plorative Experience replay for Drug design (FREED) – constrains the generated
molecules to a realistic and qualified chemical space and effectively explores the
space to find drugs by coupling our fragment-based generation method and a novel
error-prioritized experience replay (PER). We also show that our model performs
well on both de novo and scaffold-based schemes. Our model produces molecules
of higher quality compared to existing methods while achieving state-of-the-art
performance on two of three targets in terms of the docking scores of the gener-
ated molecules. We further show with ablation studies that our method, predictive
error-PER (FREED(PE)), significantly improves the model performance.

1 Introduction

Searching for “hits", the molecules with desired therapeutic potentials, is a critical task in drug
discovery. Instead of screening a library of countless potential candidates in a brute-force manner,
designing drugs with sample-efficient generative models has been highlighted as a promising strategy.
While many generative models for drug design are trained on the distribution of known active
compounds [1–3], such models tend to produce molecules that are similar to that of the training
dataset [4], which discourages finding novel molecules.

In this light, reinforcement learning (RL) has been increasingly used for goal-directed molecular
design, thanks to its exploration ability. Previous models have been assessed with relatively simple
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Figure 1: Overview of our generative drug discovery method. To find realistic ‘hit’ molecules that
have high docking scores, we combine fragment-based generation method with SAC and PER. This
figure illustrates our version of PER where the priority of the experience is defined by predictive
error.

objectives, such as cLogP and QED, or estimated bioactivity scores predicted by auxiliary models
[5–8]. However, high scores in those simple properties of molecules guarantee neither drug-likeness
nor therapeutic potential, emphasizing the necessity of more relevant design objectives in generative
tasks [9, 10]. The molecular docking method is a physical simulation that estimates the protein-
small molecule binding affinity, a key measure of drug efficacy. As docking simulations are a more
straightforward proxy of therapeutic potential, coupling RL with docking simulations would be a
promising strategy. While the simplistic scores (e.g., cLogP, QED) are computed by a sum of local
fragments’ scores and are not a function of global molecular structure, making the optimization tasks
relatively simple, docking score optimization is a more demanding exploration problem for RL agents.
A change in docking score is nonlinear with the molecule’s local structural changes, and a significant
variance exists among the structures of high-scoring molecules, meaning that there exists many local
optima [9].

In addition, many previous RL models often suffer from generating unreal and inappropriate struc-
tures. Docking score maximization alone is not sufficient to qualify molecules as drug candidates, as
the molecules should satisfy strong structural constraints such as chemical realisticness and pharma-
cochemical suitability. In other words, small molecule drug candidates should have enough steric
stability to arrive at the target organ in the intended form (chemical realisticness), and they should
not include any seriously reactive or toxic substructure (pharmacochemical suitability). The low
quality of generated molecules can arise from a single improper addition of atoms and bonds, which
would deteriorate the entire sanity of the structure. Since such ‘mistakes’ are easy to occur, implicitly
guiding the model (e.g., jointly training the model with QED optimization) cannot completely prevent
the mistakes. Thus, explicitly restricting the generation space within realistic and qualified molecules
by generating molecules as a combination of appropriate fragments can be a promising solution
[1, 11, 12].

However, such a strong constraint in generation space would make the optimization problem of
docking score even harder and render a higher probability of over-fitting to few solutions, urging a
need for better exploration for RL agents. In this respect, we introduce a new framework, Fragment-
based generative RL with an Explorative Experience replay for Drug design (FREED), which
encourages effective exploration while only allowing the generation of qualified molecules.

Our model generates molecules by attaching a chemically realistic and pharmacochemically ac-
ceptable fragment unit on a given state of molecules at each step4. We enforce the model to form
a new bond only on the attachment sites that are considered as appropriate at the fragment library
preparation step. These strategies enable us to utilize medicinal chemistry prior knowledge and
successfully constrain the molecule generation within the chemical space eligible for drug design.
We also explore several explorative algorithms based on curiosity-driven learning and prioritized

4In this work, we widely define the term “chemically realistic molecule" as a stable molecule and narrowly
define it as a molecule that is an assembly of fragments that appear in the ZINC data. Also, we widely define
the term “inappropriate molecule/fragment" or “pharmacochemically inacceptable molecule/fragment" as a
molecule that has nonspecific toxicity or reactivity, and narrowly define it as a molecule that cannot pass through
the three medicinal chemistry filters, which are Glaxo, PAINS, SureChEMBL filters.
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experience replay (PER) [13]. We devise an effective novel PER method that defines priority as the
novelty of the experiences estimated by the predictive error or uncertainty of the auxiliary reward pre-
dictor’s outcome. With this method, we aim to avoid the lack of robustness of previous methods and
encourage the exploration of diverse solutions. We provide an overall illustration of our framework in
Figure 1.

Our main contributions can be summarized as follows:

• We propose a novel RL framework that can be readily utilized to design qualified molecules
of high therapeutic potential.

• Our fragment-based generation method including connectivity-preserving fragmentation
and augmentation allows our model to leverage Chemical prior knowledge.

• We propose novel explorative algorithms based on PER and show that they significantly
improve the model performance.

2 Related Works

SMILES-based and atom-based generation methods. SMILES-based methods [14] are infea-
sible for scaffold-based tasks5 since molecular structures can substantially change through the
sequential extension of the SMILES strings. Also, as explained in the Introduction, atom-based gen-
eration methods such as You et al.’s GCPN [6] inherently suffer from unrealistic generated molecules.
Thus, we focus our discussion on motif-based generation methods.

Motif-based molecular generation methods. A number of previous works [1, 11, 12] have in-
vestigated similar motif-based molecule generation based on the variational autoencoders (VAE).
JT-VAE and HierVAE [1, 11] decompose and reconstruct molecules into a tree structure of motifs.
These models might not be compatible with the scaffold-based generation, since a latent vector
from their encoders depends on a motif-wise decomposition order which is irrelevant information
for docking score that may bias the subsequent generation [12]. Maziarz et al. [12] also propose a
VAE-based model which encodes a given scaffold with graph neural networks (GNNs) and decodes
the motif-adding actions to produce an extended molecule. While Maziarz et al.’s motif-adding actions
resemble our generation steps, we additionally introduce connectivity-preserving fragmentation and
augmentation procedure which helps our model generate molecules of better quality.

Coupling an RL policy network with fragment-based generation holds general advantages compared
to VAE-based methods. For example, RL models do not need to be trained on reconstruction tasks
which might restrict the diversity of generated molecules. Our work is one of the earliest applications
of RL with a fragment-based molecular generation method. While Ståhl et al.’s DeepFMPO [15]
is also an application of RL with a fragment-based molecular generation method, DeepFMPO is
designed to introduce only slight modifications to the given template molecules, which would make
it inappropriate for the de novo drug design. Moreover, while DeepFMPO’s generation procedure
cannot change the connectivity of the fragments of the given template, our method is free to explore
various connectivity.

Docking as a reward function of RL. Studies on docking score optimization task has started very
recently. Jeon et al. [16] developed MORLD, a atom-based generative model guided by MolDQN
algorithm [17]. Olivecrona et al. [10] and Thomas et al. [18] utilized REINVENT[14], a simplified
molecular-input line-entry system (SMILES)-based model generative model guided by improved
REINFORCE algorithm [19] to generate hit molecules.

RL algorithms for hard-exploration problems. Our view is that, on a high level, there are two
main approaches to achieve efficient exploration. The first one is to introduce the “curiosity" or
exploration bonus as intrinsic reward [20–22] for loss optimization. Bellemare et al. [23] first
proposed a pseudo-count-based exploration bonus as an intrinsic reward. Pathak et al. [24] defined
curiosity as a distance between the true next state feature vector and the predicted estimate of the next
state feature vector. Thiede et al. [25] brought curiosity-driven learning into the molecular generation
task. In Thiede et al., curiosity is defined as a distance between the true reward of the current state
and the predicted estimate of the current state reward. However, these “curiosity-driven" intrinsic
reward-based models sometimes fail to solve complex problems [26]. The failures are explained as a
result of the RL agent’s detachment or derailment from the optimal solutions [27].

5A drug design scheme where the drug candidates are designed from the given scaffold.
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Figure 2: Overview of our generation method (a) and policy network (b). Small colored squares
represent a graph embedding of a molecule, node embedding of each attachment sitem and ECFP
representation of each fragment. The graph or node embeddings and ECFP representations from the
chosen actions are autoregressively passed onto the next action’s policy network.

The other approach of solving hard exploration problems is a sample-efficient use of experiences
[28, 13]. Prioritized experience replay (PER) method introduced in Schaul et al. [13] samples
experiences that can give more information to the RL agent and thus have more ‘surprisal’ - defined
by the temporal-difference (TD) error - in higher probability. In a similar sense, self-imitation learning
(SIL) introduced in Oh et al. [29] samples only the ‘good’ experiences where the actual reward is
larger than the agent’s value estimate (i.e., estimate from the value function or Q function). However,
prioritized sampling based on the agent’s value estimate is susceptible to outliers and spikes, which
may lead to destabilizing the agent itself [30]. Moreover, our explorative algorithm aims to preserve
sufficient diversity and find many possible solutions instead of finding the most efficient route to a
single solution. Thus, we modify the formulation of priority using the estimates for sample novelty.

3 Methods

3.1 Generation method

Generation steps. The key concept of our method is to generate high-quality molecules that
bind well to a given target protein. In order to achieve this goal, we devise a fragment-based
generation method in which molecules are designed as an assemble of chemically realistic and
pharmacochemically acceptable fragments. Given a molecular state, our model chooses “where
to attach a new fragment", “what fragment to attach", and “where on a new fragment to form a
new chemical bond" in each step6. Note that the action “where to form a new bond" makes our
model compatible with docking score optimization since the scores depend on the three-dimensional
arrangement of molecular substructures.

Preserving fragment connectivity information in molecule generation. Another important fea-
ture of our method is harnessing the predefined connectivity information of the fragments and initial
molecules. This feature allows our model to leverage chemists’ expert knowledge in several ways. The
connectivity information arises in the fragmentation procedure, in which we follow CReM [31] when
the algorithm decomposes any arbitrary molecules into fragments while preserving the fragments’
attachment sites as shown in Figure 3(a).

In the GNN embedding phase, the attachment sites are considered as nodes like any other atoms
in the molecule, while an atom type is exclusively assigned to the attachment sites. We also keep
tracking the indices of the attachment sites as the states so that our policy can choose the next
attachment site where a new fragment should be added (Action 1). Similarly, we keep the indices
of the attachment sites of the fragments and use them throughout the training so that our policy can
choose the attachment site from the fragment side (Action 3).

Start and end points of new bonds are restricted to the attachment sites of given fragments and
molecules. This restriction contributes to the chemical realisticness since the stability of the molecule

6Our model is designed to finish the episodes after four steps (in de novo cases) or two steps (in scaffold-based
cases). At the end of the episode, the model substitute all the remaining attachment sites with hydrogen atoms.
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Figure 3: Advantages of connectivity-preserving fragmentation. (a) Substructure connectivity
information is preserved as attachment sites in the fragmentation procedure. (b) Attaching a new
bond to the nitrogen of a pyrrole ring would result in unstable molecule, breaking the aromaticity.
Thus, pyrrole rings within an existing molecule are connected to other fragments by its carbon atoms,
and preserving such an information would help us construct chemically realistic molecules.

depends on where the fragment is attached as illustrated in Figure 3(b). Also, we can utilize our
prior knowledge of protein-ligand interaction by rationally assigning the attachment sites of the
initial molecule (scaffold), which have been widely harnessed by medicinal chemists in a usual
scaffold-based scenario.

Policy network. Our generation method is coupled with the policy networks which guide the model
to generate hit molecules. We provide an overall illustration of our policy network in Figure 2. Our
state embedding network and policy network are designed as Markov models so that generation steps
can take any arbitrary molecule as a current state and predict the next state, making the model more
plausible for a scaffold-based generation.

In our framework, each state vector st represents a molecular structure at the t-th step, and each
step is a sequence of three actions that define an augmentation of a fragment. Following the method
from Hwang et al. [32], the current state molecule is represented as an undirected graph G which
consists of a node feature matrix, an adjacency matrix, and an attachment site masking vector. A
graph convolutional network (GCN) [33]-based network provides node embeddings, H , which are
then sum-aggregated to produce a graph embedding, hg . Note that the same GCN encodes the current
state molecular graph (for Action 1) and the fragments (for Action 3).

Our policy network is an autoregressive process where Action 3 depends on Action 1 & 2 and Action
2 depends on Action 1.

pact1 =πact1(Z
1st), Z1st = MI(hg, Hatt) (1)

pact2 =πact2(Z
2nd), Z2nd = MI(z1st

act1,ECFP(hgcand)) (2)

pact3 =πact3(Z
3rd), Z3rd = MI(z2nd

act2, Ucand) (3)

where Hatt refers to the node embeddings of attachment sites. For the first step of our policy network,
πact1 takes the multiplicative interactions (MI) [34] of the node embedding of each attachment site
and the rows of the graph embedding of the molecule, z1sti ∈ Z1st, as inputs and predicts which
attachment site should be chosen as Action 1. Since graph embeddings and node embeddings are
defined in a heterogeneous space, we apply MI to fuse those two sources of information.

Given Action 1, πact2 takes the MI of z1st
act1, the row of Z1st under index act1, and the RDKit [35]

ECFP (Extended Connectivity Fingerprint) representation of each candidate fragment, hgcand as inputs,
and predicts which fragment should be chosen as Action 2. By taking Z1st as one of the inputs, πact2
reflects on the context of the current state and Action 1.

Finally, given Action 1 and 2, πact3 takes the MI of z2nd
act2 and the node embeddings of the chosen

fragment’s attachment sites, Ucand, as inputs and predicts which fragment attachment site should
be chosen as Action 3. Each of the three policy networks πact1, πact2 and πact3 consists of three
fully-connected layers with ReLU activations followed by a softmax layer to predict the probability
of each action. In order to make gradient flow possible while sampling discrete actions from the
probabilities, we implement the Gumbel-softmax reparameterization trick [36].
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3.2 Explorative RL for the discovery of novel molecules

Soft actor-critic. We employ soft actor-critic (SAC), an off-policy actor-critic RL algorithm based
on maximum entropy reinforcement learning [37, 38], which is known to explore the space of state-
action pairs more effectively than predecessors. Assuming that our docking score optimization task
requires more effective exploration than simplistic tasks, we chose SAC as our RL baseline algorithm.

π∗ = argmax
π

∑
t

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))] (4)

Est∼D[α log π(a|s)] =
∑

[απ(aact1
t , aact2

t , aact3
t |st)

× (log π(aact1
t |st) + log π(aact2

t |st, aact1
t ) + log π(aact3

t |st, aact1
t , aact2

t ))]
(5)

SAC aims to attain optimal policy that satisfies (4) where α is the temperature parameter balancing
between exploration and exploitation of the agent,H(π(·|st)) is entropy of action probabilities given
st, and ρπ is state-action transition distributions created from π. As we define act1, act2 and act3
autoregressively, the entropy regularization term defined in [39] Est∼D[α log π(a|s)] is decomposed
into (5).

Explorative algorithms. To encourage exploration, we prioritize novel experiences during sam-
pling batches for RL updates. We regard an experience as a novel experience if the agent has not
visited the state before. Defining priority estimate function in the state space and not in the state-action
space has been introduced for the molecular generative task in Thiede et al. [25]. For novel states, the
reward estimator would yield a high predictive error or high variance (Bayesian uncertainty). In this
regard, we train an auxiliary reward predictor consisting of a graph encoder and fully-connected layers
that estimate a given state’s reward (docking score). Then, we use the predictor’s predictive error (L2
distance) or Bayesian uncertainty as a priority estimate. We name the former method PER(PE) and
the latter method PER(BU). The use of predictive error as a novelty estimate has been introduced for
curiosity-driven learning [25], but our work is the first to apply this to PER.

For PER(BU), we follow Kendall et al. [40] to obtain the Bayesian uncertainty of the prediction. We
train the reward predictor network to estimate the reward’s mean and variance (aleatoric uncertainty).
Every layer in the network is MC dropout [41] layer so that the predictor can provide the epistemic
uncertainty. We add aleatoric and epistemic uncertainty to obtain the total uncertainty of the estimate.

The reward predictor is optimized for every docking step, and we only optimize it based on final state
transitions since docking scores are only computed for the final states. The reward predictor predicts
the reward of any state, both intermediate and final. For PER(PE), when we compute the priority of
a transition including an intermediate state, we use Q value as a substitute for the true docking score.
After updating the policy network and Q function with loss multiplied by importance sampling (IS)
weight, we recalculate and update the priority values of the transitions in the replay buffer.

The following experiments section shows that PER with our priority estimate functions performs
better than the previous methods.

4 Results and Analysis

4.1 Quantitative metrics

In this section, we introduce quantitative metric scores we used to assess our model. For every metric,
we repeated every experiment five times with five different random seeds and reported the mean
and the standard deviation of the scores. Also, we calculated the scores when 3,000 molecules were
generated and used to update the model during training.

Quality score. We report three widely used pharmacochemical filter scores – Glaxo [42],
SureChEMBL [43], PAINS [44] – as quality scores. The quality scores are defined as a ratio of
accepted, valid molecules to total generated molecules, as the filters reject the compounds that contain
functional groups inappropriate for drugs (i.e., toxic, reactive groups). The higher the quality scores,
the higher the probability that the molecule will be an acceptable drug. We also report the ratio of

6



valid molecules to total generated molecules (validity) and the ratio of unique molecules among valid
generated molecules (uniqueness).

Hit ratio. We define hit ratio as a ratio of unique hit molecules to total generated molecules. We
report the hit ratio to compare the model’s ability to produce as many unique hit molecules in a given
length of iterations, where we define hits as molecules whose docking scores are greater than the
median of known active molecules’ docking scores.

Top 5% score. We report the average score of the top 5%-scored generated molecules to compare
the model’s ability to produce molecules with better docking scores.

4.2 Quantitative performance benchmark

In this section, we compare the quality of the generated molecules and the model performance with
three baseline models, MORLD [16], REINVENT [14], and HierVAE [11]. Our model, FREED(PE),
is our fragment-based generation method coupled with SAC and PER(PE). MORLD and REINVENT
are the models utilized for docking score optimization tasks in previous works [16, 10, 18]. HierVAE
is a strong non-RL fragment-based molecular generative model. Since HierVAE is a distributional
learning method, we train HierVAE in two schemes - ‘one-time’ training on the known active
molecules (HierVAE) and ‘active learning (AL)’ training where we train the model once on the
known actives and twice on the top-scoring molecules from the generated molecules (HierVAE(AL)).
In both schemes, we initialized the models with the model pre-trained on ChEMBL. We trained
the models for three carefully chosen protein targets fa7, parp1, and 5ht1b. The choice of protein
targets and the specifics of experimental settings are described in Appendix. For the experiments
in this section, we use the small fragment library that includes 66 pharmacochemically acceptable
fragments.

Table 1: Quality scores of the models. We trained our model and three baseline models with the
target fa7 and computed quality scores of the first 3,000 molecules generated during training for each
model. The two baseline models REINVENT and MORLD that are jointly trained to maximize filter
scores are noted as ‘REINVENT w/ filter’ and ‘MORLD w/ filter’. Standard deviation is given in
brackets.

Glaxo SureChEMBL PAINS validity uniqueness

MORLD 0.561 (.009) 0.131 (.013) 0.805 (.013) 1.000 (.000) 1.000 (.000)
MORLD w/ filter 0.578 (.010) 0.145 (.018) 0.816 (.008) 1.000 (.000) 1.000 (.001)
REINVENT 0.773 (.023) 0.667 (.030) 0.769 (.022) 0.813 (.024) 0.988 (.008)
REINVENT w/ filter 0.832 (.034) 0.747 (.040) 0.842 (.034) 0.872 (.028) 0.990 (.007)
HierVAE 0.899 (.027) 0.748 (.024) 0.975 (.006) 1.000 (.000) 0.138 (.006)
HierVAE(AL) 0.975 (.004) 0.795 (.007) 0.893 (.011) 1.000 (.000) 0.131 (.003)

Ours: FREED(PE) 0.996 (.001) 0.808 (.049) 0.991 (.002) 1.000 (.000) 0.723 (.135)

Quality scores of generated molecules. In real-world drug design, the generated molecules should
be acceptable by pharmacochemical criteria. We excluded the fragments that are considered inap-
propriate by pharmacochemical filters to guarantee the quality of the generated molecules. Such
an explicit constraint cannot be applied to atom-based (MORLD) or SMILES-based (REINVENT)
methods.

As shown in Table 1, our model mostly generated acceptable molecules while the other models showed
the poor rate of acceptable molecules, confirming our approach’s advantage in drug design. We also
investigated whether one could improve the quality of the molecules generated from the baselines by
using a multi-objective reward function. MORLD and REINVENT optimized in multi-objective with
both docking scores and the quality scores, denoted as ‘MORLD w/ filter’ and ‘REINVENT w/ filter’,
show improved quality scores compared to single-objective MORLD and REINVENT. However, the
multi-objective reward method was not as effective as our fragment-based approach, strengthening
our claim that the explicit constraints are the effective strategy. Such a trend was consistent for all
three targets. See Appendix for visual inspection of the quality score results.
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Figure 4: Hit ratio and top 5% score of our model FREED(PE), REINVENT, MORLD, Hier-
VAE, and HierVAE(AL). Standard deviation is given as error bars. Higher hit ratios and greater
negative value of the top 5% scores indicate better performance.

HierVAE showed high quality scores, as the HierVAE fragment library itself had very few problematic
substructures (See Appendix A.5 for details). Such a result substantiates the advantage of the explicit
fragment-based approach. However, HierVAE showed low uniqueness, possibly due to the small
size of training data for fine-tuning (~1,200 known active molecules) and active learning (~1,500
generated high-scoring molecules).

We provide quality scores of our model (FREED(PE)) trained with the small library and the large
library for all three protein targets in Table 2 and Table 3 of Appendix A.1, respectively. A significant
increase in uniqueness was observed when we used the large library, which implies that the low
uniqueness of our model is due to the small size of the fragment library. Thus, we believe con-
structing a fragment library that is large enough to guarantee high uniqueness while only including
pharmacochemically acceptable fragments will be the best strategy in production.

Docking score optimization result. Figure 4 shows the hit ratios and top 5% scores of the gen-
erative models. Our model outperforms the other generative models MORLD, REINVENT, and
HierVAE in terms of both hit ratio and top 5% score, except for the hit ratio of the 5ht1b case. Such
results show that our model’s performance is superior or at least competitive to existing baselines,
while our model exhibits many more practical advantages such as generating acceptable molecules,
integrating chemist’s expert knowledge by connectivity-preserving fragmentation and augmentation,
and the feasibility in both de novo and scaffold-based generation.

4.3 Ablation studies: explorative algorithms

We also perform ablation studies of our algorithm to investigate the effect of our explorative algorithms.
We used the larger library of 91 unfiltered fragments, as this section assesses the effect of the
algorithms on the model’s performance regardless of the pharmacochemical acceptability.

In Figure 5, we observe that all SAC models with explorative algorithms performed better than the
vanilla SAC model, while the PPO model showed the worst performance. FREED with both PE and
BU outperformed curiosity-driven models with PE and BU, showing the effectiveness of our methods
in our task compared to curiosity-driven explorations. Moreover, our predictive error-PER method
outperformed the TD error-PER method. We conjecture that such a result is due to 1) novelty-based
experience prioritization encourages better exploration 2) leveraging an auxiliary priority predictor
network makes PER training more robust than internal value estimate functions (Q function). We
provide the significance analysis (one-tail paired t-test) of the result in Table 4 of Appendix A.1.
4.4 Case study on drug design

In this section, we show the practicality of our framework on de novo and scaffold-based drug design.
We test FREED(PE) with our large fragment library which includes 91 fragments.
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Figure 5: Hit ratio and top 5% score of ablation studies. Models can be categorized by whether
they use {PER, curiosity-driven exploration(curio)}, and whether they use {predictive error from
predictor(PE), Bayesian uncertainty(BU), and TD error from agent(TD)} as priority or intrinsic
reward. Standard deviation is given as error bars.

Figure 6: Docking score distribution of the generated molecules. Duplicate molecules were
removed after gathering 3,000 molecules each from five random seed experiments. “Random"
molecules are generated by our fragment-based generation method without training the policy net-
work. “FREED(PE)" molecules are generated by the fragment-based generation method while training
the policy network. We also plot known “Active" and “Inactive" molecules from DUD-E (fa7, parp1)
or ChEMBL (5ht1b) datasets for comparison. Colored horizontal lines indicate the median of the
corresponding distribution. (a) de novo scenario (b) scaffold-based scenario

De novo scenario. Figure 6 (a) shows the distribution of the generated molecules before (“random")
and after (“FREED(PE)") optimizing the policy network. Our model was able to effectively generate
molecules that have higher docking scores compared to the known active molecules. Figure 7 (i)
shows the structure of each target’s optimized molecules.

Scaffold-based scenario. We validate our model on a scaffold-based scenario, where we attempt
to improve docking scores by adding fragments to an initial scaffold molecule. Figure 6 (b) shows
the distribution of the optimized molecules before (“random") and after (“FREED(PE)") training the
policy network, with a scaffold of each target as an initial molecule.
Figure 6 (b) highlights our model’s ability to optimize a given scaffold to have a higher binding
affinity with the target. Surprisingly, in Figure 6 (b), even the molecules randomly optimized with
our fragment-based generation algorithm show high docking scores when given the proper scaffold.
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Figure 7: Generated samples and their docking scores with our method, for de novo (i) and
scaffold-based scenario (ii). For each target, one of the high-scoring generated molecules is dis-
played with the initial molecule (benzene ring or scaffold). The purple line highlights the fragments
augmented by the model in a scaffold-based generation. Numbers below the compounds are the
docking scores and SA scores.

This result implies the importance of scaffold in hit discovery and highlights our generative method’s
ability to to span the chemical space around the scaffold effectively.

Figure 7 (ii) shows the structure of each target’s scaffold and corresponding optimized molecules. We
can see that the scaffold structures are well preserved in generated lead molecules. We provide an
analysis of 3D docking poses of the scaffolds and generated lead molecules in Figure 2 and Figure 3
of Appendix A.1.

It is notable that our framework does not have to be specific for de novo or scaffold-based scenarios,
except for the initial molecule and number of fragments to be added. Since our model is fully
Markovian, whether the initial molecule is a benzene ring or a scaffold does not affect the model’s
training.

Chemical realisticness of generated molecules. In Figure 7, we report the SA (synthetic acces-
sibility) score of the molecules, which is a widely used metric that estimates ease of synthesis by
penalizing the presence of non-standard structural features. The SA score distribution of the catalogue
molecules of commercial compound providers has its mode around 3.0 [45]. Accordingly, we can
assume our generated molecules as reasonably synthesizable and thus chemically realistic.

5 Conclusion

In this work, we developed FREED, a novel RL framework for real-world drug design that couples a
fragment-based molecular generation strategy with a highly explorative RL algorithm to generate
qualified hit molecules. Our model generates pharmacochemically acceptable molecules with high
docking scores, significantly outperforming previous docking RL approaches. Our code is released at
https://github.com/AITRICS/FREED.

Limitations and future work. While our method does not explicitly account for the synthesizability
of generated molecules, we believe forward synthesis-based methods [46] can be complementary to
ours. It would be able to combine our method and forward synthesis-based method by substituting
our attachment site bond formation actions with chemical reactions. In this way, we can explicitly
take synthesizability into account while providing the appropriate model inductive bias for docking
score optimization. We leave such an improvement as future work.

Negative societal impacts. If used maliciously, our framework can be utilized to generate harmful
compounds such as biochemical weapons. Thus, conscious use of the AI model is required.
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