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Abstract. Deep learning models are subject to failure when inferring upon out-

of-distribution (OOD) data, i.e., data that differs from the models’ train data.  

Within medical image settings, OOD data can be subtle and non-obvious to the 

human observer. Thus, developing highly sensitive algorithms is critical to auto-

matically detect medical image OOD data. Previous works have demonstrated 

the utility of using the distance between embedded train and test features as an 

OOD measure. These methods, however, do not consider variations in feature 

importance to the prediction task, treating all features equally. In this work, we 

propose a method to enhance distance-based OOD measures via feature im-

portance weighting, which is determined through an information bottleneck op-

timization process. We demonstrate the utility of the weighted OOD measure 

within the metastatic liver tumor segmentation task and compare its performance 

to its non-weighted counterpart in two assessments. The weighted OOD measure 

enhanced the detection of artificially perturbed data, where greater benefit was 

observed for smaller perturbations (e.g., AUC = 0.8 vs. AUC = 0.72). In addition, 

the weighted OOD measure achieved better correlation to liver tumor segmenta-

tion Dice coefficient (e.g., ρ = -0.76 vs ρ = -0.21). In summary, this work demon-

strates the benefit of feature importance weighting for distance-based OOD de-

tection.  

Keywords: Out-of-Distribution Detection, Uncertainty Quantification, Tumor 

Segmentation 

1 Introduction 

Deep learning models are known to fail when inferring on data that differs from the 

models’ train data [1–3]. These differences may be obvious such as data from semanti-

cally different classes. Alternatively, differences may be subtle where the semantic 

meaning of the data is appropriate for a model, yet some fundamental data features 

differ from those present in the train data. In both cases, the input data would be 
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considered out-of-distribution (OOD). The latter case, referred to as covariate shifted 

data, is especially relevant to the medical image setting where there are numerous 

sources of covariate shifts including differences in scanners, differences in image ac-

quisition protocols, the use of small train datasets, and more. These sources likely con-

tribute to the alarming lack of generalizability of medical image deep learning models 

[4]. To account for these shifts and their induced model failures, it is critical to imple-

ment OOD detection algorithms.  

OOD detection methods generally follow one of four approaches [5]. Classification-

based methods manipulate a model’s output to detect OOD data, for example, by means 

of temperature scaling [6], gradient space calculations [7], or Bayesian modeling [8, 9]. 

These methods, however, are not typically invoked for covariate shift detection. Den-

sity estimator-based methods seek to approximate the probability density of a model’s 

train data and flag test data with low probability likelihood as OOD. Unexpectedly, 

these methods have been shown to assign high likelihoods to OOD data [10]. Recon-

struction-based approaches train a generative model (e.g., an autoencoder) to encode 

and reconstruct train data, where the reconstruction performance is used as an OOD 

metric. Reconstruction-based methods, however, tend to lack sensitivity for detecting 

subtle OOD shifts [11, 12]. On the other hand, distance-based methods generally have 

greater detection sensitivity than reconstruction-based methods [12] and operate by in-

voking some distance measure between a set of embedded train and test features (i.e., 

model activations), where large distances are associated with OOD data.  

Several works have implemented a variety of distance-based OOD detection meth-

ods on natural [13–15] and medical images [16, 17]. Perhaps most notably, the Ma-

halanobis distance is often employed because it accounts for possible correlations be-

tween features. One limitation of these approaches is that the applied distance measures 

require dimensionality reduction, which potentially removes valuable information. Dis-

tance-based measures are also limited in that they consider embedded features equally, 

when it is known that some features are more important for the prediction task than 

others [18]. 

Distance-based OOD detection methods may be enhanced by weighting the distance 

measure by each feature’s level of importance to the prediction task. One strategy for 

acquiring “feature importance weights” is to implement an information bottleneck pro-

cess. This is an optimization process by which the complexity of an information system 

is reduced by the removal of unnecessary information [19]. If we consider a deep learn-

ing model, then the necessity of information within the model, determined by the infor-

mation bottleneck process, can be used to characterize feature importance. Information 

bottlenecks have previously been used for deep attribution mapping [20, 21] but have 

not yet been integrated into an OOD detection algorithm.  

In this work, we explored the utility of information bottlenecks to enhance distance-

based OOD detection via feature importance weighting. We evaluated the benefit of 

this weighting mechanism for the metastatic liver tumor segmentation task, where we 

assessed the performance of detecting covariate shifted data in addition to assessing the 

correlation between the OOD measure and model segmentation performance.  
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2 Methods 

2.1 Information Bottleneck Implementation 

In this work, we adapted the information bottleneck implementation described in K. 

Schulz et al. [21]. The goal was to use a post hoc optimization routine to minimize the 

amount of feature information of a deep learning model according to the loss function: 

 ℒ =  ℒ𝑚𝑜𝑑𝑒𝑙 +  𝛽ℒ𝑖𝑛𝑓𝑜 (1) 

where ℒ𝑚𝑜𝑑𝑒𝑙  is the model’s standard loss (e.g., cross entropy), ℒ𝑖𝑛𝑓𝑜 describes the 

amount of model feature information, and 𝛽 is set according to the desired trade-off 

between these two terms. Consequently, this loss function minimizes information while 

encouraging good model performance.  

Feature information of selected model layers was minimized through the injection 

of noise, an information removal process [22]. Let 𝑅 represent the embedded features 

of some model layer. Noise was injected into these features according to 

 𝑍 =  𝜆(𝛼)𝑅 + (1 −  𝜆(𝛼))𝜖 (2) 

where  𝜆(𝛼) = sigmoid(𝛼), 𝛼 is a learnable parameter inserted at the model layer, and 

𝜖 is replacement noise defined as 𝜖~𝒩(𝜇𝑅, 𝜎𝑅
2), where 𝜇𝑅 and 𝜎𝑅

2 are the estimated 

mean and variance of the layer features, sampled from the train data. The optimizable 

𝛼 parameter controls how much features are replaced with noise and can be used to 

characterize feature importance. The shared information between 𝑍 and 𝑅 (𝐼[𝑅, 𝑍]) de-

scribes the amount of information removed from 𝑅 and can be approximated as 

 ℒ𝑖𝑛𝑓𝑜 =  𝐼[𝑅, 𝑍] =̃  𝔼𝑅[𝐷𝐾𝐿[𝑃(𝑍 | 𝑅) || 𝑄(𝑍)]] (3) 

where 𝑃(𝑍 | 𝑅) is the probability distribution of 𝑍 given 𝑅, 𝑄(𝑍) = 𝒩(𝜇𝑅, 𝜎𝑅
2) is a 

variational approximation, and 𝐷𝐾𝐿[∙] represents the KL-divergence. A detailed deriva-

tion of equation 3 can be found in K. Schulz et al. [21]. 

We implemented information bottlenecks on a U-Net segmentation model. Due to 

the U-Net skip connections, the model does not have an architectural bottleneck where 

it may be fitting to insert an information bottleneck due to restricted information flow. 

As a modification, we inserted multiple information bottlenecks in the model, one after 

each encoder layer (Fig. 1). The information loss from each inserted bottleneck was 

then weighted and summed to define the total information loss as 

 ℒ𝑖𝑛𝑓𝑜,𝑡𝑜𝑡𝑎𝑙 =  ∑ �̅�𝑙 ∙ ℒ𝑖𝑛𝑓𝑜,𝑙
𝐿
𝑙=1  (4) 

where ℒ𝑖𝑛𝑓𝑜,𝑙 is the information loss from the encoder layer, 𝑙, �̅�𝑙 are normalized layer-

wise weights pre-defined using �̅�𝑙 =  𝑤𝑙 ∑ 𝑤𝑙
𝐿
𝑙=1⁄  and 𝑤 = {

1

2𝐿−𝑙  | 𝑙 = 1, 2, … , 𝐿}, and 

L is the number of encoder layers. Under this formalism, information losses were 

weighted more heavily for deeper encoder layers, where distance measures are expected 

to be more stable.  
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Fig. 1. Schematic describing the implementation of information bottlenecks on a U-Net archi-

tecture. An information bottleneck block is placed after each encoder layer. The information 

bottleneck block diagram was adapted from K. Schulz et al. [21]. 

This modified information bottleneck method was implemented in a post hoc man-

ner on individual test data samples, where the only learnable parameters in the model 

were the inserted 𝛼 parameters. We trained this process for 20 iterations using the Adam 

optimizer and a learning rate of 0.5, initialized all 𝛼 parameters to 5.0, and set 𝛽 = 0.1. 

The feature-wise Gaussian distributions in equations 2 and 3 were sampled from 1,000 

train data samples. To enable use in a deployed setting, we set the ground-truth in the 

model loss of equation 1 as the model prediction before initiating the information bot-

tleneck optimization. Thus, the optimization process was encouraged to maintain model 

performance while minimizing feature information.  

2.2 OOD Distance Measures 

Weighted OOD Measure. We assumed that individual embedded features in the 

model’s encoder followed a Gaussian distribution [14, 23]. Using the estimated train 

feature-wise distributions, we calculated the number of standard deviations from the 

mean (i.e., z-scores) for each test feature and aggregated this into a layer-wise measure 

via a weighted average:  

 𝑂𝑂𝐷̅̅ ̅̅ ̅̅
𝑙𝑎𝑦𝑒𝑟,𝑙 =  

∑ �̅�𝑙,𝑛 ∙  
|𝑅𝑛 − 𝜇𝑛|

𝜎𝑛

𝑁
𝑛=1

∑ �̅�𝑙,𝑛
𝑁
𝑛=1

 (5) 

where 𝑁 is the number of features in layer 𝑙, and �̅�𝑙,𝑛 is the learnt feature-wise im-

portance parameter from index 𝑛 and layer 𝑙, normalized between zero and one. This 
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layer-wise measure was aggregated into an encoder-wise OOD measure through a 

weighted sum: 

 𝑂𝑂𝐷𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = ∑ �̅�𝑙 ∙  𝑂𝑂𝐷̅̅ ̅̅ ̅̅
𝑙𝑎𝑦𝑒𝑟,𝑙

𝐿
𝑙=1   (6) 

where �̅�𝑙 are the same weights used in the total information loss (equation 4).  

 This distance measure was selected for its computational simplicity, and because it 

does not remove information via feature downsampling. Moreover, correlations among 

features are expected to be intrinsically removed via the information bottleneck process.  

 

Non-weighted OOD Measure. A non-weighted OOD measure was defined using 

equations 5 and 6 and setting 𝛼𝑙,𝑛 =  {1, 1, … , 1} of length 𝑁, yielding the average of 

the feature deviations from the train distribution within each layer, aggregated into the 

encoder-wise measure. We refer to this non-weighted OOD measure as OODnon-weighted. 

 

Baseline OOD Measure. We implemented the established Mahalanobis distance as a 

baseline measure, which has been shown to outperform non-feature-based OOD detec-

tion approaches such as temperature scaling [16]. For this, we followed the method 

described in González et al. [16], where the Mahalanobis distance between train and 

test features from a segmentation model’s bottleneck was computed. Bottleneck fea-

tures were downsampled by average pooling until the number of features was less than 

the number of train samples (i.e., 1,000). We refer to this OOD measure as OODmaha.  

2.3 Datasets 

Datasets utilized in this work consisted of abdominal CT scans from non-uniform ac-

quisition protocols of patients with metastatic liver tumors. The base segmentation 

model was trained using 𝑁 = 104 scans acquired from the LiTS liver tumor segmen-

tation challenge [24]. This data defined the model’s train distribution. An in-house da-

taset of 𝑁 = 31 CT scans of Neuroendocrine Tumor patients with liver metastases was 

retrospectively collected and used as test data for all OOD evaluations. All ethical 

guidelines were followed, and internal review board authorization was approved for 

this data collection (IRB: 2015-0273, UWCCC: UW19146). Liver tumor contours on 

the in-house dataset were acquired under clinician guidance.  

2.4 Segmentation Model 

A three-dimensional segmentation model was trained in-house to segment the liver or-

gan and metastatic liver tumors using the nnUNet repository [25]. The nnUNet model 

has demonstrated highly competitive results on a variety of segmentation tasks, making 

it well-suited to augment with and test OOD detection algorithms. The model was 

trained for 1,000 epochs with a batch size of 2 and using the sum of the Dice coefficient 

and cross entropy as the loss. Instance normalization was used between each convolu-

tion layer, the input image patch size was [128 × 128 × 128] voxels, and data aug-

mentation was applied during training. Model training took place on an Nvidia RTX 
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Titan GPU workstation with 24 GB of memory. Prior to training, all images were nor-

malized to zero-mean-unit-variance, resampled to a common 2.5 mm3 voxel spacing, 

and cropped about the center of the liver to the model patch size. Two patches were 

necessary for inference on each test image due to image padding to accommodate data 

augmentation. Consequently, OOD measures were averaged across these two patches 

to acquire an image-wise OOD measure for each test image. 

2.5 OOD Detection Assessments 

Image Perturbation Detection. In this first assessment, we evaluated each OOD meas-

ure’s ability to distinguish adversarial attacked OOD test data from the model’s train 

data. The purpose of this approach was to expose the model to unique perturbations not 

observed during training (via augmentations), mimicking encountering new data in de-

ployed settings. The Fast Gradient Sign Attack (FGSM) method [26] was applied to the 

test data according to: 

 �̃� = 𝑥 +  𝜖 ∙ 𝑠𝑖𝑔𝑛(∇𝑥𝐽(𝜃, 𝑥, 𝑦)) (7) 

where �̃� is the perturbed image, 𝑥 is the original image, 𝑦 is the segmentation ground-

truth label, 𝜃 is the model’s learnable parameters, 𝜖 is the perturbation magnitude, and 

𝑠𝑖𝑔𝑛(∙) describes the sign of the model loss gradient with respect to the input image, 

𝑥. FGSM was performed on the test data using five perturbation magnitudes, 𝜖 =
 [0.0, 0.25, 0.50, 0.75, 1.0], constructing five OOD test sets (e.g., Fig. 2). For each per-

turbation magnitude, we assessed each OOD measure’s performance in detecting per-

turbed data using receiver operating curve statistics including areas under the curve 

(AUC) and false positive rates at the 95% true positive threshold (FPR95). Bootstrap-

ping was performed to acquire 95% confidence intervals for each detection metric.  

 

Fig. 2. A single example test scan with perturbations of different magnitudes.  

Correlations with Segmentation Performance. In this second assessment, we evalu-

ated each OOD measure’s correlation with the trained model’s segmentation perfor-

mance. The Spearman correlation coefficients between individual OOD measures and 

the liver tumor Dice coefficient were obtained for each (unperturbed) test image. To 

observe the benefit of the information bottleneck optimization process on the weighted 

OOD measure, we reported this correlation when using the weights derived from each 

optimization iteration.  
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3 Results 

3.1 Image Perturbation Detection 

The OOD detection results for detecting perturbed data are shown in Error! Reference s

ource not found.1. The OOD distance weighting enhanced detection performance for 

each perturbation magnitude except for the largest perturbation, where the performance 

between OODweighted and OODnon-weighted was comparable. The detection of data with 

smaller perturbation magnitudes benefited more from weighting than for larger magni-

tudes. Meanwhile, the detection from the established OODmaha measure showed little 

change across perturbation magnitudes and was consistently inferior to the OODweighted 

and OODnon-weighted measures. 

Table 1. Perturbed test image OOD detection results across distance measures and perturbation 

magnitudes (𝜖). Numbers in brackets indicate the 95% confidence intervals derived from boot-

strapping. Bold text indicates the best performing metric.  

 𝑂𝑂𝐷𝑚𝑎ℎ𝑎 𝑂𝑂𝐷𝑛𝑜𝑛−𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑂𝑂𝐷𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 

𝜖 AUC ↑ FPR95 ↓ AUC ↑ FPR95 ↓ AUC ↑ FPR95 ↓ 

0.00 
0.63  

[0.52, 0.74] 

0.99  

[1.00, 0.60] 

0.72  

[0.62, 0.81] 

0.80  

[0.89, 0.46] 

0.80  

[0.71, 0.87] 

0.62  

[0.74, 0.39] 

0.25 
0.66  

[0.54, 0.77] 

0.99  

[1.00, 0.56] 

0.77  

[0.67, 0.85] 

0.76  

[0.92, 0.39] 

0.83  

[0.75, 0.90] 

0.59  

[0.68, 0.32] 

0.50 
0.65  

[0.53, 0.77] 

0.99  

[1.00, 0.58] 

0.89  

[0.83, 0.95] 

0.34  

[0.94, 0.15] 

0.95  

[0.92, 0.98] 

0.21  

[0.32, 0.07] 

0.75 
0.67  

[0.55, 0.80] 

0.99  

[1.00, 0.54] 

0.97  

[0.95, 0.99] 

0.15  

[0.29, 0.02] 

0.98  

[0.97, 1.00] 

0.07  

[0.17, 0.02] 

1.00 
0.65  

[0.53, 0.77] 

0.99  

[1.00, 0.76] 

0.99  

[0.99, 1.00] 

0.03  

[0.10, 0.00] 

0.99  

[0.98, 1.00] 

0.08  

[0.16, 0.00] 

3.2 Correlations with Segmentation Performance 

The average number of tumors per test image predicted by the segmentation model was 

9 (range: 1-30). The correlation analysis between image-wise liver tumor Dice coeffi-

cient and OOD distance as a function of information bottleneck optimization iteration 

is shown in Fig. 3.1 Two test images with neither predicted nor ground-truth liver tu-

mors were omitted from this analysis. Overall, the correlation coefficient magnitude of 

the weighted OOD distance enhanced from -0.21 (the non-weighted OOD distance) to 

-0.76 at the last iteration. Meanwhile, the established Mahalanobis distance yielded a 

correlation coefficient of 0.08. 

 
1  Additional figures supporting these results are included as supplementary material.  
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Fig. 3. The spearman correlation coefficient between OODweighted and liver tumor segmentation 

Dice coefficient as a function of information bottleneck optimization iteration. OODmaha and 

OODnon-weighted do not depend on information bottleneck optimization, and thus these are dis-

played as constants across optimization iterations. 

4 Discussion and Conclusion 

Our results indicate that weighting the OOD distance by feature importance enhances 

OOD detection performance. In the image perturbation detection analysis, we observed 

a greater benefit for the OOD distance weighting at smaller perturbation magnitudes. 

This implies that the weighting offers more benefit for detecting near-OOD than far-

OOD data, where the former more closely resembles the types of shifts expected in 

deployed clinical settings. In the correlation analysis, we found that the weighting was 

essential to obtain a strong correlation (|𝜌| > 0.75) between OOD distance and model 

segmentation performance. A strong correlation indicates that an OOD measure may 

serve as a proxy for model performance in the absence of ground truth data and may 

facilitate more trustworthy use of deployed clinical models. In both assessments, the 

established Mahalanobis distance measure was inferior to both OODweighted and OODnon-

weighted. 

In contrast to our results, González et al. [16] found that the Mahalanobis distance 

was superior to other OOD measures. However, their work compared the Mahalanobis 

distance measure to non-feature-based and general uncertainty quantification measures 

(e.g., Monte Carlo dropout), which have been shown to be insufficient in detecting 

OOD data [27–29]. As more OOD measures are established, a comprehensive compar-

ison of feature-based OOD measures should be investigated. Additionally, our segmen-

tation model may have been overcomplete, meaning, it did not need all the encoder 

layers for prediction. Consequently, the bottleneck features may have been dominated 

by noise, decreasing the utility of the Mahalanobis distance from the bottleneck layer.  

A challenge of our work was the selection of the OOD distance measure. Distance 

measures are known to breakdown at high dimensions [30]. Our distance measure was 

implemented at each encoder layer, where the dimensions of shallower layers were 
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high. However, the weighted sum of the distance measures from all encoder layers 

down-weighted distances with higher dimensions. In addition, the feature importance 

weighted averaging reduced the concern of using high dimension distances.  

In summary, we demonstrated the importance of weighting an OOD distance meas-

ure by each feature’s level of importance to the prediction task, where importance 

weights were acquired from a post hoc information bottleneck optimization process. 

Assessments regarding the relationship between the derived OOD measure and quanti-

tative biomarkers (e.g., tumor volume) will be needed to help further understand the 

potential clinical impact of this work.   
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