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Abstract

Incentive design aims to guide the performance of a system towards a human’s intention or
preference. We study this problem in a multi-agent system with one leader and multiple
followers. Each follower independently solves a Markov decision process (MDP) to maxi-
mize its own expected total return with the same state space and action space. However,
the leader’s objective depends on the collective best-response policies of all followers. To
influence these policies of followers, the leader provides side payments as incentives to in-
dividual followers at a cost, aiming to align the collective behaviors of followers with its
own goal while minimizing this cost of incentive. Such a leader-followers interaction is for-
mulated as a bilevel optimization problem: the lower level consists of followers individually
optimizing their MDPs given the side payments, and the upper level involves the leader
optimizing its objective function given the followers’ best responses. The main challenge
to solve the incentive design is that the leader’s objective is generally non-concave and the
lower level optimization problems can have multiple local optima. To this end, we employ a
constrained optimization reformation of this bi-level optimization problem and develop an
algorithm that provably converges to a stationary point of the original problem, by leverag-
ing several smoothness properties of value functions in MDPs. We validate our algorithm
in a stochastic gridworld by examining its convergence, verifying that the constraints are
satisfied, and evaluating the improvement in the leader’s performance.

1 Introduction

Incentive design aims to determine how an agent should incentivize a group of autonomous or semi-
autonomous Al systems to adjust their behavior in alignment with human intentions, particularly when these
systems have their own objectives, uncertainties, or interactions with other agents. The incentive design can
be studied in the framework of the leader-follower games, also known as principal-agent games (Bolton &
Dewatripont,, 2005; Ho et al., (1981} |Ho & Teneketzis, [1984; [Simaan & Cruz Jr} [1973), where the follower
encounters a planning problem that can be shaped by an incentive policy of the leader, and the leader is
to design an incentive policy so that the follower’s best response aligns with the leader’s objective. This
framework is widely used in mechanism design across various fields, such as economic markets (Myerson,
1981} Williams, 2011; |[Easley & Ghoshl [2015), online platforms (Ratliff et al., [2019)), smart cities (Mei et al.,
2017; [Kazhamiakin et al., [2015), smart grids (Braithwait et al.| [2006; |Alquthami et all 2021, and machine
learning (Kang et al. [2023; [Liu et al., 2024} [Pasztor et al., 2024)). For instance, Alquthami et al. (Alquthami
et al [2021) propose a mechanism for the fair design of customized price profiles for all users and tailored
electricity tariffs for high-consumption customers. In the smart grid, to mitigate peak demand, the utility
company may reduce prices at certain times to incentivize users, aiming to optimize social welfare while also
improving profit. As another example, Liu et al. (Liu et al.l [2024]) formulate the data poisoning attack as
a Stackelberg game, where the attacker (leader) crafts poisonous perturbations to the training data with
the goal of reducing test accuracy, while the classifier (follower) optimizes its network parameters on the
poisoned dataset.
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In the real world, a leader may wish to steer a group of independent yet heterogeneous followers toward their
intended preference. For example, in ride-sharing platforms, each passenger selects an optimal ride plan
based on personal needs, while the platform adjusts incentives for certain plans to encourage behaviors such
as frequent usage or early bookings. Motivated by such applications, we investigate incentive design in a
hierarchical setting involving a single leader and multiple followers, where each follower’s planning problem
is modeled as a MDP. This raises the question: how can the leader provide side payments to the group of
followers to steer them closer to the intended preference while considering the cost of these incentives? We
address the problem through bilevel optimization. At the lower level, each follower independently selects an
optimal policy with respect to a reward function shaped by side payments from the leader. At the upper
level, the leader’s objective depends on the collective best responses of the followers and involves balancing
the benefit of influencing their behavior against the cost of providing incentives. Anticipating the followers’
best responses, the leader aims to design an incentive policy that aligns the followers’ behavior with his
objective in a cost-effective manner.

1.1 Related work

Incentive design in MDPs has been investigated in the context of Al alignment, where the goal is to ensure
that AT systems act consistently with human intentions. It is known that reward functions are often unin-
tentionally and inevitably mis-specified, which can lead to harmful or undesirable behaviors such as reward
hacking and goal misgeneralization (Ji et al.| [2023). To achieve AI alignment, a reward or model parameter
designer (the leader) guides the behavior of a learning agent (the follower) to improve system performance
by aligning the agent’s reward function with human knowledge or intrinsic rewards (Stadie et al., |2020)).
Chen et al. (Chen et al., 2022) study how to regulate an MDP agent when human wish to take the ex-
ternal costs/benefits of its actions into consideration. They formulate the problem as a bilevel program,
where the upper-level model designer (leader) regulates the lower-level MDP (follower) by adjusting model
parameters that influence the rewards and/or transition kernels. However, all of the aforementioned work
assume a unique optimal solution in the lower-level problem and a single-leader-single-follower interaction.
However, it is well-known that the optimal policy in an MDP may not be unique. Thus, we do not restrict
the lower-level problem has a unique solution and consider how to design this incentive policy even if there
are multiple optimal policies for the followers” MDPs.

For the incentive design problem in multi-agent system, Ratliff et. al. (Ratliff & Fiez| 2020]) propose a method
to adaptively design incentives for principal-agent problems in which the principal faces adverse selection
in its interaction with multiple agents. They consider both the cases where agents play best response to
one another (Nash) and where they employ myopic update rules. However, they study a different class
of incentive design problems in which the follower’s decision-making is modeled using a generalized linear
model, as opposed to a MDP with a tunable reward function studied herein.

Since the incentive design could be cast as a bilevel optimization problem (Casorran et al., [2019), we discuss
recent work on bilevel optimization and the relation to our proposed method. In recent years (2022-), various
studies have proposed algorithms to address bilevel optimization problems where the lower-level problem has
multiple optimal solutions. For example, an algorithm was developed to converge to a stationary point of
the bilevel problem using a first-order method (Kwon et al.| |2023), and a primal-dual bilevel optimization
(PDBO) approach demonstrated convergence to an optimal solution (Sow et al) [2022). However, these
methods generally require assumptions about the convexity of objective functions, which may limit their
applicability in broader contexts. |[Liu et al.| (2022)) develop a first-order algorithm for solving bi-level op-
timization problems with non-convex functions. In the MDP, the value function is generally non-concave
under both direct and softmax parameterizations. However, given the L-smoothness of the value function
and other mild conditions, we can show the assumptions required for the convergence results in |Liu et al.
(2022) are satisfied (section and thus ensure the convergence of the proposed method for the class of
incentive design problems.
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1.2 Our contributions

e We study a class of incentive design problem in the presence of multiple followers where the followers
may have multiple optimal strategies given the leader’s incentive policy. Therefore, we can extend
the application of the incentive design to more practical applications.

e To solve the Stackelberg equilibrium, standard learning dynamics require computing the total deriva-
tive of the leader’s objective function via the implicit function theorem (Fiez et al.||2020)). This total
derivative involves computing the inverse of the Hessian matrix, which is computationally expensive
and often impractical to evaluate at each iteration. To tackle this challenge, we employ the first-
order method in |Liu et al.|(2022) and reformulate the original problem as a constrained optimization
problem. We then develop a first-order algorithm for computing a stationary point for both direct
parameterization and softmax parameterization of the policy, and derive the corresponding gradient
computation, which can be obtained directly or estimated using standard RL techniques.

o We leverage smoothness properties of the value functions in MDP to prove the convergence of this
first order method, provided the followers’ best responses are restricted to two classes of policy spaces
(direct parameterization and softmax parameterization).

e We demonstrate the algorithm’s effectiveness by showing the convergence of the algorithm and
satisfaction of the constrains, and the improvement in the leader’s performance in a stochastic
gridworld environment using two different policy parameterization methods.

2 Preliminaries and problem formulation

Notation Throughout the article, we adopt the following notations. ||-|| refers to the L? norm in this paper.
The space of probability distributions on the set S is denoted by D(S). We use superscripts to indicate time
steps. For instance, a history of state-action pairs is represented as ((s(©,a(®), ... (s, a(™)). We use the
subscript to indicate the variable associated with the follower, and boldface notation to denote joint state,
action, and policy. For instance, the joint state s denotes (s1,- -, sp).

2.1 Preliminaries

A single-agent MDP is defined as a tuple M = (S, A, P, 1,7, R), where S is a finite set of states, A is a finite
set of actions, P: S x A — D(S) is a probabilistic transition function such that P(s’|s,a) is the probability
of reaching state s’ given action a being taken at state s, u € D(S) is the initial distribution, v € [0, 1] is the
discount factor, and R: S x A — R is the original reward function such that R(s,a) is the reward received
by the follower for taking action a in state s.

Let m : S x A — [0,1] be a stochastic, Markovian policy that specifies, for each state s € S, a probability
distribution over the actions a € A. The value function of a Markov policy 7 given reward R: S x A — R
is defined by

V(p,m) =Ex

(oo}

DV R(S®, AW)|SO ~ u] :
k=0

The Q-value function given policy m @: S x A — R is defined as:

Q(s,a,m) =Ex lz YFR(SH) AR SO = 5 A©) = a] ,
k=0

The state-action visitation distribution dj(s,a) of a policy 7 is defined as:
d(s,a) = (1=7) Y _APri(S®) =5, AW = a| SO ~ p),
k=0

where Pr™(S®) = s, A(®) = q|S(©) ~ 1) is the probability of visiting state s and taking action a at the k-th
time step when the agents follow policy m with an initial state distribution pu.
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The followers’ model We model the behavior of n distinct followers using n different MDPs. While
these MDPs share the same state space and action space, they differ in their transition probabilities, reward
functions, initial distributions, and discounted factors. Let ¢ € N = {1,...,n} be the index of a follower,
then the MDP for follower i is denoted as

M; = (S, A, Py, pus, v, Ri), Vi € N.

Assumption 1. The follower i solves his optimal policy in its MDP M; independently of follower j, for
any i,j € N. One follower’s action does not affect the state of other followers. Additionally, all followers
arrive at states and take actions simultaneously, starting at t = 0.

The leader’s model By Assumption [} all followers are independent in their transition dynamics and
reward functions. However, their collective behaviors affect the leader’s value in the following way. The
leader’s decision problem can be viewed from a multi-agent MDP:

M= (S,A,P,pn,7,Ry),

where S £ S™ denote the joint state space (each s™ € S is the followers’ collection of states), A £ A” denote
the joint action space (each a™ € A is the followers’ collection of actions, P: S x A — D(S) is a probabilistic
joint transition function such that P(s’|s,a) = [[,.n Pi(s'|s, @) which is the probability of reaching followers’
joint state s’ given followers’ joint action a being taken at followers’ joint state s, p is the followers’ joint
initial distribution such that p(s) = [, pi(8:), v € [0,1] is the discount factor, and R;: S x A — R is
the reward function such that R;(s,a) is the reward received by the leader for the n followers taking joint
action a at joint state s.

Given the followers’ the joint policy w: S — D(A) such that mw(als) = [[;cn 7i(ailsi), the leader’s value
function is then defined as

Vp,m) =Ex | D A" R(S®, AW 8O ~ (1)
k=0

Incentives as side payments The leader can incentivize the followers to align their behavior with the
leader’s objective. Leader’s tailored incentive to the group of followers is represented as a function x: N x
S x A — Ry, hereafter referred to as the side payments. Specifically, x(i, s, a) is the additional reward that
leader offers to the follower i when follwer ¢ takes action a in state s. We can view x as a vector with the
entry to be (i, s,a) for each i € N, s € S, a € A. We denote the set of vector z as X. The side payments
for the follower i are denoted as z;: S x A — R, where z;(s,a) = z(i,s,a). The vector z; can also be
viewed as a vector in a similar way to x.

Given a side payments z;, the follower i’s modified reward function R;(z;) is defined as follows. For all
(s,a) € S x A,

R;(s,a;x;) = Ri(s,a) + xi(s, a). (2)

As a result, the follower i’s planning problem with side payments x; is an MDP with modified reward:

M;(x;) = (S, A, Py, i, i, Ri ().

Given the follower i’s policy m;: S — D(A), his value function is defined as:
Vi(pa, mi32:) = Bar, | Y AFRi(S, A 20) |88 ~ s (3)
k=0

2.2 Problem statement

Policy parameterization We now introduce two common parametric policy classes {my|f € O} which
are complete in the sense that any Markov policy can be represented in each class. The two classes are as
follows:
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e Direct parameterization: The polices are parameterized by:
mo(als) = Os.q,
where 05 € D(A), for all s € S.

» Softmax parameterization: For unconstrained 0, , € R,

exp (0s,q/7)
wen®Xp (05,0 /T)

mo(als) = 5

where 7 is the temperature parameter that determines how closely the softmax function approximates
the hardmax function.

Problem 1. Assuming follower i’s policy is parameterized by vector 0; € ©;, we denote vector § =
[01,--- ,0,] € ©. The incentive design problem is formulated as the following bilevel optimization problem:

Lo Vb T0) m 0 O

4
s.t. 0; € argmax V;(u;, mg,;x;), Vi € N, )
0,€0,

where w is the regularization factor, and C: X — Ry is a cost function for side payments.

In the following, when the initial state distributions are clear from the context, we omit them: V(mwy) =
V(p,m9), Vi(mo,; i) 2 Vi(pi, mo,324), Vi € N.

3 A bilevel optimization approach and convergence analysis

3.1 A reformulation to a constrained optimization problem

To maximize the leader’s objective function with his decision variable x, we reformulate the bilevel optimiza-
tion problem [4] to a constrained optimization problem.

First, due to the independent dynamics and decision-making processes of the followers, it is easy to show
that problem [4]is equivalent to
max. V(mg) —w-C(z
,oax. V() (x)

s.t. € arg max Z Vi(mar; 4).
€6 ieN '

()

Let V;*(x;) = maxg,em, Vi(me,; x;), then problem [5is equivalent to:

Ao V) m €0

S. t. Z Vi(me,; ;) — Z Vi (z;) > 0.

1EN iEN

(6)

The constraint forces 6 to be within the set that maximizes the value achieved by the followers. It is noted that
2oien Vilmor s 2i) =3 e Vit (i) = 0 for any 0] € argmaxg, Vi(mg:; @), and 32, cn Vi(mors i) =3 ien Vit (@) <
0, for any 0; ¢ argmaxy, V;(mg:; ;). A feasible solution (z,0) to problem |§| ensures that 6 is the collection
of best responses of followers with the leader’s decision variable x.

Intuitively, the leader is to determine jointly the side payments x and the policy parameters 6 in the constraint
sets. When choosing a follower’s policy, the leader must ensure the chosen policy performs as good as the
follower’s best response to the side payments x, for each individual follower, to satisfy the constraint.
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Remark 1. We can show that the solution to problem[f is a Strong Stackelberg equilibrium. In a Stackelberg
game, the leader chooses an action u € U, and then the follower, after observing u, selects an action v € V.
The follower’s payoff is denoted by h(u,v), and the set of the follower’s best responses to a given leader
action u s

S(u) = arg max h(u,v).

The leader’s payoff is denoted by H(u,v), and the leader’s objective is to maximize this payoff, taking into
account the follower’s best response.

In the Strong Stackelberg Equilibrium (SSE), the follower is assumed to break ties in favor of the leader (i.e.
select the best response that is most favorable to the leader). The set of best responses in optimistic position
is defined as:

S(u) = argmg‘i(.{H(u, v) v e Su)}.
Then the bilevel optimization problem to solve SSE is defined as:

max.  H(u,v)
ueU,veV

s.t. veS(u)

In the Weak Stackelberg Equilibrium (WSE), the follower is assumed to break ties against the leader, and
the leader will have to prepare for the worst. The set of follower’s best responses in pessimistic position is
defined as:

SP(u) = arg IIEIEH‘}{H(U, v):v € S(u)}.

Then the bilevel optimization problem to solve WSE is defined as:

max.  H(u,v)
uelUweV

s.t. veSP(u).

Since both the incentive variable and the follower’s policy parameter maximize the leader’s objective function,
the solution to the reduced constrained optimization problem|[@ is to solve the SSE. This aligns with the setting
in which followers are willing to adopt policies that benefit the leader’s objective.

3.2 The algorithm and gradient computation
To notational convenience, let the objective function be denoted by
f(z,0) £ V(mg) —w-C(x),
and the constraint function be denoted by
q(x,0) £ g(2,0) — g"(x),
where g(z,0) £, Vi(mi; z;) and g*(z) £ 3,5 Vi (@)

We adopt a bilevel optimization algorithm (Liu et al., |2022)) to solve the constrained optimization problem
[6] described in the Algorithm [T}

To implement this Algorithm, we first compute the gradient (or partial derivative) of the objective function
f and constraint function ¢ assuming C(z) are differentiable.

The gradient of f(z,0) w.r.t. 6 is equivalent to the policy gradient of leader’s value function, i.e.,

V@f@@9)==V9V(ﬂ9)=

1
EEvadZ{e Ea~r, [Volog mg(als)Q(s, a, m)]. (7)
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Algorithm 1 Bilevel Optimization Algorithm

Require: Step size £, positive constant 77, known variables in followers’ MDPs, initialization (z(9), §(®) A(0)).
1: for iteration ¢t =0,1,2,... do
2. Update A#+1) according to

Vf(x(k (k)) Vq(x(k) g(k))>
AR = < ’ 0
e (” [Va(z®), 902 ’

3. Update z(*t1) according to

2D = Proj[¢™) + (Vo f (2, 6%)) + APV ,q(z™), 64)))].
4:  Update 80+ according to

0D = Projg [0%) + (Vo f (2™, 00)) - AB T yq(z® 9R)))).

: end for
6: return xp, 0.

o

The policy gradient update is based on the REINFORCE estimator:
. 1 —
VoV (mg) = — Vol ®) | s R(r; 8
oV (1) mz ologmo(a'™ | s'™)R(1;), (8)
where R (T(i)) is the total return with the sampled trajectory 7;, and |7;| is the length of sampled trajectory

T]‘.

Under direct parameterization,

aei,s,a B aei,s@ 0, otherwise

dlogmg(als)  Odlogmy, (as]s;) {1/91-}37&, if (s;,a;) = (s,a)

Under softmax parameterization,

L1 —mp,(s,a), if (si,a:) = (s,a)
= { —2m,(s,a), if s; =5, a; #a (10)
0, otherwise

dlogmy(als)  dlogmy, (ai|s:)
aei,s,a N aei,s,a

The gradient of the objective function w.r.t. x is simply

Vif(x,0) =—w-V,C(z), (11)

To derive Vq(z, ), we first provide the following lemma:

Lemma 1. Consider a reward function with side payments R(s,a;x) = R(s,a) 4+ x(s,a) where R is the
original reward in MDP M, the partial derivative of a value function V(u,mp;x) w.r.t. the side payments
x(s,a) is state-action visitation d};(s,a). That is

OV (u, mo; )

0x(s,a) di’ (s, a).

The proof is given in Appendix [A]
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Given the policy m and initial distribution y, we use dJ; to denote the vector with the entries to be dj (s, a)
for each s € S and a € A. Then by Lemma |1} the gradient of ¢(z,6) can be denoted as:

Tor (1)

Veq(z,0) = [dp —du ™, dier — dpor ), (12)

where 0} (x;) € argmaxy, Vi(mg,;2;), i € N.

Because of the independence of the followers (i.e., 8; only plays a role in V;) and the fact that g*(z) is
independent of 6, we can express the partial derivative of ¢(x,0) w.r.t. each policy parameter 6, s, as
follows:

8(1(1'70) _ ag(z70) _ ZiEN ‘/i(ﬂ-ei;‘ri) — 8‘/1(7@7,1’1) (13)
891‘,5,@ aei,s,a aei,s,a 86i,s,a ’

which can be computed using the policy gradient method in the follower i’s MDP.

3.3 Convergence analysis

It is worth noting that the problem [f] can have multiple stationary points. We use a simple example to
illustrate this.

(a) MDP for the follower 1. (b) MDP for the follower 2.

Figure 1: A small MDP example showing two followers with different reward functions.

Example 1. Figure 1| illustrates two followers’ deterministic dynamics and reward functions in a small
MDP with infinite horizen. The state space S is {0, 1,2, Sink}, and action space is {a1,a2}. Both the leader
and the followers receive a reward of 0 in the “Sink” state. Follower 1 and 2 has state 1 and state 2 as their
respective goal states in the individual MDPs. We set the leader’s reward function to be state-dependent: The
leader receives a reward of 6 when joint state is (2,1). A reward of 5 is obtained when the joint state is either
(2,0) or (0,1). For all other joint states, the leader’s reward is 0. The leader’s reward can be understood as
follows: The leader receives a reward of 6 if both followers reach each other’s goal states, 5 if only one does,
and 0 if neither does.

We assume that the leader can give non-negative side payments to follower 1 at state 2, and follower 2 at
state 1. We also assume that the discounting factor in leader’s value is 1. We denote the side payments as
x = (x1,22). The leader’s cost function is chosen to be the summation of side payments.

In this case, for any fized side payments r1 # 1 and xo # 2, each follower has a unique best response. In
other cases, although a follower may have multiple optimal solutions, the leader selects the one that mazximizes
its objective function. Consequently, the incentive design problem in this example reduces to a single-level
optimization problem, which aims to mazimize fo,(x) = maxy f(z,0) w.r.t. x, where f(z,0) denotes the
leader’s objective function.

Under direct parameterization, fm,(x) can be expressed as the following piece-wise linear function:

—T1 — T2, if0§$1<1,0§.’172<2
fm@) =<5 —x1 —x9, if0<21 <1, 29 >2,0rm1>1, 0< 5 <2
6 -z — w2, ifwy>1, w32>2



Under review as submission to TMLR

The stationary points of this function are (0,0), (1,0), (0,2), and (1,2), as illustrated in the contour plot
shown in Figure .

Under softmazx parameterization, choose 0%, = Q*(s,a,x). We denote m(a1|0) = py for follower 1, and
ma(a1]0) = p1 for follower 2. Let T = 0.05, v1 = 79 = 1, we have the following relation between the side
payments x and the probability p1,po:

exp(20x2)
exp(20zy) + exp(40)

1) = exp(20)

~ exp(20) + exp(20z1)’ p2(z) =

Then, fm(x) =5+ 4p1(x)p2(x) — 5p1(z) + p2(x) — (1 + z2). Figure illustrates the function’s contour
plot, revealing multiple stationary points across its domain.
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(a) fm(xz) under direct parameteriza- (b) fm(x) under softmax parameteriza-
tion. tion.
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Figure 2: Contour plots of f,,(z) under direct and softmax parameterizations.

We aim to prove that the limit of the sequence (7(*), x(k))zozo generated from the Algorithm is a stationary
point of the bilevel optimization problem (equation @ for both direct and softmax parameterization. Given
that the value function is non-concave, as shown in Lemma 1 of [Agarwal et al|(2021)), our analysis focus on
examining the smoothness properties of both the objective and constraint functions in equation [6}

To establish the proof, we begin by stating the following assumptions.

Assumption 2. The cost function C: X — R is differentiable, and satisfies two conditions:

e C and VC is Lipschitz continuous.
e |C(z)| is upper bounded by a constant 3 < oo.

Assumption 3. We assume that the reward functions of all the followers and the leader are bounded, and
the norm of side payments ||z|| is bounded, and as a result, given 7, the leader’s value function V(my), as
well as each follower’s value function V (mwg;x) for each follower are all bounded.

Recall that f(x,0) = V(mwg) — C(z), g(x,0) = Y ien Vil xi), g* () £ > ien Vit (x3), and g(x, 0) 2 g(z,0) —
9" (z).
We now derive three key corollaries in preparation for the final result.

Corollary 1. There exists a constant 0 < § < oo such that |V f(x,0)|, [[Vg(z,0)|, |f(x,0)| and |g(x,0)]
are all upper bounded by B for any (x, ).

Proof. The gradient computations are detailed in Section[3.2} The proof then follows straightforwardly from
Assumption 2 and Assumption [ and is therefore omitted. O

Corollary 2. V[ and Vg are Lipschitz continuous w.r.t. the joint inputs (z,0).

Proof. See the proof in Appendix [C] O
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Corollary 3. Given a set of followers’ optimal policies {7T9;« 1y, Veg(x,0) satisfies the PL-inequality w.r.1.
0. i.e. there exists k > 0 such that for any (z,0),

IVog(z,0)1* > K(g(x,6) - g(x,0)).
Proof. See the proof in Appendix [F} O

The measure of stationary, introduced in [Liu et al.| (2022), is adapted to our setting as follows.

Definition 1. The measure of stationary is defined as

K(z,0) = I}\lg(l)HVf(x, 0) + A\Vq(z,0)| — q(x, ).

The following theorem, paraphrases Theorem 2 in (Liu et al.| [2022) guarantees that the algorithm generates
a sequence (0%, x(k))iozo that satisfies (), (k) — 0 as k — 0 for the bilevel optimization problem @,

Theorem 1. Consider Algom'thm with £ < 1/L (where L is the L-Lipschitz constant defined in Corollary
@). With Assumption@ Assumption @ and that q(z,0) is differentiable on (x,0) at every iteration k > 0.
Then there exists a constant ¢ depending on &, k (where k is the PL inequality constant defined in Corollary
@, 1, L, such that, we have for any iteration numbers K > 0

: (k) (k)Y _ /L
IrcrélfrélC(G T )—O(\/E—i— fK)’

where b is a positive constant depending on k, L, and &.
Proof. With Corollary [I] Corollary [2 and Corollary [3] the optimization problem satisfies the condition

for convergence of a constrained optimization reformation for bi-level optimization problems (Liu et al.,
2022). O

4 Experiment results

We consider a multi-agent stochastic gridworld shown in Figure [3] The

robots can move in four compass directions. Given an action, say, “N”, ’ & :Rabor1
robot 1 (resp. robot 2) enters its intended cell with a probability of 1—2a4 14 Q & s
(resp. 1 — 2ay), while entering the neighboring cells (west and east) with e -
probabilities «; (resp. «s). The original reward structure for the robots ) Y o & xie

is state-based: they receive —5 at fire states, 8 at less desired goal states, : B Lo deived sl
and 10 at the goal state. The two robots with different dynamics aims to i o
maximize the total reward. After the robot reaches either the goal state o -

or a less desired goal state, it reaches a state ‘Sink’ with probability 1 and
its interaction with the gridworld is terminated. Figure 3: A 6 x 6 gridworld.

The leader’s reward R;(s,a) depends on the joint state s = (s1,s2). Let

F ={(1,4),(4,5)} denotes the set of less desired goals for the followers.

The leader receives a reward of 10 when both s; and s lie in F. If one follower reaches a state in set F
while the other is at the “Sink” state, the leader receives a reward of 8. When one follower reaches a state
in set F and the other is not at the “Sink” state, the reward is 2. In all remaining cases, the leader obtains
a reward of 0. Based on this reward structure, if we set the discounted factor in leader’s value to be 1, the
leader will receive 10 if both robots end up in less desired goal states, 8 if a robot reaches a less desired
goal state after another robot reaches the goal state, and 2 if before. With this leader’s reward function, the
leader wants to have two robots visit the less desired goals instead of the flag goal state together. To achieve
this outcome, the leader is to incentivize the robots with side payments at some costs. The side payment to
robot 1 is designed to be placed at (4,5), and side payment to robot 2 is designed to be placed at (1,4).
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Figure 4: Experiment environment and the convergence plots for different initializations under direct pa-
rameterization.
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Figure 5: Trends in convergence, feasibility, and leader’s objective across replicated experiments with ini-
tialization (2) under direct and softmax parameterizations.

We choose the cost function in leader’s objective function to be C(z) = >, | , is.0, and w = 0.1 in equation
for balancing maximizing leader’s reward and minimizing the cost of incentive. Then, we apply Algorithm
to compute a stationary point to equation @ and determine the leader’s incentive design . The experiments
validate the convergence of the side payments vector, and the performance improvement of the leader.

Table [1] summarizes the experiments results under direct parameterization starting with three different
initializations (all values are reported after convergence): (1) The initial policy are set to the followers’ best
response policies given initial side payments. (2) The initial policies are designed to maximize the leader’s
value; and (3) The initial policy for follower 2 is designed to have a low probability of reaching the less desired
goal states, while the initial policy for follower 1 is configured to ensure a high probability of reaching the less
desired goal states. All the experiments begin with initial side payments of 2 for both robots. Figure [f] shows
the convergence trends of the side payments for the three different initializations. Because the problem has
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Table 1: Summary of experiment results when under direct parameterization.

Initialization | =1 T2 Feasibility Leader’s value Leader’s objective
1 1.6217 1.8154 -1.4121e-06 0.4145 0.0708
2 3.2322 | 4.3604 | -2.6256e-04 | 9.6954 8.9361
3 3.2299 | 0.5067 | -1.3950e-04 | 2.1214 1.7477

# Feasibility is the value of constraint function in the incentive design problem.
Leader’s value is the value of leader’s value function (without the cost of side payments).

b Leader’s objective is the value of leader’s objective function (with the cost of side
payments).

multiple stationary points, the algorithm may converge to different points depending on its initialization.
Particularly, we present more detailed results for experiment (2) under direct and softmax parameterization
in Figure |5 Figure show the trends of convergence, Figure validates that the solutions
are feasible and satisfy the constraint, and Figure evaluate the leader’s value and the value objective
function for both policy parameterizations, showing a significant performance improvement of leader. All the
results show that the algorithm converges to a stationary point, and the final policies satisfy the constraints
while increasing the value of the leader’s objective function.

Figure [6] presents the occupancy-measure heatmaps for each robot’s optimal policy with side payments at
both the first and final iterations, for the experiment under initialization 2 in Table[l} The results show that
our algorithm significantly shifts the followers’ behaviors toward the leader’s preference through the use of
side payments.

(a) Robot 1: initial optimal
policy.

(b) Robot 1:
policy.

final optimal final optimal

(c) Robot 2: initial optimal
policy.

(d) Robot 2:
policy.

Figure 6: Comparison of occupancy measures between the first iteration and last iteration for two robots.

5 Conclusion

This paper studies incentive design for multiple independent followers whose aggregated behaviors determine
the leader’s value. We allow for flexibility in the agents’ policies in the lower level problem, assuming that
each agent may have multiple optimal policies. We first formulate the problem as a bilevel optimization
problem to find the Strong Stackelberg Equilibrium. Solving this bilevel optimization problem presents
challenges due to non-convexity in both the objective function and constraint functions. To address this,
we transform the original bilevel problem into a constraint optimization problem and propose an algorithm
inspired by existing bi-level optimization solutions. Our main contribution is to prove that the algorithm
converges to a stationary point of the original incentive design problem, leveraging key properties of policy
gradients and value functions in single-agent MDPs. The experimental results demonstrate that the algo-
rithm converges, the constraints are satisfied, and the leader’s performance improves, thereby validating our
theoretical convergence proof under both direct and softmax parameterizations.

Future directions include solving the Weak Stackelberg Equilibrium for this class of leader—multi-follower
games, where followers may not act cooperatively with the leader, leading to a min—max formulation for the
leader’s problem. Another direction is to consider adaptive incentive design where the leader has partial or
incomplete information about the reward functions or transition functions in the followers’ Markov decision
processes.
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A Proof of Lemma 1]

Proof. The value function can be expressed using the state-action visitation distribution and reward (Altman)
2021)):

Vinmr) = Y dils,a)R(s,a;).
s€S,aeA

As we recall that R(s,a;x) = R(s,a) + z(s,a), we have

oV(p,mg;2) 0 Z
03,4 05, (s,a)ESx A

d(s,a)R(s,a;x) | =dj(3,a)Vys,a)R(5,a;7) = dr(s,a).

B  State visitation distributions, and the gradient and smoothness property of value
function in a single-agent MDP

To lay the groundwork for the proofs, we introduce one definitation, and two propositions previously estab-
lished in (Agarwal et al. [2021). We denote the value function at the initial state s € S under policy 7 as
V(s,m).

Definition 2. The state visitation distribution dZ(s) of a policy 7 is defined as:
di(s) = (1=7) Y A*Prr(s® =[SO ~ p),
k=0

where Pr™(S®) = 5|8 ~ 1) is the probability of visiting state s at the k-th time step when the agent follows
policy m with an initial state distribution p.

Definition 3. The advantage function given policy m A: S x A — R is defined as
A(S, a, ﬂ-) = Q(Sa a, ﬂ-) - V(S? 7T)'

14
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The value function, Q-value function, and advantage function, given reward R(x) with side-payment z and
a parameterized policy 7, is denoted by V (s, mg; x), Q(s, a,mg;x) and A(s, a, mg; x) respectively.

Proposition 1. For direct parameterization, the partial derivative of a value function w.r.t. 05, has an
explicit form:

OV (u, mg; ) 1
= dre 1x). 14
aes,a T(l _’Y) 1z (S)Q(S7a’a 7T9,I) ( )
For softmaz parameterization, we have
oV (u, me;x 1
(o3 2) _ d? (s)m(als)A(s, a, me; ), (15)

0054 11—y
and
oV (u, mo; x) _ mo(als) OV (u, mo; x)
90 4 T Omg(als)
Proposition 2. The value function is L-smooth w.r.t. 8. Under direct parameterization, for any (6,0'),
and all starting state s,

(16)

2|4

VoV (s, mg;x) — VoV (s, mor;2)|| < 1=

16— 6"l

Under softmax parameterization, for any (6,0'), and all starting state s,

8
||V9V(S,7T97£L') - v@V(S,TF@/;{L’)” S WHG — QIH

After a straightforward derivation, we extend the above statement: for any initial distribution g,
VoV (i, 7g; x) is L-smooth under both direct and softmax parameterization.

C Proof of Corollary [2]

To simplify the proof, we first state the following lemma, whose proof is straightforward and therefore
omitted.

Lemma 2. Assume a vector valued function with vector input o(p) = [p1(D), ..., on(®)]T. If p1,...,02 are
all Lipschitz continuous w.r.t. the input variable p, then ¢ is Lipschitz continuous w.r.t. the input variable

p.

If a wvector valued function with vector inputs p(pi,...,pn) is Lipschitz continuous w.r.t. each p;, i €
{1,...,n}, then ¢(p1,...,pn) s Lipschitz continuous w.r.t. (p1,...,Pn)-

The summation of Lipschitz continuous function is also Lipschitz continuous.

By Lemma [2, we can simplify the proof by showing that Vg f, V. f, Vag, and Vg are Lipschitz continuous
w.r.t. both 8 and =x.

To proceed, we state the following two lemmas as preparation, and the proofs are provided in Appendix
and [E] respectively.

Lemma 3. The gradient of leader’s value function VoV (u,mg) is Lipschitz continuous w.r.t. 6.

Recall that we use d; to denote the vector with the entries to be dJ(s,a) for each s € S and a € A, given
the policy 7 and initial distribution p.
Lemma 4. dj? is Lipschitz continuous w.r.t. 6.

Proof. The Lipschitz continuity that we can establish with the previous results is as follows:
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e For V,f w.r.t. x: This follows from Assumption

e For Vo f w.r.t. §: This follows from Lemma

e For V,g and Vyg: By Lemma [2] it suffices to prove the Lipschitz continuity of V.,V (u, mg;x) and
VoV (u,m; ), where:

— V.V (u,x,my) is Lipschitz continuous w.r.t. § based on Lemma |4, and independent of x.
— The Lipschitz continuity of VoV (u,z,m9) w.r.t. 6 is proven in Proposition [2 in Appendix

Therefore, we need only prove the Lipschitz continuity of VoV (i, x, mg) w.r.t. . Then let’s focus our analysis

oV (u, mo; )

n L\ RO
00 4

w.r.t. = so that we only need to examine the properties of Q(s, a,z,my).

. According to Proposition [1|in Appendix this partial derivative is linear in Q(s, a, z, 7p)

We can express the Q-function as follows:
Q(s,a,z,mp) = R(s,a;x) + Z P(s's,a)V (s, mg; 2).
s'es

Since R(s,a;x) is Lipschitz continuous w.r.t. z, we only need to examine the Lipschitz continuity for
V(s',mg;x) w.r.t. x, which is implied by Lemma |1| given that the vector d;? has a bounded norm for any
initial distribution p and policy mg. O

D Proof of Lemma[3

To prove this lemma, we first restate Lemma 53 from (Agarwal et al.,|2021]) as Proposition

Proposition 3. (Smoothness of policy gradient) Consider a unit vector u, let wo 2 Ty ou and let V(a) be
the corresponding value at a fized state sg, i.e.

V(a) £ V™ (sg).

Assume that

dme(also) d*n(also)
Z ———|a=0| < C1, Z 72\04:0 < Oy,
acA do acA (dOt)
then ~
dQV(oz)| < Cy 2vC?
fullz=1] (da)® ") = (T =9)2 " (1 —)%

Next we provide a proof for Lemma [3]

2
Proof. Based on Proposition we only need to show > . 4 )%b:o’ and D 4 %‘;"“”a:o are

bounded. We follow the idea in the proof of Lemma 54 and 55 in (Agarwal et al.l |2021)).

Let h(¢) be defined as [];cn 4 o, (aj]s;), where ¢ is a subset of N. It is clear that 0 < h(¢) < 1 for any
¢ C N. In the case of direct parameterization, let n = |N| is the total number of followers, and recall that
a=(ay, - ,an), we have

=S Omg(als) dej(,;oi,aj

;5. a
acA |jeN 1,85,4;5

> |

acA

(7) 671’9(01‘8) d/ej,sj,aj
I
a€A jEN 185,43
(44)
<D Gy
acAjeN
<nl|A|



Under review as submission to TMLR

where (7) is follows from the triangle inequality and Cauchy—Schwarz inequality, and (¢7) is because d‘g =u

is a unit vector.

Also, differentiating again w.r.t. « gives

d*m, also Omglals) ;s o, dbrs,.a
’ lo=0| =22 | 2 Gar. . ome o do
acA acA |jkeN ~ 8% 1Sk>0k
<N Ih({G k)]
acA j#k
<n(n —1)|Al.

Let 6, € R4l denote the parameters associated with a given state s for a follower. In the case of softmax
parameterization, from equation we have Vg mg(als) = mo(als)(eq — 7(+|s)), where e, is an indicator
vector with a 1 at the entry corresponding to action a and 7(+|s) is a vector of probabilities.

Then, we have

d7ra (als
> | o o = S furVomatalso)-o
acA acA
= Z Z h({i})ul, , Vo, ., 7o, (ailsio)
acA lieN
2 Z > h({i}) [Vo, ., mo, (ailsio)]
acAieN
<> ) e, (@il si0)(ea; — 7(-]si0)))]
acAieN
<Y > molals)leq, — m(-[si0)]
1€eNacA
< Z max lea, —m(+|54,0)]
ieN €
<2n,

where (i) is follows from the triangle inequality and Cauchy—Schwarz inequality.

Also, for the softmax parameterization, the following first derivative and second derivative are bounded.

O, (a;s;)

1
S —
5’9]-,%5” T

and

2
T

Omy. (a;ls;
o) L) (o — @l ) (Lo — 2e(alsy)] <

20 . ~
9 ejxsjyaj

Then, we have
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Z dwaa|so| .
a=

Z Z aﬂ-@(a|s) dojvsjv&j dekwsk;ak
00 .. & da do

7,85,0; aek’,smak

acA acA | j,k
aﬂa-(aﬂsg‘) Omg, (ak|sk) Omo, (ajls;)
< ({4 k) — ) + i) g
,;4]; 90js;.a O s1.,ar ; 0%0;s;.a

<y (n|A(n|;4| - 2n|A|>
= T T

_n|A]2(n]A] + 27 — 1)

= 5 :

T

E Proof of Lemmad

Proof. To prove this lemma, we first present the following result and its proof:

Lemma 5. With assumption@ the value function V(u, ;) in a single-agent MDP is Lipschitz continuous
w.r.t. 6.

From Assumption [3] the Q-value function is known to be bounded, and we denote its maximum value by
Qmax, Furthermore, Proposition [1] in Appendix implies that the partial derivative of value function is
bounded by Qmax/(1 — ) under direct parameterization, and Qmax/(7(1 —v)) under softmax parameteri-
zation, where Qmax is the upper bound of Q-value function. This implies |VoV (i, me; z)|| is also bounded.
Therefore, the value function V' (u, mg; x) is Lipschitz continuous w.r.t. 6.

We now proceed to prove the Lemma[d] We have

d;’ (s, a) ZykPr =35, A% =[SO ~ 1)
=E. |3 AP - )1(SW =5, 4% = a) | SO ~ p
k=0

where 1(-) is the indicator function. Thus, for any s € S and a € A, d};(s,a) can be viewed as a value
function of policy 7 evaluated with the following reward function

H(sh o) = {(1 -9, i (s',a) = (s,a)

0, otherwise

From Lemma [5| (we choose [|z|| = 0), we derive that dj¢(s,a) is Lipschitz continuous w.r.t. 6. O

F Proof of Corollary 3

Since Vog(z,0) = [Vo, Vi(p, mo,;2), -+, Vi (s, ma,,; )], it suffices to show that each follower’s value function
V(u, mo; x) satisfies the PL-inequality w.r.t. 6. i.e.

VoV (1 o5 2|12 = 6(V (1, moe5 ) = V (1, w3 2)),

where 6* € argmaxy V(u, mg;x). We assume that the reward function is non-trivial (i.e., not identically
zero). For any 6 # 0*, we can define a positive constant 5 = max(s’a)GSXAHWH. It follows that that
B < |IVeV (1, mg; x)|| because the norm of a vector is always greater than or equal to the absolute value of

18



Under review as submission to TMLR

any individual entry. From Proposition [1|in Appendix B = —max(s 4 d™(s)||Q™ (s, a)|| under direct
T—y (s,a) %

parameterization, and § = ﬁ max g q) d;° (s)mp(als)||A™ (s, a)| under softmax parameterization. Thus,

£ > 0 under reasonable reward design.

By the performance difference lemma(Agarwal et al.| [2021]), we can show that the difference between value
function evaluated at any policy my and optimal policy 7y« is upper bounded.

1
V(o mo-s) = Vonmoia) == D it (9)mo(als) A7 (s.a)

<— Zd”g(s) max A™ (s, a) (17)

s,a

where the upper bound M is a positive constant and (7) can be derived from the fact that both the state
visitation frequency and advantage function are bounded quantities.

Thus, let 0 < k < Bﬁz, for any (x,0), we have

2
SOV (o m-32) = V(a3 ) < o M= 57 < V¥ (s )]
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