
Published as a conference paper at ICLR 2022

FROM STARS TO SUBGRAPHS: UPLIFTING ANY GNN
WITH LOCAL STRUCTURE AWARENESS

Lingxiao Zhao
Carnegie Mellon Uni.
lingxiao@cmu.edu

Wei Jin
Michigan State Uni.
jinwei2@msu.edu

Leman Akoglu
Carnegie Mellon Uni.
lakoglu@andrew.cmu.edu

Neil Shah
Snap Inc.
nshah@snap.com

ABSTRACT

Message Passing Neural Networks (MPNNs) are a common type of Graph Neural
Network (GNN), in which each node’s representation is computed recursively by
aggregating representations (“messages”) from its immediate neighbors akin to a
star-shaped pattern. MPNNs are appealing for being efficient and scalable, how-
ever their expressiveness is upper-bounded by the 1st-order Weisfeiler-Leman iso-
morphism test (1-WL). In response, prior works propose highly expressive mod-
els at the cost of scalability and sometimes generalization performance. Our work
stands between these two regimes: we introduce a general framework to uplift
any MPNN to be more expressive, with limited scalability overhead and greatly
improved practical performance. We achieve this by extending local aggregation
in MPNNs from star patterns to general subgraph patterns (e.g., k-egonets): in
our framework, each node representation is computed as the encoding of a sur-
rounding induced subgraph rather than encoding of immediate neighbors only
(i.e. a star). We choose the subgraph encoder to be a GNN (mainly MPNNs,
considering scalability) to design a general framework that serves as a wrapper
to uplift any GNN. We call our proposed method GNN-AK (GNN As Kernel), as
the framework resembles a convolutional neural network by replacing the kernel
with GNNs. Theoretically, we show that our framework is strictly more powerful
than 1&2-WL, and is not less powerful than 3-WL. We also design subgraph sam-
pling strategies which greatly reduce memory footprint and improve speed while
maintaining performance. Our method sets new state-of-the-art performance by
large margins for several well-known graph ML tasks; specifically, 0.08 MAE on
ZINC, 74.79% and 86.887% accuracy on CIFAR10 and PATTERN respectively.

1 INTRODUCTION

Graphs are permutation invariant, combinatorial structures used to represent relational data, with
wide applications ranging from drug discovery, social network analysis, image analysis to bioin-
formatics (Duvenaud et al., 2015; Fan et al., 2019; Shi et al., 2019; Wu et al., 2020). In recent
years, Graph Neural Networks (GNNs) have rapidly surpassed traditional methods like heuristically
defined features and graph kernels to become the dominant approach for graph ML tasks.

Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017) are the most common type of
GNNs owing to their intuitiveness, effectiveness and efficiency. They follow a recursive aggregation
mechanism where each node aggregates information from its immediate neighbors repeatedly. How-
ever, unlike simple multi-layer feedforward networks (MLPs) which are universal approximators of
continuous functions (Hornik et al., 1989), MPNNs cannot approximate all permutation-invariant
graph functions (Maron et al., 2019b). In fact, their expressiveness is upper bounded by the first
order Weisfeiler-Leman (1-WL) isomorphism test (Xu et al., 2018). Importantly, researchers have
shown that such 1-WL equivalent GNNs are not expressive, or powerful, enough to capture basic
structural concepts, i.e., counting motifs such as cycles or triangles (Zhengdao et al., 2020; Arvind
et al., 2020) that are shown to be informative for bio- and chemo-informatics (Elton et al., 2019).

The weakness of MPNNs urges researchers to design more expressive GNNs, which are able to
discriminate graphs from an isomorphism test perspective; Chen et al. (2019) prove the equivalence
between such tests and universal permutation invariant function approximation, which theoretically
justifies it. As k-WL is strictly more expressive than 1-WL, many works (Morris et al., 2019;
2020b) try to incorporate k-WL in the design of more powerful GNNs, while others approach k-WL

1

Published as a conference paper at ICLR 2022

4
2

5

6

7

8

3
1

2

1

4
2

31

5

6

7

4
8

Extract
Subgraphs for

every node

Base GNN

Base GNN

Base GNN

Base GNN

Subgraph 1

Subgraph 2

Subgraph 7

Subgraph 8

Emb(1|Subgraph 1)

Emb(2|Subgraph 1)

Emb(1|Subgraph 2)

Emb(2|Subgraph 2)

Emb(3|Subgraph 2)

Emb(4|Subgraph 2)

Emb(5|Subgraph 7)

Emb(6|Subgraph 7)

Emb(7|Subgraph 7)

Emb(4|Subgraph 8)

Emb(8|Subgraph 8)

Emb(1|Subgraph 1) SUM {Emb(i|Subgraph 1)} SUM {Emb(1|Subgraph i)}

Emb(2|Subgraph 2) SUM {Emb(i|Subgraph 2)} SUM {Emb(2|Subgraph i)}

Emb(7|Subgraph 7) SUM {Emb(i|Subgraph 7)} SUM {Emb(7|Subgraph i)}

Emb(8|Subgraph 8) SUM {Emb(i|Subgraph 8)} SUM {Emb(8|Subgraph i)}

Emb(j|Subgraph j) SUM {Emb(i|Subgraph j)} SUM {Emb(j|Subgraph i)}

Centroid
Encoding

Subgraph
Encoding

Context

Encoding

Node j's
embedding

1

2

7

8

 Extract subgraphs Convolve subgraphs Aggregate embeddings from subgraphs to new node embedding

Figure 1: Shown: one GNN-AK+ layer. For each layer, GNN-AK+ first extracts n (# nodes)
rooted subgraphs, and convolves all subgraphs with a base GNN as kernel, producing multiple rich
subgraph-node embeddings of the form Emb(i | Sub[j]) (node i’s embedding when applying a GNN
kernel on subgraph j). From these, we extract and concatenate three encodings for a given node j: (i)
centroid Emb(j | Sub[j]), (ii) subgraph

∑
i Emb(i | Sub[j]), and (iii) context

∑
i Emb(j | Sub[i]).

GNN-AK+ repeats the process for L layers, then sums all resulting node embeddings to compute the
final graph embedding. As a weaker version, GNN-AK only contains encodings (i) and (ii).

expressiveness indirectly from matrix invariant operations (Maron et al., 2019a;b; Keriven & Peyré,
2019) and matrix language perspectives (Balcilar et al., 2021). However, they require O(k)-order
tensors to achieve k-WL expressiveness, and thus are not scalable or feasible for application on
large, practical graphs. Besides, the bias-variance tradeoff between complexity and generalization
(Neal et al., 2018) and the fact that almost all graphs (i.e. O(2(

n
2)) graphs on n vertices, Babai

et al. (1980)) can be distinguished by 1-WL challenge the necessity of developing such extremely
expressive models. In a complementary line of work, Loukas (2020a) sheds light on developing
more powerful GNNs while maintaining linear scalability, finding that MPNNs can be universal
approximators provided that nodes are sufficiently distinguishable. Relatedly, several works propose
to add features to make nodes more distinguishable, such as identifiers (Loukas, 2020a), subgraph
counts (Bouritsas et al., 2020), distance encoding (Li et al., 2020), and random features (Sato et al.,
2021; Abboud et al., 2021). However, these methods either focus on handcrafted features which lose
the premise of automatic learning, or create permutation sensitive features that hurt generalization.

Present Work. Our work stands between the two regimes of extremely expressive but unscalable k-
order GNNs, and the limited expressiveness yet high scalability of MPNNs. Specifically, we propose
a general framework that serves as a “wrapper” to uplift any GNN. We observe that MPNNs’ local
neighbor aggregation follows a star pattern, where the representation of a node is characterized by
applying an injective aggregator function as an encoder to the star subgraph (comprised of the central
node and edges to neighbors). We propose a design which naturally generalizes from encoding the
star to encoding a more flexibly defined subgraph, and we replace the standard injective aggregator
with a GNN: in short, we characterize the new representation of a node by using a GNN to encode
a locally induced encompassing subgraph, as shown in Fig.1. This uplifts GNN as a base model
in effect by applying it on each subgraph instead of the whole input graph. This generalization is
close to Convolutional Neural Networks (CNN) in computer vision: like the CNN that convolves
image patches with a kernel to compute new pixel embeddings, our designed wrapper convolves
subgraphs with a GNN to generate new node embeddings. Hence, we name our approach GNN-AK
(GNN As Kernel). We show theoretically that GNN-AK is strictly more powerful than 1&2-WL with
any MPNN as base model, and is not less powerful than 3-WL with PPGN (Maron et al., 2019a)
used. We also give sufficient conditions under which GNN-AK can successfully distinguish two
non-isomorphic graphs. Given this increase in expressive power, we discuss careful implementa-
tion strategies for GNN-AK, which allow us to carefully leverage multiple modalities of information
from subgraph encoding, and resulting in an empirically more expressive version GNN-AK+. As
a result, GNN-AK and GNN-AK+ induce a constant factor overhead in memory. To amplify our
method’s practicality, we further develop a subgraph sampling strategy inspired by Dropout (Srivas-
tava et al., 2014) to drastically reduce this overhead (1-3× in practice) without hurting performance.
We conduct extensive experiments on 4 simulation datasets and 5 well-known real-world graph clas-
sification & regression benchmarks (Dwivedi et al., 2020; Hu et al., 2020), to show significant and
consistent practical benefits of our approach across different MPNNs and datasets. Specifically,
GNN-AK+ sets new state-of-the-art performance on ZINC, CIFAR10, and PATTERN – for exam-
ple, on ZINC we see a relative error reduction of 60.3%, 50.5%, and 39.4% for base model being

2

Published as a conference paper at ICLR 2022

GCN (Kipf & Welling, 2017), GIN (Xu et al., 2018), and (a variant of) PNA (Corso et al., 2020)
respectively. To summarize, our contributions are listed as follows:
• A General GNN-AK Framework. We propose GNN-AK (and enhanced GNN-AK+), a general

framework which uplifts any GNN by encoding local subgraph structure with a GNN.
• Theoretical Findings. We show that GNN-AK’s expressiveness is strictly better than 1&2-WL,

and is not less powerful than 3-WL. We analyze sufficient conditions for successful discrimination.
• Effective and Efficient Realization. We present effective implementations for GNN-AK and

GNN-AK+ to fully exploit all node embeddings within a subgraph. We design efficient online
subgraph sampling to mitigate memory and runtime overhead while maintaining performance.

• Experimental Results. We show strong empirical results, demonstrating both expressivity im-
provements as well as practical performance gains where we achieve new state-of-the-art perfor-
mance on several graph-level benchmarks.

Our implementation is easy-to-use, and directly accepts any GNN from PyG (Fey & Lenssen, 2019)
for plug-and-play use. See code at https://github.com/GNNAsKernel/GNNAsKernel.

2 RELATED WORK

Exploiting subgraph information in GNNs is not new; in fact, k-WL considers all k node sub-
graphs. Monti et al. (2018); Lee et al. (2019) exploit motif information within aggregation, and
others (Bouritsas et al., 2020; Barceló et al., 2021) augment MPNN features with handcrafted sub-
graph based features. MixHop (Abu-El-Haija et al., 2019) directly aggregates k-hop information
by using adjacency matrix powers, ignoring neighbor connections. Towards a meta-learning goal,
G-meta (Huang & Zitnik, 2020) applies GNNs on rooted subgraphs around each node to help trans-
ferring ability. Tahmasebi & Jegelka (2020) only theoretically justifies subgraph convolution with
GNN by showing its ability in counting substructures. Zhengdao et al. (2020) also represent a node
by encoding its local subgraph, however using non-scalable relational pooling. k-hop GNN (Niko-
lentzos et al., 2020) uses k-egonet in a specially designed way: it encodes a rooted subgraph via
sequentially passing messages from k-th hops in the subgraph to k − 1 hops, until it reaches the
root node, and use the root node as encoding of the subgraph. Ego-GNNs (Sandfelder et al., 2021)
computes a context encoding with SGC (Wu et al., 2019) as the subgraph encoder, and only be
studied on node-level tasks. Both k-hop GNN and Ego-GNNs can be viewed as a special case of
GNN-AK. You et al. (2021) designs ID-GNNs which inject node identity during message passing
with the help of k-egonet, with k being the number of layers of GNN (Hamilton et al., 2017). Un-
like GNN-AK which uses rooted subgraphs, Fey et al. (2020); Thiede et al. (2021); Bodnar et al.
(2021a) design GNNs to use certain subgraph patterns (like cycles and paths) in message passing,
however their preprocessing requires solving the subgraph isomorphism problem. Cotta et al. (2021)
explores reconstructing a graph from its subgraphs. A contemporary work (Zhang & Li, 2021) also
encodes rooted subgraphs with a base GNN but it essentially views a graph as a bag of subgraphs
while GNN-AK modifies the 1-WL color refinement and has many iterations. Viewing graph as a
bag of subgraphs is also explored in another contemporary work (Bevilacqua et al., 2022). To sum-
marize, our work differs by (i) proposing a general subgraph encoding framework motivated from
theoretical Subgraph-1-WL for uplifting GNNs, and (ii) addressing scalability issues involved with
using subgraphs, which poses significant challenges for subgraph-based methods in practice. See
additional related work in Appendix.A.1.

3 GENERAL FRAMEWORK AND THEORY

We first introduce our setting and formalisms. Let G = (V, E) be a graph with node features
xi ∈ Rd, ∀i ∈ V . We consider graph-level problems where the goal is to classify/regress a target
yG by learning a graph-level representation hG. Let Nk(v) be the set of nodes in the k-hop egonet
rooted at node v. N (v) = N1(v)\v denotes the immediate neighbors of node v. For S ⊆ V , let
G[S] be the induced subgraph: G[S] = (S, {(i, j) ∈ E|i ∈ S, j ∈ S}). Then G[Nk(v)] denotes the
k-hop egonet rooted at node v. We also define Star(v) = (N1(v), {(v, j) ∈ E|j ∈ N (v)}) be the
induced star-like subgraph around v. We use {·} denotes multiset, i.e. set that allows repetition.

Before presenting GNN-AK, we highlight the insights in designing GNN-AK and driving the expres-
siveness boost. Insight 1: Generalizing star to subgraph. In MPNNs, every node aggregates
information from its immediate neighbors following a star pattern. Consequently, MPNNs fail to
distinguish any non-isomorphic regular graphs where all stars are the same, since all nodes have
the same degree. Even simply generalizing star to the induced, 1-hop egonet considers connec-

3

https://github.com/GNNAsKernel/GNNAsKernel

Published as a conference paper at ICLR 2022

tions among neighbors, enabling distinguishing regular graphs. Insight 2: Divide and conquer.
When two graphs are non-isomorphic, there exists a subgraph where this difference is captured (see
Figure 3). Although a fixed-expressiveness GNN may not distinguish the two original graphs, it
may distinguish the two smaller subgraphs, given that the required expressiveness for successful
discrimination is proportional to graph size (Loukas, 2020b). As such, GNN-AK divides the harder
problem of encoding the whole graph to smaller and easier problems of encoding its subgraphs, and
“conquers” the encoding with the base GNN.

3.1 FROM STARS TO SUBGRAPHS

We first take a close look at MPNNs, identifying their limitations and expressiveness bottleneck.
MPNNs repeatedly update each node’s embedding by aggregating embeddings from their neighbors
a fixed number of times (layers) and computing a graph-level embedding hG by global pooling. Let
h
(l)
v denote the l-th layer embedding of node v. Then, MPNNs compute hG by

h(l+1)
v = ϕ(l)

(
h(l)
v , f (l)

({
h(l)
u |u ∈ N (v)

}))
l = 0, ..., L− 1 ; hG = POOL({h(L)

v |v ∈ V}) (1)

where h
(0)
i = xi is the original features, L is the number of layers, and ϕ(l) and f (l) are the l-th

layer update and aggregation functions. ϕ(l), f (l) and POOL vary among different MPNNs and
influence their expressiveness and performance. MPNNs achieve maximum expressiveness (1-WL)
when all three functions are injective (Xu et al., 2018).

MPNNs’ expressiveness upper bound follows from its close relation to the 1-WL isomorphism test
(Morris et al., 2019). Similar to MPNNs which repeatedly aggregate self and neighbor representa-
tions, at t-th iteration, for each node v, 1-WL test aggregates the node’s own label (or color) c(t)v and
its neighbors’ labels {c(t)u |u ∈ N (v)}, and hashes this multi-set of labels

{
c
(t)
v , {c(t)u |u ∈ N (v)}

}
into a new, compressed label c(t+1)

v . 1-WL outputs the set of all node labels
{
c
(T)
v |v ∈ V

}
as G’s

fingerprint, and decides two graphs to be non-isomorphic as soon as their fingerprints differ.

The hash process in 1-WL outputs a new label c(t+1)
v that uniquely characterizes the star graph

Star(v) around v, i.e. two nodes u, v are assigned different compressed labels only if Star(u) and
Star(v) differ. Hence, it is easy to see that when two non-isomorphic unlabeled (i.e., all nodes
have the same label) d-regular graphs have the same number of nodes, 1-WL cannot distinguish
them. This failure limits the expressiveness of 1-WL, but also identifies its bottleneck: the star is not
distinguishing enough. Instead, we propose to generalize the star Star(v) to subgraphs, such as the
egonet G[N1(v)] and more generally k-hop egonet G[Nk(v)]. This results in an improved version
of 1-WL which we call Subgraph-1-WL. Formally,
Definition 3.1 (Subgraph-1-WL). Subgraph-1-WL generalizes the 1-WL graph isomorphism test
algorithm by replacing color refinement (at iteration t) by c

(t+1)
v = HASH(Star(t)(v)) with

c
(t+1)
v = HASH(G(t)[Nk(v)]), ∀v ∈ V where HASH(·) is an injective function on graphs.

Note that an injective hash function for star graphs is equivalent to that for multi-sets, which is
easy to derive (Zaheer et al., 2017). In contrast, Subgraph-1-WL must hash a general subgraph ,
where an injective hash function for graphs is non-trivial (as hard as graph isomorphism). Thus,
we derive a variant called Subgraph-1-WL∗ by using a weaker choice for HASH(·) – specifically,
1-WL. Effectively, we nest 1-WL inside Subgraph-1-WL. Formally,
Definition 3.2 (Subgraph-1-WL∗). Subgraph-1-WL∗ is a less expressive variant of Subgraph-1-
WL where c

(t+1)
v = 1-WL(G(t)[Nk(v)]).

We further transfer Subgraph-1-WL to neural networks, resulting in GNN-AK whose expressiveness
is upper bounded by Subgraph-1-WL. The natural transformation with maximum expressiveness is
to replace the hash function with a universal subgraph encoder of G[Nk(v)], which is non-trivial as it
implies solving the challenging graph isomorphism problem in the worst case. Analogous to using
1-WL as a weaker choice for HASH(·) inside Subgraph-1-WL∗, we can use use any GNN (most
practically, MPNN) as an encoder for subgraph G[Nk(v)]. Let G(l)[Nk(v)] = G[Nk(v)|H(l)] be
the attributed subgraph with hidden features H(l) at the l-th layer. Then, GNN-AK computes hG by

h(l+1)
v = GNN(l)

(
G(l)[Nk(v)]

)
l = 0, ..., L− 1 ; hG = POOL({h(L)

v |v ∈ V}) (2)

Notice that GNN-AK acts as a “wrapper” for any base GNN (mainly MPNN). This uplifts its ex-
pressiveness as well as practical performance as we demonstrate in the following sections.

4

Published as a conference paper at ICLR 2022

3.2 THEORY: EXPRESSIVENESS ANALYSIS

We next theoretically study the expressiveness of GNN-AK, by investigating the expressiveness of
Subgraph-1-WL. We first establish that GNN-AK and Subgraph-1-WL have the same expressiveness
under certain conditions. A GNN is able to distinguish two graphs if its embeddings for two graphs
are not identical. A GNN is said to have the same expressiveness as a graph isomorphism test when
for any two graphs the GNN outputs different embeddings if and only if (iff) the isomorphism test
deems them non-isomorphic. We give following theorems with proof in Appendix.

Theorem 1. When the base model is an MPNN with sufficient number of layers and injective ϕ, f
and POOL functions shown in Eq. (1), and MPNN-AK has an injective POOL function shown in Eq.
(2), then MPNN-AK is as powerful as Subgraph-1-WL∗.

See Appendix.A.3 for proof. A more general version of Theorem 1 is that GNN-AK is as powerful
as Subgraph-1-WL iff base GNN of GNN-AK is as powerful as the HASH function of Subgraph-1-
WL in distinguishing subgraphs, following the same proof logic. The Theorem implies that we can
characterize expressiveness of GNN-AK through studying Subgraph-1-WL and Subgraph-1-WL∗.

Theorem 2. Subgraph-1-WL∗ is strictly more powerful than 1&2-WL1.

A direct corollary from Theorem 1&2 is as follows, which is empirically verified in Table 1.

Corollary 2.1. When MPNN is 1-WL expressive, MPNN-AK is strictly more powerful than 1&2-WL.

Theorem 3. When HASH(·) is 3-WL expressive, Subgraph-1-WL is no less powerful than 3-WL,
that is, it can discriminate some graphs for which 3-WL fails.

A direct corollary from Theorem 1&3 is as follows, which is empirically verified in Table 1.

Corollary 3.1. PPGN-AK can distinguish some 3-WL-failed non-isomorphic graphs.

Theorem 4. For any k ≥ 3, there exists a pair of k-WL-failed graphs that cannot be distinguished
by Subgraph-1-WL even with injective HASH(·) when t-hop egonets are used with t ≤ 4.

Theorem 4 is proven (Appendix.A.6) by observing that with limited t all rooted subgraphs of two
non-isomorphic graphs from CFI(k) family (Cai et al., 1992) are isomorphic, i.e. local rooted sub-
graph is not enough to capture the “global” difference. This opens a future direction of generalizing
rooted subgraph to general subgraph (as in k-WL) while keeping number of subgraphs in O(|V|).
Proposition 1 (sufficient conditions). For two non-isomorphic graphs G,H , Subgraph-1-WL
with k-egonet can successfully distinguish them if: 1) for any node reordering vG1 , ..., v

G
|VG| and

vH1 , ..., vH|VH |, ∃i ∈ [1,max(|VG|, |VH |)] that G[Nk(v
G
i)] and H[Nk(v

H
i)] are non-isomorphic2;

and 2) HASH(·) is discriminative enough that HASH(G[Nk(v
G
i)]) ̸= HASH(H[Nk(v

H
i)]).

This implies subgraph size should be large enough to capture difference, but not larger which re-
quires more expressive base model (Loukas, 2020a). We empirically verify Prop. 1 in Table 2.

4 CONCRETE REALIZATION

We first realize GNN-AK with two type of encodings, and then present an empirically more expres-
sive version, GNN-AK+, with (i) an additional context encoding, and (ii) a subgraph pooling design
to incorporate distance-to-centroid, readily computed during subgraph extraction. Next, we discuss
a random-walk based rooted subgraph extraction for graphs with small diameter to reduce memory
footprint of k-hop egonets. We conclude this section with time and space complexity analysis.

Notation. Let G = (V, E) be the graph with N = |V|, G(l)[Nk(v)] be the k-hop egonet rooted at
node v ∈ V in which h

(l)
u denotes node u’s hidden representation for u ∈ Nk(v) at the l-th layer of

GNN-AK. To simplify notation, we use Sub(l)[v] instead of G(l)[Nk(v)] to indicate the the attribute-
enriched induced subgraph for v. We consider all intermediate node embeddings across rooted
subgraphs. Specifically, let Emb(i | Sub(l)[j]) denote node i’s embedding when applying base
GNN(l) on Sub(l)[j]; we consider node embeddings for every j ∈ V and every i ∈ Sub(l)[j]. Note

11-WL and 2-WL are known to be equally powerful, see Azizian & Lelarge (2021) and Maron et al. (2019a).
2When |VG| < |VH | , ∀i ∈ {|VG|, |VG|+ 1, ..., |VH |}, let G[Nk(v

G
i)] denote an empty subgraph.

5

Published as a conference paper at ICLR 2022

that the base GNN can have multiple convolutional layers, and Emb refers to the node embeddings
at the last layer before global pooling POOLGNN that generates subgraph-level encoding.

Realization of GNN-AK. We can formally rewrite Eq. (2) as
h(l+1)|Subgraph
v = GNN(l)

(
Sub(l)[v]

)
:= POOLGNN(l)

({
Emb(i | Sub(l)[v]) | i ∈ Nk(v)

})
(3)

We refer to the encoding of the rooted subgraph Sub(l)[v] in Eq. (3) as the subgraph encoding.
Typical choices of POOLGNN(l) are SUM and MEAN. As each rooted subgraph has a root node,
POOLGNN(l) can additionally be realized to differentiate the root node by self-concatenating its own
representation, resulting in the following realization as each layer of GNN-AK:

h(l+1)
v = FUSE

(
h(l+1)|Centroid
v , h(l+1)|Subgraph

v

)
where h(l+1)|Centroid

v := Emb(v | Sub(l+1)[v]) (4)

where FUSE is concatenation or sum, and h
(l)|Centroid
v is referred to as the centroid encoding. The

realization of GNN-AK in Eq.4 closely follows the theory in Sec.3.

Realization of GNN-AK+. We further develop GNN-AK+, which is more expressive than GNN-AK,
based on two observations. First, we observe that Eq.4 does not fully exploit all information inside
the rich intermediate embeddings generated for Eq.4, and propose an additional context encoding.

h(l+1)|Context
v := POOLContext

({
Emb(v | Sub(l)[j]) | ∀j s.t. v ∈ Nk(j)

})
(5)

Different from subgraph and centroid encodings, the context encoding captures views of node v
from different subgraph contexts, or points-of-view. Second, GNN-AK extracts the rooted subgraph
for every node with efficient k-hop propagation (complexity O(k|E|)), along which the distance-to-
centroid (D2C)3 within each subgraph is readily recorded at no additional cost and can be used to
augment node features; (Li et al., 2020) shows this theoretically improves expressiveness. There-
fore, we propose to uses the D2C by default in two ways in GNN-AK+: (i) augmenting hidden
representation h

(l)
v by concatenating it with the encoding of D2C; (ii) using it to gate the subgraph

and context encodings before POOLSubgraph and POOLContext, with the intuition that embeddings of
nodes far from v contribute differently from those close to v.

To formalize the gate mechanism guided by D2C, let d(l)
i|j be the encoding of distance from node i

to j at l-th layer4. Applying gating changes Eq. (5) to
h
(l+1)|Context
gated,v := POOLContext

({
Sigmoid(d(l)

v|j)⊙ Emb(v | Sub(l)[j]) | ∀j s.t. v ∈ Nk(j)
})

(6)

where ⊙ denotes element-wise multiplication. Similar changes apply to Eq. (3) to get h(l)|Subgraph
gated,v .

Formally, each layer of GNN-AK+ is defined as
h(l+1)
v = FUSE

(
d
(l+1)

i|j , h(l+1)|Centroid
v , h

(l+1)|Subgraph
gated,v , h

(l+1)|Context
gated,v

)
(7)

where FUSE is concatenation or sum. We illustrate in Figure 1 the l-th layer of GNN-AK(+).
Proposition 2. GNN-AK+ is at least as powerful as GNN-AK. See Proof in Appendix.A.A.8.

Beyond k-egonet Subgraphs. The k-hop egonet (or k-egonet) is a natural choice in our framework,
but can be too large when the input graph’s diameter is small, as in social networks (Kleinberg,
2000), or when the graph is dense. To limit subgraph size, we also design a random-walk based
subgraph extractor. Specifically, to extract a subgraph rooted at node v, we perform a fixed-length
random walk starting at v, resulting in visited nodes Nrw(v) and their induced subgraph G[Nrw(v)].
In practice, we use adaptive random walks as in Grover & Leskovec (2016). To reduce randomness,
we use multiple truncated random walks and union the visited nodes as Nrw(v). Moreover, we
employ online subgraph extraction during training that re-extracts subgraphs at every epoch, which
further alleviates the effect of randomness via regularization.

Complexity Analysis. Assuming k-egonets as rooted subgraphs, and an MPNN as base model.
For each graph G = (V, E), the subgraph extraction takes O(k|E|) runtime complexity, and outputs
|V| subgraphs, which collectively can be represented as a union graph G∪ = (V∪, E∪) with |V|
disconnected components, where |V∪| =

∑
v∈V |Nk(v)| and |E∪| =

∑
v∈V |EG[Nk(v)]|. GNN-AK(+)

can be viewed as applying base GNN on the union graph. Assuming base GNN has O(|V| + |E|)
runtime and memory complexity, GNN-AK(+) has O(|V∪| + |E∪|) runtime and memory cost. For
rooted subgraphs of size s, GNN-AK(+) induces an O(s) factor overhead over the base model.

3We record D2C value for every node in every subgraph, and the value is categorical instead of continuous.
4The categorical D2C does not change across layers, but is encoded with different parameters in each layer.

6

Published as a conference paper at ICLR 2022

5 IMPROVING SCALABILITY: SUBGRAPHDROP

The complexity analysis reveals that GNN-AK(+) introduce a constant factor overhead (subgraph
size) in runtime and memory over the base GNN. Subgraph size can be naturally reduced by choos-
ing smaller k for k-egonet, or by ranking and truncating visited nodes in a random walk setting.
However limiting to very small subgraphs tends to hurt performance as we empirically show in Ta-
ble 6. Here, we present a different subsampling-based approach that carefully selects only a subset
of the |V| rooted subgraphs. Further more, inspired from Dropout (Srivastava et al., 2014), we only
drop subgraphs during training while still use all subgraphs when evaluation. Novel strategies are
designed specifically for three type of encodings to eliminate the estimation bias between training
and evaluation. We name it SubgraphDrop for dropping subgraphs during training. SubgraphDrop
significantly reduces memory overhead while keeping performance nearly the same as training with
all subgraphs. We first present subgraph sampling strategies, then introduce the designs of aligning
training and evaluation. Fig. 2 in Appendix.A.2 provides a pictorial illustration.

5.1 SUBGRAPH SAMPLING STRATEGIES

Intuitively, if u, v are directly connected in G, subgraphs G[Nk(u)] and G[Nk(v)] share a large
overlap and may contain redundancy. With this intuition, we aim to sample only m≪|V| minimally
redundant subgraphs to reduce memory overhead. We propose three fast sampling strategies (See
Appendix.A.2) that select subgraphs to evenly cover the whole graph, where each node is covered
by ≈R (redundancy factor) selected subgraphs; R is a hyperparameter used as a sampling stopping
condition. Then, GNN-AK(+)-S (with Sampling) has roughly R times the overhead of base model
(R≤3 in practice). We remark that our subsampling strategies are randomized and fast, which are
both desired characteristics for an online Dropout-like sampling in training.

5.2 TRAINING WITH SUBGRAPHDROP

Although dropping redundant subgraphs greatly reduces overhead, it still loses information. Thus,
as in Dropout (Srivastava et al., 2014), we only “drop” subgraphs during training while still using
all of them during evaluation. Randomness in sampling strategies enforces that selected subgraphs
differ across training epochs, preserving most information due to amortization. On the other hand,
it makes it difficult for the three encodings during training to align with full-mode evaluation. Next,
we propose an alignment procedure for each type of encoding.

Subgraph and Centroid Encoding in Training. Let S ⊆ V be the set of root nodes of the se-
lected subgraphs. When sampling during training, subgraph and centroid encoding can only be
computed for nodes v ∈ S, following Eq. (3) and Eq. (4), resulting incomplete subgraph en-
codings {h(l)|Subgraph

v |v ∈ S} and centroid encodings {h(l)|Centroid
v |v ∈ S}. To estimate uncom-

puted encodings of u ∈ V \ S , we propose to propagate encodings from S to V \ S . Formally,
let kmax = maxu∈V\S Dist(u,S) where Dist(u,S)=minv∈S ShortestPathDistance(u, v). Then we
partition U = V \S into {U1, ...,Ukmax

} with Ud = {u ∈ U|Dist(u,S) = d}. We propose to spread
vector encodings of S out iteratively, i.e. compute vectors of Ud from Ud−1. Formally, we have

h(l)|Subgraph
u = Mean

(
{h(l)|Subgraph

v |v ∈ Ud−1, (u, v) ∈ E}
)

for d = 1, 2 . . . kmax, ∀u ∈ Ud, (8)

h(l)|Centroid
u = Mean

(
{h(l)|Centroid

v |v ∈ Ud−1, (u, v) ∈ E}
)

for d = 1, 2 . . . kmax, ∀u ∈ Ud, (9)

Context Encoding in Training. Following Eq. (5), context encodings can be computed for every
node v ∈ V as each node is covered at least R times during training with SubgraphDrop. However
when POOLContext is SUM(·), the scale of h(l)|Context

v is smaller than the one in full-mode evaluation.
Thus, we scale the context encodings up to align with full-mode evaluation. Formally,

h(l)|Context
v =

|{j ∈ V|Nk(j) ∋ v}|
|{j ∈ S|Nk(j) ∋ v}| × SUM

({
Emb(v | Sub(l)[j]) | ∀j ∈ S s.t. v ∈ Nk(j)

})
(10)

When POOLContext is MEAN(·), the context encoding is computed without any modification.

6 EXPERIMENTS

In this section we (1) empirically verify the expressiveness benefit of GNN-AK(+) on 4 simulation
datasets; (2) show GNN-AK(+) boosts practical performance significantly on 5 real-world datasets;
(3) demonstrate the effectiveness of SubgraphDrop; (4) conduct ablation studies of concrete designs.
We mainly report the performance of GNN-AK+, while still keep the performance of GNN-AK with
GIN as base model for reference, as it is fully explained by our theory.

7

Published as a conference paper at ICLR 2022

Simulation Datasets: 1) EXP (Abboud et al., 2021) contains 600 pairs of 1&2-WL failed graphs
that are splited into two classes where each graph of a pair is assigned to two different classes. 2)
SR25 (Balcilar et al., 2021) has 15 strongly regular graphs (3-WL failed) with 25 nodes each. SR25
is translated to a 15 way classification problem with the goal of mapping each graph into a different
class. 3) Substructure counting (i.e. triangle, tailed triangle, star and 4-cycle) problems on random
graph dataset (Zhengdao et al., 2020). 4) Graph property regression (i.e. connectedness, diame-
ter, radius) tasks on random graph dataset (Corso et al., 2020). All simulation datasets are used
to empirically verify the expressiveness of GNN-AK(+). Large Real-world Datasets: ZINC-12K,
CIFAR10, PATTER from Benchmarking GNNs (Dwivedi et al., 2020) and MolHIV, and MolPCBA
from Open Graph Benchmark (Hu et al., 2020). Small Real-world Datasets: MUTAG, PTC, PRO-
TEINS, NCI1, IMDB, and REDDIT from TUDatset (Morris et al., 2020a) (their results are presented
in Appendix A.12). See Table 5 in Appendix for all dataset statistics.

Baselines. We use GCN (Kipf & Welling, 2017), GIN (Xu et al., 2018), PNA∗ 5 (Corso et al., 2020),
and 3-WL powerful PPGN (Maron et al., 2019a) directly, which also server as base model of GNN-
AK to see its general uplift effect. GatedGCN (Dwivedi et al., 2020), DGN (Beani et al., 2021), PNA
(Corso et al., 2020), GSN(Bouritsas et al., 2020), HIMP (Fey et al., 2020), and CIN (Bodnar et al.,
2021a) are referenced directly from literature for real-world datasets comparison. Hyperparameter
and model configuration are described in Appendix.A.10.

6.1 EMPIRICAL VERIFICATION OF EXPRESSIVENESS

Table 1: Simulation dataset performance: GNN-AK(+) boosts base GNN across tasks, empirically
verifying expressiveness lift. (ACC: accuracy, MAE: mean absolute error, OOM: out of memory)

Method EXP
(ACC)

SR25
(ACC)

Counting Substructures (MAE) Graph Properties (log10(MAE))

Triangle Tailed Tri. Star 4-Cycle IsConnected Diameter Radius

GCN 50% 6.67% 0.4186 0.3248 0.1798 0.2822 -1.7057 -2.4705 -3.9316
GCN-AK+ 100% 6.67% 0.0137 0.0134 0.0174 0.0183 -2.6705 -3.9102 -5.1136

GIN 50% 6.67% 0.3569 0.2373 0.0224 0.2185 -1.9239 -3.3079 -4.7584
GIN-AK 100% 6.67% 0.0934 0.0751 0.0168 0.0726 -1.9934 -3.7573 -5.0100
GIN-AK+ 100% 6.67% 0.0123 0.0112 0.0150 0.0126 -2.7513 -3.9687 -5.1846

PNA∗ 50% 6.67% 0.3532 0.2648 0.1278 0.2430 -1.9395 -3.4382 -4.9470
PNA∗-AK+ 100% 6.67% 0.0118 0.0138 0.0166 0.0132 -2.6189 -3.9011 -5.2026

PPGN 100% 6.67% 0.0089 0.0096 0.0148 0.0090 -1.9804 -3.6147 -5.0878
PPGN-AK+ 100% 100% OOM OOM OOM OOM OOM OOM OOM

Table 1 presents the results on simulation datasets. To save space we present GNN-AK+ with dif-
ferent base models but only one one version of GNN-AK: GIN-AK. All GNN-AK(+) variants perform
perfectly on EXP, while only PPGN alone do so previously. Moreover, PPGN-AK+ reaches perfect
accuracy on SR25, while PPGN fails. Similarly, GNN-AK(+) consistently boosts all MPNNs for
substructure and graph property prediction (PPGN-AK+ is OOM as it is quadratic in input size).

Table 2: PPGN-AK expressiveness on SR25.

Base PPGN’s #L 1-hop egonet 2-hop egonet

PPGN-AK’s #L 1 2 3 1 2 3

1 26.67% 100% 100% 26.67% 26.67% 46.67%
2 33.33% 100% 100% 26.67% 26.67% 53.33%
3 26.67% 100% 100% 33.33% 26.67% 53.33%

In Table 2 we look into PPGN-AK’s per-
formance on SR25 as a function of k-
egonets (k∈[1, 2]), as well as the num-
ber of PPGN (inner) layers and (outer)
iterations for PPGN-AK. We find that at
least 2 inner layers is needed with 1-

egonet subgraphs to achieve top performance. With 2-egonets more inner layers helps, although
performance is sub-par, attributed to PPGN’s disability to distinguish larger (sub)graphs, aligning
with Proposition 1 (Sec. 3.2).

6.2 COMPARING WITH SOTA AND GENERALITY

Having studied expressiveness tasks, we turn to performance on real-world datasets, as shown in
Table 3. We observe similar performance lifts across all datasets and base GNNs (we omit PPGN
due to scalability), demonstrating our framework’s generality. Remarkably, GNN-AK+ sets new
SOTA performance for several benchmarks – ZINC, CIFAR10, and PATTERN – with a relative error
reduction of 60.3%, 50.5%, and 39.4% for base model being GCN, GIN, and PNA∗ respectively.

5PNA∗ is a variant of PNA that changes from using degree to scale embeddings to encoding degree and
concatenate to node embeddings. This eliminates the need of computing average degree of datasets in PNA.

8

Published as a conference paper at ICLR 2022

Table 3: Real-world dataset performance: GNN-AK+ achieves SOTA performance for ZINC-12K,
CIFAR10, and PATTERN. (OOM: out of memory, −: missing values from literature)

Method ZINC-12K (MAE) CIFAR10 (ACC) PATTERN (ACC) MolHIV (ROC) MolPCBA (AP)

GatedGCN 0.363 ± 0.009 69.37 ± 0.48 84.480 ± 0.122 − −
HIMP 0.151 ± 0.006 − − 0.7880 ± 0.0082 −
PNA 0.188 ± 0.004 70.47 ± 0.72 86.567 ± 0.075 0.7905 ± 0.0132 0.2838 ± 0.0035
DGN 0.168 ± 0.003 72.84 ± 0.42 86.680 ± 0.034 0.7970 ± 0.0097 0.2885 ± 0.0030
GSN 0.115 ± 0.012 − − 0.7799 ± 0.0100 −
CIN 0.079 ± 0.006 − − 0.8094 ± 0.0057 −
GCN 0.321 ± 0.009 58.39 ± 0.73 85.602 ± 0.046 0.7422 ± 0.0175 0.2385 ± 0.0019
GCN-AK+ 0.127 ± 0.004 72.70 ± 0.29 86.887 ± 0.009 0.7928 ± 0.0101 0.2846 ± 0.0002

GIN 0.163 ± 0.004 59.82 ± 0.33 85.732 ± 0.023 0.7881 ± 0.0119 0.2682 ± 0.0006
GIN-AK 0.094 ± 0.005 67.51 ± 0.21 86.803 ± 0.044 0.7829 ± 0.0121 0.2740 ± 0.0032
GIN-AK+ 0.080 ± 0.001 72.19 ± 0.13 86.850 ± 0.057 0.7961 ± 0.0119 0.2930 ± 0.0044

PNA∗ 0.140 ± 0.006 73.11 ± 0.11 85.441 ± 0.009 0.7905 ± 0.0102 0.2737 ± 0.0009
PNA∗-AK+ 0.085 ± 0.003 OOM OOM 0.7880 ± 0.0153 0.2885 ± 0.0006

GCN-AK+-S 0.127 ± 0.001 71.93 ± 0.47 86.805 ± 0.046 0.7825 ± 0.0098 0.2840 ± 0.0036
GIN-AK+-S 0.083 ± 0.001 72.39 ± 0.38 86.811 ± 0.013 0.7822 ± 0.0075 0.2916 ± 0.0029
PNA∗-AK+-S 0.082 ± 0.000 74.79 ± 0.18 86.676 ± 0.022 0.7821 ± 0.0143 0.2880 ± 0.0012

6.3 SCALING UP BY SUBSAMPLING

In some cases, GNN-AK (+)’s overhead leads to OOM, especially for complex models like PNA∗ that
are resource-demanding. Sampling with SubgraphDrop enables training using practical resources.
Notably, GNN-AK+-S models, shown at the end of Table 3, do not compromise and can even im-
prove performance as compared to their non-sampled counterpart, in alignment with Dropout’s ben-
efits Srivastava et al. (2014). Next we evaluate resource-savings, specifically on ZINC-12K and
CIFAR10. Table 4 shows that GIN-AK+-S with varying R provides an effective handle to trade off
resources with performance. Importantly, the rate in which performance decays with smaller R is
much lower than the rates at which runtime and memory decrease.

Table 4: Resource analysis of SubgraphDrop.

Dataset
GIN-AK+-S

GIN-AK+ GINR=1 R=2 R=3 R=4 R=5

ZINC-12K
MAE 0.1216 0.0929 0.0846 0.0852 0.0854 0.0806 0.1630
Runtime (S/Epoch) 10.8 11.2 12.0 12.4 12.5 9.4 6.0
Memory (MB) 392 811 1392 1722 1861 1911 124

CIFAR10
ACC 71.68 72.07 72.39 72.20 72.32 72.19 59.82
Runtime (S/Epoch) 80.7 89.1 100.5 110.9 119.7 241.1 55.0
Memory (MB) 2576 4578 6359 8716 10805 30296 801

6.4 ABLATION STUDY

We present ablation results on various structural components of GNN-AK(+) in Appendix A.11.
Table 6 shows the performance of GIN-AK+ for varying size egonets with k. Table 7 illustrates the
added benefit of various encodings and D2C feature. Table 8 extensively studies the effect of context
encoding and D2C in GNN-AK+, as they are not explained by Subgraph-1-WL∗. Table 9 studies the
effect of base model’s depth (or expressiveness) for GNN-AK+ with and without D2C.

7 CONCLUSION

Our work introduces a new, general-purpose framework called GNN-As-Kernel (GNN-AK) to uplift
the expressiveness of any GNN, with the key idea of employing a base GNN as a kernel on induced
subgraphs of the input graph, generalizing from the star-pattern aggregation of classical MPNNs.
Our approach provides an expressiveness and performance boost, while retaining practical scala-
bility of MPNNs—a highly sought-after middle ground between the two regimes of scalable yet
less-expressive MPNNs and high-expressive yet practically infeasible and poorly-generalizing k-
order designs. We theoretically studied the expressiveness of GNN-AK, provided a concrete design
and the more powerful GNN-AK+, introducing SubgraphDrop for shrinking runtime and memory
footprint. Extensive experiments on both simulated and real-world benchmark datasets empirically
justified that GNN-AK(+) (i) uplifts base GNN expressiveness for multiple base GNN choices (e.g.
over 1&2-WL for MPNNs, and over 3-WL for PPGN), (ii) which translates to performance gains
with SOTA results on graph-level benchmarks, (iii) while retaining scalability to practical graphs.

9

Published as a conference paper at ICLR 2022

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. In Proceedings of the Thirtieth Inter-
national Joint Conference on Artifical Intelligence (IJCAI), 2021.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learn-
ing, pp. 21–29. PMLR, 2019.

Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman
invariance: subgraph counts and related graph properties. Journal of Computer and System Sci-
ences, 113:42–59, 2020.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural
networks. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=lxHgXYN4bwl.

László Babai, Paul Erdos, and Stanley M Selkow. Random graph isomorphism. SIaM Journal on
computing, 9(3):628–635, 1980.

Muhammet Balcilar, Pierre Héroux, Benoit Gaüzère, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In Proceedings of the
38th International Conference on Machine Learning (ICML), 2021.

Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks with
local graph parameters. 2021.

Dominique Beani, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro
Lió. Directional graph networks. In Proceedings of the 38th International Conference on Machine
Learning (ICML), pp. 748–758, 2021.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation
networks. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=dFbKQaRk15w.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montúfar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. In Advances in Neural
Information Processing Systems, volume 34, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lió, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks.
In Proceedings of the 38th International Conference on Machine Learning (ICML), pp. 1026–
1037, 2021b.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improv-
ing graph neural network expressivity via subgraph isomorphism counting. arXiv preprint
arXiv:2006.09252, 2020.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. In Advances in Neural Information
Processing Systems, 2019.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. In Advances in Neural Information Processing Sys-
tems, volume 33, pp. 13260–13271, 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. Advances in Neural Information Processing Systems, 34, 2021.

10

https://openreview.net/forum?id=lxHgXYN4bwl
https://openreview.net/forum?id=lxHgXYN4bwl
https://openreview.net/forum?id=dFbKQaRk15w
https://openreview.net/forum?id=dFbKQaRk15w

Published as a conference paper at ICLR 2022

George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring graph neural
networks for node disambiguation. In Proceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI-20, pp. 2126–2132. International Joint Conferences on
Artificial Intelligence Organization, 2020.

David K Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs
for learning molecular fingerprints. In Advances in neural information processing systems, 2015.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Daniel C Elton, Zois Boukouvalas, Mark D Fuge, and Peter W Chung. Deep learning for molecular
design—a review of the state of the art. Molecular Systems Design & Engineering, 4(4):828–849,
2019.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The World Wide Web Conference, pp. 417–426, 2019.

M. Fey, J. G. Yuen, and F. Weichert. Hierarchical inter-message passing for learning on molecular
graphs. In ICML Graph Representation Learning and Beyond (GRL+) Workhop, 2020.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Kexin Huang and Marinka Zitnik. Graph meta learning via local subgraphs. Advances in Neural
Information Processing Systems, 33, 2020.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Advances in Neural Information Processing Systems, 32:7092–7101, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

Jon Kleinberg. The small-world phenomenon: An algorithmic perspective. In Proceedings of the
thirty-second annual ACM symposium on Theory of computing, pp. 163–170, 2000.

John Boaz Lee, Ryan A Rossi, Xiangnan Kong, Sungchul Kim, Eunyee Koh, and Anup Rao. Graph
convolutional networks with motif-based attention. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp. 499–508, 2019.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. 2020.

11

Published as a conference paper at ICLR 2022

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International Con-
ference on Learning Representations, 2020a. URL https://openreview.net/forum?
id=B1l2bp4YwS.

Andreas Loukas. How hard is to distinguish graphs with graph neural networks? In Advances in
Neural Information Processing Systems, 2020b.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In Advances in Neural Information Processing Systems, pp. 2156–2167, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2019b.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5115–5124,
2017.

Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based graph convolu-
tional network for directed graphs. In 2018 IEEE Data Science Workshop (DSW), pp. 225–228.
IEEE, 2018.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020a. URL
www.graphlearning.io.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. Advances in Neural Information Processing Systems,
33, 2020b.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In International Conference on Machine Learning, pp. 4663–4673.
PMLR, 2019.

Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon Lacoste-
Julien, and Ioannis Mitliagkas. A modern take on the bias-variance tradeoff in neural networks.
arXiv preprint arXiv:1810.08591, 2018.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International conference on machine learning, pp. 2014–2023. PMLR, 2016.

Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks.
Neural Networks, 130:195–205, 2020.

Dylan Sandfelder, Priyesh Vijayan, and William L Hamilton. Ego-gnns: Exploiting ego structures
in graph neural networks. In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 8523–8527. IEEE, 2021.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM),
pp. 333–341. SIAM, 2021.

Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Skeleton-based action recognition with directed
graph neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7912–7921, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

12

https://openreview.net/forum?id=B1l2bp4YwS
https://openreview.net/forum?id=B1l2bp4YwS
www.graphlearning.io

Published as a conference paper at ICLR 2022

Behrooz Tahmasebi and Stefanie Jegelka. Counting substructures with higher-order graph neural
networks: Possibility and impossibility results. arXiv preprint arXiv:2012.03174, 2020.

Erik Henning Thiede, Wenda Zhou, and Risi Kondor. Autobahn: Automorphism-based graph neural
nets. 2021.

Clément Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
neural networks with structural message-passing. In Advances in Neural Information Processing
Systems, 2020.

Boris Weisfeiler. On construction and identification of graphs. In LECTURE NOTES IN MATHE-
MATICS. Citeseer, 1976.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform bad for graph representation? 2021.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 10737–10745, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in Neural Information Processing Systems, 30, 2017.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Process-
ing Systems, 34, 2021.

Chen Zhengdao, Chen Lei, Villar Soledad, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 2020.

13

Published as a conference paper at ICLR 2022

A APPENDIX

A.1 ADDITIONAL RELATED WORK

Improving Expressiveness of GNNs: Several works other than those mentioned in Sec.1 tackle ex-
pressive GNNs. Murphy et al. (2019) achieve universality by summing permutation-sensitive func-
tions across a combinatorial number of permutations, limiting feasibility. Dasoulas et al. (2020) adds
node indicators to make them distinguishable, but at the cost of an invariant model, while Vignac
et al. (2020) further addresses the invariance problem, but at the cost of quadratic time complexity.
Corso et al. (2020) generalizes MPNN’s default sum aggregator, but is still limited by 1-WL. Beani
et al. (2021) generalizes spatial and spectral aggregation with >1-WL expressiveness, but using
expensive eigendecomposition. Recently, Bodnar et al. (2021b) introduce MPNNs over simplicial
complexes that shares similar expressiveness as GNN-AK. Ying et al. (2021) studies transformer with
above 1-WL expressiveness. Azizian & Lelarge (2021) surveys GNN expressiveness work.

Connections to CNN and k-WL: GNN-AK has a similar convolutional structure as CNN, and in
fact historically many spatial GNNs are inspired by CNN; see Wu et al. (2020) for a detailed survey.
The non-Euclidean nature of graphs makes such generalizations non-trivial. MoNet (Monti et al.,
2017) introduces pseudo-coordinates for nodes, while PatchySAN (Niepert et al., 2016) learns to
order and truncate neighboring nodes for convolution purposes. However, both methods aim to
mimic the formulation of the CNN without admitting the inherent difference between graphs and
images. In contrast, GNN-AK, generalizes CNN to graphs with a base GNN kernel, similar to how
a CNN kernel encodes image patches. GNN-AK also shares connections with two variants of k-
WL test algorithms: depth-k 1-dim WL (Cai et al., 1992; Weisfeiler, 1976) and deep WL (Arvind
et al., 2020). The former recursively applies 1-WL to all size-k subgraphs, with slightly weaker
expressiveness than k-WL, and the latter reduces the number of such subgraphs for the k-WL test.
Instead of working on all O(nk) size-k subgraphs, we keep linear scalability by only applying 1-
WL-equivalent MPNNs to O(n) rooted subgraphs.

A.2 SAMPLING BY SUBGRAPHDROP

4
2

5

6

7

8

3
1

Select
subgraphs to

cover the whole
graphs

4
2

5

6

7

8

3
1

2

1
Base GNN

Subgraph 1

Emb(1|Subgraph 1)

Emb(2|Subgraph 1)

4
2

5

8

3

Base GNN

Subgraph 4

Emb(2|Subgraph 4)

Emb(3|Subgraph 4)

Emb(4|Subgraph 4)

Emb(5|Subgraph 4)

Emb(8|Subgraph 4)

5

6

7
Base GNN

Subgraph 7

Emb(5|Subgraph 7)

Emb(6|Subgraph 7)

Emb(7|Subgraph 7)

SUM {Emb(1|Subgraph i)} x scale1

Random
Selection

Farthest
Sampling

Minimum Set
Cover 4

2
5

6

7

8

3
1

1 1

1

4

7

1
1

Emb(1|Subgraph 1) SUM {Emb(i|Subgraph 1)}

4 4Emb(4|Subgraph 4) SUM {Emb(i|Subgraph 4)}

7 7Emb(7|Subgraph 7) SUM {Emb(i|Subgraph 7)}

2
2

3
3 4 5 6 7

4 5 6 7

Emb(1|Subgraph 1) SUM {Emb(i|Subgraph 1)}

Emb(4|Subgraph 4)

Emb(7|Subgraph 7)

SUM {Emb(4|Subgraph i)} x scale4

SUM {Emb(7|Subgraph i)} x scale7

SUM {Emb(2|Subgraph i)} x scale2

SUM {Emb(3|Subgraph i)} x scale3

SUM {Emb(5|Subgraph i)} x scale5

SUM {Emb(6|Subgraph i)} x scale6

SUM {Emb(i|Subgraph 4)}

SUM {Emb(i|Subgraph 7)}

Emb(2|Subgraph 2) SUM {Emb(i|Subgraph 2)}

Emb(3|Subgraph 3) SUM {Emb(i|Subgraph 3)}

Emb(5|Subgraph 5) SUM {Emb(i|Subgraph 5)}

Emb(6|Subgraph 6) SUM {Emb(i|Subgraph 6)}

1

4

7

2

3

5

6

Extract amd sample subgraphs Propagate subgraph &
centroid encodings

Scale
context
encodings

8

8

SUM {Emb(8|Subgraph i)} x scale6 Emb(6|Subgraph 8) SUM {Emb(i|Subgraph 8)}8

scale_i =

Figure 2: GNN-AK-S with SubgraphDrop used in training. GNN-AK-S first extracts subgraphs and
subsamples m≪|V| subgraphs to cover each node at least R times with multiple strategies. The
base GNN is applied to compute all intermediate node embeddings in selected subgraphs. Context
encodings are scaled to match evaluation. Subgraph and centroid encodings initially only exist for
root nodes of selected subgraphs, and are propagated to estimate those of other nodes.

The descriptions of subgraph sampling strategies are as follows. Fig. 2 shows an overview of
SubgraphDrop.

• Random sampling selects subgraphs randomly until every node is covered ≥R times.
• Farthest sampling selects subgraphs iteratively, starting at a random one and greedily selecting

each subsequent one whose root node is farthest w.r.t. shortest path distance from those of already
selected subgraphs, until every node is covered ≥R times.

• Min-set-cover sampling initially selects a subgraph randomly, and follows the greedy minimum
set cover algorithm to iteratively select the subgraph containing the maximum number of uncov-
ered nodes, until every node is covered ≥R times.

14

Published as a conference paper at ICLR 2022

A.3 PROOF OF THEOREM 1

Proof. (Xu et al., 2018) proved that with sufficient number of layers and all injective functions,
MPNN is as powerful as 1-WL. Then Eq.2 outputs different vectors for two graphs iff Subgraph-
1-WL∗ encodes different labels with c

(t+1)
v = 1-WL(G(t)[Nk(v)]). With POOL in Eq.2 also to be

injective, MPNN-AK outputs different vectors iff Subgraph-1-WL∗ outputs different fingerprints for
two graphs. Then MPNN-AK is as powerful as Subgraph-1-WL∗.

A.4 PROOF OF THEOREM 2

Proof. We first prove that if two graphs are identified as isomorphic by Subgraph-1-WL∗, they are
also determined as isomorphic by 1-WL. Then we present a pair of non-isomorphic graphs that can
be distinguished by Subgraph-1-WL∗ but not by 1-WL. Together these two imply that Subgraph-1-
WL∗ is strictly more powerful than 1-WL. Comparing with 2-WL can be concluded from the fact
that 1-WL and 2-WL are equivalent in expressiveness (Maron et al., 2019a). In the proof we use
1-hop egonet subgraphs for Subgraph-1-WL∗.

Assume graphs G and H have the same number of nodes (otherwise easily determined as non-
isomorphic) and are two non-isomorphic graphs but Subgraph-1-WL∗ determines them as iso-
morphic. Then for any iteration t, set

{
1-WL(G(t)[N1(v)])|v ∈ VG

}
is the same as set{

1-WL(H(t)[N1(v)])|v ∈ VH

}
. Then there existing an ordering of nodes vG1 , ..., v

G
n and vH1 , ..., vHN

with N = |VG| = |VH |, such that for any node order i = 1, ..., N , 1-WL(G(t)[N1(v
G
i)]) =

1-WL(H(t)[N1(v
H
i)]). This implies that structure G[N1(v

G
i)] and H[N1(v

H
i)] are not dis-

tinguishable by 1-WL. Hence Star(vGi) and Star(vHi) are hashed to the same label other-
wise the 1-WL that includes the hashed result of Star(vGi) and Star(vHi) can also distin-
guish G[N1(v

G
i)] and H[N1(v

H
i)]. Then for any iteration t and any node with order i,

HASH
(
Star(vG

(t)

i)
)

= HASH
(
Star(vH

(t)

i)
)

implies that 1-WL fails in distinguishing G and
H . In fact if we replace the 1-WL hashing function in Subgraph-1-WL∗ to a stronger version
HASH

({
HASH(Star(vG

(t)

)), 1-WL(G(t)[N1(v)])
})

, this directly implies the above statement.

1 2 3

4 5

6 7

8 9 10

1 2 3

4 5

6 7

8 9 10

1 2

4

6

8

1 2

4

8

7

A

1

4
7

8
9

1

4

6

8 9

BA's Subgraph 1 A's Subgraph 8 B's Subgraph 8B's Subgraph 1

Figure 3: Two 4-regular graphs that cannot be distinguished by 1-WL. Colored edges are the dif-
ference between two graphs. Two 1-hop egonets are visualized while all other rooted egonets are
ignored as they are same across graph A and graph B.

In Figure 3, two 4-regular graphs are presented that cannot be distinguished by 1-WL but can be
distinguished by Subgraph-1-WL∗. We visualize the 1-hop egonets that are structurally different
among graphs A and B. It’s easy to see that A’s egonet A[N1(1)] and B’s egonet B[N1(1)] can be
distinguished by 1-WL, as degree distribution is not the same. Hence, A and B can be distinguished
by Subgraph-1-WL∗.

A.5 PROOF OF THEOREM 3

Proof. We prove by showing a pair of 3-WL failed non-isomorphic graphs can be distinguished by
Subgraph-1-WL (see definition of “no less powerful” in Zhengdao et al. (2020): we call A is no/not
less powerful than B if there exists a pair of non-isomorphic graphs that cannot be distinguished
by B but can be distinguished by A.), assuming HASH(·) is 3-WL discriminative. Figure 4 shows
two strongly regular graphs that can not be distinguished by 3-WL (any strongly regular graphs are
not distinguishable by 3-WL (Arvind et al., 2020)), along with their 1-hop egonet rooted subgraphs.

15

Published as a conference paper at ICLR 2022

16

15

14

13

2
1

3

4

5

6

7

8

12

11

910

16

15

14

13

2
1

3

4

5

6

7

8

12

11

9
10

4

1

3

2

5

9

13

3

1

5

15

7

9

11

A B

A's subgraph B's subgraph

Figure 4: Two non-isomorphic strongly regular graphs that cannot be distinguished by 3-WL.

Notice that all 1-hop egonet rooted subgraphs in A (also in B) are the same, resulting that Subgraph-
1-WL can successfully distinguish A and B if HASH can distinguish the showed two 1-hop egonets.
Now we prove that 3-WL can distinguish these two subgraphs. 3-WL constructs a coloring of 3-
tuples of all vertices in a graph, and uses the histogram of colors of all k-tuples as fingerprint of
the graph. Then, different 3-tuples correspond to different colors or bins in the histogram. As a
triangle is a unique type of 3-tuple, at iteration 0 of 3-WL, the histogram of all 3-tuples counts the
number of triangles in the graph. Notice that A’s subgraph has 2 ×

(
4
3

)
= 8 triangles, and B’s

subgraph contains 6 triangles. This implies that even at iteration 0, 3-WL can distinguish these two
subgraphs. Hence, when HASH(·) is 3-WL expressive, Subgraph-1-WL can distinguish A and B.
Therefore there exists a pair of 3-WL failed non-isomorphic graphs that can be distinguished by
Subgraph-1-WL.

A.6 PROOF OF THEOREM 4

Proof. For any k ≥ 3, Cai et al. (1992) provided a scheme to construct a pair of k-WL-failed non-
isomorphic graphs based on a base graph G with separator size k + 1 (more specifically, G can be
chosen as a degree-3 regular graph with separator size k + 1, see Corollary 6.5 in Cai et al. (1992)).

We describe the proposed scheme of constructing the two graphs A and B briefly, for details see
Section 6 in Cai et al. (1992). At high level, this scheme first constructs A by replacing every node
(with degree d) in G by a carefully designed graph Xd, and then rewires two edges in A to its
non-isomorphic counter graph B. Specifically, the small graph Xd = (Vd, Ed) is defined as follows.

Vd =Ad ∪Bd ∪Md,where Ad = {ai|1 ≤ i ≤ d}, Bd = {bi|1 ≤ i ≤ d},
and Md = {mS |S ⊆ {1, ..., d}, |S| is even} (11)

Ed ={(mS , ai)|i ∈ S} ∪ {(mS , bi)|i /∈ S}
Hence each vertex v with degree d in G is replaced by a graph X(v) = Xd of size 2d−1 + 2d,
including a “middle” section Md of size 2d−1 and d pairs of vertices (ai, bi) representing “end-
points” of each edge incident with v in the original graph G. Let (u, v) ∈ E(G), then two small
graphs X(v) and X(u) in A are connected by the following. Let (au,v, bu,v), (av,u, bv,u) be the pair
of vertices associated with (u, v) in X(u) and X(v) respectively, then au,v is connected to av,u,
and bu,v is connected to bv,u. After constructing A, B is modified from A by rewiring a single
edge (u, v) in the original graph G. Specifically, now in B, au,v is connected to bv,u and bu,v is
connected to av,u. Cai et al. (1992) proved that A and B are non-isomorphic, and when base graph
G is a degree-3 regular graph with separator size k + 1, A and B are not distinguishable by k-WL.
See a visualization in Figure 5.

We provide several useful lemmas related to graph Xd in the following, which are then used in
proving Theorem 4.

Lemma 5 (Cai et al. (1992)). Xd has exactly 2d−1 automorphisms, and each automorphism is
determined by interchanging ai and bi for each i in some subset S ⊆ {1, ..., d} of even cardinality.

16

Published as a conference paper at ICLR 2022

Figure 5: A pair of CFI graphs (A and B) zoomed at the (rewired) edge (u, v) of a base graph. The
base graph is a degree-3 regular graph with separator size k + 1 for k-WL-failed case.

Lemma 5 is directly taken from Lemma 6.1 in Cai et al. (1992).

Lemma 6. The shortest path distance between ai and bi in Xd for any i is exactly 4, and diameter
of Xd is 4.

Proof. Based on the construction shown in Eq.11, for any i, ai and bi are not directly connected,
and any middle nodes share no connection. This implies the shortest path between ai and bi is larger
than 3. Let mS be one middle node connected with ai. We construct a new set S′ = {p, q}, with
p ̸= i, p ∈ S and q /∈ S, then mS′ connects with bi based on Eq.11. Additionally, ap connects
to both mS and mS′ , which implies the shortest path distance between ai and bi ≤ 4. Hence, the
shortest path distance between ai and bi is exactly 4. To show the diameter of Xd is 4, it’s easy to
observe that distance(ai, bi) only decreases when replacing ai with other nodes in Xd (or reverse,
replacing bi with other nodes in Xd).

Lemma 7. For any k ≥ 1, k-egonets of ai and bi in Xd are isomorphic.

Proof. When k ≥ 4, Xd[Nk(ai)] = Xd[Nk(bi)] = Xd based on Lemma 6. Now for 1 ≤ k ≤ 3,
we analyze the k-hop egonets of ai and bi sequentially. First, Xd[N1(ai)] and Xd[N1(bi)] are two
depth-1 trees with equal number of leaves (middle nodes in Xd), and of course are isomorphic.

17

Published as a conference paper at ICLR 2022

Similarly, Xd[N2(ai)] and Xd[N2(bi)] are two depth-2 trees with equal number of depth-1 nodes
and equal number of leaves, which are also isomorphic. Last, Xd[N3(ai)] and Xd[N3(bi)] are the
graphs by removing bi from Xd and ai from Xd, respectively. It’s trivial to observe that they are
also isomorphic. Combining all cases proves the Lemma.

To prove the main theorem, we visualize the two graphs A and B zoomed at edge (u, v) of base graph
in Figure 5 to help understanding. To prove that Subgraph-1-WL with t ≤ 4-egonet (we use t to
prevent notation conflict) cannot distinguish A and B, we mainly analyze the subgraph around au,v
for both graph A and B. For other subgraphs with different root nodes within t shortest-path-distance
around nodes au,v, av,u, bu,v, bv,u, they follow exactly the same argument. For all subgraphs with
other root nodes, it’s trivial to observe that there is no difference among two subgraphs in A and B.

We introduce some notation first. Let A[Nt(au,v)] and B[Nt(au,v)] be the two t-egonet subgraphs
around au,v in A and B respectively. Let Aleft[Nt(au,v)] be the “left” part graph (visualized in
Figure 5, the left side of au,v , include au,v) of A[Nt(au,v)], and Aright[Nt(au,v)] be the “right”
part graph (visualized in Figure 5, the right side of au,v , excluding au,v) of A[Nt(au,v)]. Then
A[Nt(au,v)] is reconstructed by connecting Aleft[Nt(au,v)] and Aright[Nt(au,v)] with a single
edge (au,v, av,u). Bleft[Nt(au,v)] and Bright[Nt(au,v)] are defined in the same way, such that
B[Nt(au,v)] is reconstructed by connecting (au,v, bv,u) in B.

When t ≤ 4, we show that there exists an isomorphism that maps A[Nt(au,v)] to B[Nt(au,v)].
We construct this isomorphism by constructing an isomorphism between Aleft[Nt(au,v)] and
Bleft[Nt(au,v)] and an isomorphism between Aright[Nt(au,v)] and Bright[Nt(au,v)] first. Triv-
ially, the current node ordering in Aleft[Nt(au,v)] and Bleft[Nt(au,v)] already defines an iso-
morphism among them, that is, mapping any ai (bi,mS) in Aleft[Nt(au,v)] to ai (bi,mS) in
Bleft[Nt(au,v)]. To find an isomorphism between Aright[Nt(au,v)] and Bright[Nt(au,v)], one
can easily observe that for t ≤ 3, Aright[Nt(au,v)] can be 1-to-1 mapped (with av,u in A be-
ing mapped to ai) to X3[Nt−1(ai)] and Bright[Nt(au,v)] can be 1-to-1 mapped (with bv,u in A
being mapped to bi) to X3[Nt−1(bi)] for some i. When t = 4, Aright[Nt(au,v)] is mapped to
X3[N3(ai)] with additional 2 nodes and Bright[Nt(au,v)] is mapped to X3[N3(bi)] with addi-
tional 2 nodes. Then applying Lemma 7, when t ≤ 4 we can construct an isomorphism between
Aright[Nt(au,v)] and Nright[Nt(au,v)] with av,u in A being mapped to bv,u in B. We remark
that when t = 4, the two additional nodes outside X3[N3(ai)] and X3[N3(bi)] does not affect-
ing applying Lemma 7. Last, the combination of the isomorphism between Aleft[Nt(au,v)] and
Bleft[Nt(au,v)] and the isomorphism between Aright[Nt(au,v)] and Bright[Nt(au,v)] is actually
a new isomorphism between A[Nt(au,v)] and B[Nt(au,v)], as the edge (au,v, av,u) is mapped
to edge (au,v, bv,u). Thus, when t ≤ 4, A[Nt(au,v)] and B[Nt(au,v)] are isomorphic and
HASH(A[Nt(au,v)]) = HASH(B[Nt(au,v)]) no matter what HASH(·) function is used. Applying
the same argument to all other pairs of subgraphs in A and B implies that the histogram encodings
of A and B are the same. Hence Subgraph-1-WL with t ≤ 4 cannot distinguish the two graphs A
and B that are k-WL-failed for any k ≥ 3.

We remark that the theorem doesn’t imply that Subgraph-1-WL with t ≥ 5-egonet can distinguish A
and B. This should depend on the base graph. We give an informal sketch. Suppose that for t ≥ 5,
the left part Aleft[Nt(au,v)] and right part Aright[Nt(au,v)] are only connected through (au,v, av,u),
that is, removing (au,v, av,u) from A[Nt(au,v)] resulting in Aleft[Nt(au,v)] and Aright[Nt(au,v)]
being disconnected. Then we can apply Lemma 5 multiple times with mapping some av,u in A to
bv,u in B and bv,u in A to av,u in B, until this kind of switches reach the boundary of A[Nt(au,v)],
resulting in an isomorphism between A[Nt(au,v)] and B[Nt(au,v)]. We refer the reader to Lemma
6.2 in Cai et al. (1992), which also uses this line of argument.

A.7 PROOF OF PROPOSITION 1

Proof. The proof is by contradiction. Let G and H be two non-isomorphic graphs and |VG| = |VH |
(if graph sizes are different then Subgraph-1-WL can trivially distinguish them). Now suppose that
Prop. 1 is incorrect, i.e. Subgraph-1-WL cannot distinguish G and H even provided that the two
conditions (1) and (2) are satisfied. Then, for any iteration of Subgraph-1-WL, G and H would
have the same histogram of subgraph colors. Now we focus on iteration 0. Formally, let color

18

Published as a conference paper at ICLR 2022

cGv,i = HASH(G[Nk(v
G
i)]) and cHv,i = HASH(H[Nk(v

H
i)]) for a node order v (vGi maps index i

to a node in G). According to Condition (1): for any node reordering vG1 , ..., v
G
NG

and vH1 , ..., vHNH
,

∃i ∈ [1,max(NG, NH)] that G[Nk(v
G
i)] and H[Nk(v

G
i)] are non-isomorphic, then we know that

∃i that G[Nk(v
G
i)] and H[Nk(v

H
i)] are non-isomorphic, hence cGv,i ̸= cHv,i since by Condition (2)

HASH can distinguish these two subgraphs. However as two graphs have the same histogram of
subgraph colors, there must be a j ̸= i such that cGv,i = cHv,j and cGv,j = cHv,i. Then we can create a
new node order m by swapping vGi and vGj , resulting cGm,i = cHm,i and cGm,j = cHm,j . This process
can be repeated until having a new node order w such that ∀i ∈ 1, ..., |VG|, cGw,i = cHw,i. As HASH
is discriminative enough according to Condition (2), this implies ∀i ∈ 1, ..., |VG|, G[Nk(w

G
i)] and

H[Nk(w
H
i)] are isomorphic, which contradicts with Condition (1). Thus, Prop. 1 must be true.

A.8 PROOF OF PROPOSITION 2

Proof. When a pair of non-isomorphic graphs G and H cannot be distinguished by GNN-AK+, for
any layer l, the histogram of h(l))

v in G and H in Eq. 7 should be the same. Which implies that for
any layer l, the histogram of h(l))

v in G and H in Eq. 4 should be the same. Then GNN-AK cannot
distinguish G and H . So for any pair of non-isomorphic graphs, GNN-AK cannot distinguish them
if GNN-AK+ cannot distinguish them. Thus GNN-AK+ is more powerful than GNN-AK.

A.9 DATASET DESCRIPTION & STATISTICS

Table 5: Dataset statistics.

Dataset Task Semantic # Cls./Tasks # Graphs Ave. # Nodes Ave. # Edges

EXP Distinguish 1-WL failed graphs 2 1200 44.4 110.2
SR25 Distinguish 3-WL failed graphs 15 15 25 300

CountingSub. Regress num. of substructures 4 1500 / 1000 / 2500 18.8 62.6
GraphProp. Regress global graph properties 3 5120 / 640 / 1280 19.5 101.1

ZINC-12K Regress molecular property 1 10000 / 1000 / 1000 23.1 49.8
CIFAR10 10-class classification 10 45000 / 5000 / 10000 117.6 1129.8
PATTERN Recognize certain subgraphs 2 10000 / 2000 / 2000 118.9 6079.8

MolHIV 1-way binary classification 1 32901 / 4113 / 4113 25.5 54.1
MolPCBA 128-way binary classification 128 350343 / 43793 / 43793 25.6 55.4

MUTAG Recognize mutagenic compounds 2 188 17.93 19.79
PTC-MR Classify chemical compounds 2 344 14.29 14.69
PROTEINS Classify Enzyme & Non-enzyme 2 1113 39.06 72.82
NCI1 Classify molecular 2 4110 29.87 32.30
IMDB-B Classify movie 2 1000 19.77 96.53
RDT-B Classify reddit thread 2 2000 429.63 497.75

A.10 EXPERIMENTAL SETUP DETAILS

To reduce the search space, we search hyperparameters in a two-phase approach: First, we search
common ones (hidden size from [64, 128], number of layers L from [2,4,5,6], (sub)graph pooling
from [SUM, MEAN] for each dataset using GIN based on validation performance, and fix it for any
other GNN and GNN-AK(+). While hyperparameters may not be optimal for other GNN models, the
evaluation is fair as there is no benefit for GNN-AK(+). Next, we search GNN-AK(+) exclusive ones
(encoding types) over validation set using GIN-AK(+) and keep them fixed for other GNN-AK(+).
We use a 1-layer base model for GNN-AK(+), with exceptions that we tune number of layers of base
model (while keeping total number of layers fixed) for GNN-AK in simulation datasets (presented
in Table 1). We use 3-hop egonets for GNN-AK(+), with exceptions that CIFAR10 uses 2-hop
egonet due to memory constraint; PATTERN and RDT-B use random walk based subgraph with
walk length=10 and repeat times=5 as their graphs are dense. For GNN-AK(+)-S, R = 3 is set as
default. We use farthest sampling for molecular datasets ZINC, MolHIV, and MolPCBA; to speed
up further, random sampling is used for CIFAR10 whose graphs are k-NN graphs; min-set-cover
sampling is used for PATTERN to adapt random walk based subgraph. We use Batch Normalization
and ReLU activation in all models. For optimization we use Adam with learning rate 0.001 and

19

Published as a conference paper at ICLR 2022

weight decay 0. All experiments are repeated 3 times to calculate mean and standard derivation. All
experiments are conducted on RTX-A6000 GPUs.

A.11 ABLATION STUDY

We present ablation results on various structural components of GNN-AK. Table 6 shows the perfor-
mance of GIN-AK for varying size egonets with k. We find that larger subgraphs tend to yield im-
provement, although runtime-performance trade-off may vary by dataset. Notably, simply 1-egonets
are enough for CIFAR10 to uplift performance of the base GIN considerably.

Table 6: Effect of various k-egonet size.

k of GIN-AK+ ZINC-12K CIFAR10

GIN 0.163 ± 0.004 59.82 ± 0.33

k = 1 0.147 ± 0.006 71.37 ± 0.28
k = 2 0.120 ± 0.005 72.19 ± 0.13
k = 3 0.080 ± 0.001 OOM

Table 7: Effect of various encodings

Ablation of GIN-AK+ ZINC-12K CIFAR10

Full 0.080 ± 0.001 72.19 ± 0.13

w/o Subgraph encoding 0.086 ± 0.001 67.76 ± 0.29
w/o Centroid encoding 0.084 ± 0.003 72.20 ± 0.96
w/o Context encoding 0.088 ± 0.003 69.25 ± 0.30
w/o Distance-to-Centroid 0.085 ± 0.001 71.91 ± 0.22

Next Table 7 illustrates the added benefit of various node encodings. Compared to the full design,
eliminating any of the subgraph, centroid, or context encodings (Eq.s (3)–(5)) yields notably inferior
results. Encoding without distance awareness is also subpar. These justify the design choices in our
framework and verify the practical benefits of our design.

As GNN-AK+ is not directly explained by Subgraph-1-WL∗ (though D2C is supported by Subgraph-
1-WL, by strengthening HASH), we conduct additional ablation studies over GNN-AK+ with differ-
ent combinations of removing context encoding and D2C, shown in Table 8. Note that all experi-
ments in Table 8 are using a 1-layer base GIN model. We summarize the observations as follows.

• For real-world datasets (ZINC-12K, CIFAR10), We observe that the largest performance improve-
ment over base model comes from wrapping base GNN with Eq.2 (the performance of GIN-AK),
while adding context encoding and D2C monotonically improves performance of GNN-AK+.

• For substructure counting and graph property regression tasks, we observe D2C significantly in-
creases the performance of GIN-AK+ w/o Ctx (supported by the theory of Subgraph-1-WL where
the HASH is required to be injective). Specifically, the cost-free D2C feature enhances the expres-
siveness of the base 1-layer GIN model (similar to the benefit of distance encoding shown in Li
et al. (2020)), resulting in a more expressive GNN-AK+, which lies between Subgraph-1-WL and
Subgraph-1-WL∗. We leave the exact theoretical analysis of D2C’s expressiveness benefit in fu-
ture work. Notice that GIN-AK improves the performance over the base model but not in a large
margin, we next show this is due to the insufficiency of the number of layers of base GIN.

Table 8: Study GNN-AK without context encoding (Ctx) and without distance-to-centroid (D2C).
Base model is 1-layer GIN for all methods.

Method ZINC-12K
(MAE)

CIFAR10
(ACC)

EXP
(ACC)

SR25
(ACC)

Counting Substructures (MAE) Graph Properties (log10(MAE))

Triangle Tailed Tri. Star 4-Cycle IsConnected Diameter Radius

GIN 0.163 59.82 50% 6.67% 0.3569 0.2373 0.0224 0.2185 -1.9239 -3.3079 -4.7584

GIN-AK 0.094 67.51 100% 6.67% 0.2311 0.1805 0.0207 0.1911 -1.9574 -3.6925 -5.0574

GIN-AK+ w/o Ctx 0.088 69.25 100% 6.67% 0.0130 0.0108 0.0177 0.0131 -2.7083 -3.9257 -5.2784
GIN-AK+ w/o D2C 0.085 71.91 100% 6.67% 0.1746 0.1449 0.0193 0.1467 -2.0521 -3.6980 -5.0984

GIN-AK+ 0.080 72.19 100% 6.67% 0.0123 0.0112 0.0150 0.0126 -2.7513 -3.9687 -5.1846

According to Prop. 1, the base model must be discriminative enough such that
HASH(G[Nk(v

G
i)]) ̸= HASH(H[Nk(v

H
i)]), for Subgraph-1-WL with k-egonet to enjoy expres-

siveness benefits. In addition to using D2C to increase the expressiveness of base model, another
way is to practically increase the number of layers of the base model (akin to increasing the number
of iterations of 1-WL, as in the definition of Subgraph-1-WL∗). We study the effect of base model’s
number of layers in GNN-AK+, with and without D2C in Table 9.

• Firstly, GNN-AK+ with D2C is insensitive to the depth of base model, with 1-layer base model
being enough to achieve great performance in counting substructures and the best performance

20

Published as a conference paper at ICLR 2022

Table 9: Study the effect of base model’s number of layers while keeping total number of layers in
GNN-AK fixed. Different effect is observed for GNN-AK and GNN-AK without D2C.

Method GIN-AK’s
#Layers

Base GIN’s
#Layers

Counting Substructures (MAE) Graph Properties (log10(MAE))

Triangle Tailed Tri. Star 4-Cycle IsConnected Diameter Radius

GIN 0 6 0.3569 0.2373 0.0224 0.2185 -1.9239 -3.3079 -4.7584

GIN-AK 6 1 0.2311 0.1805 0.0207 0.1911 -1.9574 -3.6925 -5.0574
3 2 0.1556 0.1275 0.0172 0.1419 -1.9134 -3.7573 -5.0100
2 3 0.1064 0.0819 0.0168 0.1071 -1.9259 -3.7243 -4.9257
1 6 0.0934 0.0751 0.0216 0.0726 -1.9916 -3.6555 -4.9249

GIN-AK+ w/o D2C

6 1 0.1746 0.1449 0.0193 0.1467 -2.0521 -3.6980 -5.0984
3 2 0.1244 0.1052 0.0219 0.1121 -2.1538 -3.7305 -4.9250
2 3 0.1021 0.0830 0.0162 0.0986 -2.2268 -3.7585 -5.1044
1 6 0.0885 0.0696 0.0174 0.0668 -2.0541 -3.6834 -4.8428

GIN-AK+ with D2C

6 1 0.0123 0.0112 0.0150 0.0126 -2.7513 -3.9687 -5.1846
3 2 0.0116 0.0100 0.0168 0.0122 -2.6827 -3.8407 -5.1034
2 3 0.0119 0.0102 0.0146 0.0127 -2.6197 -3.8745 -5.1177
1 6 0.0131 0.0123 0.0174 0.0162 -2.5938 -3.7978 -5.0492

in regressing graph properties. We hypothesize that D2C-enhanced 1-layer GIN base model is
discriminative enough for subgraphs in the dataset, and without expressiveness bottleneck of
base model, increasing GNN-AK+’s depth benefits expressiveness, akin to increasing iterations
of Subgraph-1-WL. Besides, unlike counting substructure that needs local information within
subgraphs, regressing graph properties needs the graph’s global information which can only be
accessed with increasing GNN-AK+’s (outer) depth.

• Secondly, GNN-AK(+) without D2C suffers from a trade-off between the base model’s expressive-
ness (depth of base model) and the number of GNN-AK(+) layers (outer depth), which is clearly
observed in regressing graph properties. We hypothesize that without D2C the 1-layer GIN base
model is not discriminative enough for subgraphs in the dataset, and with this bottleneck of base
model, GNN-AK(+) cannot benefit from increasing the outer depth. Hence the number of layers
of the base model are important for the expressiveness of GNN-AK(+) when D2C is not used.

21

Published as a conference paper at ICLR 2022

A.12 ADDITIONAL RESULTS ON TU DATASETS

We also report additional results on several smaller datasets from TUDataset (Morris et al., 2020a),
with their statistics reported in last block of Table 5. The training setting and evaluation procedure
follows Xu et al. (2018) exactly, where we perform 10-fold cross-validation and report the average
and standard deviation of validation accuracy across the 10 folds within the cross-validation. We
take results of existing baselines directly from Bodnar et al. (2021a) with their method labeled as
CIN, for references to all baselines see Bodnar et al. (2021a). The result is shown in Table 10.

Table 10: Results on TU Datasets. First section contains methods of graph kernels, second section
has GNNs, and third is the method in Bodnar et al. (2021a). The top two are highlighted by First,
Second, Third.

Dataset MUTAG PTC PROTEINS NCI1 IMDB-B RDT-B

RWK 79.2±2.1 55.9±0.3 59.6±0.1 >3 days N/A N/A
GK (k = 3) 81.4±1.7 55.7±0.5 71.4±0.31 62.5±0.3 N/A N/A
PK 76.0±2.7 59.5±2.4 73.7±0.7 82.5±0.5 N/A N/A
WL kernel 90.4±5.7 59.9±4.3 75.0±3.1 86.0±1.8 73.8±3.9 81.0±3.1

DCNN N/A N/A 61.3±1.6 56.6±1.0 49.1±1.4 N/A
DGCNN 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 70.0±0.9 N/A
IGN 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 72.0±5.5 N/A
GIN 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 75.1±5.1 92.4±2.5
PPGNs 9 0.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 73.0±5.8 N/A
Natural GN 89.4±1.6 66.8±1.7 71.7±1.0 82.4±1.3 73.5±2.0 N/A
GSN 92.2 ± 7.5 68.2 ± 7.2 76.6 ± 5.0 83.5 ± 2.0 77.8 ± 3.3 N/A
SIN N/A N/A 76.4 ± 3.3 82.7 ± 2.1 75.6 ± 3.2 92.2 ± 1.0

CIN 92.7 ± 6.1 68.2 ± 5.6 77.0 ± 4.3 83.6 ± 1.4 75.6 ± 3.7 92.4 ± 2.1

GIN-AK+ 91.3 ± 7.0 67.7 ± 8.8 77.1 ± 5.7 85.0 ± 2.0 75.0 ± 4.2 94.8 ± 0.8

We mark that the performance of GIN-AK+ over IMDB-B is not improved because each graph in
the dataset is an egonet, hence all nodes have the same rooted subgraph – the whole graph. The
performance of MUTAG and PTC is very unstable, given these datasets are too small: 188 and 344,
respectively, and the evaluation method is based on average 10 validation curves over 10 folds.

22

	Introduction
	Related work
	General Framework and Theory
	From Stars to Subgraphs
	Theory: Expressiveness Analysis

	Concrete Realization
	Improving Scalability: SubgraphDrop
	Subgraph Sampling Strategies
	Training with SubgraphDrop

	Experiments
	Empirical Verification of Expressiveness
	Comparing with SOTA and Generality
	Scaling up by Subsampling
	Ablation Study

	Conclusion
	Appendix
	Additional Related Work
	Sampling by SubgraphDrop
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Proposition 1
	Proof of Proposition 2
	Dataset Description & Statistics
	Experimental Setup Details
	Ablation Study
	Additional Results on TU Datasets

