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ABSTRACT

Partial differential equations (PDEs) provide a fundamental framework for mod-
eling complex physical phenomena. However, modeling PDEs on heterogeneous
geometries remains a significant challenge for both traditional numerical solvers
and neural operator methods, as sparse observations, multiphysics interactions,
and distinct discretizations often produce heterogeneous geometries between the
observation and output spaces. In this work, we introduce a unified perspective
on physics attention, formulating physical states as projections of observation
embeddings onto learnable functional bases in Hilbert space. Building on this
formulation, we introduce a position-enhanced physics attention mechanism that
incorporates coordinate representations of these bases via rotary position embed-
dings, thereby enabling more effective modeling of heterogeneous interactions.
Leveraging this mechanism, we develop HGsolver, an encoder–decoder frame-
work designed for PDE tasks on heterogeneous domains. Extensive experiments
demonstrate that HGsolver achieves state-of-the-art performance across forward,
inverse, and reconstruction benchmarks under heterogeneous geometries, while
a minimally modified variant, TransolverXP, also delivers competitive results on
standard homogeneous benchmarks. These findings highlight the importance of
effective interactions among physical states in advancing neural PDE solvers and
their potential to address the complexity of the heterogeneous real-world geome-
tries.

1 INTRODUCTION

As a torch, partial differential equations (PDEs) establish a foundational framework for humanity
to gain insight and conquer the physical world through the lens of mathematical models within
the realm of scientific inquiry. Analytically solving most PDEs is infeasible, and conventional nu-
merical solvers(Zhang et al., 2021) are usually confined to specific classes of PDEs, necessitating
customization for each new formulation. This task-specific nature often leads to limited general-
ity, reduced flexibility, and substantial computational overhead, particularly when handling com-
plex geometries(Umetani & Bickel, 2018) or performing repeated simulations under varying condi-
tions(Umetani & Bickel, 2018). In recent years, deep neural network surrogates, particularly neural
operators (Li et al., 2020; 2023c), have emerged as a computationally efficient paradigm for advanc-
ing the modeling and approximation of complex PDEs. Leveraging their strong nonlinear modeling
capability(Lu et al., 2021), they can learn input–output mappings of PDE-governed tasks from data
and infer solutions much faster than numerical methods.

PDEs are typically discretized into large-scale meshes with complex geometries to enable precise
simulations. Several backbones(Hao et al., 2023; Li et al., 2023b) leveraging individual point fea-
tures have been proposed to address these challenges. However, these point-based architectures
encounter significant difficulties in capturing the intricate physical correlations in PDEs, particu-
larly in industrial design involving extremely large and complex geometries, which typically feature
highly coupled multiphysics interactions(Trockman & Kolter, 2022).

To this end, Transolver(Wu et al., 2024) introduces a state-based attention mechanism that can oper-
ate under arbitrary general geometries. Nevertheless, it fails to capture the heterogeneity of interac-
tions among state tokens, especially those derived from distinct discretizations. In real-world scenar-
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Figure 1: Overview of the HGsolver architecture (left) and representative illustrations of heteroge-
neous geometries (right).

ios, the available input is often sparse in both spatial and temporal domains, since experimental data
are typically collected using a limited set of sensors or measurement devices. Consequently, inputs
and outputs frequently come from heterogeneous geometries, while sufficiently complete outputs
are crucial for providing accurate guidance in complex applications such as computational fluid dy-
namics for car and airplane design. Several diffusion-based methods(Gao & Ji, 2019; Huang et al.,
2024), which exploit robust generative capabilities, have also been proposed to address this chal-
lenge. However, these approaches suffer from substantial drawbacks, including prolonged training
time, slow inference, and an excessive number of parameters. These limitations highlight the urgent
need for methods that can more effectively handle problems defined on heterogeneous geometries.

In this paper, we present a unified and novel perspective on physics attention, formulated in a setting
where physical states are represented as projections of input embeddings onto a set of well-learned
functional bases in Hilbert space. Consequently, the distinctions between different physical states
are determined by the variations among these learned bases. Building on this foundation, the learned
functional bases can be represented by coordinates in Hilbert space, which provide a more precise
characterization of their relative positions, particularly when the functional bases are discretized over
heterogeneous geometries. To this end, we propose a position-enhanced physics attention mecha-
nism that integrates these coordinate representations into all physical state tokens through rotary
position embeddings (Su et al., 2021). As illustrated in Fig. 1, we further introduce HGsolver, a
framework specifically designed to address PDE tasks on heterogeneous geometries such as super-
pixel and restructured domains. With the proposed position-enhanced physics attention, HGsolver
efficiently captures complex heterogeneous interactions.

To sum up, our main contributions are as follows:

(i) From the perspective of projecting embeddings onto learnable bases in Hilbert space, we
offer a novel insight into physical states and the mechanism of physics attention.

(ii) Building upon the positional representations of the learnable bases, we introduce a position-
enhanced physics attention mechanism that more effectively captures interactions among
physical states, particularly for those discretized over heterogeneous geometries.

(iii) Leveraging cross position-enhanced physics attention, we design HGsolver based on an
encoder-decoder architecture, enabling it to tackle tasks involving heterogeneous geome-
tries between inputs and outputs, such as sparse prediction and super-pixel domains.

(iv) HGsolver achieves sota performance on benchmarks involving heterogeneous geometries,
including forward, inverse, and reconstruction problems of PDEs, while a minimally mod-
ified variant TransolverXP, also remains competitive on standard benchmarks.

2 METHODOLOGY

In this section, we present a novel perspective on physics attention and an effective approach for its
enhancement. We begin by reviewing the conventional implementations of physics attention, and
then provide a comprehensive description of our methodology and the improvements it introduces.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 PROBLEM SETUP

Our study focuses on two fundamental categories of PDEs: static PDEs and time-dependent (dy-
namic) PDEs. Static PDEs, such as Darcy’s law (Hubbert, 1956) and models that describe the
behavior of solid materials(Dym et al., 1973), are employed to characterize the equilibrium states
of physical systems. In contrast, time-dependent PDEs model the temporal evolution of physical
systems, such as the Navier–Stokes equations governing fluid dynamics(McLean, 2012).

In this paper, we investigate PDEs defined on a domain Ω ⊂ Rd× [0, T ] , with the solution function
space H over Ω. The objective is to learn an operator G that maps the input function space A to the
solution spaceH, i.e., G : A → H and G(a) = u ∈ H is the solution function over Ω.

To learn the operator G, neural operator model is trained using a dataset D = {(ak, uk)}1≤k≤D,
where uk = G(ak). In practice, ak is often discretized on the mesh {xi ∈ Ω}1≤i≤N . The discretized
representation ak is given by {(xi,a

i
k)}1≤i≤N , where ai

k = ak(xi). In this manner, the input
functions ak are represented by {(xi,a

i
k)}1≤i≤N .

For the corresponding solution function uk, we discretize it on the mesh {yi ∈ Ω}1≤i≤N ′ , with
the discretized representation uk given by {(yi,u

i
k)}1≤i≤N ′ , where ui

k = uk(yi). To model the
operator, G is parameterized by a neural network G̃w, which takes the pair (xi,a

i
k) as input, and

outputs G̃w
(
(xi,a

i
k),yi

)
= {ũi

k}1≤i≤N ′ on mesh {yi}1≤i≤N ′ , which serves as an approximation
to uk. The goal is to minimize the mean squared error (MSE) loss between the predicted solution
and the true data, as given by

min
w∈W

1

D

D∑
k=1

1

N ′

∥∥∥G̃w ((xi,a
i
k),yi

)
− {ui

k}1≤i≤N ′

∥∥∥2
2

(1)

where w denotes the set of network parameters and W represents the space of w. Detailed structure
of G̃w will be introduced in following sections.

2.2 IMPLEMENTATION OF PHYSICS ATTENTION

While attention mechanisms(Vaswani et al., 2017) have demonstrated remarkable effectiveness in
both computer vision (CV)(Khan et al., 2022) and natural language processing (NLP)(Brown et al.,
2020), their application to neural PDE solvers remains challenging. In particular, attention-based
approaches often struggle to faithfully capture the complex physical correlations within the com-
putational domain Ω, which is typically discretized into a set of mesh points {zi}Ni=1. These mesh
points, being finite samples of the underlying continuous physical space, motivate the need to learn
the intrinsic physical states. However, the large number of discretized points in the mesh can over-
whelm the attention mechanism, making it challenging to identify reliable correlations. To address
this, physics-based attention(Wu et al., 2024), by focusing on physics-sensitive regions, proves to
be particularly effective in capturing the underlying physical information within complex and high-
dimensional meshes.

Given a mesh with N nodes on positions X = {xi}Ni=1, to capture the intrinsic physical interactions
under the challenging mesh configurations, Physics-Attention first assigns C-channel input embed-
dings Z = {zi}Ni=1 ∈ RN×C to M physical states S = {sj}Mj=1 ∈ RM×C , based on the learned
slice weights W = {wi}Ni=1 ∈ RN×M from the inputs. Each weight vector wi ∈ R1×M represents
the degree that point xi with embeddings zi belongs to each physical state. Specifically, the physical
states are aggregated from all point representations based on the learned slice weights, which can be
formalized as:

Physical States: S = {sj}Mj=1 =

{
W⊤

·,jZ

W⊤
·,j1N

}M

j=1

, (2)

The success of Physics-Attention hinges on the assumption of homogeneous physical states. Tran-
solver utilizes the Softmax function to compute the slice weights, thereby ensuring a sharper distri-
bution. However, the phenomenon of degeneration persists as the model depth increases. To mitigate
this issue, Transolver++(Luo et al., 2025) introduces a local adaptive mechanism that employs the
Gumbel-Softmax(Jang et al., 2016) for differentiable sampling from the discrete categorical distri-
bution, and sets the temperature parameter τ0 in the Gumbel-Softmax function learnable, as outlined
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in Eq. (3).

Rep-Slice : W = {wi}Ni=1 =

{
Softmax

(
Linear(zi)− log(− log ϵi)

τi

)}N

i=1

Ada-Temp: τ = {τi}Ni=1 = {τ0 + Linear(zi)}Ni=1 ,

(3)

where τ0 is the temperature constant and ϵ = {ϵi}Ni=1, ϵi ∼ U(0, 1). Here log(− log ϵi) ∼
Gumbel(0, 1), where Gumbel is a type of generalized extreme value distribution. After that, a
vanilla attention mechanism is applied on S = {sj}Mj=1 to capture intricate correlations among
different states {sj}Mj=1 as follows.

Q,K,V = Linear(S), S′ = Softmax

(
QK⊤
√
C

)
V . (4)

Finally, Physics-Attention applies the deslice operation to project the updated states {s′j}Mj=1 back
onto the mesh representation {z′

i}Ni=1 through slice weights as Eq. (5). This operation establishes a
learnable non-linear mapping between Z and Z ′. Consequently, Physics-Attention can be flexibly
stacked into more complex architectures like transformer, thereby enhancing its ability to capture
the underlying physical correlations.

Z ′ = {z′
i}Ni=1 = {

M∑
j=0

wi,js
′
j}Ni=1 (5)

2.3 A PROJECTION PERSPECTIVE OF PHYSICS ATTENTION

As shown in Eq. (2), the j-th physical state can be expressed as sj = vjZ/N , where v is defined
as vj := (NW⊤

·,j)/(W
⊤
·,j1N) ∈ R1×N . Here, vj := v(Z, θj) is parameterized by the learnable

parameters θj and the input embeddings Z ∈ RN×C as described in Eq. (3). The input embedding
Zi,· encodes the latent features at position xi. The normalized slice weights vj,i quantify the fraction
of features that the state sj receives from position xi. Consequently, for a given position xk, one
can identify the corresponding input embedding Zk and the slice weights vj,k defined at position xi.
Thus, the quantities Z and v(Z, θj) can be equivalently represented in a functional form as shown
in Eq. (6), with the corresponding state sj expressed as in Eq. (7).

κ{Z,θj} : Ω→ R1,where κ{Z,θj}(xi) = vj,i i = 1, 2, . . . N

h : Ω→ RC ,where h(xi) = Z{i,·} i = 1, 2, . . . N
(6)

sj =
1

N
vZ =

1

N

N∑
i=1

κ{Z,θj}(xi)h(xi), j = 1, 2, . . .M (7)

In the following sections, we simplify the notation by rewriting κZ,θj as κj for clarity. As demon-
strated in Eq. (8), the physical state can be interpreted as a numerical approximation of an integral
of the product of slice weights and input embeddings.

sj =
1

N

N∑
i=1

κj(xi)h(xi) ≈
1

∥Ω∥

∫
Ω

κj(ξ)h(ξ)dξ =
⟨κj , h⟩
∥Ω∥

, j = 1, 2, . . .M (8)

It worth to note that the physical state sj can be interpreted as the inner product between the input
function h and a learnable functional basis κj in a Hilbert space. Without loss of generality, we set
∥Ω∥ = 1 for simplicity. Moreover, if we apply an L2 regularization on W , defining as:

vj = {κj(xi)}Ni=1 = (NW⊤
·,j)/(

√
W⊤

·,jW·,j), j = 1, 2, . . .M (9)

Then, κj becomes a unit vector satisfying ⟨κj , κj⟩ = 1 in the Hilbert space L2(Ω). Consequently,
the physical state sj can be interpreted as the projection of the input function h onto the learnable
functional basis κj where sj = ⟨κj , h⟩/⟨κj , κj⟩.
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Moreover, the unnormalized physics attention score between the m-th and n-th states, prior to ap-
plying the Softmax operation, can be expressed as Eq. (10). Here, ATT denotes the vanilla attention
functional score in the original space h discretized as N tokens. The attention score is computed by
first projecting the state representations onto query and key vectors, where Wq and Wk are learnable
weight matrices associated with the query and key transformations, respectively.

P-ATTm,n=C−1/2⟨κm, hWq⟩⊤⟨κn, hWk⟩

=C−1/2

∫∫
κm(ξ1)h(ξ1)WqW

⊤
k h(ξ2)

⊤κn(ξ2)dξ1dξ2

=C−1/2

∫∫
κm(ξ1)ATT(ξ1, ξ2)κn(ξ2)dξ1dξ2 = C−1/2⟨κm, κn⟩ATT

(10)

As shown in Eq. (10), the attention score in the physics attention mechanism can be interpreted
as the inner product of learnable basis functions κ, weighted by the vanilla attention score, which
is computed over the original space with N tokens. To summarize, we now present a projection-
based perspective of physical states and a weighted inner-products interpretation on the operation
of physics attention. In this interpretation, the slice component is designed to learn a set of essen-
tial bases from the input functional h. By projecting h onto these learned bases, we obtain distinct
physical states. Computing the inner products of the learned bases, modulated by canonical atten-
tion scores, effectively captures the interactions among different physical states. However, vanilla
Physics Attention primarily attends to the scalar magnitudes of these projections while disregarding
the geometric orientations of the bases. As a consequence, distinct bases κ1 and κ2, corresponding
to different physical subspaces of h, become indistinguishable from the perspective of other states
whenever ⟨κ1, h⟩ = ⟨κ2, h⟩, thereby neglecting critical subspace structure.

This limitation reveals that, in its conventional formulation, Physics Attention cannot encode di-
rectional information inherent in the learned bases, which may be crucial for distinguishing certain
physical states. To overcome this deficiency, it is necessary to endow the state tokens with directional
awareness of the learnable bases. Concretely, this is achieved by embedding positional information
into the state tokens within the functional space L2(Ω), thereby allowing the self-attention mech-
anism to exploit not only projection magnitudes but also geometric orientations. Building on this
principle, we propose an enhanced Physics Attention mechanism incorporating positional encoding,
which will be detailed in the following sections.
2.4 COORDINATE REPRESENTATION OF PHYSICAL STATES

As discussed in Sec. 2.3, Physics Attention is designed to learn a set of robust functional bases
{κ1, . . . , κM} and to compute the projections of the input embeddings Z (i.e., the input function
h defined over the domain Ω) onto these bases. A natural and effective way to characterize the
relationships among these bases is to represent them in terms of their coordinates with respect to a
common set of orthogonal bases, which enables a systematic analysis of their relative configurations.

Similarly, the Physics Cross-Attention mechanism—which performs standard cross-attention be-
tween two groups of physical states—can be interpreted from the same projection-based perspec-
tive. In this context, it aims to learn two sets of robust functional bases. If the combined set of bases,
{κq

1, . . . , κ
q
Mq

, κk
1 , . . . , κ

k
Mk
}, is defined over the same domain Ω, it can likewise be represented in

terms of their coordinates with respect to a common orthogonal basis, allowing for a unified and co-
herent analysis of their relative configurations. In the following parts, we present some methods for
constructing such orthogonal bases and for computing the corresponding coordinate representations.
Functional Principal Component Analysis (FPCA) Method: A classic approach for computing
these coordinates is to employ spectral decomposition within the Hilbert space framework. To derive
the coordinate representations using FPCA(Shang, 2014), we first center the set of basis functions
{κ1, . . . , κM} and define the corresponding empirical covariance operatorR as Eq. (11).

κ̃i = κi −
1

M

M∑
j=1

κj , i = 1, . . . ,M, R =
1

M

M∑
j=1

κ̃j ⊗ κ̃j (11)

The goal of FPCA is then to identify a function ϵ ∈ L2(Ω) with unit norm, ∥ϵ∥L2(Ω) = 1, such that
it satisfies the eigenvalue problem as follows:

Rϵ = λϵ, where Rϵ = 1

M

M∑
j=1

⟨κ̃j , ϵ⟩κ̃j (12)
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Here, R represents the empirical covariance operator acting on the centered functional observa-
tions {κ̃j}Mj=1, and λ denotes the eigenvalue associated with the principal component ϵ. Since the
operator R has rank at most M , all nonzero eigenfunctions necessarily belong to the subspace
span{κ̃1, . . . , κ̃M}. Hence, each eigenfunction ϵi can be represented as a linear combination of the
centered sample functions defined as follows:

ϵi = β⊤
i κ̃ =

M∑
j=1

βij κ̃j , i = 1, . . . ,M (13)

where βi ∈ RM denotes the coefficient vector. Substituting Eq. (12) into the eigenvalue equation
Rϵ = λϵ and introducing the Gram matrix K ∈ RM×M with entries Kij = ⟨κ̃i, κ̃j⟩, we obtain:

λiβ
⊤
i κ̃ =

1

M

M∑
j=1

⟨κ̃j , ϵi⟩κ̃j =
1

M

M∑
j=1

M∑
l=1

βil⟨κ̃j , κ̃l⟩κ̃j =
1

M
(Kβi)

⊤κ̃, i = 1, . . . ,M (14)

By comparing the leftmost and rightmost terms in Eq. (14), we conclude that 1
MKβi = λiβi, which

implies that βi is an eigenvector of the Gram matrix K corresponding to eigenvalue Mλi ≥ 0.
Consequently, the original infinite-dimensional eigenvalue problem in L2(Ω) is reduced to a finite-
dimensional eigenvalue problem for the Gram matrix K, which can be readily solved using standard
linear algebraic techniques.

Let ηi denote a unit eigenvector of K corresponding to the eigenvalue Mλi. By setting βi = aηi

with a > 0, the constant a is determined by the normalization condition |ϵi|H = 1. Specifically,

∥ϵi∥2H = β⊤
i Kβi = a2η⊤

i (Mλiηi) = a2Mλi = 1, ⇒ a = (Mλi)
−1/2. (15)

Consequently, the coordinates of the original uncentered functional bases {κ1, . . . , κM}with respect
to the orthogonal eigenbasis {ϵ1, . . . , ϵM} are encoded in the matrix Θ ∈ RM×M , defined as

Θij = ⟨κi, ϵj⟩ =
(κ̃i + κ̄)⊤κ̃⊤ηj√

Mλj

=
eiKηj√
Mλj

+ Cj =
√

Mλj eiηj + Cj . (16)

where ei is the i-th canonical basis vector with 1 in the i-th position and 0 elsewhere and Cj denotes
a constant that does not depend on i. The computational complexity of this procedure is O(N+M3).
For completeness, we also present two alternative schemes for computing the coordinates. However,
as their empirical performance on the benchmarks proved inferior to that of the aforementioned
method, we provide their descriptions in Appendix A.2 for reference.

2.5 POSITION-ENHANCED PHYSICS ATTENTION WITH POSITIONAL ENCODING

The vanilla attention mechanism is inherently position-agnostic when positional information is not
explicitly incorporated into the input features. To overcome this limitation, the Galerkin/Fourier
Transformer (Cao, 2021) augments each attention head by concatenating spatial coordinates with
latent embeddings, and further applies a spectral convolutional decoder (Li et al., 2020) on top of
the attention layers. Here, we adopt Rotary Position Embeddings (RoPE) (Su et al., 2021) to encode
positional information. Originally proposed for modeling relative positions in language models,
RoPE offers a flexible and effective mechanism for integrating coordinate-dependent information
into the attention framework.

Following the discussion in Sec. 2.4, we obtain the M -dimensional coordinate matrix Θ ∈ RM×M ,
which represents the M physical states si

M
i=1. Since M is typically set to 32 or higher, directly

embedding them into tokens is often impractical. In addition, not all coordinate components are rel-
evant to the underlying physical interactions among states. To address this, we introduce a learnable
linear transformation that projects the M -dimensional coordinates into a lower-dimensional latent
space as Θ← TΘ. Importantly, the projection matrix T is shared across the entire model.

For a given latent coordinate vector θ = Θi,· and its corresponding H-dimensional latent embedding
q = Si,·Wq , we select the latent dimension H such that H/(2J) = γ ∈ N+, and accordingly
reshape q into a matrix q̃ ∈ RJ×2γ . Subsequently, we define the RoPE operator ϕ(Coor,Emb) as:

ϕ(q, θ) = Concat(R(θ1)q̃1, . . . ,R(θJ)q̃J), R(θj) = diag(R1(θj), . . . ,Rγ(θj))

Rk(θj) =

[
cos(θjνk) − sin(θjνk)
sin(θjνk) cos(θjνk)

]
where νk = 10000−(k−1)/γ , k = 1, . . . , γ

(17)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where diag denotes the construction of a block-diagonal matrix by placing the sub-matrices along its
diagonal, and the frequency coefficients νk are defined as in (Vaswani et al., 2017; Su et al., 2021).
The operator Φ(·) is then naturally defined by applying the ϕ(·) operator row-wise across the entire
coordinate matrix.

We summarize our proposed Position-Enhanced Physics Attention (PPA) as follows. For Self-
attention (Self-PPA) and Cross-attention (Cross-PPA), Eq. (4) is adapted into Eq. (18) and
Eq. (19), respectively, as an extension of the vanilla physics attention(Wu et al., 2024).

Q,K,V = Linear(S), Θ = Linear[Get Coor(W )],

S′ = Softmax

(
Φ(Q,Θ) Φ(K,Θ)⊤√

C

)
V

(18)

Q = Linear(Sq), K,V = Linear(Sk), Θq,Θk = Linear[Get Coor(Wq,Wk)],

S′ = Softmax

(
Φ(Q,Θq) Φ(K,Θk)

⊤
√
C

)
V

(19)

Here, the procedure Get Coor is defined as in Sec. 2.4.

3 MODEL ARCHITECTURE

Query Encoder Given a query position yi, the query encoder employs a shared point-wise MLP
whose first layer implements a random Fourier feature mapping Q(·) (Tancik et al., 2020; Rahimi
& Recht, 2007). The Gaussian random Fourier mapping is defined as:

Query := Q(Y ) = Concat
[
cos
(
2π Y B

)
, sin

(
2π Y B

)]
, (20)

where Y = [y1, . . . ,yn′ ]⊤ ∈ RN ′×dim(Ω) and yi ∈ Rd denotes the Cartesian coordinates of the
i-th query point. The projection matrix B ∈ Rd×d′

has entries sampled i.i.d. from the Gaussian
distribution N (0, σ2), where σ is a predefined scale parameter. The concatenation of cosine and
sine components yields a 2d′-dimensional embedding per point. By mapping input coordinates to a
trigonometric basis with higher-frequency components, Q(·) serves to mitigate the spectral bias of
coordinate-based neural networks (Tancik et al., 2020; Mildenhall et al., 2020); analogous encodings
have also been incorporated into physics-informed machine learning (Wang et al., 2021).
Design on Heterogeneous Geometry For operator learning tasks defined on heterogeneous ge-
ometries (i.e., when the input and output are discretized differently), we adopt an encoder–decoder
backbone based on the canonical transformer architecture (Vaswani et al., 2017), as illustrated in
Fig. 1. The detailed implementation is summarized in Eq. (21). We refer to this modified archi-
tecture as HGsolver. In the formulation below, ne and nd denote the depths of the encoder and
decoder, respectively, and FF represents the feedforward neural network.

KV(l+1) =
(
FF ◦Self-PPA

)(
KV(l)

)
, l = 0, . . . , ne − 1, KV(0) = Input,

Out(l+1) =
(
FF ◦Cross-PPA

)(
Out(l), KV(ne)

)
, l = 0, . . . , nd − 1, Out(0) = Query.

(21)

In Cross PPA, we highlight that the query basis κi and the key basis κj may be discretized on
distinct meshes, X ∈ RN×dim(Ω) and Y ∈ RN ′×dim(Ω), respectively. Under this condition, the
inner product ⟨κi, κj⟩ is computed using a learnable attention matrix L ∈ RN×N ′

, which serves
as the kernel matrix for the inner product, as described in Eq. (22). Here, L is shared across the
HGsolver, and v represents the slice weights defined in Sec. 2.3.

⟨κi, κj⟩ = (v
(q)
i )⊤L(v

(k)
j ), L = Softmax

(
(XW

(pos)
q )(Y W

(pos)
k )⊤

dim(Ω)

)
(22)

Design on Homogeneous Geometry In operator learning tasks performed on homogeneous ge-
ometries (i.e., where the input and output share the same shape and exhibit a one-to-one mapping
between corresponding positions), we extend the architecture of Transolver (Wu et al., 2024) by
replacing its standard physics attention mechanism with our position-enhanced physics attention.
This modified architecture is referred to as TransolverXP.
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Table 1: Relative ℓ2 errors of HGsolver on inverse (left), reconstruction (middle), and forward
(right) tasks. w/o PE denotes HGsolver with vanilla physics attention. For the Shape-Net car
benchmark, the ℓ2 errors of the surrounding physical fields are reported.

Sparse-Ratio Model N-S Elasticity Darcy Airfoil Pipe ShN-Car

10% HG 0.28 0.08 0.04 0.19 0.16 0.23
w/o PE 0.31 0.15 0.05 0.19 0.18 0.29

30% HG 0.24 0.08 0.02 0.17 0.06 0.18
w/o PE 0.24 0.14 0.02 0.18 0.09 0.22

50% HG 0.19 0.07 0.01 0.10 0.04 0.16
w/o PE 0.21 0.12 0.01 0.13 0.06 0.20

4 EXPERIMENTS

In this section, we evaluate HGsolver on heterogeneous geometry benchmarks and TransolverXP on
homogeneous ones. These benchmarks span different structures and dimensions, and cover forward,
inverse, and reconstruction tasks, providing a convincing evaluation of our proposed models.
Datasets: Our experiments encompass a broad range of problem settings across both 2D and 3D
domains, including point clouds (Elasticity), structured meshes (Plasticity, Airfoil, Pipe), regular
grids (Navier–Stokes, Darcy), and unstructured meshes (ShapeNet Car, AirfRANS). The Elasticity,
Plasticity, Airfoil, Pipe, Navier–Stokes, and Darcy benchmarks were first introduced in FNO Li et al.
(2021) and geo-FNO Li et al. (2022), and have since become widely adopted in subsequent studies.
Beyond these standard benchmarks, we further consider design-oriented tasks: the ShapeNet Car
dataset Umetani & Bickel (2018), which involves predicting surface pressure and surrounding air
velocity from vehicle geometries, and the AirfRANS dataset Bonnet et al. (2022), which provides
high-fidelity Reynolds-Averaged Navier–Stokes simulations of airfoils derived from the National
Advisory Committee for Aeronautics. In addition, we include an inverse problem benchmark intro-
duced by LNO (Wang & Wang, 2024), involving the solution of the inverse problem for the Burgers
equation. Detailed descriptions and specifications of all the aforementioned benchmarks are pro-
vided in Appendix A.1.
Baselines: We conduct a comprehensive comparison of HGsolver against more than 20 baseline
models. These include typical neural operators such as DeepOnet (Lu et al., 2021), FNO (Li et al.,
2021), U-NO (Rahman et al., 2023), and LSM (Wu et al., 2023); Transformer-based PDE solvers
such as GNOT (Hao et al., 2023) and FactFormer (Li et al., 2023a); as well as classical geometric
deep models including PointNet (Qi et al., 2017), GraphSAGE (Hamilton et al., 2017), and Mesh-
GraphNet (Pfaff et al., 2021). Among these, LSM (Wu et al., 2023) and GNOT (Hao et al., 2023)
represent the previous sota on standard benchmarks, while GINO Li et al. (2023b) and 3D-GeoCA
(Deng et al., 2024) are advanced models designed for large-scale, industrial-level simulation bench-
marks. In addition, we also compare with recent physics-attention-based models, including Tran-
solver (Wu et al., 2024), LNO (Wang & Wang, 2024), and Transolver++ (Luo et al., 2025).
Setup: We conducted our experiments within an open source framework Neural Solver Li-
brary(Wu et al., 2024). All experiments were run on 8 Nvidia RTX4090 GPUs with 24GB memory.

4.1 STANDARD HETEROGENEOUS GEOMETRIES BENCHMARKS

To assess the impact of incorporating positional encoding into physics attention, we design a com-
prehensive set of PDE tasks encompassing forward, inverse, and reconstruction processes. These
tasks provide a rigorous and convincing evaluation of our approach, with detailed implementations
presented in Appendix A.1.2. As shown in Tab. 1, physics attention enhanced with the proposed
positional encoding demonstrates superior performance across this diverse set of tasks, particularly
when handling complex heterogeneous geometries, such as those in the Shape-Net Car and Elas-
ticity benchmarks. Compared to vanilla physics attention, our enhanced approach more effectively
captures the intrinsic physical interactions across a wide range of PDE scenarios.

4.2 HETEROGENEOUS GEOMETRIES BENCHMARKS ON INVERSE PROBLEM

To ensure a rigorous and fair comparison, we evaluate HGsolver against state-of-the-art models for
PDE tasks on heterogeneous geometries, using the inverse problem benchmark of the Burgers equa-
tion shown in Appendix. A.1.2. As shown in Tab. 2, the proposed HGsolver consistently demon-
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Table 2: Relative MAE of inner reconstructions from completers under different observation ratios
(left), and of outlier reconstructions from propagators using eithor ground truth(G.T.) or recon-
structed inputs from different observation ratios (right).

Task Completer Propagator
Models 20% 10% 5% 1% 0.5% G.T. 10% 1%

DeepONet 2.51% 2.59% 2.82% 3.25% 4.82% 7.34% 11.14% 13.87%
GNOT 1.12% 1.39% 1.62% 1.63% 2.56% 5.45% 8.04% 9.91%
LNO 0.60% 0.74% 0.77% 1.18% 2.05% 3.73% 5.69% 7.72%
HGsolver(Ours) 0.52% 0.59% 0.67% 1.16% 2.11% 3.55% 5.61% 7.69%

Table 3: Performance comparison on design-oriented tasks. Besides the relative ℓ2 error of the
surrounding (Volume) and surface (Surf) physics fields, the relative ℓ2 errors of the drag coefficient
(CD) and lift coefficient (CL) are also recorded, along with their Spearman’s rank correlations ρD
and ρL. For clarity, the best results are in bold and complete table is provided in Tab 6.

MODEL∗
SHAPE-NET CAR AIRFRANS

VOLUME ↓ SURF ↓ CD ↓ ρD ↑ VOLUME ↓ SURF ↓ CL ↓ ρL ↑
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
3D-GEOCA 0.0319 0.0779 0.0159 0.9842 / / / /
TRANSOLVER 0.0207 0.0745 0.0103 0.9935 0.0037 0.0142 0.1030 0.9978

TRANSOLVERXP 0.0199 0.0622 0.0095 0.9938 0.0031 0.0094 0.1535 0.9963

strates state-of-the-art performance across varying observation ratios, both in its roles as propagators
and completers, thereby highlighting the decoupling capabilities of HGsolver.

4.3 STANDARD HOMOGENEOUS GEOMETRIES BENCHMARKS

We further evaluate TransolverXP on eight homogeneous geometry benchmarks. As shown in
Tab. 3 and Tab. 5, TransolverXP consistently demonstrates competitive performance across these
benchmarks, with particularly notable results on the unstructured and complex cases (ShapeNet-Car
and AirfRANS), highlighting its effectiveness in handling challenging geometries.

4.4 EFFICIENCY ANALYSIS

To evaluate the feasibility and scalability of our proposed method, a critical analysis involves ex-
amining the execution time of the eigenvalue problem discussed in Sec. 2.4. Theoretically, the
computational complexity of this algorithm is O(N +M3). In practice, for example in the Airfoil
case, the total inference time is 0.55 seconds, of which 0.38(70%) seconds is spent on solving the
eigenvalue problem. This corresponds to M = 64 and N = 11,271. A detailed analysis of exe-
cution time of the eigenvalue problem is shown in Appendix A.4. As a side note, since our model
introduces only negligible additional parameters, its GPU memory consumption remains virtually
the same as that of Transolver(Wu et al., 2024) when the network depth and width are fixed.

5 CONCLUSION

Insights In this work, we introduced HGsolver, a position-enhanced physics attention framework
for modeling PDEs on heterogeneous geometries. Our experimental results highlight the pivotal
importance of explicitly capturing interactions among physical states to faithfully represent intrinsic
dynamics in heterogeneous domains. Moreover, we present a unified projection-based perspective
on physics attention, which not only provides a rigorous theoretical foundation for understanding
physical states and the principles underlying their interactions but also offers principled guidance
for the development of future neural PDE solvers in physical state spaces. We envisage that the
proposed framework, together with its underlying theoretical foundation, will significantly advance
the practical resolution of complex PDE problems defined on heterogeneous geometries.

Limitations and Future Work A primary limitation of HGsolver is its computational efficiency,
as the eigenvalue computation dominates inference time. This bottleneck may be exacerbated in
large-scale or high-resolution scenarios. Future work will investigate potential approximations and
solver optimizations to alleviate the runtime bottleneck, while aiming to maintain accuracy and
generalizability across diverse PDE tasks and heterogeneous geometries.
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A APPENDIX

A.1 DATASETS SETTINGS

In this section, we provide the details of our experiments, including benchmarks, metrics, and
implementations.

A.1.1 DESCRIPTIONS OF STANDARD BENCHMARKS

We extensively evaluate our model in eight benchmarks, whose information is summarized in Table
4. Note that these benchmarks involve the following three types of PDEs:

• Solid material (Dym et al., 1973): Elasticity and Plasticity.

• Navier-Stokes equations for fluid (McLean, 2012): Airfoil, Pipe, Navier-Stokes, Shape-
Net Car and AirfRANS.

• Darcy’s law (Hubbert, 1956): Darcy.

Here are the details of each benchmark.

Elasticity This benchmark is to estimate the inner stress of the elasticity material based on the
material structure, which is discretized in 972 points (Li et al., 2022). For each case, the input is a
tensor in the shape of 972× 2, which contains the 2D position of each discretized point. The output
is the stress of each point, thus in the shape of 972 × 1. As for the experiment, 1000 samples with
different structures are generated for training and another 200 samples are used for test.

Plasticity This benchmark is to predict the future deformation of the plasticity material under the
impact from above by an arbitrary-shaped die (Li et al., 2022). For each case, the input is the shape
of the die, which is discretized into the structured mesh and recorded as a tensor with shape 101×31.
The output is the deformation of each mesh point in the future 20 time steps, that is a tensor in the
shape of 20× 101× 31× 4, which contains the deformation in four directions. Experimentally, 900
samples with different die shapes are used for model training and 80 new samples are for test.

Airfoil This task is to estimate the Mach number based on the airfoil shape, where the input shape
is discretized into structured mesh with shape 221× 51 and the output is the Mach number for each
mesh point (Li et al., 2022). Here, all the shapes are deformed from the NACA-0012 case provided
by the National Advisory Committee for Aeronautics. 1000 samples in different airfoil designs are
used for training and the other 200 samples are for testing.

Pipe This benchmark is to estimate the horizontal fluid velocity based on the pipe structure (Li
et al., 2022). Each case discretizes the pipe into structured mesh with size 129×129. Thus, for each
case, the input tensor is in the shape of 129×129×2, which contains the position of each discretized
mesh point. The output is the velocity value for each point, thus in the shape of 129×129×1. 1000
samples with different pipe shapes are used for model training and 200 new samples are for test,
which are generated by controlling the centerline of the pipe.

Table 4: Summary of experiment benchmarks, where the first six datasets are from FNO (Li et al.,
2021) and geo-FNO (Li et al., 2022), Shape-Net Car is from (Umetani & Bickel, 2018) and prepro-
cessed by (Deng et al., 2024), and AirfRANS is from (Bonnet et al., 2022). #Mesh records the size
of discretized meshes. #Dataset is organized as the number of samples in training and test sets.

GEOMETRY BENCHMARKS #DIM #MESH #INPUT #OUTPUT #DATASET

POINT CLOUD ELASTICITY 2D 972 STRUCTURE INNER STRESS (1000, 200)

STRUCTURED PLASTICITY 2D+TIME 3,131 EXTERNAL FORCE MESH DISPLACEMENT (900, 80)
MESH AIRFOIL 2D 11,271 STRUCTURE MACH NUMBER (1000, 200)

PIPE 2D 16,641 STRUCTURE FLUID VELOCITY (1000, 200)

REGULAR GRID
NAVIER–STOKES 2D+TIME 4,096 PAST VELOCITY FUTURE VELOCITY (1000, 200)

DARCY 2D 7,225 POROUS MEDIUM FLUID PRESSURE (1000, 200)

UNSTRUCTURED SHAPE-NET CAR 3D 32,186 STRUCTURE VELOCITY & PRESSURE (789, 100)
MESH AIRFRANS 2D 32,000 STRUCTURE VELOCITY & PRESSURE (800, 200)
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Navier-Stokes This benchmark is to model the incompressible and viscous flow on a unit torus,
where the fluid density is constant and viscosity is set as 10−5 (Li et al., 2021). The fluid field is
discretized into 64 × 64 regular grid. The task is to predict the fluid in the next 10 steps based on
the observations in the past 10 steps. 1000 fluids with different initial conditions are generated for
training, and 200 new samples are used for test.

Darcy This benchmark is to model the flow of fluid through a porous medium (Li et al., 2021).
Experimentally, the process is discretized into a 421 × 421 regular grid. Then we downsample the
data into 85 × 85 resolution for main experiments. The input of the model is the structure of the
porous medium and the output is the fluid pressure for each grid. 1000 samples are used for training
and 200 samples are generated for test, where different cases contain different medium structures.

Shape-Net Car This benchmark focuses on the drag coefficient estimation for the driving car,
which is essential for car design. Overall, 889 samples with different car shapes are generated to
simulate the 72 km/h speed driving situation (Umetani & Bickel, 2018), where the car shapes are
from the “car” category of ShapeNet (Chang et al., 2015). Concretely, they discretize the whole
space into unstructured mesh with 32,186 mesh points and record the air around the car and the
pressure over the surface. Here we follow the experiment setting in 3D-GeoCA (Deng et al., 2024),
which takes 789 samples for training and the other 100 samples for testing. The input mesh of each
sample is also preprocessed into the combination of mesh point position, signed distance function
and normal vector. The model is trained to predict the velocity and pressure value for each point.
Afterward, we can calculate the drag coefficient based on these estimated physics fields.

AirfRANS This dataset contains the high-fidelity simulation data for Reynolds-Averaged
Navier–Stokes equations (Bonnet et al., 2022), which is also used to assist airfoil design. Dif-
ferent from Airfoil (Li et al., 2022), this benchmark involves more diverse airfoil shapes under finer
discretized meshes. Specifically, it adopts airfoils in the 4 and 5 digits series of the National Advi-
sory Committee for Aeronautics, which have been widely used historically. Each case is discretized
into 32,000 mesh points. By changing the airfoil shape, Reynolds number, and angle of attack, Air-
fRANS provides 1000 samples, where 800 samples are used for training and 200 for the test set. Air
velocity, pressure and viscosity are recorded for surrounding space and pressure is recorded for the
surface. Note that both drag and lift coefficients can be calculated based on these physics quantities.
However, as their original paper stated, air velocity is hard to estimate for airplanes, making all the
deep models fail in drag coefficient estimation (Bonnet et al., 2022). Thus, in the main text, we
focus on the lift coefficient estimation and the pressure quantity on the volume and surface, which
is essential to the take-off and landing stages of airplanes.

A.1.2 IMPLEMENTATIONS OF PDE TASKS

Navier-Stokes (inverse) This inverse task aims to infer the initial fluid state from partially ob-
served future states. The input consists of velocity and pressure fields at a subset of grid points that
are masked over the next 10 time steps on a 64 × 64 regular grid. The output corresponds to the
complete initial fluid state at full spatial resolution. This inverse task evaluates the model’s ability
to reconstruct physically consistent initial conditions from limited, masked temporal observations.

Elasticity (reconstruction) This reconstruction task aims to predict the complete stress field from
partially observed stress values. The input consists of stress values at unmasked points of the 972×1
discretized grid, and the output corresponds to the stress values at the masked locations. This task
evaluates the model’s ability to infer the full stress distribution from partially observed measure-
ments.

Darcy (reconstruction) This reconstruction task involves estimating the fluid pressure at masked
grid points given partially observed pressures. The input consists of pressures at unmasked points on
the downsampled 421 × 421 grid, and the output corresponds to the pressure values at the masked
locations. This task assesses the model’s capability to reconstruct the complete pressure field in
heterogeneous porous media from limited observations.

Pipe (forward) This forward task aims to predict the horizontal fluid velocity from the pipe geom-
etry. The input consists of the spatial coordinates of all 129×129 mesh points, with a subset masked
according to a predefined ratio, and the output corresponds to the velocity at each point, represented
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as a tensor of shape 129× 129× 1. This task evaluates the model’s ability to map partially observed
geometric configurations to the resulting fluid dynamics.

Airfoil (forward) This forward task aims to predict the Mach number distribution based on the
discretized airfoil shape. The input consists of coordinates of a subset of the 221 × 51 structured
mesh, masked according to a predefined ratio, and the output corresponds to the Mach number at
each mesh point. This task examines the model’s capability to infer aerodynamic properties from
partially observed geometric features.

Shape-Net Car (forward) This forward task aims to predict the velocity and pressure fields
around a car from its 3D geometry. The input consists of a preprocessed representation of 32,186
mesh points, including positions, signed distance functions, and normal vectors, with a subset
masked according to a predefined ratio. The output corresponds to the velocity and pressure values
for all points. This task evaluates the model’s effectiveness in estimating complex fluid interactions
from partially observed 3D vehicle geometries under simulated driving conditions.

A.1.3 INVERSE PROBLEM BENCHMARKS

Here, we will introduce an inverse benchmark from LNO(Wang & Wang, 2024) as below.

To demonstrate the flexibility of the model, an inverse problem is designed. Given a partially ob-
served solution u(x), the objective is to recover the complete solution u(x) over a larger domain.
Specifically, the test is conducted on the 1D Burgers’ equation:

∂
∂tu(x, t) = 0.01 ∂2

∂x2u(x, t)− u(x, t) ∂
∂xu(x, t), x ∈ [0, 1], t ∈ [0, 1]

u(x, 0) ∼ GaussianProcess(0, exp
(
− 2

pl2 sin
2(π||x− x

′
||)
)
, u(0, t) = u(1, t)

The ground-truth data is generated on a 128 × 128 grid with periodic boundary conditions. Initial
conditions are sampled from a Gaussian process with periodic length p = 1 and scaling factor l = 1.

The goal of this inverse problem is to reconstruct the complete solution u(x) across the entire spa-
tiotemporal domain (x, t) ∈ [0, 1] × [0, 1], based on sparsely random-sampled or fixed-sampled
observations in the subdomain (x, t) ∈ [0, 1]× [0.25, 0.75].

Instead of using a naive approach that directly learns the mapping from partially observed samples
in the subdomain to the complete solution in the whole domain, a two-stage strategy is proposed,
inspired by inpainting(Pathak et al., 2016; Yu et al., 2018) and outpainting(Yang et al., 2019; Sabini
& Rusak, 2018). First, the model is trained as a completer to interpolate the sparsely sampled
points in the subdomain [0, 1] × [0.25, 0.75] to predict all densely and regularly sampled points
in the same subdomain. Then, the model is trained as a propagator to extrapolate the results of
the completer from the subdomain to the whole domain [0, 1] × [0, 1]. Since the observation and
prediction samples are located in different positions, only models with decoupling properties can be
used as the completer and propagator.

The performance of the model is compared with that of DeepONet(Lu et al., 2021), GNOT(Hao
et al., 2023) and LNO(Wang & Wang, 2024) in both stages.

A.1.4 METRICS

Since our experiment consists of standard benchmarks and practical design tasks, we also include
several design-oriented metrics in addition to the relative L2 for physics fields.

Relative L2 for physics fields Given the physics field u and the model predicted field û, the
relative L2 of model prediction can be calculated as follows:

Relative L2 =
∥u− û∥
∥u∥

. (23)
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Mean Absolute Error (MAE) Given the physics field u and the model predicted field û, the mean
absolute error of the model prediction can be calculated as follows:

MAE =
1

N

N∑
i=1

|ui − ûi| , (24)

Relative L2 for drag and lift coefficients For Shape-Net Car and AirfRANS, we also calculated
the drag and lift coefficients based on the estimated physics fields. For unit density fluid, the coeffi-
cient (drag or lift) is defined as follows:

C =
2

v2A

(∫
∂Ω

p(ξ)
(
n̂(ξ) · î(ξ)

)
dξ +

∫
∂Ω

τ(ξ) · î(ξ)dξ
)
, (25)

where v is the speed of the inlet flow, A is the reference area, ∂Ω is the object surface, p denotes
the pressure function, n̂ means the outward unit normal vector of the surface, î is the direction
of the inlet flow and τ denotes wall shear stress on the surface. τ can be calculated from the air
velocity near the surface (McCormick, 1994), which is usually much smaller than the pressure item.
Specifically, for the drag coefficient of Shape-Net Car, î is set as (−1, 0, 0) and A is the area of
the smallest rectangle enclosing the front of cars. As for the lift coefficient of AirfRANS, î is set
as (0, 0,−1). The relative L2 is defined between the ground truth coefficient and the coefficient
calculated from the predicted velocity and pressure field.

Spearman’s rank correlations for drag and lift coefficients Given K samples in the test set with
the ground truth coefficients C = {C1, · · · , CK} (drag or lift) and the model predicted coefficients
Ĉ = {Ĉ1, · · · , ĈK}, the Spearman correlation coefficient is defined as the Pearson correlation
coefficient between the rank variables, that is:

ρ =
cov

(
R(C)R(Ĉ)

)
σR(C)σR(Ĉ)

, (26)

where R is the ranking function, cov denotes the covariance and σ represents the standard deviation
of the rank variables. Thus, this metric is highly correlated to the model guide for design opti-
mization. A higher correlation value indicates that it is easier to find the best design following the
model-predicted coefficients (Spearman, 1961).

A.2 ADDITIONAL METHOD FOR COORDINATES REPRESENTATION

Gram-Schmidt Method: One straightforward method for computing these coordinates is to ap-
ply the Gram-Schmidt orthogonalization procedure (Björck, 1994) to the original bases, as illus-
trated in Eq. (28). Specifically, given a set of bases {κ1, . . . , κM}, the associated orthogonal bases
{ϵ1, . . . , ϵM} can be obtained as follows.

ϵ1 =
κ1

∥κ1∥
, ∥κ1∥ =

√
⟨κ1, κ1⟩,

ϵ̃i = κi −
i−1∑
j=1

⟨κi, ϵj⟩ ϵj , ϵi =
ϵ̃i√
⟨ϵ̃i, ϵ̃i⟩

, i = 2, . . . ,M
(27)

Consequently, the coordinates of the original bases κ with respect to the orthogonal bases ϵ can be
represented by the matrix Θ ∈ RM×M , where

Θi,j = ⟨κi, ϵj⟩ ≈
1

N

N∑
k=1

κi(xk)ϵj(xk), i, j = 1, . . . ,M. (28)

Each row Θi can thus be interpreted as the “position” of the state si in the space defined by the
orthogonal bases. The computational complexity of this procedure is O(NM2), which may become
prohibitively expensive when M is large.
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Figure 2: Times Efficency Analysis on Number of States and Points

Static Bases Method: Although the aforementioned methods provide a principled approach for
computing the coordinates, empirical strategies are also worth considering, as they typically require
fewer computational resources. In this approach, a set of bases {ϵ1, . . . , ϵE} is selected empirically
to compute the coordinates Θ of {κ1, . . . , κM} as follows:

Θij = ⟨κi, ϵj⟩ ∈ RM×E . (29)

Subsequently, the columns of Θ with the top-k variances are retained and taken as the coordinates
of the state tokens. For instance, one may employ a series of Fourier basis functions, as their
coefficients can be efficiently computed via the Fast Fourier Transform (FFT). This approach enables
the evaluation of the coordinates of N candidate bases with respect to M functions at an overall
computational cost of O(MN logN).

A.3 ADDITIONAL EXPERIMENTAL RESULTS

The results of TransolverXP on standard PDE benchmark is shown in Tab. 5.

A.4 TIMES EFFICENCY ANALYSIS

The computational complexity of the Gram eigenvalue algorithm is O(N +M3), where N denotes
the number of samples and M represents the feature dimension. The empirical results show that
when M is relatively small, the execution time grows markedly with increasing N , suggesting that
the linear term in the complexity dominates. As M becomes larger, however, the cubic term M3

emerges as the principal factor, leading to a significant increase in runtime while the dependence on
N becomes negligible. This observation is consistent with the theoretical analysis and underscores
the scalability limitation of the algorithm with respect to high-dimensional features.

A.5 INPLEMENTATION SETTINGS

Table 7 summarizes the training and model configurations of TransolverXP and HGsolver. Training
settings, including learning rate, optimizer, batch size, and number of epochs, are adopted directly
from previous works (Wu et al., 2024; Bonnet et al., 2022; Hao et al., 2023; Deng et al., 2024)
without additional tuning. Loss functions are defined separately for volume (Lv) and surface fields
(Ls), with Darcy additionally incorporating a spatial gradient regularization term (Lg) following
ONO (Xiao et al., 2024). For HGsolver, we employ a 4+4 encoder-decoder structure, which is
applied consistently across all relevant benchmarks.

A.6 COMPUTER SYSTEM INFORMATION

Deatailed information of computer system we conduct our experiments are shown in the sysinfo.txt
of supplementary materials.
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Table 5: Relative ℓ2 error on standard benchmarks are presented as mean of 4 runs.“/” means that
the baseline cannot apply to this benchmark. For clarity, the first, second, and third best are high-
lighted. All metrics are derived from Transolve++ (Luo et al., 2025), with models maintaining an
equivalent number of parameters.

MODEL
POINT CLOUD STRUCTURED MESH REGULAR GRID

ELASTICITY PLASTICITY AIRFOIL PIPE NAVIER–STOKES DARCY

FNO / / / / 0.1556 0.0108
WMT 0.0359 0.0076 0.0075 0.0077 0.1541 0.0082
U-FNO 0.0239 0.0039 0.0269 0.0056 0.2231 0.0183
GEO-FNO 0.0229 0.0074 0.0138 0.0067 0.1556 0.0108
U-NO 0.0258 0.0034 0.0078 0.0100 0.1713 0.0113
F-FNO 0.0263 0.0047 0.0078 0.0070 0.2322 0.0077
LSM 0.0218 0.0025 0.0059 0.0050 0.1535 0.0065

GALERKIN 0.0240 0.0120 0.0118 0.0098 0.1401 0.0084
HT-NET / 0.0333 0.0065 0.0059 0.1847 0.0079
OFORMER 0.0183 0.0017 0.0183 0.0168 0.1705 0.0124
GNOT 0.0086 0.0336 0.0076 0.0047 0.1380 0.0105
FACTFORMER / 0.0312 0.0071 0.0060 0.1214 0.0109
ONO 0.0118 0.0048 0.0061 0.0052 0.1195 0.0076

TRANSOLVER 0.0064 0.0012 0.0053 0.0033 0.0900 0.0057
LNO 0.0069 0.0029 0.0053 0.0031 0.0830 0.0063
TRANSOLVER++ 0.0052 0.0011 0.0048 0.0027 0.0719 0.0049

TRANSOLVERXP 0.0050 0.0015 0.0061 0.0030 0.0842 0.0069

Table 6: Performance comparison on design-oriented tasks is conducted. In addition to the rela-
tive ℓ2 error of the surrounding (Volume) and surface (Surf) physics fields, the relative ℓ2 errors of
the drag coefficient (CD) and lift coefficient (CL) are also recorded, along with their correspond-
ing Spearman’s rank correlations ρD and ρL. A Spearman’s correlation value close to 1 indicates
superior performance. For clarity, the best results are in bold.

MODEL∗
SHAPE-NET CAR AIRFRANS

VOLUME ↓ SURF ↓ CD ↓ ρD ↑ VOLUME ↓ SURF ↓ CL ↓ ρL ↑
SIMPLE MLP 0.0512 0.1304 0.0307 0.9496 0.0081 0.0200 0.2108 0.9932
GRAPHSAGE 0.0461 0.1050 0.0270 0.9695 0.0087 0.0184 0.1476 0.9964
POINTNET 0.0494 0.1104 0.0298 0.9583 0.0253 0.0996 0.1973 0.9919
GRAPH U-NET 0.0471 0.1102 0.0226 0.9725 0.0076 0.0144 0.1677 0.9949
MESHGRAPHNET 0.0354 0.0781 0.0168 0.9840 0.0214 0.0387 0.2252 0.9945

GNO 0.0383 0.0815 0.0172 0.9834 0.0269 0.0405 0.2016 0.9938
GALERKIN 0.0339 0.0878 0.0179 0.9764 0.0074 0.0159 0.2336 0.9951
GNOT 0.0329 0.0798 0.0178 0.9833 0.0049 0.0152 0.1992 0.9942
GINO 0.0386 0.0810 0.0184 0.9826 0.0297 0.0482 0.1821 0.9958
3D-GEOCA 0.0319 0.0779 0.0159 0.9842 / / / /
TRANSOLVER 0.0207 0.0745 0.0103 0.9935 0.0037 0.0142 0.1030 0.9978

TRANSOLVERXP 0.0199 0.0622 0.0095 0.9938 0.0031 0.0094 0.1535 0.9963
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Table 7: Training and model configurations of TransolverXP and HGsolver. Training configurations
are directly from previous works without extra tuning (Wu et al., 2024; Bonnet et al., 2022; Hao
et al., 2023; Deng et al., 2024). Here Lv and Ls represent the loss on volume and surface fields
respectively. As for Darcy, we adopt an additional spatial gradient regularization term Lg following
ONO (Xiao et al., 2024).
Here, we emphasize we apply a 4+4 encoder-decoder structure in HGsolver.

BENCHMARKS
TRAINING CONFIGURATION (SHARED IN ALL BASELINES) MODEL CONFIGURATION

LOSS EPOCHS INITIAL LR OPTIMIZER BATCH SIZE LAYERS L HEADS CHANNELS C SLICES M

ELASTICITY

500 10−3

1

8 8

128 64
PLASTICITY 8 128 64
AIRFOIL RELATIVE ADAMW 4 128 64
PIPE L2 (2019) 4 128 64
NAVIER–STOKES 2 256 32
DARCY LrL2 + 0.1Lg 4 128 64

SHAPE-NET CAR Lv + 0.5Ls 200
10−3 ADAM 1 8 8 256 32

AIRFRANS Lv + Ls 400 (2015) 1 256 32
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