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ABSTRACT

There are a wide range of different tokenizers and vocabularies that have been
used to train language models, and training a language model on just one of these
can be prohibitively expensive. The ability to swap the vocabulary of a model
after it has been trained enables models to be adapted to different tokenizers, and
even different languages, without the computational or data cost of from-scratch
training. In this paper, we ask when such swaps are possible, and how to perform
them effectively? The major challenge of performing a vocab swap is re-learning
the parameters of the embedding layer for the vocabulary. We observe that it is
possible to re-learn the embedding for a vocabulary using a naive initialization,
and we investigate strong initialization strategies that enable learning of new em-
beddings for swapped vocabularies, even when those vocabularies come from a
different source language than the original language model.

1 INTRODUCTION

Every language modeling task begins with a tokenizer that breaks text down into a sequence of
words from a fixed and finite vocabulary. The choice of tokenizer, and the resulting vocabulary of
tokens it induces, is often treated as arbitrary when designing a language model. Yet, the model’s
vocabulary can have a major impact on the suitability of a model for downstream tasks. For example,
a model trained on a standard text corpus may lack the vocabulary needed to efficiently represent
common words in a set of technical documents, may lack words that have gained common usage
after the model was trained, or may lack the vocabulary needed to represent words in a different
(human or computer) language. This problem is compounded by the fact that performant language
models are prohibitively expensive to train for many researchers and practitioners. As a result,
we are usually forced to adopt the vocabulary of the language model we have rather than using a
vocabulary that is ideal for the task at hand. This problem is particularly painful when working with
under-resourced languages, in which case training a language model from scratch is infeasible even
with unlimited/extreme computational resources.

A huge body of work has focused on adapting language models to downstream tasks, often by
swapping out the last layer parameters. By contrast, less is understood about swapping a vocabu-
lary, which requires re-training the embedding layer of a model to form a new monolingual model.
Artetxe et al. (2020) and Tran (2020) made progress in their work on creating multilingual mod-
els from a monolingual models and Pfeiffer et al. (2021) tackled the problem through vocabulary
extension. Additionally, Aji et al. (2020) analyzed similar problems in neural machine transla-
tion. Nevertheless, a more mechanistic understanding of how different initialization schemes affect
the transferabilty of a monolingual model to a new language remains the least explored of these
questions. Moreover, most common techniques often handle this problem by brute-force training
a multi-language model with a very large vocabulary that encompasses the entire range of possi-
ble downstream tokens (Devlin et al., 2019; Conneau et al., 2020; Feng et al., 2020). However, it
has been found that training on these large vocabularies can result in deteriorated performance, a
phenomenon that has been dubbed the curse of multilinguality (Conneau et al., 2020).

To better understand what is required for a successful swap, we start by investigating the simpler
task of throwing away the embedding layer and recovering it by training with the downstream layers
frozen. Interestingly, we find that it is indeed possible to recover the unknown embedding, provided
we anchor the process by initializing a small subset of tokens to their true original value. We then
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Figure 1: Swapping a vocabulary. Given a base model, BERT, we investigate strategies to swap into
another vocabulary, here English to French and analyze the effects of various strategies to jump-
start the new embedding. We find that a good initialization that anchors even a few key embedding
correspondences can substantially improve the quality of the swap.

investigate the possibility of generating an embedding layer for a vocabulary derived from a different
tokenizer, and even a completely different underlying language, than the original. Surprisingly, our
observation of anchoring carries over to this much harder learning problem – anchoring a small
subset of tokens with a smart initialization strategy is enough to enable fast adaptation of the model to
a new language. Our main contributions are as follows: (1) First we introduce a simple but effective
dictionary mapping that enables cross lingual transfer of monolingual model to a new language. (2)
Then through the lens of BERT embedding recovery, a tokenizer swap, and cross lingual transfer,
we compare how different initialization strategies lead to different downstream performance and
geometric representations observing that anchoring is a key reason for a success swap. (3) Finally,
we show that two different techniques, namely word alignment and dictionary matching, lead to
similar representations in the word embedding matrix due to anchoring effects.

2 PROBLEM STATEMENT AND METHODOLOGY

We center our study of the vocabulary swapping problem on the effects that different training pro-
cedures have on the token embeddings the language model learns. To this end, we use the most
popular model for transfer learning and finetuning, bert-base-uncased, as the starting point
for these experiments (Devlin et al., 2019). We use the term source, or source model to refer to
such a model that is available off-the-shelf (fully pretrained) and target or target vocabulary to refer
to the language and tokenization to which we would like to adapt the source model. We consider
a standard pretraining and finetuning setup where we pretrain an encoder-only transformer on the
masked language modeling objective (MLM), and then attach a task specific head and fine-tune the
model on a downstream language understanding classification task. In the rest of the work we will
regularly use the term “pretraining” to mean MLM training on the original source vocabulary, and
“continued” MLM training to denote training/adapting a model on a new target vocabulary after it
has been pre-trained on the source.

2.1 INITIALIZATION SCHEMES

We reduce the goal of producing a new monolingual model via a vocabulary swap to an initialization
problem for a given model architecture and a target vocabulary. There are various options to consider
for how the parameters of the target model will be initialized. In all scenarios we primarily focus
on the reinitialization of the matrix of word embeddings, as the embedding matrix of the source
model is indexed by the vocabulary of the source model and therefore must be modified or replaced
before the model can be used in the target language. We investigate a naive baseline of random
initialization and three stronger initialization methods. These strong methods correspond to various
matching schemes, which map tokens in the source vocabulary onto tokens in the target vocabulary.
This mapping can be 1-to-1 or many-to-1, and enables the target embedding matrix to be initialized
using vectors from the source embedding matrix. The matching schemes we consider are described
below.

From Scratch: The most trivial approach for adapting a model to a target vocabulary is to throw
up your hands and train an entirely new model completely from scratch. This means invoking a
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standard weight initialization scheme for all layers in the network, and additionally replacing the
embedding matrix with a new one indexed by the tokens of the target vocabulary.

Reinitialized Embedding + Pretrained Backbone (Reinit Embed): This second setting exploits
the downstream language logic already learned by the source model by using its pretrained trans-
former backbone and only randomly initializing the embedding matrix. This methods assumes that
the function learned by the transformer blocks is general purpose and can be transferred to the target
modelling problem (Artetxe et al., 2020; de Vries et al., 2021). We discuss this setting in more detail
in the next section.

Frequency Matching (Freq Match): The first strong initialization scheme we consider is based
on the hypothesis that the semantics of the word vectors learned in the embedding matrix are intrin-
sically linked to their frequency distribution in the training corpus. Gogoulou et al. (2022) develop
a matching scheme between two WordPiece-based tokenizers where they leverage the implicit fre-
quency ordering of the output from the WordPiece algorithm. The resulting matching scheme is
to initialize Wsrc using vectors from the frequency-ordered embedding Wtgt as w[i]

tgt ← w
[i]
src. We

modify this slightly and adopt what we call explicit frequency matching, where occurrence counts
for each word in the vocabulary are independently computed over the training set in each of the
respective languages (not relying on the WordPiece frequency ordering), the two vocabularies are
sorted (re-indexed) by these frequency counts, j ∈ [0 → V − 1] where Wtgt ∈ R(V×d), and then
the initialization scheme is performed as stated above under this new index w

[j]
tgt ← w

[j]
src.

Alignment Matching (Align Match): The second of the stronger initialization schemes we con-
sider is the two-stage technique described in Tran (2020) for aligning two sets of independently
trained embedding vectors from different vocabularies Lample et al. (2018); Joulin et al. (2018).
The first stage of the method uses fastText Bojanowski et al. (2017) as a source of pretrained word
vectors in the source and target natural languages. These word vectors are aligned using the method
from Joulin et al. (2018), and then each vector in the target language is assigned a group of nearest
neighbord from the source language. During the second stage, the entries of Wtgt are initialized as
linear combinations of the vectors in Wsrc as w

[i]
tgt ←

∑
j αjw

[j]
src,

∑
j αj = 1, where the mixing

parameters {αj} are largest for the closest neighbors. 1

Dictionary Matching (Dict Match): Finally, we consider a simple yet surprisingly effective strat-
egy based on access to a dictionary between the source and target vocabularies. In this scheme we
initialize vectors in the target embedding using their single-word dictionary translation if one exists.
We can build this dictionary on demand for any pair of source and target vocabularies using Google
Translate, assuming that the source and target are natural languages. This provides a simple and
accurate matching for many commonly used words.

2.2 BACKBONE PARAMETERS AND MODEL GRADIENTS

In additional to investigating the role of the initialization schemes described above, we also consider
the following training settings.

Transformer Backbone Components: While we primarily focus our analysis of initialization
schemes and their effects on the word embedding matrix, we also study how the transfer of all the
other parameters of the transformer – positional embeddings, attention projections, feed-forward
layer weights, and layer norm parameters – affects the vocabulary swap process. In select experi-
ments we randomly initialize the word embedding matrix only, and transfer the pretrained positional
embeddings from the source model, but in others, all parameters before and after the transformer
blocks are randomly initialized as done in (Artetxe et al., 2020).

Parameter Freezing: We consider two primary policies for gradient flow during continued MLM
training and downstream finetuning. The default setting is to allow all of the model parameters to
be updated during training by computing all gradients, denoted All Grad. The other is Embed
Grad, where we only update the parameters in the embedding layer (the backbone is frozen). In
a few isolated cases in service of controlled analysis, we test even further restricting gradient flow

1We note that this is within the scope of our problem formulation because these word vectors are learned
without parallel corpora, and without needing to train an expensive transformer encoder with them, so like the
source transformer parameters, we consider this to be available “off-the-shelf”.
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to just the word embedding matrix, freezing the positional embeddings as well as the layer norm
parameters. We clearly differentiate this variant where relevant.

2.3 LENSES OF ANALYSIS

Our empirical analyses is motivated by a few hypotheses. First, we suspect that learning an appropri-
ate embedding for the new vocabulary, rather than updating the backbone transformer, is the primary
challenge during a vocabulary swap as it represents a significant domain shift from the perspective
of the downstream layers. Second, two high-performance models that share a vocabulary and down-
stream backbone should also share similar embedding matrices. To investigate these claims, we will
run experiments where we learn the embedding layer of a model twice in two different ways, and
then compare the embeddings learned. We consider the following measure of similarity.

Embedding Correlation: The correlation between two word embedding matrices W1 and W2, both
indexed by the token ids of the same vocabulary V , is defined as the average pearson correlation of
corresponding word vectors from the two embeddings:

ρ̄(W1,W2) =
1

|V |
∑

ρi, ρi =
COV (xi, yi)

σxiσyi

, ∀i ∈ V

Model Performance: We ground our embedding analysis to the real cross lingual transfer setting
by quantifying the effectiveness of various initialization and training strategies using standard per-
formance metrics. For continued MLM pretraining in a target language, we measure the negative
log likelihood on a validation set and for finetuning tasks we measure the standard evaluation metric
for the classification dataset, generally accuracy on the validation set.

3 EXPERIMENTAL SETUP

We consider three classes of experiments, two synthetic swap scenarios that give us a lot of control
over the vocabularies and embeddings, and a traditional cross-lingual transfer experiment.

3.1 EXPERIMENT 1: BERT EMBEDDING RECOVERY

The value of a case study in recovering BERT embeddings derives from the controlled nature of the
experimental setting. We suspect that the success of a cross lingual transfer under the traditional
language swap scenario will be predicated on the feasibility of simply relearning a specific known
embedding, under various levels of perturbation and different kinds of reinitialization. Starting with
a fully pretrained BERT checkpoint, we perturb the embedding and then continue training to see
how accurately the original embedding is recovered. We experiment with the following methods for
perturbing the embedding with various levels of severity.

Permute: We explore completely scrambling the vectors, and also scrambling them within a fre-
quency window of width 100. For example, for token id from 100 to 200, token id 114 is now
initialized with a random word vector from that same window. We use the permutation to under-
stand if frequency is important for initialization as postulated by (Gogoulou et al., 2021).

Keeping x% of Word Vectors: We uniformly select x% of random word vectors to keep, and
randomize the rest. This is to mimic a dictionary mapping or other more complex word alignment
techniques like (Tran, 2020).

We compare these initializations to the Scratch and Reinit Embed settings described
in Section 2. As a reference point we also consider the performance an unmodified
bert-base-uncased model that we continue to train – this provides a baseline with the same
amount of total training as the experimental models. We study both what happens when you reini-
tialize the whole embedding versus just the word embedding layer to understand how positional
embeddings affect the word representations learned. For these pre-training runs, we continue train-
ing on the MLM objective–using the canonical 15% masked tokens per sequence–with a sequence
length of 128 for 40k steps and 512 for 10k steps to emulate (Devlin et al., 2019).2 After MLM

2Initial results showed that 5k steps or 10% of the total steps of sequence length 512 was not sufficient.
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training, we use MNLI Williams et al. (2018), MRPC Dolan & Brockett (2005), and STSB Cer et al.
(2017) from the GLUE benchmark to measure the effect that the different initialization schemes for
MLM training have on downstream classification performance.

3.2 EXPERIMENT 2: FRANKENBERTA

In this experiment we start with a pretrained roberta-base model, which uses its native Byte-
Pair-Encoding (BPE) vocabulary, and attempt to swap it to use a bert-base-uncased tokenizer,
whose vocabulary is generated using the WordPiece algorithm. Our hope is that the more powerful
RoBERTa model, after a vocab swap, can out-compete BERT on its home turf. We run experiments
using the Scratch, Reinit Embed, Freq Match, and Dict Match initialization schemes and we train in
the All-Grad and Embed-Grad settings using the same pre-training set-up and downstream tasks as
in the BERT Recovery experiments. 3

3.3 EXPERIMENT 3: CROSS-LINGUAL TRANSFER (CLT)

Finally, to study the realistic scenario of retrofitting a pretrained model to process a com-
pletely different underlying natural language, we perform CLT experiments in which an English
bert-base-uncased model is vocab-swapped to accept the WordPiece vocabulary from the
dbmdz/bert-base-german-cased model. We also consider a swap to the BPE tokenizer vo-
cabulary for the French flaubert/flaubert_base_cased model (Le et al., 2019). In these
experiments we consider GermanBERT and FlauBERT as the optimal reference models. We run
experiments across our battery of initialization schemes and two gradient control settings.

Shared Implementation Details: For all experimental settings except FrankenBERTa, we use a
bert-base-uncased model, which has an embedding layer consisting of word vectors, posi-
tional encodings, and token type sub components, the outputs of which are added together before
applying a layer norm and passing the outputs to the first self-attention block. For all English set-
tings, the dataset is a 50% slice of the bookcorpus and wikipedia datasets. We use an effective
batch size of 256 when training with sequence length 128, and 48 effective batch size when training
sequence length 512. For the CLT pre-training runs, we continue training on the MLM objective
with a sequence length of 128 for 90k steps and 512 for 10k steps. For the German and French CLT
settings, we use Wikipedia datasets derived from dumps of french and German Wikipedia respec-
tively. Here we use the downstream tasks that are equivalent to MNLI and MPRC, XNLI introduced
by Conneau et al. (2018) and PAWX-S introduced by Yang et al. (2019) from the XTREME dataset
Hu et al. (2020), and Pearson correlation relative to other setting types. For the downstream ex-
periments on XNLI, we train and test in the target language, using the official machine translations
provided.

4 RESULTS AND DISCUSSION

We observe that, for toy embedding recovery problems, random initialization of embeddings gen-
erally performs poorly, while stronger initializations result in an “anchoring” effect that enables
fairly accurate recovery of the original embedding. Interestingly, this lesson carried over to the
cross-lingual setting. There too, we see that anchored initializations facilitate effective learning of
embeddings.

4.1 BERT EMBEDDING RECOVERY

Figure 2 and Figure 7 in Appendix A.1 show correlations between the original and recovered em-
beddings when trying to recover a BERT embedding that has been corrupted by various means.

The first thing to observe is that random initialization of the embedding makes recovery quite diffi-
cult. When updating all the layers or training just the embedding with a lower learning rate, we find

3We omit the Align Match technique here because when swapping between different vocabularies over the
same underlying language, the first step of the alignment process degenerates to a form of dictionary matching
since the two sets of fastText vectors being aligned would actually be the same, with a trivial (identity) transla-
tion matrix between them. Additionally, Dict Match devolves into an exact match between the two tokenizers.
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Figure 2: The correlation between the pretrained BERT-baseline embedding matrix and a retrained
embedding matrix over 50k step in increments of 5k. Each figure shows the different initialization
schemes: permute (whole and in window), random initialization, reinitialize word vectors (25%,
50%, 75% kept). Left shows retraining all embedding layers with a peak LR of 5e-4 after reini-
tialization all embedding layers and initializing with the given scheme. Right shows retraining all
embedding layers after reinitialization with a peak LR of 1e-4.

that random initialization yields a poor recovery. Training the embedding with a higher learning rate
improves performance, but still not to the degree possible with better initializations.

We find that anchoring the embedding matrix by keeping a percentage of the embedding vectors
forces the model to have a higher correlation with the original bert-base-uncased word em-
bedding in all settings we explored. Figure 7 shows the case where we constrain the problem so only
the word embedding can be updated. In this case, permutation initialization does recover the em-
bedding to a some degree of correlation. However, we see that performance of weak initializations
are quite fragile, namely permutation and Reinit Embed are quite sensitive to learning rates and the
choice of which layers to update.

Table 1 shows that downstream MNLI performance is mostly recovered by just training the em-
bedding layers for all settings except for scratch and the permutation initializations. The stronger
anchored initalization is quite successful, and unsurprisingly the more word vectors are kept from
the original BERT embedding the better the performance. When comparing these numbers to those
in Figure 2, we see that upstream MLM performance is quite predictive of MNLI performance. Fur-
thermore, we see that Reinit Embed performance varies with the training setup, as this initialization
in more sensitive to the training scheme. Overall, we see that one can recover the performance of
the original model when the initialization is favorable. In Table 4 and 6, we see a similar pattern
with MRPC and STSB results.

MNLI (Acc. m/mm)
Embed Layers

1e-4 5e-4

Bert Baseline 0.842/0.846(±0.004/0.004) 0.839/0.842(±0.003/0.004)
Scratch 0.7/0.708(±0.003/0.001) 0.702/0.709(±0.004/0.007)
Reinit Embed 0.82/0.821(±0.004/0.006) 0.829/0.832(±0.003/0.003)
25% Kept 0.83/0.834(±0.007/0.007) 0.831/0.831(±0.002/0.002)
50% Kept 0.833/0.834(±0.004/0.006) 0.83/0.834(±0.004/0.003)
75% Kept 0.836/0.837(±0.005/0.004) 0.833/0.837(±0.004/0.007)
Permute 0.777/0.781(±0.025/0.022) 0.754/0.763(±0.004/0.003)
Permute 100 0.734/0.74(±0.003/0.006) 0.726/0.74(±0.051/0.052)

Table 1: MNLI average accuracy over five seeds for Embed Grad for learning 1e-4 and 5e-4 after
50k of continue training with different initialization schemes. We see that we can mostly recover
the performance of BERT in most initialization schemes. Permutation initializations and Scratch do
not perform well compared to other methods.

Anchoring Effect: Figure 3 shows the anchoring effect of have a subset of word vectors initialized
from the original embedding. As training proceeds, the randomly initialized word vectors quickly
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Figure 3: Top: The distribution of Pearson Correlation between the word vectors of BERT and
embedding that is being trained, when 50% of embedding rows are kept. Shown are Initialization
(left), step 5000 (middle), and step 50000 (right). Bottom: The distribution of Pearson Correla-
tion between the word vectors of BERT and embedding that is being trained, random embedding
initialization at Initialization (left), step 5000 (middle), and step 50000 (right). We see a distinct
anchoring effect comparing both rows, as the randomly initialized vectors quickly move toward high
correlation with the original BERT word vectors.

revert towards their original values. Essentially the kept words seem to uniquely identify which loss
function basin the other vector should fall into. This effect is observed in the case of Reinit Embed,
but to a much weaker degree. This anchoring effect is a powerful tool, and it will enable us to boost
performance of vocab swaps in harder settings.

4.2 FRANKENBERTA

STSB (Pearson) MRPC (F1) MNLI (m/mm Acc.)

Dict LR 1e-4 (All) 0.89(±0.003) 0.907(±0.006) 0.868/0.867(±0.002/0.002)
Freq LR 1e-4 (All) 0.847(±0.01) 0.89(±0.004) 0.833/0.834(±0.002/0.003)
Reinit Emebd LR 1e-4 (All) 0.859(±0.006) 0.895(±0.004) 0.836/0.838(±0.002/0.001)
Dict LR 5e-4 (Embed) 0.897(±0.004) 0.904(±0.007) 0.874/0.874(±0.001/0.001)
Freq LR 5e-4 (Embed) 0.878(±0.004) 0.911(±0.002) 0.867/0.866(±0.001/0.002)
Reinit Emebd LR 5e-4 (Embed) 0.888(±0.002) 0.904(±0.007) 0.868/0.87(±0.001/0.001)
bert-base-uncased Pre-trained 0.886(±0.003) 0.886(±0.011) 0.847/0.848 (±0.001/0.003)
roberta-base Pre-trained 0.901(±0.004) 0.915(±0.01) 0.879/0.877 (±0.002/0.001)

Table 2: STSB, MRPC and MNLI average results over five seeds for RoBERTa models modified to
work with the BERT tokenizer. We also report the original BERT and RoBERTa performance as a
baseline. We see that we can produce a stronger WordPiece model than the original BERT in this
setting. Positional embeddings were not reinitialized.

Above, we studied an anchoring effect that enables us to re-learn embeddings from strong initial-
izations. Going forward, we want to know whether this anchoring effect is still present for harder
swaps. We now try to learn a better BERT WordPiece vocabulary language model than the original
BERT just by swapping the vocabulary of the more powerful RoBERTa backbone.

We find that, under the Dict Match scheme, the swapped model achieves an MLM loss of 1.52 versus
the original BERT model’s 1.723 shown in Figure 8 in the Appendix. Furthermore, across all three
downstream tasks in Figure 10, both the Dict Match and weaker Freq Match scheme achieve the
best results, outperforming BERT base, and nearly tying the performance of the original unmodified
RoBERTa.
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Figure 4: Performance on the validation set over the course of continued MLM training on German
Wikipedia and evaluation accuracy after finetuning on German XNLI at five different points during
the full MLM training run.

4.3 FULL CROSS LINGUAL TRANSFER

In cross lingual transfer, our goal is to re-purpose the English BERT model to understand either
French or German. We found that copying information about the word vectors from the source
model using either Dict Match or Align Match results in downstream classification performance
that is close to that of a fully trained BERT model in that language. The results from Table 12 show
that we achieve accuracy only 2% short of the FlauBERT reference model. Table 15 illustrates that
a smart initialization scheme enables performance only 0.5% shy of German BERT on XNLI. Table
13 and 16 show similar results for PAWS-X. Moreover, Figure 4 shows that the recovery is quite
quick when matching initializations are used. Although Dict Match and Align Match are highly
competitive, Freq Match and Reinit Embed failed to out-perform end-to-end from-scratch training.

Furthermore, from Figure 5, we can see that Dict Match and Align Match have fairly high embedding
correlation with each other. This correlation is even tighter in the top 50% most frequent words.
This reinforces the idea of “anchoring” – both methods seem to converge to a very similar loss basin
preferred by the model, despite starting from different locations. This “closeness” is also reflected
in the performance realized in the PAWS-X and XNLI tasks. The Reinit Embed methods produce
substantially different results from the strong initializations. Note that both Reinit runs started with
the same random seed. The fact they only achieve 50% correlation despite starting in the same place
is an indicator that their performance is strongly dependent on learning rate, just as we say with our
toy problem.

Anchoring Effect: Figure 6 shows the token-wise accuracy (matched/not matched) for Dict Match
for 1k most frequent words for the first 5k steps with histograms of the token-wise distribution for
the matched tokens and not matched tokens for step 1000 and step 5000. We see evidence that the
Dict Match scheme creates an anchoring effect by bootstrapping the accuracy of the non-matched
tokens to well above the accuracy of those same tokens under the from scratch setting.

5 RELATED WORK

Instead of training models from scratch for zero-shot cross-lingual transfer with large vocabularies
such as XLM-R Conneau et al. (2020), Tran (2020) and Artetxe et al. (2020) propose techniques for
creating multilingual models from English BERT. They first retrain word embedding for the target
language, then fine-tune the whole model in the source language, and finally evaluate the zero-shot
performance in the target language. Additionally, Artetxe et al. (2020) show that simply retraining
the embedding layer from a random initialization is competitive with multilingual BERT on standard
cross-lingual classification benchmarks suggesting that the success of multilingual models may not
be predicated on joint training and a shared sub-word vocabulary as postulated by (Pires et al.,
2019). Additionally, Garcia et al. (2021), Lakew et al. (2019), Lakew et al. (2018) have explored
this vocabulary problem in the context of NMTs.
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Figure 5: Embedding correlation between Reinit Embed, Align Match, and Dict Match at the end of
continued pre-training in the French target vocabulary. (Left) shows the average correlation between
all tokens of the embeddings. (Right) shows the correlation for the 50% most frequent tokens.
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Figure 6: (Left) Tokenwise average accuracy for Dict Match for the top 1k words during first 5k
steps. (Middle) shows the distribution of matched versus not matched for Dict Match at 1k steps.
(Right) shows the distribution of matched versus not matched for Dict Match at 5k steps.

de Vries & Nissim (2020) convert a casual language model, GPT-2, from English to Italian and
Dutch by retraining the embedding layer to show that transformer models can share representations
across languages. Gogoulou et al. (2021) consider the setting of two models with WordPiece tok-
enizers and used the natural frequency ordering of their vocabularies as a scheme to initialize the
embedding for the new language (called frequency matching in our study) and perform pre-training
and finetuning in the target language, thereby creating a new monolingual model from an existing
one. Additionally, de Vries & Nissim (2021) find performance is correlated with “distance” between
the source and target languages when retraining the word embedding layer from a random initial-
ization with limited data. Finally, Wu et al. (2022) found that continued pre-training in the target
language after reinitializing the embedding improves performance.

6 CONCLUSION

We investigate the feasibility of vocabulary swaps for language models based on transformer archi-
tectures. We categorize a variety of initialization strategies that have the potential to warm-start such
a swap. Empirically, we then first verify that it is indeed possible to “retrain the same embedding
twice”, in a control study of BERT embedding recovery. We move to a swap between two English-
language tokenizers, finding that with the right strategy, a BERT tokenizer can be swapped onto a
roBERTa model, and result in an improved model. Finally, we analyze swaps from English into
French and German where we find that clever initializations through matching can almost match the
performance of models trained entirely in these languages. Throughout our analysis we study the
anchoring effect of a good initialization, and observe its important in achieving a successful swap.
We hope that the intuitions we develop here can contribute to the more flexible use of pre-trained
models, and the development of models for a broad range of languages.
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A APPENDIX

A.1 FURTHER IMPLEMENTATION DETAILS

We used a linear decay learning rate with a peak of 5e-4 and 1e-4 when training the embedding layer
or the word embedding layer, and used a peak learning rate of 1e-4 and 5e-5 for updating all the
layers. A learning rate 5e-4 was shown to be unstable when updating all layers of the model in pre-
liminary experiments. 4 All continued pre-training experiments were done on NVIDIA RTXA5000
GPUs. For downstream tasks, we use a single GPU and the default hyperparameters from the Hug-
gingFace library.

Tokenizer Algorithm Approximate Vocab Size

bert-base-uncased Wordpiece 30k
roberta-base Byte-Pair Encoding 50k
dbmdz/bert-base-german-cased Wordpiece 30k
flaubert/flaubert_base_cased Byte-Pair Encoding 68k

Table 3: Huggingface Tokenizer Name with algorithm used and approximate vocabulary size.
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Figure 7: The correlation between the pretrained BERT-baseline embedding matrix and a retrained
embedding matrix over 50k step in increments of 5k. Each figure shows the different initialization
schemes: permute (whole and in window), random initialization, reinitialize word vectors (25%,
50%, 75% kept). Left shows retraining all layers after reinitialization with a peak LR of 1e-4. Right
shows retraining just the word embedding layers after reinitialization of only the word embedding
layer with a peak LR of 5e-4.

4When training only the word embedding, sequence length of 128 was used throughout training since the
positional embeddings are preserved.

13



Under review as a conference paper at ICLR 2023

MRPC (F1)
All Layers Embed Layers

1e-4 5e-5 1e-4 5e-4

Bert Baseline 0.895(±0.006) 0.897(±0.007) 0.895(±0.005) 0.881(±0.007)
Scratch 0.833(±0.01) 0.813(±0.004) 0.809(±0.003) 0.807(±0.006)
Reinit Embed 0.859(±0.009) 0.847(±0.013) 0.861(±0.009) 0.879(±0.006)
25% Kept 0.871(±0.003) 0.871(±0.011) 0.857(±0.006) 0.889(±0.01)
50% Kept 0.87(±0.013) 0.877(±0.007) 0.876(±0.008) 0.881(±0.003)
75% Kept 0.877(±0.007) 0.892(±0.003) 0.87(±0.012) 0.86(±0.004)
Permute 0.856(±0.004) 0.864(±0.018) 0.881(±0.009) 0.849(±0.004)
Permute 100 0.86(±0.008) 0.862(±0.009) 0.846(±0.007) 0.854(±0.011)

Table 4: MRPC F1 average over five seeds of different perturbations to the BERT embedding. We
see that keeping some percent of the initial vectors is the most successful strategy.

STSB (Pearson Correlation)
All Layers Embed Layers

1e-4 5e-5 1e-4 5e-4

Bert Baseline 0.871(±0.002) 0.875(±0.004) 0.882(±0.007) 0.862(±0.005)
Scratch 0.823(±0.009) 0.793(±0.023) 0.178(±0.008) 0.187(±0.017)
Reinit Embed 0.837(±0.006) 0.84(±0.004) 0.838(±0.005) 0.863(±0.004)
25% Kept 0.854(±0.002) 0.85(±0.007) 0.855(±0.007) 0.859(±0.003)
50% Kept 0.858(±0.001) 0.853(±0.005) 0.848(±0.014) 0.849(±0.007)
75% Kept 0.86(±0.004) 0.862(±0.003) 0.853(±0.004) 0.846(±0.006)
Permute 0.835(±0.009) 0.816(±0.007) 0.83(±0.005) 0.813(±0.008)
Permute 100 0.837(±0.003) 0.825(±0.003) 0.822(±0.003) 0.819(±0.003)

Table 5: STSB Pearson Correlation average over five seeds of different perturbations to the BERT
embedding. We see that keeping some percent of the initial vectors is on average the most successful
strategy.
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Figure 8: Performance on the validation set over the course of continued MLM training on French
Wikipedia and evaluation accuracy after finetuning on French XNLI at five different points during
the full MLM training run.
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MNLI (Acc. m/mm)
All Layers

1e-4 5e-5

Bert Baseline 0.838/0.842(±0.004/0.004) 0.841/0.844(±0.002/0.002)
Scratch 0.776/0.778(±0.003/0.002) 0.748/0.754(±0.002/0.002)
Reinit Embed 0.808/0.813(±0.003/0.004) 0.804/0.81(±0.003/0.006)
25% Kept 0.833/0.835(±0.002/0.002) 0.832/0.834(±0.005/0.004)
50% Kept 0.833/0.837(±0.004/0.003) 0.835/0.836(±0.002/0.003)
75% Kept 0.835/0.837(±0.001/0.001) 0.837/0.838(±0.003/0.002)
Permute 0.779/0.788(±0.005/0.003) 0.764/0.773(±0.003/0.005)
Permute 100 0.777/0.787(±0.004/0.004) 0.763/0.77(±0.002/0.003)

Table 6: MNLI accuracy average over five seeds of different perturbations to the BERT embedding.
We see that keeping some percent of the initial vectors is the most successful strategy.

MNLI (Acc. m/mm)
Embed Layers

1e-4 5e-4

Bert Baseline 0.842/0.846(±0.004/0.004) 0.839/0.842(±0.003/0.004)
Scratch 0.7/0.708(±0.003/0.001) 0.702/0.709(±0.004/0.007)
Reinit Embed 0.82/0.821(±0.004/0.006) 0.829/0.832(±0.003/0.003)
25% Kept 0.83/0.834(±0.007/0.007) 0.831/0.831(±0.002/0.002)
50% Kept 0.833/0.834(±0.004/0.006) 0.83/0.834(±0.004/0.003)
75% Kept 0.836/0.837(±0.005/0.004) 0.833/0.837(±0.004/0.007)
Permute 0.777/0.781(±0.025/0.022) 0.754/0.763(±0.004/0.003)
Permute 100 0.734/0.74(±0.003/0.006) 0.726/0.74(±0.051/0.052)

Table 7: MNLI accuracy average over five seeds of different perturbations to the BERT embedding.
We see that keeping some percent of the initial vectors is the most successful strategy.

MLM loss at 50k Steps
Embed Layers All Layers Word Embed Only
1e-4 5e-4 5e-5 1e-4 1e-4 5e-4

Reinit Embed 1.87 1.82 1.58 1.56 2.26 1.96
75% Kept 1.9 1.83 1.6 1.58 1.91 1.91
50% Kept 1.92 1.86 1.66 1.62 1.93 1.91
25% Kept 1.99 1.81 1.77 1.66 2.00 1.95
Permute 3.05 3.2 2.65 2.3 2.23 1.95

Permute 100 3.83 3.29 2.72 2.27 2.18 1.96
Scratch - - 2.97 2.39 - -

Table 8: MLM loss of different BERT initializations and training protocols.

MLM loss RoBERTa backbone with BERT tokenizer
Embed Grad All Grad

LR 5e-4 LR 1e-4

Reinit Embed 1.64 1.86
Freq Match 1.71 1.99
Dict Match 1.56 1.52

Table 9: MLM loss of different three initializations and two training protocols.
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STSB (Pearson) MRPC (F1) MNLI (m/mm Acc.)

Dict LR 1e-4 (All) 0.84(±0.003) 0.868(±0.008) 0.827/0.831(±0.001/0.002)
Freq LR 1e-4 (All) 0.803(±0.003) 0.87(±0.005) 0.794/0.801(±0.001/0.003)
Reinit Emebd LR 1e-4 (All) 0.816(±0.002) 0.861(±0.005) 0.777/0.785(±0.004/0.004)
Dict LR 5e-4 (Embed) 0.839(±0.003) 0.888(±0.009) 0.829/0.835(±0.002/0.001)
Freq LR 5e-4 (Embed) 0.837(±0.007) 0.875(±0.011) 0.822/0.825(±0.005/0.005)
Reinit Emebd LR 5e-4 (Embed) 0.81(±0.007) 0.88(±0.006) 0.822/0.826(±0.003/0.003)
bert-base-uncased Pre-trained 0.886(±0.003) 0.886(±0.011) 0.847/0.848 (±0.001/0.003)
roberta-base Pre-trained 0.901(±0.004) 0.915(±0.01) 0.879/0.877(±0.002/0.001)

Table 10: STSB, MRPC and MNLI average results over five seeds. Swapping the Wordpiece BERT
tokenizer to the BPE RoBERTa tokenizer. We see that Dict Match gets the closest performance to
BERT, but does not recover.

French MLM loss at 100k Steps
Embed Layers All Layers
1e-4 5e-4 5e-5 1e-4

Scratch - - - 1.82
Embed Reinit 3.07 2.94 1.89 1.75
Freq Match - - 1.94 1.74
Align Match 2.31 2.42 1.52 1.49
Dict Match 2.36 2.43 1.57 1.54

Table 11: French MLM loss at 100k steps of different initializations and training protocols.

French XNLI acc.
Embed Layers All Layers Best

1e-4 5e-4 5e-5 1e-4

Scratch - - - 0.74(±0.007) 0.74(±0.007)
Embed Reinit 0.682(±0.026) 0.709(±0.003) 0.738(±0.008) 0.736(±0.004) 0.738(±0.008)
Freq Match - - 0.739(±0.005) 0.746(±0.004) 0.746(±0.004)
Align Match 0.774(±0.004) 0.759(±0.005) 0.785(±0.005) 0.782(±0.004) 0.785(±0.005)
Dict Match 0.766(±0.004) 0.764(±0.007) 0.786(±0.001) 0.778(±0.005) 0.786(±0.001)
mBERT - - - - 0.719 (±0.006)

FlauBERT - - - - 0.806

Table 12: French XNLI accuracy of initializations and training protocols. Le et al. (2019), a robustly
optimized BERT, reported 0.806. mBERT was finetuned and tested in the French language. Bold
represents the best in each column.

French PAWS-X acc.
Embed Layers All Layers Best

1e-4 5e-4 5e-5 1e-4

Scratch - - - 0.862(±0.007) 0.862(±0.007)
Embed Reinit 0.814(±0.008) 0.657(±0.123) 0.855(±0.004) 0.869(±0.013) 0.869(±0.013)
Freq Match - - 0.858(±0.004) 0.872(±0.003) 0.872(±0.003)
Align Match 0.806(±0.132) 0.864(±0.005) 0.884(±0.005) 0.879(±0.004) 0.884(±0.005)
Dict Match 0.812(±0.135) 0.87(±0.002) 0.882(±0.007) 0.874(±0.003) 0.882(±0.007)
mBERT - - - - 0.700(±0.006)

FlauBERT - - - - 0.895

Table 13: French PAWS-X accuracy of initializations and training protocols. Le et al. (2019) re-
ported 0.895. mBERT was finetuned and tested in the French language. Bold represents the best in
each column.
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German MLM loss at 100k Steps
Embed Layers All Layers
1e-4 5e-4 5e-5 1e-4

Scratch - - - 1.92
Embed Reinit 3.54 3.15 2.30 1.88
Freq Match - - 2.22 1.81
Align Match 2.85 2.58 1.56 1.46
Dict Match 2.53 2.87 1.79 1.56

Table 14: German MLM loss at 100k steps of different initializations and training protocols.

German XNLI acc.
Embed Layers All Layers Best

1e-4 5e-4 5e-5 1e-4

Scratch - - - 0.727(±0.003) 0.727(±0.003)
Embed Reinit 0.693(±0.02) 0.654(±0.113) 0.728(±0.005) 0.738(±0.007) 0.738(±0.007)
Freq Match - - 0.732(±0.006) 0.704(±0.075) 0.732(±0.006)
Align Match 0.764(±0.023) 0.769(±0.007) 0.781(±0.006) 0.784(±0.005) 0.784(±0.005)
Dict Match 0.729(±0.094) 0.762(±0.006) 0.775(±0.005) 0.773(±0.005) 0.775(±0.005)
mBERT - - - - 0.685(±0.029)

German BERT - - - - 0.789(±0.004)

Table 15: German XNLI accuracy of initializations and training protocols. German BERT results
were 0.789 (±0.004), reproduced. mBERT was finetuned and tested in the German language. Bold
represents the best in each column.

German PAWS-X acc.
Embed Layers All Layers Best

1e-4 5e-4 5e-5 1e-4

Scratch - - - 0.817(±0.007) 0.817(±0.007)
Reinit Embed 0.651(±0.095) 0.76(±0.039) 0.807(±0.007) 0.816(±0.003) 0.816(±0.003)

Freq - - 0.812(±0.008) 0.815(±0.012) 0.815(±0.012)
Align 0.818(±0.015) 0.822(±0.006) 0.838(±0.008) 0.839(±0.006) 0.839(±0.006)
Dict 0.827(±0.008) 0.823(±0.007) 0.828(±0.005) 0.809(±0.056) 0.828(±0.005)

mBERT - - - - 0.673(±0.006)
German BERT - - - - 0.828(±0.008)

Table 16: German PAWS-X accuracy of initializations and training protocols. German BERT results
were 0.828 (±0.008), reproduced.mBERT was finetuned and tested in the German language. Bold
represents the best in each column.
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